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1. Introduction

In a recent paper [1] it was shown how the external and mutual inductance coefficients of
tokamak plasma equilibria can be determined in conformity with both a given plasma shape and
external fields. The required link between the plasma current and the external fields was derived
from the constraint imposed on the equivalent surface current by the total poloidal magnetic field
distribution over the plasma boundary. This formulation clarified and extended the results of the
work by Hirshman and Neilson [2], restricting the space of solutions consistent with the tokamak
configuration. In the present paper a decomposition in toroidal coordinates is introduced, so that
the boundary conditions can be satisfied by matching moments in the multipolar expansions for
the poloidal flux due to the external currents. The matching expansions inside the plasma are
calculated either from the equivalent surface current or in terms of the actual external sources.
This procedure leads basically to the same results of Reference [1], in which the boundary
conditions were satisfied by cancellation of harmonics in a Fourier series expansion for the
poloidal flux at the plasma edge. The values of the external inductance obtained with the present
method show good agreement with the previous results for a wide range of tokamak plasma
aspect ratios.

2. Poloidal flux function in toroidal coordinates

In an axisymmetric toroidal plasma configuration the flux Φ between the symmetry axis and
any flux surface is given in terms of the surface integral over the total toroidal current density
jT times the Green’s function G for a toroidal ring current

Φ(−→r ) = −µ0

∫ ∫
jT (−→r1 )G(−→r ,−→r1 ) d2r1(φ), (1)

where d2r1(φ) is the differential area element in the surface φ = constant of a cylindrical
coordinate system (R, φ, Z). The subscript 1 indicates the coordinates of the sources.

In toroidal coordinates (η, ω, φ) the Green’s function for a system with equatorial symmetry
admits a decomposition of the form

G(η, ω; η1, ω1) = Rm

∞∑
n=0

(
2− δn,0
n2 − 1/4

)
cos(nω) cos(nω1)fn(η<)gn(η>)√

cosh(η)− cos(ω)
√

cosh(η1)− cos(ω1)
, (2)

where fn(η) and gn(η) are the toroidal functions (Fock functions) and the parameter of the
toroidal coordinate system, 0 < Rm <∞, defines the position of the magnetic axis.

The poloidal flux in a tokamak is given by the sum of the flux Φint due to the internal
sources, i.e., the plasma current density, and the flux Φext due to the external sources. In general,



the flux due to the external sources is given by the sum of the fluxes produced by an ideal
transformer, ΦM , by an uniform vertical equilibrium field, Bvert, and by a set of ring currents
with equatorial symmetry, Ik, which represent the poloidal field coils

Φext(
−→r ) = ΦM + πR2Bvert − µ0

∑
k

IkG(−→r ,−→rk ). (3)

Assuming that all the poloidal field coils are outside the toroidal cavity η, the external flux
admits the multipolar expansion [3]

Φext(η, ω) =
µ0aIT (a)√

cosh(η)− cos(ω)

∞∑
n=0

Me
n(a)gn(η) cos(nω), (4)

where a denotes the minor radius of the plasma, IT (a) is the total toroidal plasma current and
the external moments are given by
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Now, the poloidal flux Φ(0) between the magnetic axis and infinity is the sum of the fluxes
Φ between the symmetry axis and a given flux surface and ΦP between the magnetic axis and
the same flux surface

Φ(0) = Φ + ΦP . (6)

The initial conditions of the magnetizing circuit define the constant value Φ(0); it is zero for
an initially unloaded transformer. Hence, the constant flux requirement at the plasma boundary
provides a link between the internal and the external sources

Φ(a) = Φint(a) + Φext(a) = Φ(0)−ΦP (a). (7)

3. Equivalent surface current density

The vector analogue of Green’s theorem gives an expression for the flux in the vacuum region,
due to the plasma current, in terms of an equivalent surface current density

Φint(
−→r ) = −µ0

∮
KT (−→r1 )G(−→r ,−→r1 ) d`(θ1). (8)

Here d`(θ) denotes the differential arc length along the poloidal angle θ in flux coordinates
(ρ, θ, ζ = −φ) . The toroidal component of the surface current density is given in terms of the
gradient of the poloidal flux just inside the plasma-vacuum interface ρ = a; using the integral
form of Ampère’s law the surface current KT (a, θ) is finally related by geometrical factors to
the total toroidal current IT (a) [1]

KT (a, θ) =

(
n̂ · ∇ΦP

2πµ0R

)
a

=
(|∇ρ| /R)a IT (a)∮
(|∇ρ| /R)a d`(θ)

. (9)



Inside the plasma the equivalent surface currentKT , taken with the opposite sign, produces
a magnetic field that coincides with the field produced by the external sources. This is a
consequence of the vector analogue of Green’s theorem and is equivalent to the principle of
virtual casing. Indeed, the flux produced by the external sources inside the plasma can be written
as

Φext(
−→r ) = Φ(0)−ΦP (a) + µ0

∮
KT (−→r1 )G(−→r ,−→r1 ) d`(θ1), (10)

so that, at the plasma boundary, the sum of Equations (10) and (8) satisfies exactly the constant
flux requirement (7). Substituting Equations (9) and (2) in the integral (10), it follows that the
external moments are also given by

Me
n(a) =
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2π
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4. External and mutual inductance coefficients

The expansion (4) can be used to represent the flux due to the external sources inside a toroidal
cavity η contained by the plasma. An ideal representation of this flux is obtained taking the
external moments calculated in terms of the equivalent surface current density by means of
Equation (11). These same moments are calculated in terms of the actual sources by means of
Equation (5). From the equivalence of the two expansions a set of matched toroidal moment
equations (n = 0, 1, 2 . . .) is obtained, relating the geometric parameters at the plasma-vacuum
interface to the external sources.

The matched toroidal moment equations provide a very elegant and general way to link
the internal and external sources in the tokamak equilibrium problem, by means of a single line
integral for each toroidal moment. As mentioned in the Introduction, the present paper concerns
the determination of the external inductance which is consistent with a given plasma shape and
given external sources. Therefore, one takes the poloidal angle average of Equation (7) to obtain
the flux balance condition

Φ(0)− ΦP (a) = 〈Φint(a)〉θ + ΦM + π
〈
R2(a)

〉
θ
Bvert − µ0

∑
k

Ik
〈
G[−→r (a),−→rk ]

〉
θ
. (12)

Defining the external inductance Le, the mutual inductance coefficient between the plasma and
the external magnetic field M , and the mutual inductance coefficients between the plasma and
the external poloidal field coils Mk,

Le =
〈Φint(a)〉θ
IT (a)

, M =
〈R2(a)〉θ
R2

0(a)
, Mk = −µ0

〈
G[−→r (a),−→rk ]

〉
θ
, (13)

where R0(a) is the geometric center of the plasma cross-section, Equation (12) becomes

Φ(0)− ΦP (a) = LeIT (a) + ΦM + πMR2
0(a)Bvert +

∑
k

MkIk. (14)

This equation is used to calculate the external inductance once the other equilibrium quantities
have been determined from a solution of the set of matched toroidal moment equations.



Equilibrium calculations for plasmas immersed in an uniform vertical equilibrium field
were performed in order to compare the present results with the previously published results
[1]. The plasma shape for equilibrium is given by a spectral representation specified by the
values of the aspect-ratio,A, the geometrical elongation, κ(a), and the geometrical triangularity,
δ(a). This representation allows analytic evaluation of all the flux-surface averaged equilibrium
coefficients [4]. The mutual inductance coefficient M , in particular, has a simple analytic
expression for the assumed spectral representation of the plasma boundary [1]. The normalized
value of the external vertical field, aBvert/[ µ0IT (a)], specifies the external sources. Then,
a set of matched toroidal moment equations is solved to determine the constant value of the
normalized flux, [ΦP (a) + ΦM − Φ(0)]/[µ0aIT (a)], and the values of the free geometrical
parameters (radial derivatives of A, κ and δ) at the plasma boundary.

Table 1 shows some of the results of the present calculations of the normalized induc-
tance coefficients for several values of the aspect ratio. The input parameters κ(a), δ(a) and
aBvert/[ µ0IT (a)] were taken from the previous results [1] for naturally elongated plasmas near
the condition of maximum elongation. There is very good agreement between the previous
calculation of the external inductance and the present one, with a maximum discrepancy of the
order of∼ 1.4% in the extreme caseA = 1.1. For aspect ratios larger thanA = 1.1 the eventual
difference in the last digit for the values of the external inductance in Table 1 is due to round-off
approximations in the two calculations.

A κ(a) δ(a) aBvert
µ0IT (a)

Le
µ0a

M

1.1 6.13 0.587 -0.0106 0.0497 1.145
1.15 3.72 0.570 -0.0264 0.135 1.128
1.2 2.85 0.541 -0.0419 0.234 1.120
1.3 2.08 0.475 -0.0666 0.444 1.112
1.4 1.74 0.411 -0.0817 0.646 1.108
1.5 1.55 0.355 -0.0900 0.837 1.104
1.7 1.36 0.266 -0.0959 1.197 1.095
2.0 1.23 0.178 -0.0944 1.734 1.080
3.0 1.10 0.0655 -0.0781 3.715 1.045
6.0 1.03 0.0116 -0.0506 11.36 1.013

Table 1. Results of the normalized inductance calculations for naturally elongated plasmas.
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