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ABSTRACT

Since 2012, the semiarid region of Northeast Brazil (NEB) has been experiencing a continuous dry condition imposing significant social
impacts and economic losses. Characterizing the recent extreme drought events and uncovering the influence from the surrounding oceans
remain to be big challenges. The physical mechanisms of extreme drought events in the NEB are due to varying interacting time scales from the
surrounding tropical oceans (Pacific and Atlantic). From time series observations, we propose a three-step strategy to establish the episodic
coupling directions on intraseasonal time scales from the ocean to the precipitation patterns in the NEB, focusing on the distinctive roles
of the oceans during the recent extreme drought events of 2012–2013 and 2015–2016. Our algorithm involves the following: (i) computing
drought period length from daily precipitation anomalies to capture extreme drought events; (ii) characterizing the episodic coupling delays
from the surrounding oceans to the precipitation by applying the Kullback–Leibler divergence (KLD) of complexity measure, which is based
on ordinal partition transition network representation of time series; and (iii) calculating the ratio of high temperature in the ocean during the
extreme drought events with proper time lags that are identified by KLD measures. From the viewpoint of climatology, our analysis provides
data-based evidence of showing significant influence from the North Atlantic in 2012–2013 to the NEB, but in 2015–2016, the Pacific played a
dominant role than that of the Atlantic. The episodic intraseasonal time scale properties are potential for monitoring and forecasting droughts
in the NEB in order to propose strategies for drought impacts reduction.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004348

The higher frequencies of El Niño in the Pacific and warmer
period of the North Atlantic have a strong influence on rainfall
in the region of Northeast Brazil (NEB). In particular, extreme
events of droughts are becoming more lasting and intensive
in the last 10 years. A drought hazard does not announce its
arrival, which can only be discerned in hindsight as the early
days of a drought. In the most general sense, drought is usually
defined as a deficiency of precipitation over an extended time
period of a season or more, resulting in water shortage. Dif-
ferent from this general overview, we propose to compute the
expected drought period length to capture the arrival of a drought

event, focusing on short temporal properties of droughts. One
further challenging task for most nonlinear time series tools is
to establish the coupling direction from the surrounding oceans
to the precipitation. Here, we focus on a rather novel method
of ordinal partition transition network (OPTN)-based complex-
ity measures, which hinges on ordinal symbolic representation
of time series. From the viewpoint of methodology, we demon-
strate in this work that the OPTN approach is a powerful tool
that is capable of disclosing intraseasonal coupling directions
from the surrounding oceans to the extreme drought events in
the NEB.
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I. INTRODUCTION

Located in the extreme Northeast of South America (Fig. 1)
and bordered to the north and east by the Tropical Atlantic Ocean,
the semiarid region of Northeast Brazil (NEB), with an area of
about 1542 km2, is the world’s most densely populous dry land
region,1 with more than 53 million inhabitants, and low economic
and social development makes the region one of the world’s most
vulnerable to extreme climate events. There are several examples of
climatic extremes that affected NEB: severe droughts in 1982–1983,
1992–1993, 1997–1998, 2001–2002, 2005, 2007, and 20101,2 and
floods in 1985, 1994, 2004, and 2009. More recently, the drought
in the Northeast semiarid region in 2012–2018 shows one of the
most significant impacts on population and regional economy in
its history. Poor rainfall during the rainy season affected reservoir
water availability with severe consequences for urban supply and
economic losses in agriculture and livestock.1,3

The main characteristic in the NEB is a semiarid climate with
a highly spatiotemporal variability of precipitation, that is, some
extremely dry years and others extremely rainy years. In general, the
NEB climate is a result of the interaction of several physical mecha-
nisms from various time scales, which on seasonal time scales, the
intertropical convergence zone (ITCZ),4,5 plays an important role
in boreal spring (March–April) influenced by the Tropical Atlantic
sea surface temperature (SST) anomalies.6,7 The abnormal warmer
of the SST in the North Atlantic led to an anomalously northward
position of the ITCZ, which further causes the shortage of rainfall
in the NEB.4 In contrast, the presence of positive SST anomalies in
the South Atlantic favors the southward displacement of the ITCZ,
which in extreme cases cause floods in NEB. In addition, other
climatic elements in other regions of the globe, such as El Niño
Southern Oscillation (ENSO), have a strong influence on precipita-
tion variability associated with El Niño and La Niña phases,8 which
often lead to NEB recurrent and profound socioeconomic impacts.
Usually, ENSO influences precipitation anomalies over the NEB via
changes in the zonally oriented Walter circulation.9

It is crucial to emphasize that a full characterization of the tele-
connections from the ocean to the precipitation patterns in NEB is

FIG. 1. Geographic locations of interest. The NEB region is between
45◦W–38◦W, 10◦S–5◦S. The Pacific region is represented only by Niño 3.4
between 170◦W–120◦W, 5◦S–5◦N, while Niño 3 and Central and Eastern Pacific
are not shown. The Tropical North Atlantic (NA) lies between 50◦W–20◦W,
12◦N–27◦N, and Tropical South Atlantic (SA) lies between 15◦W–0◦E, 15◦S–0◦N.
The north–south difference (NAminus SA across the equator) is a measure of the
tropical Atlantic sea surface temperature dipole.25

still a big challenge since the coupling relationships from tropical
Pacific and Atlantic Oceans show considerable variability through-
out the rainy season.10–12 Observational and theoretical evidence,
as well as climate model results, point out that oceanic and atmo-
spheric conditions over the Atlantic and Pacific Tropical basin are
determining factors in interannual and decadal climate variability
over NEB.6 It is hypothesized that the tropical Atlantic and tropical
Pacific play distinctive roles in different time scales influencing the
precipitation patterns.12 In recent years, the most widely accepted
interpretation is that tropical Atlantic SST variability was indeed a
determinant of NEB rainfall anomalies, while ENSO may at times
reinforce them and sometimes weaken them. Despite this evidence,
some studies consider that the relationship between ENSO and NEB
is not straightforward, and therefore, ENSO teleconnections play
an important role in climate variability of the Tropical Atlantic,
which, in turn, affects the NEB climate.7,13 In fact, only part of
drought events in the NEB has been attributed to ENSO, while other
events are due to the tropical South Atlantic SST variability.1,14 Fur-
thermore, Madden–Julian Oscillation (MJO) originating from the
western Pacific is likely to be one of indirect effects changing the
short temporal scale of intraseasonal rainfall variability in the South
America.15

There are a large number of regional studies that used differ-
ent approaches to analyze the influence of the ENSO and Tropical
Atlantic SST on the interannual variability of precipitation over
NEB.6,10 However, proper statistical tests of the influence mecha-
nisms from the surrounding oceans remain to be an unresolved
issue. In particular, it is still one of the big challenges to assess time
delays and to quantify the strength of an interacting mechanism
because of a strong dependence on serial autocorrelation,16,17 which
may be resolved by graphical models and well-adapted hypoth-
esis tests.18 Recently, complex network approaches have demon-
strated to be successful in revealing the global coupling patterns
of extreme rainfall events.19 Different types of Eastern Pacific and
Central Pacific El Niño and La Niña and their distinctive influences
on the global climate have been well identified by network-based
indices.20

Besides these recent developments, time series network
approaches provide interdisciplinary platforms for nonlinear time
series by means of complex networks.21 Based on this consideration,
we aim at advancing the understanding of the temporal variability
of precipitation over NEB at a regional level, with emphasis on the
response of rainfall to SST anomalies of the Equatorial Pacific and
Tropical Atlantic oceans, in particular, during the recent decade of
drought events. More specifically, we identify episodic intraseasonal
coupling delays from the ocean to the precipitation patterns in the
NEB using recent time series network approaches.

The outline of this paper is as follows: In Sec. II, we first pro-
vide an introduction on datasets that are used in this work. In
Sec. III, we illustrate the main steps that are used to character-
ize the extreme drought events in NEB, including the computation
of drought period length, the ordinal partition transition network,
the Kullback–Leibler divergence measure, and the hypothesis test.
We summarize the main results in Sec. IV, discussing the distinc-
tive roles of Pacific and Atlantic oceans on the drought events in
the last 10 years. Finally, our main conclusions are summarized in
Sec. V.
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II. DATA

We use data of Climate Prediction Center (CPC) gauge-based
analysis of global unified daily precipitation for a period of 40
years from 1979 to 2018 with 0.5 ◦ latitude 0.5◦ longitude horizontal
resolution.22 In the CPC, a suite of unified precipitation products
are created with consistent quality improvement, which are done
by combining all sources of information available at the CPC, by
taking advantage of the optimal interpolation and objective anal-
ysis techniques.23 The sea surface temperature (SST) is evaluated
using NOAA of 0.25◦ latitude × 0.25◦ longitude high-resolution
data products.24

Figure 1 shows the geographic location of the domains. In the
Tropical Atlantic Ocean, we selected two areas that represent the
Atlantic dipole and reflect the relevance to climate variability of NEB
rainfall.6,25 In addition, smaller areas in the tropical Atlantic are used
because they are the centers with the largest SST anomalies. These
Atlantic areas are further east, which should be independent of the
ENSO.25 Moreover, we calculate the north–south Atlantic SST dif-
ference to capture the asymmetric SST anomaly pattern about the
equator which has been referred to as an SST dipole mode,25 show-
ing interannual climate variations over NEB. By the same time, we
study the influence of different Pacific areas of Niño 3.4, Niño 3.0,
the Central Pacific, and the Eastern Pacific over the precipitation
in the NEB, as that has been reported in Refs. 26–28. Note that the
Eastern Pacific corresponds to most of Niño 3.0 region, while the

Central Pacific is often defined as Niño 4.0. Some of the droughts
in NEB are related to the Eastern Pacific, and it is also most likely
a combination of Eastern Pacific and warm tropical Atlantic SST
during some drought years in the NEB.26 In our work, we obtain
consistent results for all Pacific areas, and hence, we only briefly
summarize the results for the Central and Eastern Pacific. For each
domain, we calculate the spatial average of the variable of inter-
est and calculate the daily anomalies relative to a base period of
1980–2005. This choice of climatology window helps to minimize
the long-term trend effects. Additionally, we focus on some spe-
cific features for the recent continuous drought events from 2009
to 2018.1

III. METHODS

There are three steps in our analysis to assess coupling from
the surrounding oceans to the precipitation patterns in the NEB,
focusing on the recent increasing trend of the drought events:
(i) computation of drought period length from the precipitation
anomaly series, (ii) statistically establishing the coupling delays from
the ocean to the precipitation by means of time series network
approaches, and (iii) assessing the properties of SST during the
drought events with proper delays that are identified in step (ii).
These three steps are illustrated in Fig. 2, which will be further
discussed below.

FIG. 2. The calculation of drought period length for the period 2010–2013. (a) Example precipitation anomaly time series, (b) is the corresponding drought period length
series, and (c) SST in the Niño3.4 region and time windows of SSTs larger than 0.5 ◦C are highlighted.
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A. Drought period length and drought events

Drought is a natural hazard and it does not announce its arrival,
which can only be discerned in hindsight as the early days of a
drought. Hence, it is a slow onset event. When characterizing the
arrival of a drought event, we recently proposed to compute the
expected drought period length (DPL) to quantify the dry condi-
tions, which have shown the power in capturing the fundamental
properties in both the Amazon region29 and the exceptional drought
year 2014 in São Paulo of the Southeast Brazil region.30 More specif-
ically, given the daily precipitation anomaly series PREC(t), we
compute the expected drought period length DPL(t) that character-
izes the waiting time from a given day to the next first non-negative
rainfall anomaly as follows:

DPL(t) = min{τ : PREC(t + τ) ≥ 0, τ ∈ [0, ∞)}. (1)

The DPL(t) captures the expecting time when anomaly series goes
from negative to positive, characterizing the expectation to have an
excess rain anomaly. In addition, from the viewpoint of climatol-
ogy, we also suggest to compute the DPL based on five-day averaged
precipitation anomalies, which may reduce the noise effects of daily
temporal resolution series. We show an example of computing DPL
series from the precipitation anomalies of the period 2010–2013, as
illustrated in Fig. 2.

Drought and its effects vary from region to region. In a trop-
ical climate like NEB, a week without rain might be considered a
dry spell that could evolve to drought if it becomes longer. In the
most general sense, drought is usually defined as a deficiency of
precipitation over an extended time period of a season or more,
resulting in water shortage. Differently from this general overview,
we characterize short temporal properties of droughts following our
previous work.29,30 More specifically, from the daily DPL series, we
define a drought event if the corresponding DPL value is larger than
a threshold of two weeks (14 days), which may largely capture the
slow arrival time of a drought event. The empirical choice of this
threshold is suggested by the mean dry spell period length which is
about one week.30 Therefore, drought events as defined in this work
capture the intraseasonal precipitation variabilities. More drought
events are identified if a smaller threshold value is used, which, how-
ever, do not change the following results significantly. Note that
consistent results have been obtained when different thresholds are
used.

B. Coupling delays identified by Kullback–Leibler

divergence

The estimation of coupling direction from the surrounding
oceans to the NEB has been obtained by a time series network
approach, which has been recently proposed in Refs. 31–33. Here,
we present a brief introduction of this algorithm and the details
of a general overview of complex network approaches to nonlin-
ear time series analysis have been reviewed in Refs. 21 and 33.
More specifically, we focus on ordinal partition transition network
(OPTN)-based complexity measures that have been proposed to
infer coupling delays from time series.33 This method hinges on
ordinal symbolic representation of time series.33 We note that a
weak stationarity should be assumed before the following method is

applied. This is physically meaningful since we focus on the intrasea-
sonal time scales, while the ENSO shows on average large time scales
of 2–7 years.14

Starting from time series of SST as X = {xt}
N
t=1, we first embed

time series in phase space using delay embedding,21,31 namely,
Ext = [xt, xt+τd

, . . . , xt+(D−1)τd
] with embedding parameters of dimen-

sion D and delay τd. Then, we use the rank order to represent the
embedded vector Ext. Here, the number of unique patterns is decided
by dimension D and there are at most D! different patterns, which
are denoted as π1, π2, . . . , πD!. Therefore, the corresponding sym-

bolic series {πX
i }

N

t=1 is obtained by considering the ordinal pattern
of each vector Ext. Time series generated by deterministic dynamical
systems often yield an uneven distribution of patterns p(πi), which
shows distinctive properties compared to stochastic processes. In
this line of research, symbolic methods have been well developed
to characterize the underlying dynamical system.34,35 The choice of
the embedding parameters τd and D is often based on the first root
of the autocorrelation function of the time series and the false near-
est neighbor method, respectively.31 In this work, we choose τd = 1
and D = 2. The following results have been verified by D = 3. For
the precipitation anomaly series Y = {yt}

N
t=1, we obtain its associated

ordinal pattern series {πY
j }

N

t=1
.

The coupling direction from X → Y (i.e., SST → precipitation)
is captured by computing the time-lagged co-occurrence frequen-
cies of ordinal pattern series πX

i and πY
j , which was proposed in

Ref. 33. More specifically, for X exhibiting an ordinal pattern πi at
some time t, we compute the time-lagged co-occurrence frequen-
cies with all ordinal patterns of Y to be observed at time t + τ ,
i.e., p(πY

j (τ )|πX
i ). With the null hypothesis that Y is independent

of X, the co-occurrence frequencies p(πY
j |πX

i ) and the marginal dis-

tribution p(πY
j ) are the same. On the other hand, the difference

between these two distributions suggests the coupling. Therefore, we
first compute the pattern-wise Kullback–Leibler divergence (KLD)
between p(πY

j |πX
i ) and p(πY

j ) in the following way:

KLDπi(τ ) =

D!∑

j=1

p(πY
j (τ )|πX

i ) log2

p(πY
j (τ )|πX

i )

p(πY
j )

. (2)

Then, the global KLD complexity measure is therefore calculated as

KLD(τ ) =

D!∑

i=1

p(πX
i )KLDπi(τ ), (3)

where the summation runs over all patterns πX
i of X.33 The KLD

value vanishes if and only if X and Y are independent, while any
positive value suggests a possible directed influence from X to Y.
Furthermore, τ = 0 corresponds to the case of simultaneous co-
occurrence of ordinal patterns in both sequences, while nonzero
lags of τ capture the case that the driven process Y responds to the
driving X with proper delays.

C. Hypothesis test

Due to the finite length of time series and possible noise effect,
a statistical significance test has to be properly evaluated how likely
the causal link from the ocean to the precipitation arise by chance.
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FIG. 3. Kullback–Leibler divergence measure vs time lag for the year 2016. The solid (blue) line is the threshold value obtained from the 95% of surrogate sample distribution
with size Ns = 1000. The diagram highlights the time lags that cross the significance level. (a) Niño 3.4, (b) Niño 3.0, (c) North Atlantic, and (d) South Atlantic.

Here, the null hypothesis is that the two variables of X and Y (SST
and precipitation) are statistically independent. The null hypothesis
test is achieved by using a procedure of shuffled surrogate, which
generates Ns copies of the original variables with the temporal order
of the elements randomly shuffled. Here, we generate surrogates
either by phase randomizations36 or by order pattern transition ran-
domizations, which yield qualitative the same results. The causal
interactions of time lags τ are determined by comparing the KLD
of the original pair of time series with a confidence level, which is set
at 95% percentile of the distribution of KLD values calculated from
the Ns = 1000 surrogates.17

Figure 3 shows the hypothesis test procedure for uncovering
nonstationary coupling by KLD. We use the period of 2016 as an
example to show the methodology in obtaining the lag informa-
tion from the surrounding ocean areas. Following similar ideas as
in Ref. 17, we consider the period of each year (i.e., 365 sample
points). The possible coupling relation is examined by shifting the
SST series back in time, from zero lag up to the maximum of four
months (−120 days), which allows one to capture the interaction
within the period of interest.

In the upper panel of each subfigure, the black circle-dotted
line shows the KLD values against the time lag between the SST and
precipitation, and the blue line is the threshold value of 95% signif-
icance level. Whenever the KLD values are larger than its respective
threshold, we reject the null hypothesis that the two variables are
independent. In other words, those crossings represent significant

coupling delays from the ocean to the precipitation patterns, which
are further highlighted in the lower panel.

Furthermore, as suggested in Ref. 17, continuous crossings
within one week time window are regarded as substantial lag infor-
mation, which, therefore, avoid isolated crossings. For instance, an
isolated crossing at −117 is neglected. More specifically, in the year
2016, we identify 2–3 months coupling lag (at lag positions of −85,
−67, and −55) from the Niño 3.4 to the precipitation in the NEB
[Fig. 3(a)]. Although with a slightly different geolocation, it suggests
a consistent lag of 3 months from the Niño 3.0 region [Fig. 3(b)]. In
the north Atlantic, lags slightly larger than 3 months are identified
[i.e., −110 and −95 in Fig. 3(c)]. However, no significant coupling
lags have been identified in the south Atlantic area [Fig. 3(d)]. Inter-
estingly, we have obtained qualitatively the same lag information for
the Central Pacific as Niño 3.4, while the Eastern Pacific shows the
same lags as Niño 3.0.

We simplify the notation for positions of negative lag values by
days back in time when discussing about the nonstationary coupling
lag information in Sec. IV B. For instance, lag position of −85 is
referred to as 85 days back in time from 1st January.

D. Correlations with SST

With the time lag information as identified by KLD measure,
we look back how the SST of the surrounding oceans behave dur-
ing the drought events as defined by DPL [as shown in Fig. 2(c)].
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Starting from a time window [ti, tj], that is, identified as a drought
event by DPL, we study the frequency of extreme high SST in the
respective lagged window [ti + τ , tj], where τ is the lags chosen by
KLD. Taking the SST of Niño 3.4 as an example, the anomalously
warming frequency in the lagged window is captured by computing
the ratio as

Ratio =
#{[ti + τ , tj]|SST > 0.5◦C}

#{ti + τ , tj}
, (4)

where 0.5 ◦C is a threshold that is often used to define an El Niño
event.37 For a year of several drought events, the above ratio is an
average over the same number of lagged windows. The same calcu-
lations have been performed for both the tropical North and South
Atlantic oceans, but with a temperature threshold 0.6 ◦C since the
Atlantic is normally warmer than the Pacific.

In order to focus more on the drought events during the austral
summer and fall (wet) seasons, we further restrict the drought events
in time windows of February, March, April, and May (FMAM) that
represent the peak of the rainy seasons.

IV. RESULTS

A. General behavior of DPL

Let us start by showing the general behavior of drought
period length for the entire period of 40 years from 1979 to 2018.
Figure 4(a) shows the frequencies of negative precipitation anomaly
series of each year. The years of high frequencies have been consis-
tently identified with observations.1,38 More specifically, 1979–1983,
1987, 1990–1994, 1997–1999, 2001–2005, 2007, 2010 and 2012–2018
present high frequencies of negative anomalies. From this result, it
visually suggests an increasing trend of frequency of larger than 0.5
starting from 2009 till the present 2018, which agrees with the results
of Ref. 1.

Due to the possible daily fluctuations in the anomaly series,
we calculate the anomaly by a five-day mean of the precipitation.
Then, we compute DPL and the general behavior of the frequencies
of DPL values larger than two weeks is shown in Fig. 4(b), which
show qualitative the same results as in Fig. 4(a).

Particularly, the drought events (from 2009 to 2018) as defined
by DPL are further summarized in Table I. It shows much extended
long drought periods in 2012–2013 and 2015-2016. These were the
worst years in terms of the drought impacts on vegetation, as shown
in Ref. 1.

B. Episodic coupling lags

Nonstationary coupling directions from the surrounding
oceans to the precipitation patterns of NEB are identified by
KLD(τ ), which are shown in Fig. 5. These results are further sum-
marized in Table II. Due to the recent increasing trend of drought
conditions, we show significant coupling delays for each years sep-
arately from 2009 to 2018. Each of these years is referred to as
the period of interest (POI) spanning from 1st January until 31st
December. This civil year calendar helps to standardize the climato-
logical interpretations. In addition, the time window of the possible
driver of SST in the oceans moves continuously back in time regard-
ing to the POI.17 In addition, we summarize the results focusing
on 2009–2010, 2012–2013, and 2015–2016. The other years will be
briefly mentioned when necessary.

Pacific Ocean: Four slightly different regions of the Pacific
Ocean show qualitatively the same results for the coupling delays.
In particular, time lags of 2–3 months have been identified from
the Niño 3.4 and Central Pacific for the years 2009, 2011–2013,
2014, and 2016. This lag is increased up to 4 months for 2015 and
2017. No lags are identified for 2010. The regions of Niño 3.0 and
Eastern Pacific are closer to the South America; thus, the lags are
shorter than that of Niño 3.4. Specifically, one month delay has been

FIG. 4. (a) Frequency of negative precipitation anomaly series, and (b) the percentage of days that have drought period length longer than two weeks.

Chaos 30, 053104 (2020); doi: 10.1063/5.0004348 30, 053104-6

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

TABLE I. Drought events as defined by DPL values larger than two weeks. Values correspond to the i-th (±5) day of each year.

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

1–10 10–15 145–155 1–35 30–65 1–35 1–40 35–120 1-30 1–25
40–45 35–45 245–275 55–160 85–95 70–75 90-100 150–255 50–55 65–85
190–195 110–120 320–335 185–200 240–265 155–165 135–145 285–305 75–80 110–200
250–270 250–280 355–365 235–295 290–295 260–265 220-230 355–365 110–125 220–235
310–325 325–330 345–365 300–305 250–355 260–290 255–275

330–340 350–365 350–355
360–365

identified for Niño 3.0 and Eastern Pacific 2010–2011 and 2018.
From this perspective, the Eastern Pacific El Niño events are rel-
atively more relevant to the drought in NEB as compared to the
Central Pacific.

North Atlantic: Time lags of 2–3 months have been iden-
tified for years 2010–2011 and 2013–2016. In addition, lags of
about 4 months are disclosed for 2012 and 2016. Note that

these episodic coupling delays agree with the hypothesis in the
literature.17 No significant couplings exist for years 2009 and
2017–2018.

South Atlantic: Time lags of 2–3 months have been identified
for years 2010–2012, 2015, and 2018. In both 2010 and 2017–2018,
episodic coupling lags of about 4 months are found as well. No
coupling lags are found in 2013–2014 and 2016.

FIG. 5. Time lag influence of all ocean areas on NEB from 2009 to 2018. (a) Niño 3.4, (b) Niño 3.0, (c) North Atlantic, and (d) South Atlantic.
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TABLE II. Time lag information extracted by KLD. The symbol “/” represents cases of no significant time lags. All values correspond to days back from the 1st January of each

year.

Year Niño 3.4 Niño 3.0 North Atlantic South Atlantic Central Pacific Eastern Pacific

2009 74–78 76–80 / 11–16 73–79 77–80, 23–26
2010 / 23–28 64–67 105–112, 81–88 / 73–75
2011 50-56, 15 −22 17–20 82–93 88–99, 35–40 45–53, 25–22 18–20
2012 50–57 92–112 114–119 58–65, 22–27 51–53 94–100
2013 100–108 / 84–89, 66–72 / 105–106, 47-51 /
2014 49–55 108–116, 40–50 93–99 / 50–53 101–112
2015 105–116 108–116 86–102 87–94, 71–76 109–116 109–116, 43–50
2016 70–79, 60–67, 20–55 42–88 107–112, 85–92 / 11–79 41–86, 25–31
2017 100–118 108–117 / 109–112 100–118 113–117
2018 38–45 27–40 / 117–119, 88-92, 33–36 38–45 27–39

The episodic coupling lags help to define the time window of
SST that needs to be shifted backward, which are used to establish
the correlations to the oceans as summarized in Sec. IV C. Further-
more, the episodic coupling lags agree with the findings that have
been proposed in Ref. 10, showing considerable variabilities on both
spatial and temporal seasonal scales.

C. Correlations to the oceans

1. General overview of SST variability

For better comparisons, Fig. 6 shows the general overview
of SST for the period 2008–2018. When studying the drought

correlations in 2009, we need to shift the SST with proper cou-
pling delays and, therefore, the SST in 2008 is included in Fig. 6.
In the Pacific region, the time period when SSTs are larger than
T0 = 0.5 ◦C are highlighted, which are further used to define warmer
periods in the ocean. Since the Atlantic Ocean is warmer than the
Pacific, the threshold T0 = 0.6 ◦C is chosen for the tropical Atlantic
oceans. In 2009–2010, the SST in the Niño 3.4 region started warm-
ing above the threshold in 2009 and reached the maximum in
December 2009 and January 2010. This El Niño event showed a
relatively slow decreasing trend, which was followed by a fast warm-
ing temperature in the North and South Atlantic. In 2012, both the
Pacific and NA showed some episodic but short intervals of high

FIG. 6. SST of the surrounding ocean areas. (a) Niño 3.4, (b) North Atlantic, and (c) South Atlantic. The temporal windows of SST greater than 0.5 ◦C in the Niño 3.4
(respectively, 0.6 ◦C in the Atlantic) are highlighted.
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temperature [Figs. 6(a) and 6(b)]. Starting from December 2014, the
Pacific showed an unprecedented warming period, which was well
above the threshold for the entire 2015. This historic strong El Niño
event was finally over in February 2016. During this El Niño inter-
val, we find some time windows of high temperature in the NA and
SA as well [Figs. 6(b) and 6(c)].

Figure 6 suggests an increase from 2009 to 2018 in the fre-
quency and intensity of dry spells and droughts larger than 0.5,
which has had an intensity and impact that had not been seen in
the last few decades. This result agrees with Ref. 1, which highlights
that this region is under a risk of aridification, which shows that the
arid areas increased throughout the NEB between 1951 and 2010.

Furthermore, Fig. 6 also reveals that driest years are recurrent
in the region and as part of its natural climate variability. Previous
observational studies have identified that drought events in NEB are
associated with El Niño events, with strong warming in the tropi-
cal north Atlantic, or a combination of both, in general, due to an
anomalously northward position of the ITCZ over the Atlantic sec-
tor. The influence from the Atlantic becomes stronger because of the
warming period the multidecadal Atlantic oscillations.

2. SST variability during extreme drought events

In the next step, we investigate how the SSTs behave when
there are drought events (DPL larger than 14 days). The coupling
delays are chosen according to the previous statistical results of KLD
measures, as shown in Table II. Figure 7 shows the variations of

the warming ratio [Eq. (4)] for each year. In addition, we divide the
discussion into two aspects: (i) drought events in the entire period
of each year [Figs. 7(a), 7(b), and 7(c)], and (ii) drought events for
FMAM only [Figs. 7(d), 7(e), and 7(f)].

In 2009–2010, we find that Pacific Ocean played a stronger
role first in 2009, but later in 2010 became weaker than the North
Atlantic [Fig. 6(a)]. This is because an El Niño event started in the
late 2009 and finished till the end of February 2010, which is fol-
lowed by the anomalous warming in the NA ocean [visually shown
in Figs. 6(a) and 6(b)]. The restrictions to seasons of FMAM disclose
pronounced influence in 2010 from both the Pacific and NA oceans
[Fig. 6(d)], which are mainly due to the overlapped time windows of
high temperature in both oceans.

In 2012–2013, both the Pacific and Atlantic show warming
behavior if all drought events are considered in this time period
[Fig. 6(a)]. However, for the wet seasons, no warmings are found
in FMAM in 2012 [Fig. 6(d)]. Therefore, the relative high ratio val-
ues in 2012 [Fig. 6(a)] are related to the dry conditions in the dry
seasons. On the other hand, in 2012, we find an increased tem-
perature gradient between the North and South Atlantic [Figs. 6(b)
and 6(e)]. In 2013, the relative stronger influence from the NA has
been found than that from the Niño 3.4 region [Figs. 6(a) and 6(d)].
The temperature gradient between the NA and SA became weaker
than 2012 [Fig. 6(b) and 6(e)], indicating a La Niña event which
was relevant to the drought in the NEB.25 These results agree with
model predictions,39 which show a relatively high predictability of
rainfall, highlighting the important influence from the SST gradient

FIG. 7. Warming ratio of SSTs that are larger than 0.5 ◦C when DPL is larger than two weeks. [(a)–(c)] for the entire year and [(d)–(f)] are for the season FMAM. [(a) and (d)]
for three ocean areas of Niño 3.4, NA and SA, and [(b) and (e)] for the absolute value of the difference between the North and South Atlantic ocean. [(c) and (f)] Niño 3.4,
Niño 3.0, Central and Eastern Pacific.
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between the NA and SA, though El Niño can be dominant when it is
strong.

Starting from September 2014, the SST of Pacific showed an
unprecedented increasing trend, reaching the maximum in Octo-
ber 2015 followed by an extended decreasing period until the mid of
April 2016 [Fig. 6(a)]. During this extremely long period of warm-
ing in the Pacific, the NA showed two episodic warming periods
September/October 2014 and the beginning of August until the end
of November 2015. This unprecedented long period of the El Niño
event is the main cause of the severe drought events in 2015–2016,
which was further influenced by the episodic increasing of the
temperature gradient between the NA and SA.

All the above results in related to the influence from the Pacific
have been consistently obtained from the Niño 3.0, Central and
Eastern Pacific [Figs. 6(c) and 6(f)]. Furthermore, the identified
nonstationary coupling directions from the oceans agree with the
results that have been published in the literature.6,7,10,13,40

V. DISCUSSIONS

Based on ordinal partition transition network approaches for
nonlinear time series analysis, we propose an algorithm to estab-
lish the episodic coupling directions on intraseasonal time scales
from the ocean to the extreme precipitation patterns in the north-
east Brazil. This method involves three steps: (i) defining drought
events by computing drought period length, (ii) statistically identi-
fying coupling lags from the ocean to the precipitation patterns, and
(iii) calculating warming ratios of the SST of the surrounding oceans
during time windows of drought events with proper time lags. We
note that the computation of DPL captures the intraseasonal tempo-
ral properties of the precipitation anomalies, which can be applied
for other purposes of extreme value analysis. Furthermore, the com-
plexity Kullback–Leibler divergence measure is shown to be useful
to estimate statistically significant coupling directions. In the par-
ticular case of this study, our method shows capabilities in detecting
the coupling delays whenever the SST shows warming periods above
the thresholds, namely, the SST anomaly is larger than 0.5◦C in the
Pacific while 0.6 ◦C in the Atlantic oceans.

We note that time lags of the directional coupling from the
oceans vary considerably from year to year. On average, time lags of
2–3 months have been identified from the ocean regions. However,
the Pacific showed an increased lag up to 4 months for years 2015
and 2017. In other years, one month lag is identified in 2010–2011
and 2018, especially for Niño 3.0 and Eastern Pacific since these two
regions are closer to the South America. We have obtained consis-
tent results when considering different ENSO types of the Pacific
areas because we focused on a relatively narrow area in the NEB,
instead of a wider region of South America.26–28,41 Similarly, the
Atlantic Ocean has an average time lag of 2–3 months. Lags of 4
months are found for 2012 and 2016 in the North Atlantic, and in
2010 and 2017 in the South Atlantic. Our results of coupling delays
on intraseasonal time scales are consistent with the results in Refs. 10
and 42, as the interactions often show considerable episodic time
scales ranging from seasonal to interannual scales. Therefore, from
the viewpoint of the individual event, the coupling lags as shown in
Fig. 5 and Table II are helpful for understanding the specific feature
for individual drought.

From the viewpoint of methodological perspective, the OPTN
time series network approach identifies intraseasonal scale proper-
ties that are potential for monitoring and forecasting droughts in
the NEB, in order to propose effective strategies for drought risk
reduction. Furthermore, the Kullback–Leibler divergence measure
is based on ordinal patterns of time series, which does not require
a presumption of stationarity of time series. The statistical signifi-
cance of the results is easily assessed by either phase randomization36

or by order pattern transition randomization. Our method is useful
to establish coupling directions in rapidly changing time scales that
often require a considerably longer time span of the predictions.43

Therefore, the intraseasonal directional coupling delays identified
by the KLD measures show high potential for regional climate model
predictions for the climate conditions.

Further investigation is necessary to better understand the
effects of the warming phase for the multidecadal north–south
Atlantic oscillation on the precipitation patterns in the NEB.44 This
becomes crucial for the entire tropical Atlantic basin, most apparent
in the north Atlantic tropical region, warmed up since mid-1970s.40

It remains to be a challenge since an indirect effect of the ENSO on
the SST variabilities in the tropical Atlantic exists,7 which requires
to consider the possible indirect effects. On the other hand, MJO
from the Pacific should also be studied since the SST from the west-
ern Pacific may influence the intraseasonal precipitation variability
in the South America.15 The question of considering indirect effects
of mode interaction on precipitation cannot be fully answered by
our proposed network method yet, which requires further investiga-
tions.
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