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1. Introduction

In a recent paper [1] it was shown how the external and mutual inductance coefficients of
tokamak plasma equilibria can be determined in conformity with both a given plasma shape and
externa fields. Therequired link between the plasma current and the external fields was derived
from the constraint imposed on the equivalent surface current by thetotal poloidal magneticfield
distribution over the plasmaboundary. Thisformulation clarified and extended the results of the
work by Hirshman and Neilson [ 2], restricting the space of solutions consistent with thetokamak
configuration. Inthe present paper adecompositionintoroidal coordinatesisintroduced, so that
the boundary conditions can be satisfied by matching momentsin the multipolar expansionsfor
the poloidal flux due to the external currents. The matching expansions inside the plasma are
calculated either from the equivalent surface current or in terms of the actual external sources.
This procedure leads basically to the same results of Reference [1], in which the boundary
conditions were satisfied by cancellation of harmonics in a Fourier series expansion for the
poloidal flux at the plasmaedge. Thevalues of the external inductance obtained with the present
method show good agreement with the previous results for a wide range of tokamak plasma
aspect ratios.

2. Poloidal flux function in toroidal coordinates

In an axisymmetric toroidal plasma configuration the flux ® between the symmetry axis and
any flux surface is given in terms of the surface integral over the total toroidal current density
jr timesthe Green’s function G for atoroidal ring current

(T = —po [ [3n(FIG(T ) d*ra(9). M

where d?rq(¢) is the differential area element in the surface ¢ = constant of a cylindrical
coordinate system (R, ¢, Z). The subscript 1 indicates the coordinates of the sources.

Intoroidal coordinates (7, w, ¢) the Green’sfunction for asystemwith equatorial symmetry
admits a decomposition of the form
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where f,,(n) and g,(n) are the toroidal functions (Fock functions) and the parameter of the
toroidal coordinate system, 0 < R,,, < oo, defines the position of the magnetic axis.

The poloidal flux in a tokamak is given by the sum of the flux ®,,; due to the internal
sources, i.e., the plasmacurrent density, and theflux .., dueto the external sources. In general,
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the flux due to the external sources is given by the sum of the fluxes produced by an ided
transformer, ®,,, by an uniform vertical equilibrium field, B,.,:, ahd by a set of ring currents
with equatorial symmetry, I, which represent the poloidal field coils

Doi(T7) = s + TR*Byert — po »_ LiG(7, 7). (3)
k

Assuming that all the poloidal field coils are outside the toroidal cavity 7, the external flux
admits the multipolar expansion [3]

D.i(n,w) = Hoalr(a M:(a ) cos(nw 4
) \/cosh(n) —cos(w) Z (o), @

where a denotes the minor radius of the plasma, I (a) is the total toroidal plasma current and
the external moments are given by
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Now, the poloidal flux ®(0) between the magnetic axis and infinity isthe sum of the fluxes
® between the symmetry axis and a given flux surface and @ between the magnetic axis and
the same flux surface

O(0) =P+ Pp. (6)

The initial conditions of the magnetizing circuit define the constant value ®(0); it is zero for
an initially unloaded transformer. Hence, the constant flux requirement at the plasmaboundary
provides alink between the internal and the external sources

O(a) = Dypy(a) + Pepe(a) = ®(0) — Pp(a). (7)

3. Equivalent surface current density

The vector analogue of Green’'s theorem gives an expression for the flux in the vacuum region,
due to the plasma current, in terms of an equivalent surface current density

Do (F') = —pio § K (F)G(T, 77) de(6)) (®)

Here d¢(6) denotes the differential arc length along the poloidal angle ¢ in flux coordinates
(p,0,( = —¢) . Thetoroidal component of the surface current density is given in terms of the
gradient of the poloidal flux just inside the plasma-vacuum interface p = a; using the integral
form of Ampere'slaw the surface current Kr(a, 0) isfinally related by geometrical factors to
the total toroidal current I-(a) [1]

(3B (6l/R), )
106000 = (Gt ), = 30950 /37 ©)
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Insidethe plasmathe equivalent surface current K7, taken with the opposite sign, produces

a magnetic field that coincides with the field produced by the external sources. Thisis a

consequence of the vector analogue of Green's theorem and is equivalent to the principle of

virtual casing. Indeed, theflux produced by the external sourcesinsidethe plasmacan bewritten
as

Des(T) = D(0) = @p(a) + pio § Kr(FT)G(T, ) de(61), (10)

so that, at the plasma boundary, the sum of Equations (10) and (8) satisfies exactly the constant
flux requirement (7). Substituting Equations (9) and (2) in the integral (10), it follows that the
externa moments are also given by

gy — L (2=0u0 ®(0) — Pp(a)
M;(a) = N <n2—1/4> poalr(a)
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4. External and mutual inductance coefficients

The expansion (4) can be used to represent the flux due to the external sourcesinside atoroidal
cavity n contained by the plasma. An ideal representation of this flux is obtained taking the
external moments calculated in terms of the equivalent surface current density by means of
Equation (11). These same moments are calculated in terms of the actual sources by means of
Equation (5). From the equivalence of the two expansions a set of matched toroidal moment
equations (n = 0,1,2...) isobtained, relating the geometric parameters at the plasma-vacuum
interface to the external sources.

The matched toroidal moment equations provide a very elegant and genera way to link
theinternal and external sourcesin the tokamak equilibrium problem, by means of asingleline
integral for each toroidal moment. Asmentioned in the Introduction, the present paper concerns
the determination of the external inductance which is consistent with a given plasma shape and
given external sources. Therefore, onetakesthe poloidal angle average of Equation (7) to obtain
the flux balance condition

B(0) ~ 2p(0) = (@@l + @ + 7 (B(@)), Burs — o X e (G (@) 7)), (12

Defining the external inductance L., the mutual inductance coefficient between the plasma and
the external magnetic field M, and the mutual inductance coefficients between the plasma and
the external poloidal field coils M,,,

_ (Pine(a))g _ (R%(a))y _ — N
Le= T@7 M = Ri(a) My, = —po <G[ (), Tk:]>97 (13)

where Ry (a) isthe geometric center of the plasma cross-section, Equation (12) becomes
®(0) — p(a) = Lelr(a) + o + TMRE(a) Buert + Y Myl (14)
k

This equation is used to calculate the external inductance once the other equilibrium quantities
have been determined from a solution of the set of matched toroidal moment equations.
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Equilibrium calculations for plasmas immersed in an uniform vertical equilibrium field
were performed in order to compare the present results with the previously published results
[1]. The plasma shape for equilibrium is given by a spectral representation specified by the
values of the aspect-ratio, A, the geometrical elongation, (), and the geometrical triangularity,
d(a). Thisrepresentation allowsanalytic evaluation of all the flux-surface averaged equilibrium
coefficients [4]. The mutua inductance coefficient M, in particular, has a simple analytic
expression for the assumed spectral representation of the plasmaboundary [1]. The normalized
value of the external verticd field, aB,..¢/[ 10l7(a)], specifies the external sources. Then,
a set of matched toroidal moment equations is solved to determine the constant value of the
normalized flux, [®p(a) + @y — ©(0)]/[roalr(a)], and the values of the free geometrical
parameters (radial derivativesof A, x and ) at the plasma boundary.

Table 1 shows some of the results of the present calculations of the normalized induc-
tance coefficients for several values of the aspect ratio. The input parameters (a), d(a) and
aByert/] polr(a)] were taken from the previous results [1] for naturally elongated plasmas near
the condition of maximum elongation. There is very good agreement between the previous
calculation of the external inductance and the present one, with a maximum discrepancy of the
order of ~ 1.4% inthe extremecase A = 1.1. For aspect ratioslarger than A = 1.1 the eventual
differencein thelast digit for the values of the external inductancein Table 1 is due to round-off
approximationsin the two calculations.

A k(a) d(a) s ke M
1.1 6.13 0587 -0.0106 0.0497 1.145
115 372 0570 -0.0264 0.135 1.128
12 285 0541 -0.0419 0234 1.120
13 208 0475 -0.0666 0444 1112
14 174 0411 -0.0817 0.646 1.108
15 155 035 -0.0900 0.837 1104
17 136 0266 -0.0959 1197 1.095
20 123 0178 -0.0944 1734 1.080
30 110 00655 -0.0781 3.715 1.045
6.0 103 00116 -0.0506 11.36 1.013

Table 1. Results of the normalized inductance calculations for naturally elongated plasmas.
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