

AMPLIAÇÃO DO PROTÓTIPO DE TELESCÓPIO MULTIDIRECIONAL DE RAIOS CÓSMICOS DE ALTA ENERGIA MUONS: PARTICIPAÇÃO DO DESENVOLVIMENTO TÉCNICO E DE ENGENHARIA, E ANÁLISE PRELIMINAR DOS DADOS.

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Bruno Knevitz Hammerschmitt (UFSM, Bolsista PIBIC/INPE – CNPq/MCTI) E-mail: brunokhammer@hotmail.com

> Dr. Alisson Dal Lago (DGE/CEA/INPE – MCTI, Orientador) E-mail: dallago@dge.inpe.br

COLABORADORES

Dr. Nelson Jorge Schuch (CRS/CCR/INPE – MCTI) Dr. Nivaor Rodolfo Rigozo (CRS/CCR/INPE – MCTI)

Julho de 2013

RELATÓRIO FINAL DE INICIAÇÃO CIENTÍFICA DO PROGRAMA: PIBIC/INPE - CNPq/MCTI

PROJETO

AMPLIAÇÃO DO PROTÓTIPO DE TELESCÓPIO MULTIDIRECIONAL DE RAIOS CÓSMICOS DE ALTA ENERGIA MUONS: PARTICIPAÇÃO DO DESENVOLVIMENTO TÉCNICO E DE ENGENHARIA, E ANÁLISE PRELIMINAR DOS DADOS.

Processo: CNPq N° 134425/2012-0

Relatório elaborado pelo bolsista:

Bruno Knevitz Hammerschmitt - Bolsista PIBIC/INPE – CNPq/MCTI *E-mail*: brunokhammer@hotmail.com

Dr. Alisson Dal Lago – Orientador Divisão de Geofísica Espacial – DGE/CEA/INPE – MCTI *E-mail*: dallago@dae.inpe.br

Dr. Nelson Jorge Schuch - Co-Orientador Centro Regional Sul de Pesquisas Espaciais – CRS/CCR/INPE – MCTI *E-mail*: njschuch@lacesm.ufsm.br

Nivaor Rodolfo Rigozo - Co-Orientador Centro Regional Sul de Pesquisas Espaciais – CRS/CCR/INPE – MCTI *E-mail*: rigozo@lacesm.ufsm.br

DADOS DE IDENTIFICAÇÃO

Título: AMPLIAÇÃO DO PROTÓTIPO DE TELESCÓPIO MULTIDIRECIONAL DE RAIOS CÓSMICOS DE ALTA ENERGIA – MUONS: PARTICIPAÇÃO DO DESENVOLVIMENTO TÉCNICO E DE ENGENHARIA, E ANÁLISE PRELIMINAR DOS DADOS.

Processo: CNPq N° 134425/2012-0

Aluno Bolsista no período de Agosto/2012 a Julho/2013:

Bruno Knevitz Hammerschmitt

Curso de Engenharia Elétrica - Matrícula: 201021923

Centro de Tecnologia - CT/UFSM

Universidade Federal de Santa Maria - UFSM

Orientador:

Dr. Alisson Dal Lago

Divisão de Geofísica Espacial - DGE/CEA/INPE - MCTI

Co-orientadores:

Dr. Nelson Jorge Schuch

Centro Regional Sul de Pesquisas Espaciais - CRS/CCR/INPE - MCTI

Nivaor Rodolfo Rigozo

Centro Regional Sul de Pesquisas Espaciais - CRS/CCR/INPE - MCTI

Colaboradores/:

Dr. Kazuoki Munakata

Physics Department, Faculty of Science, Shinshu University - Japan

Dr. John W. Bieber

Bartol Research Institute, University of Delaware (BARTOL/UDEL), Newark (DE), USA

Dr. Takao Kuwabara

Bartol Research Institute, University of Delaware (BARTOL/UDEL), Newark (DE), USA

Dr. Marlos Rockenbach da Silva Divisão de Geofísica Espacial – DGE/CEA/INPE – MCTI

Eng. Carlos Roberto Braga, M.Cie. Mestrando - Instituto Nacional de Pesquisas Espaciais – INPE/MCTI

Bac. Marcos Vinicius Silveira, M.Cie. Mestrando - Instituto Nacional de Pesquisas Espaciais – INPE/MCTI

Local de Trabalho/Execução do Projeto:

Laboratório de Clima Espacial e Previsão de Tempestades Magnéticas – LCEPTM/CRS/CCR/INPE-MCTI, Santa Maria, RS.

Observatório Espacial do Sul – OES/CRS/CCR/INPE – MCTI (29.4°S, 53.8° W, 480 m acima do nível do mar), São Martinho da Serra, RS.

Trabalho desenvolvido no âmbito da parceria INPE/MCTI – UFSM, através do Laboratório de Clima Espacial e Previsão de Tempestades Magnéticas - LCEPTM/CRS/CCR/INPE - MCTI com o Laboratório de Ciências Espaciais de Santa Maria - LACESM/CT - UFSM.

Diretório dos Crupos de Pesquisa no Brasil

Estudante Bruno Knevitz Hammerschmitt

Indicadores de produção C, T & A

Dados gerais
Identificação do estudante
Nome: Bruno Knevitz Hammerschmitt
Nível de treinamento: Graduação
Currículo Lattes: 03/12/2012 15:12
E-mail:
Homepage: http://www.inpe.br/crs/
Grupos de pesquisa que atua
Clima Espacial, Interações Sol -Terra, Magnetosferas, Geoespaço, Geomagnetismo: Nanosatélites - INPE (estudante)
Linhas de pesquisa que atua
MEIO INTERPLANETÁRIO - CLIMA ESPACIAL

Orientadores participantes de grupos de pesquisa na instituição

Dados gerais

Alisson Dal Lago

Indicadores de produção C, T & A dos anos de 2010 a 2013				
Tipo de produção	2010	2011	2012	2013
Produção bibliográfica	0	0	2	0
Produção técnica	0	2	3	0
Orientação concluída	0	0	0	0
Produção artística/cultural e demais trabalhos	0	0	0	0

Nelson Jorge Schuch em 1996, colabora com Pesquisadores da: UFSM (CT-LACESM), INPE, CRAAM-Universidade P. Mackenzie, IAG/USP, OV/ON e DPD/UNIVAP no Brasil e internacionais do: Japão (Universidades: Shinshu, Nagoya, Kyushu, Takushoku e National Institute of Polar Research), EUA (Bartol Research Institute/University of Delaware e NASA (Jet Propulsion Laboratory e Goddard Space Flight Center)), Alemanha (DLR e Max Planck Institute for Solar System Research), Australia (University of Tasmania), Armênia (Alikhanyan Physics Institute) e Kuwait (Kuwait University). Linhas de Pesquisas: MEIO INTERPLANETÁRIO - CLIMA ESPACIAL, MAGNETOSFERAS x GEOMAGNETISMO, AERONOMIA - IONOSFERAS x AEROLUMINESCÊNCIA, NANOSATÉLITES. Áreas de interesse: Heliosfera, Física Solar, Meio Interplanetário, Clima Espacial, Magnetosferas, Geomagnetismo, Aeronomia, Ionosferas, Aeroluminescência, Raios Cósmicos, Muons, Desenvolvimento de Nanosatelites Científicos, em especial CubeSats: o

NANOSATC-BR1 e NANOSATC-BR2. Objetivos: Pesquisar o acoplamento energético na Heliosfera, mecanismos de geração de energia no Sol, Vento Solar, sua propagação no Meio Interplanetário, acoplamento com as magnetosferas planetárias, no Geoespaço com a Ionosfera e a Atmosfera Superior, previsão de ocorrência de tempestades magnéticas e das intensas correntes induzidas na superfície da Terra, Eletricidade Atmosferica e seus Eventos Luminosos Transientes (TLEs). As Pesquisas base de dados de sondas no Espaço Interplanetário e dentro de magnetosferas planetárias, e de modelos computacionais físicos e estatísticos.Vice-Líderes: Alisson Dal Lago, Nalin Babulau Trivedi, Otávio Santos Cupertino Durão, Natanael Rodrigues Gomes.

Recursos humanos		
Pesquisadores	Tota	al: 52
Adriano Petry	Jose Humberto Andrade Sobral	
Alexandre Alvares Pimenta	Juliano Moro	
Alicia Luisa Clúa de Gonzalez	Lilian Piecha Moor	
Alisson Dal Lago	Lucas Lopes Costa	
Andrei Piccinini Legg	Lucas Ramos Vieira	
Antonio Claret Palerosi	Mangalathayil Ali Abdu	
Barclay Robert Clemesha	Marco Ivan Rodrigues Sampaio	
Carlos Roberto Braga	Marlos Rockenbach da Silva	
Cassio Espindola Antunes	Nalin Babulal Trivedi	
Clezio Marcos De Nardin	Natanael Rodrigues Gomes	
Cristiano Sarzi Machado	Nelson Jorge Schuch	
Delano Gobbi	Nivaor Rodolfo Rigozo	
Eduardo Escobar Bürger	Odim Mendes Junior	
Eurico Rodrigues de Paula	Osmar Marchi dos Santos	
Ezequiel Echer	Otavio Santos Cupertino Durão	
Fabiano Luis de Sousa	Pawel Rozenfeld	
Fernanda de São Sabbas Tavares	Petrônio Noronha de Souza	
Fernanda Gusmão de Lima Kastensmidt	Polinaya Muralikrishna	
Geilson Loureiro	Rajaram Purushottam Kane	
Gelson Lauro Dal' Forno	Renato Machado	
Guilherme Simon da Rosa	Ricardo Augusto da Luz Reis	
Gustavo Fernando Dessbesell	Rubens Zolar Gehlen Bohrer	
<u>Hisao Takahashi</u>	Severino Luiz Guimaraes Dutra	
Igor Freitas Fagundes	Tardelli Ronan Coelho Stekel	
Jean Pierre Raulin	Walter Demetrio Gonzalez Alarcon	
João Baptista dos Santos Martins	William do Nascimento Guareschi	
Estudantes	Tota	al: 22
Anderson Vestena Bilibio	Lucas Lourencena Caldas Franke	
Ândrei Camponogara	Maurício Ricardo Balestrin	
Andreos Vestena Bilibio	Michel Baptistella Stefanello	
Bruno Knevitz Hammerschmitt	Miguel Rossatto Bohrz	
Claudio Machado Paulo	Pietro Fernando Moro	
Dimas Irion Alves	Rodrigo Passos Marques	
Fernando Landerdahl Alves	Tális Piovesan	

Thales Nunes Moreira
Thales Ramos Mânica
Tiago Bremm
Vinícius Deggeroni
Total: 0

Linhas de pesquisa	Total: 4
AERONOMIA - IONOSFERAS x AEROLUMINESCÊNCIA	

- DESENVOLVIMENTO DE NANOSATÉLITES CubeSats: NANOSATC-BR
- MAGNETOSFERAS x GEOMAGNETISMO
- <u>MEIO INTERPLANETÁRIO CLIMA ESPACIAL</u>

Relações com o setor produtivo

 ALPHA SOUTH AMERICA - REPRESENTACOES E CONSULTORIA AEROESPACIAL LTDA -ASARCA_PPROV

Indicadores de recursos humanos do grupo			
Integrantes do grupo	Total		
Pesquisador(es)	52		
Estudante(s)	22		
Técnico(s)	0		

Total: 1

Diretório dos Crupos de Pesquisa no Brasil

Linha de Pesquisa MEIO INTERPLANETÁRIO - CLIMA ESPACIAL

Linha de pesquisa

MEIO INTERPLANETÁRIO - CLIMA ESPACIAL

Nome do grupo: Clima Espacial, Interações Sol - Terra, Magnetosferas, Geoespaço, Geomagnetismo: Nanosatélites

Palavras-chave: Campo Magnético Interplanetário; Muons; Raios Cósmicos; Tempestade Geomagnética;

Pesquisadores:

Adriano Petry Alexandre Alvares Pimenta Alicia Luisa Clúa de Gonzalez Alisson Dal Lago Andrei Piccinini Legg Carlos Roberto Braga Cassio Espindola Antunes Eduardo Escobar Bürger **Ezequiel Echer** Jean Pierre Raulin Juliano Moro Lilian Piecha Moor Lucas Lopes Costa Lucas Ramos Vieira Marlos Rockenbach da Silva **Nelson Jorge Schuch** Nivaor Rodolfo Rigozo Rajaram Purushottam Kane Renato Machado Rubens Zolar Gehlen Bohrer Severino Luiz Guimaraes Dutra Tardelli Ronan Coelho Stekel Walter Demetrio Gonzalez Alarcon

Estudantes:

Andreos Vestena Bilibio Bruno Knevitz Hammerschmitt Claudio Machado Paulo Dimas Irion Alves Iago Camargo Silveira José Paulo Marchezi Leonardo Zavareze da Costa Michel Baptistella Stefanello Pietro Fernando Moro Tális Piovesan Thales Nunes Moreira Thales Ramos Mânica Tiago Bremm Vinícius Deggeroni

Árvore do conhecimento:

Ciências Exatas e da Terra;	Geociências;	Geofísica Espacial;
Ciências Exatas e da Terra;	Astronomia;	Astrofísica do Sistema Solar;
Ciências Exatas e da Terra;	Geociências;	Instrumentação Científica;

Setores de aplicação:

Aeronáutica e Espaço

Objetivo:

Pesquisar e prover em tempo real com o Telescópio Multidirecional de Raios Cósmicos-Muons, 2x(4mx7m), >50GeV, no Observatório Espacial do Sul, o monitoramento de muons e fenômenos das interações Sol-Terra, a previsão no Geoespaço de eventos solares e distúrbios geofísicos, graves efeitos das tempestades e subtempestades geomagnéticas sobre dispositivos e sistemas tecnológicos afetando equipes de trabalho e equipamentos na superfície da Terra e no Espaço. Vice-Líder: Alisson Dal Lago.

AGRADECIMENTOS

Agradeço em primeiro lugar ao apoio de meus pais Mário José Hammerschmitt e Leci Knevitz Hammerschmitt, irmãos Rodrigo Knevitz Hammerschmitt e Cesar Knevitz Hammerschmitt, e demais familiares pelo total apoio e incentivo nessa caminhada de formação acadêmica.

Ao meu Orientador, Dr. Alisson Dal Lago, pela sua atenção e disposição em auxiliarme durante a realização de minhas atividades de iniciação científica. Em especial, ao Dr. Nelson Jorge Schuch, pelos seus ensinamentos e pela atenção na parte do mentoramento.

Ao Prof. Kazuoki Munakata e sua equipe científica da Universidade de Shinshu, pela doação do Detector Direcional de Muons (DMM) do Observatório Espacial do Sul (OES/CRS/CCR/INPE – MCTI).

Aos colegas de laboratório Tiago Bremm, Cassiano Vasconcelos e Vinícius Deggeroni pelo companheirismo e apoio.

Agradeço a Universidade Federal de Santa Maria, UFSM, pelo suporte técnico.

Meus sinceros agradecimentos: (i) aos funcionários, servidores do CRS/CCR/INPE -MCTI e do LACESM/CT – UFSM pelo apoio e pela infra-estrutura disponibilizada; (ii) ao Programa PIBIC/INPE – CNPq/MCTI pela aprovação do Projeto de Pesquisa, que me permitiu dar os primeiros passos na iniciação científica e tecnológica me propiciando grande crescimento profissional; (iii) ao Coordenador Dr. Ezzat Selim Chalhoub e a Sra. Egidia Inácio da Rosa, Secretária do Programa PIBIC/INPE - CNPq/MCTI, pelo constante apoio, alertas e sua incansável preocupação com toda a burocracia e datas limites do Programa para com os bolsistas de I. C. & T do CRS/CCR/INPE - MCTI.

RESUMO

O Relatório apresenta as atividades de pesquisa vinculadas ao Programa PIBIC/INPE – CNPq/MCTI realizadas pelo aluno Bruno Knevitz Hammerschmitt, durante o período de Agosto de 2012 a julho de 2013, no Projeto "AMPLIAÇÃO DO PROTÓTIPO DE TELESCÓPIO MULTIDIRECIONAL DE RAIOS CÓSMICOS DE ALTA ENERGIA – MUONS: PARTICIPAÇÃO DO DESENVOLVIMENTO TÉCNICO E DE ENGENHARIA, E ANÁLISE PRELIMINAR DOS DADOS" junto ao Centro Regional Sul de Pesquisas Espaciais – CRS/CCR/INPE-MCTI. As atividades relativas ao Projeto foram desenvolvidas pelo bolsista no Laboratório de Clima Espacial do CRS/CCR/INPE-MCTI, no âmbito da Parceria: INPE/MCTI – UFSM, através do Laboratório de Ciências Espaciais de Santa Maria – LACESM/CT – UFSM.

O estudo do Clima Espacial está ligado à relação entre o Sol, o espaço interplanetário, a magnetosfera e a superfície terrestre. Um dos objetivos do estudo do Clima Espacial é encontrar artifícios que possibilitem previsões de tempestades geomagnéticas, que ocorrem devido às estruturas originadas no Sol, CMEs (Coronal Mass Ejections), e atravessam o meio interplanetário atingindo o Planeta. A Terra pode sofrer danos com uma ejeção de massa coronal solar, que injeta íons e elétrons energéticos nos anéis de correntes de Van Allen causando perturbações que enfraquecem o campo magnético terrestre, induzindo um campo magnético contrário ao da Terra. Raios cósmicos galácticos primários podem ser detectados na superfície terrestre através de seus componentes secundários, por exemplo os muons, que são originados da fragmentação de núcleos mais pesados, consequentes da precipitação na atmosfera terrestre. Com o propósito de estudar os fenômenos ligados as interações Sol-Terra, que afetam a distribuição dos raios cósmicos galácticos primários no meio interplanetário, foi instalado em 2001 um detector multidirecional de muons, protótipo, de raios cósmicos no Observatório Espacial do Sul - OES/CRS/INPE-MCTI, (29.4°S, 53.8° W, 480 m a.n.m.), no âmbito da Parceria INPE-UFSM, através da cooperação internacional envolvendo instituições do Brasil - Japão - EUA em Clima Espacial. O sistema detector multidirecional de muons -

DMM do OES foi expandido em 2005. O DMM expandido era formado de duas camadas de 28 detectores com resolução temporal de um minuto. Em agosto de 2012 foi feita uma nova expansão, contendo agora o DMM duas camadas de 32 detectores. Houve envolvimento direto nesta atividade, bem como na análise dos dados a serem obtidos. O detector de raios cósmicos mostra resposta à ocorrência de tempestades magnéticas na forma de decréscimo de 1% a 10% na contagem. Trabalhos mostraram que há também assinaturas nos dados de muons, em resposta à chegada de estruturas causadoras de tempestades geomagnéticas, com até 8 horas de antecedência. O Projeto de Pesquisa utiliza e analisa, ainda, dados de plasma e de campo do meio interplanetário, medidos pelo satélite ACE - NASA, e de Dst para identificar distúrbios magnéticos, e efetuar comparações com as análise dos dados de muons do OES. Com a nova expansão, espera-se melhorar a qualidade das medidas. Portanto, raios cósmicos são de grande importância para o estudo do Clima Espacial, pois são mais uma ferramenta que nos permite previsões de tempestades magnéticas.

SUMÁRIO

1.	CLIMA ESPACIAL	18
	1.1. Raios Cósmicos e Clima Espacial	21
2.	FENOMENOLOGIA SOLAR	23
	2.1. Atividade Solar	26
	2.2. Atividade Solar e Variação dos Raios Cósmicos	28
	2.3. Vento Solar e Campo Magnético Interplanetário	29
	2.4. Regiões de Interação Co-rotante (CIRs)	30
	2.5. Ejeções de Massa Coronais e "Flares"	31
	2.6. Nuvens Magnéticas	33
	2.7. Tempestades Geomagnéticas	34
3.	METODOLOGIA	37
	3.1. Instrumentos e dados utilizados	37
	3.2. Detector Multidirecional de Muons Protótipo – DMM-P	37
	3.2.1. Formato dos dados do DMM-P	38
	3.3. Detector Multidirecional de Muons Expandido – DMM-E	40
	3.3.1. Formato dos dados do DMM-E	41
	3.3.2. Funcionamento Básico do DMM-E	44
	3.4. Fotomultiplicadora e plásticos cintilantes	45
	3.5. Plástico cintilante	48
	3.6. Fonte de alimentação, sistema de processamento e armazenagem de dados	49
	3.7. Rede Mundial de Detectores de Muons GMDN (Ground Muons Detector Network)	55
	3.8. Satélite ACE	57
	3.9. Dados Geomagnéticos (Índice Dst)	60
	3.10. Nova expansão do DMM	61
4.	ANÁLISE DE DADOS	64
	4.1. Análise de dados do DMM-P	64
	4.2. Análise de dados do DMM-E	68

5. CONCLUSÕES FINAIS	75
6. REFERÊNCIAS BIBLIOGRÁFICAS	77
7. PUBLICAÇÕES	81

FIGURAS

Figura 1 – Ilustração artística do cinturão de radiação de Van Allen. Fonte: http://srag- nt.jsc.nasa.gov/SpaceRadiation/What/What.cfm	8
Figura 2 – Anomalia Magnética do Atlântico Sul – AMAS. A Figura mostra dados do satélite Multi-angle Imaging SpectroRadiometer (MISR) de radiação produzida pela passagem de protons energéticos. Fonte: http://earthobservatory.nasa.gov	2
Figura 3 – Estrutura clássica do sol. Fonte: Kivelson e Russell, 1995	5
Figura 4 – Mancha solar obtida no dia 23 de setembro de 2000. A foto compara o tamanho da Terra com uma mancha solar. Fonte: SOHO - NASA – ESA	6
Figura 5 – Diagrama da Borboleta. É possível ver o ciclo solar através das cores em azul e amarelo pares de manchas. As manchas nascem em altas latitudes e migram para o equador. Campo magnético medido em Gauss. FONTE: http://www.nasa.gov/vision/universe/solarsystem/solar_cycle_graphics.html	7
Figura 6 – Ilustração da origem das manchas solares. FONTE: Dal Lago, 2004	7
Figura 7 – Em azul dados obtidos pelo monitor de nêutrons – Climax da Universidade de Chicago. Em amarelo dados de manchas solares. Os círculos vermelhos mostram a variação de 22 anos	8
Figura 8 – A região escura no pólo do sol é um buraco coronal visto pelo telescópio de raios x do satélite Yohkoh. O Vento Solar que flui para fora é rápido. Não há emissão de raios x na região	0
Figura 9 – Ilustração artística de regiões de interação co rotante. Fonte: Hundhausen, 1972	1
Figura 10 – A explosão solar ("flare") na figura é o ponto mais brilhante da imagem. Obtida pelo instrumento EIT em 04 de novembro de 2003, a bordo do satélite SOHO, em 195 A) 2
Figura 11 – Geometria de uma nuvem magnética. Fonte: Adaptado de Burlaga et al. – 1990	4
Figura 12 – Fases do decréscimo do índice Dst. Fonte: Autor	6
Figura 13 – Foto do DMM-P instalado no OES/CRS/CCR/INPE – MCTI	8
1.	5

Figura 14 – Arquivo que era gerado para armazenar dados do DMM -P	. 39
Figura 15 – À esquerda um esquema do DMM e à direita uma fotografia	. 40
Figura 16 – Arquivo de Dados do DMM-E	. 42
Figura 17 – Ilustração artística do DMM e o modo de detecção dos muons	. 45
Figura 18 – Foto da fotomultiplicadora utilizada no DMM-P e DMM-E	. 46
Figura 19 – Quatro cintiladores lado a lado formando uma área de superfície de 1m². Os cintiladores estão colocados em caixa de metal com espessura de 1,6 mm	o 49
Figura 20 – Racks que suportam os potenciômetros, sistemas de processamento de dados e fontes de baix alta tensão	a e . 50
Figura 21 – Computador utilizado para gravação dos dados	. 51
Figura 22– Display de verificação da contagem de muons	. 52
Figura 23 – Antiga falha existente na região do Atlântico e Europa. Fonte: Munakata et al, 2000	. 56
Figura 24 — Atual rede de detectores e as diferenças direcionais entre o detector protótipo e expandido. Bolinha aberta representa as direções do protótipo e bolinhas fechadas representam as direções do expandido	56
Figura 25 – Ilustração artística do satélite ACE da NASA	. 57
Figura 26 – Página onde dados do satélite ACE estão disponíveis	. 58
Figura 27 – Painel de seleção dos dados de interesse	. 59
Figura 28 – Arquivo de dados de parâmetros de plama e de campo	. 60
Figura 29: Imagens dos plásticos cintilantes Figura 30: Parte inferior do DMM	. 62
Figura 31: Como são locados os plásticos nas caixas Figura 32: Fotomultiplicadora	. 62
Figura 33: Imagens da ampliação do DMM	. 63
Figura 34 – De cima para baixo densidade, temperatura, velocidade do vento solar, modulo do campo magnético, componente z do campo magnético e índice geomagnético Dst	65
Figura 35 — De cima para baixo as contagens da variação percentual de muons na direção vertical, norte e sul	. 66
Figura 36 — Tempestade moderada ocorrida em novembro de 2007. De cima para baixo densidade, temperatura, velocidade do vento solar, módulo do campo magnético, componente z do campo magnético índice geomagnético Dst, contagem de muons na direção vertical, norte e sul	o, 70
Figura 37 – De cima para baixo contagem de muons na direção leste, oeste, nordeste, noroeste, sudeste, sudoeste, norte 2, sul 2 e leste 2	. 70
Figura 38: Painel com os gráficos do meio interplanetário de Outubro de 2011	. 71
Figura 39: Painel mostrando os gráficos do meio interplanetário de julho de 2012	. 72
	16

TABELAS

Tabela 1 – Alguns dados estatísticos do Sol. FONTE: Introduction to space physics, Margaret G. Kivelson, Christopher, T. Russell. Cambridge, 1995	24
Tabela 2 – Reação de fusão nuclear no interior solar	25
Tabela 3 – Classificação das Tempestades Geomagnéticas	37
Tabela 4 - Características do DMM P	38
Tabela 5 – Características do DMM-E	41
Tabela 6 – Descrição dos dados do DMM-E, tanto para dados de dez ou um minuto	43
Tabela 7 – Descrição dos dados do DMM-E que estão no diretório do professor Takao. Fonte: Takao	44
Tabela 8 – Dados específicos das fotomultiplicadoras	46
Tabela 9 – Características do plástico cintilante usado para detecção de partículas. FONTE: Munakata.	. 49
Tabela 10 – Quadro branco referente à Figura 23	52
Tabela 11 – Significado dos números referentes à Tabela 10	53
Tabela 12 — Significado dos números nos quadros vermelho (detectores superiores) e verde (detectores inferiores) da Figura 23	; 54
Tabela 13 – Significado dos números da Figura 23 (quadro azul)	54
Tabela 14 – 119 direções do DMM-E	54
Tabela 15 – Resultados de contagem, erro de contagem do DMM-P no dia 11de abril de 2001	67
Tabela 16 – Erros na contagem de para o dia 08 de outubro de 2008	74
Tabela 17 – Análise de erros para o dia 7 de janeiro de 2009	74

1. CLIMA ESPACIAL

O estudo do Clima Espacial se deve às contínuas mudanças dos fenômenos solares (ou atividades solares) incluindo sistemas como magnetosfera e ionosfera. Os processos físicos no ambiente próximo da Terra afetam o funcionamento de satélites, clima, sistemas de comunicação global e outros sistemas tecnológicos. Para se termos um bom funcionamento dos sistemas tecnológicos é preciso se ter conhecimento das condições do geoespaço.

Geoespaço é definido como a região do espaço em que os campos eletromagnéticos da Terra (ou de outro corpo celeste) e do sol confundem-se. Os conhecimentos das condições incluem atividade solar, densidade eletrônica ionosférica, níveis de distúrbios na magnetosfera (ou campo magnético da Terra) identificados pelos Índices Dst (em nano tesla, nT) e Kp (varia de 0 a 9), além do fluxo de raios cósmicos.

O campo magnético da Terra confina íons e elétrons energéticos. Os íons e elétrons ao interagirem com o campo magnético terrestre movem-se de tal forma que geram correntes elétricas na alta atmosfera da região equatorial, chamada cinturão de radiação de *Van Allen*. O que pode ser analisado na Figura 1.

Figura 1 – Ilustração artística do cinturão de radiação de Van Allen. Fonte: http://sragnt.jsc.nasa.gov/SpaceRadiation/What/What.cfm

O cinturão é dividido em dois anéis. O primeiro anel é interno, compreendido entre a altitude de 700 a 10.000 quilômetros (0,01 a 1,5 Raios Terrestres), a intensidade máxima ocorre em média aos 3.000 quilômetros, confina partículas, principalmente prótons, com energia de 10 - 50 MeV (M = 10^6). O segundo cinturão ou anel é externo, compreendido entre a altitude de 13.000 a 65.000 quilômetros (3 a 10 Raios Terrestres) e confina principalmente elétrons de alta energia 0,1 - 10 MeV. Existe entre os cinturões uma corrente de anel devido à deriva longitudinal de prótons aprisionados pelo campo geomagnético. Quando uma Ejeção de Massa Coronal atinge a Terra, há injeção de íons e elétrons energéticos que intensificam a corrente de anel, a qual produz um campo magnético que se opõem ao campo magnético da Terra. As Tempestades Magnéticas podem ser detectadas através da medição do campo magnético na superfície através de magnetogramas. O cinturão de radiação é considerado perigoso para o homem e as máquinas no espaço.

As Tempestades Geomagnéticas ocorrem devido à presença da componente do campo magnético interplanetário apontar para o sul relativo ao sul geográfico da Terra, em consequência o pólo sul terrestre é o pólo norte magnético e predominantemente as linhas de campo geomagnético apontam para o norte geográfico ou sul magnético na alta atmosfera terrestre. Essas tempestades são definidas a partir da variação da componente horizontal do campo magnético terrestre. Durante estes eventos à uma grande transferência de energia do Vento Solar para o campo magnético terrestre intensificando as correntes da magnetosfera através do mecanismo de reconecção magnética (Dungey, 1961; Gonzalez et al. 1994, 1999; Kamide et al., 1998).

Echer (2005) aponta alguns efeitos solares em sistemas naturais terrestres:

- Clima: a radiação solar é bem conhecida por regular as características do clima e da atmosfera, como é mostrado pelos ciclos diurnos e anuais de temperatura da superfície. A especulação da variação da atividade solar que pode afetar o tempo e o clima é um tópico controverso desde 150 anos atrás. Acredita-se que a variação do clima terrestre possa variar com a radiação solar por um longo período. Uma forte evidência da modulação do clima em relação a atividade solar é a proximidade na escala de tempo dos eventos da atividade solar do mínimo de *Maunder* com o período de uma

leve era glacial. Outro mecanismo possível é a variabilidade do plasma solar afetar os raios cósmicos e os mesmos influenciarem os campos elétricos.

- Eventos com liberação de prótons tais como Ejeções de Massa Coronais (CME) podem alcançar a Terra 30 minutos depois de vistos por satélites tal como satélite SOHO. Algumas partículas penetram na alta atmosfera e movem-se em espiral em torno das linhas do campo magnético da Terra e produzem ionização podendo produzir aumento de radiação. Pode também afetar localmente a química da atmosfera ocasionando diminuição de ozônio, principalmente em latitudes polares.

Faz-se oportuno salientar alguns Efeitos em Sistemas Tecnológicos (Echer, 2005):

- Distúrbios Ionosféricos: súbitos distúrbios ionosféricos (SIDs – Sudden ionospheric disturbances) que acontecem em poucos minutos depois de algum forte "solar flare". Há forte atenuação ou absorção das ondas de rádio de telecomunicação de longa distância no período diurno da Terra. O efeito de absorção das ondas curtas é causado pelo forte aumento da densidade eletrônica em certas camadas da atmosfera devido à penetração de raios X produzidos pelo *solar flare*.

- Danos em Sistemas Espaciais: *Space Charging* é a variação do potencial eletrostático na superfície dos artefatos espaciais com respeito ao plasma circundante. Durante uma tempestade geomagnética o número e energia dos elétrons e íons aumenta. Satélites que viajam através de ambientes energizados como o meio interplanetário, partículas carregadas acertam o satélite deixando-o carregado. Descargas elétricas devido aos diferentes potenciais na superfície destes satélites podem danificar ou até mesmo destruir seus componentes internos (*Single event upsets*), comprometendo sua utilização.

Os danos em sistemas terrestres também precisam ser considerados:

- Comunicação: Vários sistemas de comunicação utilizam a ionosfera para refletir sinais de ondas de rádio de longas distâncias e tempestades ionosféricas comprometem a comunicação por ondas de rádio em todas as latitudes. Algumas

frequências de rádio são absorvidas e outras refletidas, levando a flutuações nos sinais.

-Energia Elétrica: quando o campo magnético variado é aplicado na vizinhança de um condutor, uma corrente elétrica é induzida no condutor. Isto acontece em larga escala em uma tempestade geomagnética. As correntes diretamente induzidas nas linhas de transmissões de energia elétrica a partir de tempestades geomagnéticas são perigosas para equipamentos de transmissão de energia.

- Sistemas de Navegação: como um exemplo, temos o sistema LORAN e OMEGA que foram largamente usados até alguns anos atrás. Aeronaves e navios usaram por vários anos sinais de baixa frequência daqueles transmissores para determinar suas posições. Durante eventos solares e tempestades geomagnéticas os sistemas poderiam dar informações aos navegadores imprecisões de vários quilômetros. Sistemas de GPS usados atualmente também são afetados quando a atividade solar causa súbita variação na densidade ionosférica.

1.1. Raios Cósmicos e Clima Espacial

Os Raios Cósmicos são oriundos do espaço, produzidos por diferentes fontes, tais como o Sol, supernovas, estrelas de nêutrons, buracos negros e rádio galáxias. Em geral consistem em átomos ionizados. A modulação dos Raios Cósmicos Galáticos (GCR – *Galactic Cosmic Rays*) próximo a Terra são conhecidos pelos modelos de difusão dos Raios Cósmicos no meio interplanetário. GCR com baixa energia são impedidos de alcançar a atmosfera neutra. Entretanto, nas regiões polares e em altas altitudes, principalmente em regiões equatoriais, o Raio Cósmico tem fácil acesso, e satélites e seres humanos podem ser diretamente afetados pela precipitação de partículas. Raios Cósmicos também são de origem solar, por isso, a definição mais geral para raios cósmicos é de que toda partícula que se movimenta no meio interplanetário com velocidade maior que a velocidade do Vento Solar.

Da mesma forma a Terra pode ser considerada como um dipolo magnético, mas é bem conhecido que a Terra não é um dipolo magnético e existem regiões ao qual o

campo magnético é mais intenso e menos intenso. As linhas de campo podem sair de uma região equatorial e entrar na região de um dos pólos, por exemplo. Partículas energéticas podem precipitar nas regiões de Anomalia Magnética como mostra a Figura 2. A região da Anomalia Magnética do Atlântico Sul (AMAS) é responsável pela perda dos dados de satélites que sobrevoam a região. A radiação espacial é constituída de um sistema não homogêneo e dinâmico altamente influenciado pela atividade solar. É caracterizada por várias faixas de energia e fluxos direcionais.

Figura 2 – Anomalia Magnética do Atlântico Sul – AMAS. A Figura mostra dados do satélite *Multi-angle Imaging SpectroRadiometer* (MISR) de radiação produzida pela passagem de protons energéticos. Fonte: <u>http://earthobservatory.nasa.gov</u>.

A variabilidade solar afeta a modulação de GCRs no meio interplanetário e também aqueles gerados pelo sol. Usa-se a modulação de Raios Cósmicos para estudar estruturas geoefetivas e de alguma forma prever estruturas solares que podem causar tempestades geomagnéticas.

Munakata, Bieber, Yasue, Kato, Koyama, Akahane, Fujimoto, Fujii, Humble e Duldig (2000) observaram pela primeira vez de forma sistemática precursores de tempestades geomagnéticas usando rede de detectores (localizados na superfície terrestre) de Raios Cósmicos de alta energia (muons), mostrando que esta rede de detectores pode ser poderosa ferramenta para previsão de Clima Espacial.

Devido à inviabilidade de lançar detectores de GCRs ao espaço, instrumentos localizados em superfície terrestre continuam sendo o estado da arte para estudar estas

partículas, visto que a massa de equipamentos no espaço deve ser a menor possível, e detectores na superfície terrestre trazem a vantagem de fácil manutenção.

Os muons são partículas subatômicas que possuem a mesma carga do elétron, porém tem massa 207 vezes maior. Têm grande poder de penetração e mantêm a direção e o sentido do Raio Cósmico primário que os originou, enquanto que as outras partículas, em geral, são desvios da partícula primária.

2. FENOMENOLOGIA SOLAR

As observações mostraram que o Sol é uma estrela ordinária em uma galáxia que apresenta de 100-400 bilhões de estrelas. Ao longo do tempo foi constatada uma periodicidade nas manchas negras que havia no Sol, e hoje se sabe que as manchas seguem um ciclo de 11 anos os quais passa por períodos de máximos e mínimos. Com avanço na tecnologia ficou claro que ocorrem processos físicos no Sol que influenciam todo meio interplanetário e consequentemente a Terra.

Para os astrônomos o Sol é uma estrela ordinária com tipo espectral de G2V, G2 porque possui temperatura efetiva de aproximadamente 5785 K e V indica a classe espectral da estrela, e o sol está na classe de astro que gera energia por processo de fusão de núcleos de hidrogênio, com magnitude absoluta 4,8 que serve para comparar o brilho das estrelas sem levar em conta as distâncias a que se encontram. O Sol sendo a estrela mais próxima da Terra faz dele importante objeto de estudo principalmente na interação Sol-Terra. Na Tabela 1 abaixo são mostrados alguns dados estatísticos do Sol.

Idade	45×10an
Massa	1,99×1 Øk _E
Raio	69©00 <i>m</i>
Densidade média	1,4×1 Okgn
Distância média da Terra (1 UA)	1 Stop 5. Dic
Aceleração gravitacional na superfície	$274ms^{-2}$
Radiação emitida (Luminosidade)	386×1ÔW
Período de rotação equatorial	26 dias terrestres
Composição	Aproximadamente 90% de H
	(hidrogênio), 10% He (hélio), 0,1% outros
	elementos

Tabela 1 – Alguns dados estatísticos do Sol. FONTE: Introduction to space physics, Margaret G. Kivelson, Christopher, T. Russell. Cambridge, 1995.

A atmosfera solar é dividida em três partes principais. A **Fotosfera** é a porção inferior com uma espessura de 0,5 Mm e temperatura da ordem de 6600K. Na fotosfera se origina a radiação visível, com um espectro contínuo e irradia toda a energia que chega a Terra, e ainda é onde que as Manchas Solares são observadas. A temperatura mínima é de 4.200K. A **Cromosfera** estende-se cerca de 10.000 km acima da Fotosfera, possui uma temperatura que varia de 4300 a 106 K que aumenta do interior para exterior. E a **Coroa,** que tem uma temperatura de 1MK, estendendo-se até a órbita terrestre.

O Sol devido a sua alta temperatura emite grande quantidade de raios-x sendo constituído por gás ionizado chamado de plasma. Todo o Sol é composto de plasma e por não ser sólido tem uma rotação diferencial com velocidade angular maior em baixas latitudes e velocidade angular menor em altas latitudes até os pólos. A Figura 3 ilustra artisticamente as camadas constituintes do Sol.

Figura 3 – Estrutura clássica do sol. Fonte: Kivelson e Russell, 1995.

Modelos teóricos sugerem que no interior solar há um reator de fusão nuclear operando a temperatura de $1.5 \times 10^7 K_e$ gerando energia através da fusão de 5 milhões de toneladas de hidrogênio por segundo para formar hélio. A Tabela 2 dá informações da reação de fusão nuclear do interior do Sol.

QINEEE.	
$2e^{+}+e^{-}-2$	
ZI NY ZIN Z	
31 ÎD IMI K	
4114513,	

Tabela 2 – Reação de fusão nuclear no interior solar.

O produto da fusão nuclear é o fluxo de neutrinos. A temperatura no interior solar decresce com o raio rapidamente. É na fotosfera que se enxergam as manchas solares que aparecem aos pares. É possível enxergar com um filtro H α a cromosfera e em volta das machas existem regiões que brilham mais que o normal chamado de

regiões ativas. Ocasionalmente tais regiões brilham rapidamente dando origem a uma explosão solar (*flare*).

2.1. Atividade Solar

A existência de manchas solares era conhecida a centenas de anos. Elas podem chegar a 1000 km de diâmetro, cada uma consistindo de uma região central escura com temperatura de 4100 K e campo magnético de 0,3 T (tesla) envolto pela penumbra, região um pouco mais clara que a escura. A Figura 4 mostra a mancha comparada com o tamanho de Terra.

Figura 4 – Mancha solar obtida no dia 23 de setembro de 2000. A foto compara o tamanho da Terra com uma mancha solar. Fonte: SOHO - NASA – ESA.

A atividade solar varia, mas houve um período de mínimo chamado mínimo de *Maunder* (1645-1715), quando o clima da Terra foi mais frio do que o normal. Pode-se observar a atividade solar ressaltando o número de manchas na superfície do sol, como mostra o diagrama da borboleta na Figura 5. É possível perceber a regularidade das manchas solares com o ciclo solar, elas aparecem em médias latitudes e migram para o equador solar a baixas latitudes.

As cores azuis e amarelas da Figura 5 representam polaridades diferentes. Acima do gráfico há uma escala que dá a diferença da intensidade magnética em Gauss. Notase claramente que as manchas aparecem aos pares e com polaridades diferentes.

O mecanismo gerador do campo magnético solar é o de um dínamo. Como um modelo ideal pode-se pensar que o sol tem linhas de campo magnético bem alinhado de norte para sul ou de sul para norte dependendo da polaridade solar. Devido à rotação solar diferenciada, velocidade angular maior no equador e menor nos pólos, as linhas torcem-se ocasionando acumulo de linhas de campo magnético de modo que o fluxo magnético e por empuxo força as linhas a emergirem para a superfície originando as manchas (Hoyt e Schatten, 1997). Em suma, as manchas solares são geradas por campos magnéticos toroidais que são trazidos à superfície solar, por efeito de empuxo (Echer, 2003). A Figura 6 mostra o modelo da descrição anterior.

Figura 6 - Ilustração da origem das manchas solares. FONTE: Dal Lago, 2004.

Após 11 anos o campo magnético inverte a polaridade e consequentemente a polaridade dos pares de manchas também se inverte para o dos hemisférios. As regiões de acumulo de linhas de campo se aproximam gradativamente ao equador ao longo de 11 anos, assim à medida que se observa as manchas, elas migram para o equador solar.

2.2. Atividade Solar e Variação dos Raios Cósmicos

As intensidades de Raios Cósmicos medidas na superfície da Terra mudam com várias escalas de tempo. Há uma relação entre intensidade de Raios Cósmicos medidas na superfície da Terra e o ciclo solar de 11 anos. Pode-se dizer que quando a atividade solar é máxima a intensidades de Raios Cósmicos medida é mínima. Quando a atividade solar é mínima a intensidade é máxima. Acredita-se que intensidade de GCR (*Galactic Cosmic Rays*) é reduzida no máximo solar devido à forte turbulência do campo magnético interplanetário (IMF – *Interplanetary Magnetic Field*). Pode-se ver na Figura 7 que a intensidade dos GCR exibe variação e é anti-correlacionada com atividade solar de 11 anos quando vista pelas manchas solares. Em contraste com a variação de 11 anos, GCR exibe variação de 22 anos em conexão à inversão da polaridade magnética solar. Os círculos vermelhos apontam a variação da intensidade com a polaridade solar.

Figura 7 – Em azul dados obtidos pelo monitor de nêutrons – Climax da Universidade de Chicago. Em amarelo dados de manchas solares. Os círculos vermelhos mostram a variação de 22 anos.

FONTE: http://www.ngdc.noaa.gov/stp/SOLAR/COSMIC_RAYS/image/cr_ssn.gif

2.3. Vento Solar e Campo Magnético Interplanetário

Vento Solar é definido como um fluxo de íons (partículas eletricamente carregadas) que são expulsos da Coroa Solar a uma velocidade de 600 km/s e a uma densidade média de 5 cm⁻³ (Brandt, 1970) propagando-se pelo meio interplanetário. O Vento Solar flui constantemente passando pela Terra com uma velocidade média de 400 a 500 km/s e com densidade média de 5 partículas por centímetro cúbico (Brandt, 1970). Existem dois importantes aspectos norteadores desse estudo. O primeiro deles baseia-se no entendimento do Vento Solar conhecido como relação Sol-Terra, pois à medida que o Vento Solar é influenciado pela atividade solar transmite partículas de poeira e raios cósmicos imersos no Vento Solar para os planetas. O segundo se refere ao fato de que é o Vento Solar que ajuda a entender os processos físicos que ocorrem na formação e expansão da coroa solar da "quente" para "fria".

O fato observado de que a cauda ionizada dos cometas tem uma direção radial ao Sol, independente da direção de seu movimento fez Ludwig Birmann propor em seus trabalhos a existência do Vento Solar. Além disso, o Vento Solar foi sugerido por outros cientistas pelo fato de grandes explosões solares (*"flares"*) provocarem mudanças no campo magnético da Terra (Burlaga, 1995).

O Vento Solar não é emitido uniformemente devido ao campo magnético do Sol estar altamente estruturado em algumas regiões e em outras não. O gás fica aprisionado nas regiões de campo magnético que emite grande quantidade de raios x, associada à formação de laços, formando um fluxo coronal que se expande para o espaço. Dependendo da intensidade de campo estas linhas podem se desprender caracterizando o Vento Solar lento geralmente observado na região equatorial solar. Há um **Buraco Coronal** (a região escura pólo) por onde o gás escapa junto ao campo magnético que constitui o Vento Solar Rápido, isso pode ser percebido na Figura 8. Na região equatorial as linhas de campo confinam o plasma originando o Vento Solar lento.

Figura 8 – A região escura no pólo do sol é um buraco coronal visto pelo telescópio de raios x do satélite Yohkoh. O Vento Solar que flui para fora é rápido. Não há emissão de raios x na região.

Fonte: http://solarscience.msfc.nasa.gov/feature3.shtml

No início os cientistas acharam que as explosões solares, os "*flares*", eram responsáveis pela mudança intensa na magnetosfera terrestre, mas após a década de 1970 as observações mostraram que além de explosões ocorriam ejeções de grande quantidade de massa solar (CME). Em certos casos o campo que acompanha a ejeção se conecta com o campo magnético da Terra (Tempestade Magnética) causando o efeito das auroras, perdas de dados nos satélites, *black-out*, e grandes consequências que comprometem a manutenção da tecnologia.

2.4. Regiões de Interação Co-rotante (CIRs)

As Regiões de Interações Co-rotantes (do inglês *corotating interaction region*, CIR) se originam a partir de feixes rápidos dos buracos coronais que colidem com o Vento Solar lento. Essa colisão provoca regiões de aumento de pressão e de campo magnético. Grande parte das CIRs são reversões da direção do campo magnético interplanetário que passam de um setor para outro na lâmina da corrente heliosférica localizada na região de Vento Solar lento. Assim, as CIRs não necessariamente ocorrem nessas condições, pois durante os períodos de alta atividade solar os satélites observam feixes de Vento Solar com o mesmo setor magnético (Neugebauer, 2004).

Figura 9 – Ilustração artística de regiões de interação co rotante. Fonte: Hundhausen, 1972.

Devido a rotação solar, as CIRs normalmente passam pela Terra a cada 27 dias. Essa passagem causa decréscimos recorrentes da densidade de GCR (Richardson, 2004).

2.5. Ejeções de Massa Coronais e "Flares"

Explosões Solares (*flares*) são fenômenos caracterizados pela emissão de grande quantidade de energia magnética (10^{26} a 10^{32} ergs), está armazenada na superfície solar que é subitamente liberada.

A Figura 10 mostra um *flare* observado pelo instrumento EIT 195 a bordo do satélite SOHO em novembro de 2003. Sabe-se que *flares* emitem energia em forma de calor, sendo eventos locais de baixa escala, aquecendo o material a sua volta em poucos minutos.

Figura 10 – A explosão solar (*"flare"*) na figura é o ponto mais brilhante da imagem. Obtida pelo instrumento EIT em 04 de novembro de 2003, a bordo do satélite SOHO, em 195 A.

A primeira Ejeção de Massa Coronal (CME) foi observada pela *Orbiting Solar Observatory*, OSO-7 (Howard et al., 1997) em 14 de dezembro de 1971. O termo "Ejeções de Massa Coronais" foi primeiramente usado por Gosling (et al. 1975).

A primeira ideia era de que as CMEs eram causadas pelas Explosões Solares (Dryer, 1982; Dryer e wu, 1985). Uma CME também libera uma energia de 10^{31-32} ergs (Illing e Hundhausen, 1986) sendo juntamente com as *flares* os dois fenômenos de maior energia proeminentes da coroa solar. CMEs liberam energia em forma de trabalho (Low, 1996) e, em comparação com *flares*, são fenômenos de grande escala, suas grandes bolhas de gás magnetizado levam algum tempo para serem expelidas ao espaço.

Quando observadas no meio interplanetário, as CMEs são denominadas Ejeção de Massa Coronal Interplanetária (ICME). A interação da ICME com a magnetosfera terrestre causa distúrbios geomagnéticos devido à alta velocidade das partículas ejetadas do Sol. As ICMEs geralmente estão acompanhadas de ondas de choque.

Não há uma única característica exibida nas nuvens de Plasma, que são compostas de gases de plasma magnetizado, resultantes de ICMEs. Segundo Neugebauer e Goldstein (1997), várias características podem aparecer juntas ou isoladas, são elas:

1. Baixa temperatura de íons para uma dada velocidade do Vento Solar que ocorre pela expansão da sua estrutura.

2. Anisotropia não usual da distribuição de prótons com temperatura paralela elevada a temperatura perpendicular ao Campo Magnético Interplanetário, causado pela conservação do momento magnético dos íons à medida que o Plasma se expande;

3. Abundância de Helio não usual.

4. Abundância de outras espécies iônicas;

5. Feixes bidirecionais de elétrons supra-termais e íons energéticos que são característicos de uma configuração do Campo Magnético Interplanetário, com isso é possível dizer que o campo magnético interno de uma injeção é fechado e com extremidades presas ao Sol;

6. O Campo Magnético interfere nos valores de parâmetro β de Plasma, que associado a baixas temperaturas levam o parâmetro β a baixos valores, que é geralmente menor que 0,1;

7. Presença de rotação do Campo Magnético configura o que se pode chamar Nuvens Magnéticas. As Nuvens Magnéticas se caracterizam pelo aumento de seu campo magnético por um fator maior que 2, suave rotação por um amplo intervalo de ângulo e baixa temperatura iônica;

8. Decréscimo do fluxo de Raios Cósmicos;

Cerca de 1/3 das estruturas identificadas no meio Interplanetário são Nuvens Magnéticas (Gosling, 1990).

2.6. Nuvens Magnéticas

As Nuvens Magnéticas foram descobertas por Burlaga (1981). Segundo Klein e Burlaga (1982), uma Nuvem Magnética é uma estrutura com extensão radial de aproximadamente 0,25 UA - em 1 UA -, Campo Magnético mais intenso do que o Vento Solar normal, tipicamente B>10nT, suave rotação da direção do campo magnético em um grande ângulo, próximo a 180°, baixa temperatura e baixo valor do parâmetro beta, B~0,1. As Nuvens Magnéticas são excelentes para estudos das interações Sol-Terra, devido a sua simplicidade e extensos intervalos de campo magnético na direção sul e norte ou vice-versa (Burlaga et al., 1997).

Fatores que identificam uma Nuvem Magnética são as medidas dos parâmetros de Plasma (velocidade do Vento Solar, temperatura e densidade de prótons) e Campo Magnético (componentes |B|, Bx, By, Bz), estes dados capturados por satélites presentes no Meio Interplanetário. As Nuvens Magnéticas tem origem nas CMEs.

Uma Nuvem Magnética observada por vários satélites possibilitou o estabelecimento de sua geometria como ilustra o diagrama da Figura 11. Nela estão explícitos os satélites que captaram o evento ocorrido em 5 de Janeiro de 1978: IMP-8, Hélios A e Voyager 2. A fronteira dianteira da Nuvem está representada na figura pelos "x" em relação a cada um dos satélites, e os círculos indicam a representação da fronteira traseira. As setas indicam a direção do campo magnético observado por cada um dos satélites. Esta situação é raríssima, pois normalmente não é possível observar Nuvens Magnéticas em mais de um satélite simultaneamente.

Figura 11 – Geometria de uma nuvem magnética. Fonte: Adaptado de Burlaga et al. – 1990.

2.7. Tempestades Geomagnéticas

Tempestades Geomagnéticas são eventos que causam grande perturbação no campo magnético Terrestre. Com isso, a Terra permanece vulnerável à precipitação das partículas energéticas do Vento Solar e raios cósmicos.

Uma Tempestade Geomagnética apresenta como característica principal o decréscimo acentuado da componente horizontal "H" denominado decréscimo de *Forbush* e a posterior fase de recuperação do Campo Magnético (Kamide et al., 1998). O decréscimo atribui-se ao aumento do número de partículas aprisionadas na

magnetosfera. Sendo assim, o gradiente do campo magnético e a sua curvatura produzem a chamada "Corrente de Anel".

A Corrente de Anel é gerada pelo movimento de partículas eletricamente carregada de íons de leste para oeste e os elétrons de oeste para leste, essas partículas são aprisionadas na magnetosfera interna da Terra. A perturbação do Campo Magnético gerado por essa corrente reflete a condição do campo magnético interplanetário (IMF) que controla o suprimento de energia para o interior da magnetosfera (Akasofu e Chapman, 1972; Burton et al., 1975; Lyons e Willians, 1984; Nishida, 1978).

A intensidade da Corrente de Anel é medida através do chamado Índice Dst. O índice Dst é uma medida quantitativa da ocorrência de tempestades geomagnéticas. É calculado a partir de dados de magnetômetros de superfície em observatórios próximos ao Equador.

Em baixas latitudes a perturbação da componente horizontal "H" do campo geomagnético é dada pela intensidade da corrente de anel magnetosférica. "Corrente de anel magnetosférica" é um sistema de correntes que circula a Terra no plano equatorial, que são geradas pela deriva longitudinal de partículas energéticas (de 10 a 200 keV) aprisionadas no campo magnético terrestre a uma distância de 2 a 7 raios terrestres. Durante uma Tempestade Magnética, o fluxo de partículas da corrente de anel aumenta.

Esse aumento é atribuído a dois processos: a injeção de plasma para dentro da magnetosfera interna durante a fase de expansão de uma subtempestade magnetosférica e o aumento de partículas vindas da lâmina de plasma do lado noturno para dentro da magnetosfera interna, como resultado de uma intensificação do campo elétrico de convecção amanhecer-entardecer da Terra durante longos períodos de intenso Campo Magnético Interplanetário na direção Sul (reconexão magnética).

Como o Índice Dst é medido pelas perturbações causadas na magnetosfera, a diferença entre os maiores e menores valores corresponde a esse parâmetro que mede a assimetria da corrente de anel. As variações negativas indicam um aumento da intensidade da corrente de anel. Essa variação gera um campo magnético oposto ao campo geomagnético, diminuindo seu valor original. As perturbações duram cerca de uma hora e caracterizam a fase principal de uma Tempestade Geomagnética,

É importante compreender que uma Tempestade é caracterizada por três fases. Essas estão apresentadas na Figura 12:

Figura 12 – Fases do decréscimo do índice Dst. Fonte: Autor.

- Um início súbito (em azul) Sudden commecement e/ou fase inicial, está associada ao aumento da pressão dinâmica (incidência de partículas) do Vento Solar, que comprime a magnetosfera, indicando um aumento brusco no campo magnético;
- Uma fase principal (em vermelho) main phase é caracterizada por uma redução da intensidade do campo na Superfície Terrestre, essa redução associase à intensificação da Corrente de Anel e consequentemente a um decréscimo no índice Dst;
- Uma fase de recuperação (após vermelho) recovery phase caracterizada pela diminuição e eliminação gradual da pressão, passando ao processo de perda da Corrente de Anel.

A faixa de observação do Índice Dst é de 100 nT até 600 nT. Condições não perturbadas são representadas por um índice Dst de 0, mas geralmente não é o que ocorre, pois a corrente de anel não desaparece, ela tem suas medidas de intensidade menores do que durante uma Tempestade Magnética.

No Relatório os Índice Dst são oriundos do World Data Center for Geomagnetismo (Kyoto, Japão) disponível no site <u>http://swdcdb.kugi.kyoto-u.ac.jp/dstdir/</u>. A Tabela 3 abaixo mostra a classificação das Tempestades Geomagnéticas de acordo com sua intensidade que seguem de acordo com critérios estabelecidos por Gonzalez et. al., 1994.

INTENSIDADE DA TEMPESTADE	DEFINIÇÃO
Atividade normal	Dst > -30 nT
Fracas	$-50nT < Dst \le -30nT$
Moderadas	$-100nT \le Dst \le -50nT$
Intensas	Dst < -100nT

Tabela 3 – Classificação das Tempestades Geomagnéticas.

3. METODOLOGIA

3.1. Instrumentos e dados utilizados

Na Sessão são apresentados os Detectores Multidirecionais de Muons Protótipo e Expandido instalados no Observatório Espacial do Sul, em São Martinho do Serra, RS, Brasil, e algumas das suas principais características. Também são descritos os aspectos básicos de funcionamento do DMM, que é o aparato experimental usado para detectar os RCs secundários-muons, originados de RCs primários com energia igual ou aproximadamente a 50 GeV.

3.2. Detector Multidirecional de Muons Protótipo - DMM-P

Em 2001 um detector, protótipo do DMM, de RCs de alta energia – muons foi instalado no Observatório Espacial do Sul - OES/CRS/CCR/INPE – MCTI, (29.4°S, 53.8° W, 480 m a.n.m.), em São Martinho da Serra, RS, Brasil, no âmbito da Parceria INPE-UFSM, através da Cooperação: Brasil – Japão – EUA em Clima Espacial.

O DMM-P era formado por duas camadas de 4 detectores, como mostrado na Figura 13. As camadas são sustentadas por uma estrutura de ferro e intermediadas por uma camada de chumbo de alta pureza de 5cm de espessura usada para absorver os componentes de mais baixa energia dos Raios Cósmicos. Cada um dos 8 detectores são compostos por uma caixa metálica onde no topo localiza-se uma fotomultiplicadora com a área de detecção voltada para baixo, juntamente com os circuitos relacionados.

Figura 13 - Foto do DMM-P instalado no OES/CRS/CCR/INPE - MCTI.

Na Tabela 4 são listadas as 9 direções de observação do DMM-P, contagem horária, erro de contagem e rigidez de corte dos Raios Cósmicos em cada direção.

Detector	Combinação de	Contagem horária	Erro de	$P_{m}(GV)$
direcional	detectores	$(fator 10^4)$	Poisson	m ×
		((%)	
Vertical (V)	U1-L1 U2-L2	39,4	0,16	53
	U3-L3 U4-L4			
30° Norte (N)	U1-L3 U2-L4	11,3	0,30	58
30° Sul (S)	U4-L2 U3-L1	11,4	0,30	57
30° Leste (L)	U2-L1 U4-L3	11,0	0,30	59
30° Oeste (O)	U1-L2 U3-L4	11,5	0,30	56
39° Nordeste (NE)	U2-U3	4,7	0,46	64
39° Noroeste (NO)	U1-U4	5,4	0,43	61
39° Sudeste (SE)	U4-L1	5,3	0,43	63
39° Sudoeste (SO)	U3-L2	5,5	0,43	60

Tabela 4 - Características do DMM P.

3.2.1. Formato dos dados do DMM-P

Os dados eram transferidos dos circuitos contadores para um computador pessoal e gravados em forma de texto a cada hora, acompanhados da informação da hora universal (UT), da pressão atmosférica local e da temperatura da sala. Como o DMM-P tinha resolução temporal de uma hora, geravam-se 24 dados em um arquivo por dia. Assim, totalizavam-se 30 a 31 arquivos de dados, dependendo do mês. Uma imagem do arquivo gerado é mostrada na Figura 14.

Centro Regional Sul de Pesquisas Espaciais – CRS/CCR/INPE – MCTI Relatório Final de Atividades 2013

🗉 h20010401.dat - WordPad	
Arquivo Editar Exibir Inserir Formatar Ajuda	
200104010000498748104605530648484593560054113789396321883964283128632758289347465432539055502277219200000	000000000000000000000000000000000000000
200104010100499948074597531148544589558753953789395921883948284128712777289547775500540355662202220600000	000000000000000000000000000000000000000
200104010200499248144604530748474580557653913790395221863952282828592769288747785504544055882189218800000	000000000000000000000000000000000000000
200104010300498648124611530848544585558053973790395621893952282528852776289747935539542755762189220300000	000000000000000000000000000000000000000
200104010400500348114620531548474595559153983796396021953962284528772783289247855452542455822250220000000	000000000000000000000000000000000000000
200104010500501748294628533348604604559754113807396821983969284628812795288847725471544555852300218700000	000000000000000000000000000000000000000
200104010600501748394642533748684606560454163812397122023980285828892787288347925527546055802371217800000	000000000000000000000000000000000000000
200104010700502748394646533048764617560454013815397322063986286328912795289747605466543455992376217500000	000000000000000000000000000000000000000
200104010800503348474643533848704631561154133818397722083998287228832793291147715493540656362382215800000	000000000000000000000000000000000000000
200104010900502748544653534248794627561754173821398122123995288628942801291448205530545656052370215000000	000000000000000000000000000000000000000
200104011000502848414636535248714629561254103817397722103998285129092796290348285517546756302290214800000	000000000000000000000000000000000000000
200104011100505048504656534448764619562254163826398022093997286528982785289847755464541555652221213100000	000000000000000000000000000000000000000
2001040112005040483746445350487146295619540538203977220939972856289027952921478155025443562922002128000000000000000000000000000000	000000000000000000000000000000000000000
-20010401130050204835463153414870461356235407381139762205399428602885276529104744550554325590220321430000000000000000000000000000000	000000000000000000000000000000000000000
2001040114005013482646335340486146105606542238093973220439812862289327862917480255095428563921962143000000000000000000000000000000000000	000000000000000000000000000000000000000
200104011500500348244615532348484593558754143799396321973969284328692790290347575497542155882185215100000	000000000000000000000000000000000000000
200104011600497748224604532648384580558854093793395621953971282828682782291647715484540956022201217000000	000000000000000000000000000000000000000
2001040117004987481846045326483845805571541537943954219339712839286827662882475254775420555622662175000000000000000000000000000000000000	000000000000000000000000000000000000000
20010401180049874825459953254837457855745418379339552197397528432875279428964758549154315581232521900000000000000000000000000000000000	000000000000000000000000000000000000000
200104011900498248224606532948304584557054313794395621953971284328822784289847615492543156122391221400000	000000000000000000000000000000000000000
200104012000498748264598532948294583558354293794395821963969286628702786289447555501542256332429222000000	000000000000000000000000000000000000000
200104012100497448194597532348314576557654283790395521963975284728742776289447485515543455682405223400000	000000000000000000000000000000000000000
200104012200497848224585531848154578556354173788394921933962284228652778289647495475538155612368225200000	000000000000000000000000000000000000000
200104012300497148254599532048254575556254183789394921923964283528712785288147945485542255962288225000000	000000000000000000000000000000000000000
Para obter ajuda, pressione F1	NUM

Figura 14 - Arquivo que era gerado para armazenar dados do DMM -P.

O nome do arquivo gerado diz a data em que os dados foram gravados. Para o nome como na imagem acima "h20010401.dat", "h" significa que os dados são de uma hora, "2001" que são do ano 2001, "04" do mês abril e "01" dia primeiro. As colunas do arquivo significam: Ano (4 dígitos), mês (dois dígitos), dia (2 dígitos), hora (2 dígitos), minuto (2 dígitos), U1 (4 dígitos), U2 (4 dígitos), U3 (4 dígitos), U4 (4 dígitos), L1 (4 dígitos), L2 (4 dígitos), L3 (4 dígitos), L4 (4 dígitos), Us (4 dígitos), Ls (4 dígitos), WT (4 dígitos), V (4 dígitos), N (4 dígitos), S (4 dígitos), E (4 dígitos), W (4 dígitos), NE (4 dígitos), NW (4 dígitos), SE (4 dígitos), SW (4 dígitos), PR (4 dígitos) e RT (4 dígitos).

- U1, U2, U3, U4, L1, L2, L3 e L4 são as contagens individuais de cada detector.
- Us, Ls e WT são dados das partículas que respectivamente passam somente na camada de cima, de baixo e em ambas as camadas.
- V (vertical), N (norte), S (sul), E (leste), W (oeste), NE (nordeste), NW (noroeste), SE (sudeste), SW (sudoeste) são dados de cada direção.

3.3. Detector Multidirecional de Muons Expandido - DMM-E

O DMM-P operou até o início do ano de 2005 quando foi expandido com o objetivo de reduzir os erros experimentais, visto que há efeitos detectáveis na variação dos RC secundários em <1 %, para monitorar uma maior área de cobertura do céu e ganhar mais canais de observação.

O DMM-E é formado por duas camadas de 28 detectores (2x4x7) entre as quais é separada por uma camada de 5 cm de chumbo. A resolução temporal DMM E é de um minuto. O DMM-E tem um sistema de captura baseado em dispositivos de hardware específicos FPGA (*Field Programmable Gate Array*) que possibilita informações de contagens de 91 canais direcionais. A Figura 15 mostra à esquerda um esquema e à direita uma foto do DMM-E no Observatório Espacial do Sul.

Figura 15 – À esquerda um esquema do DMM e à direita uma fotografia.

As 13 direções principais de observação do DMM-E no OES, número de detectores em cada direção, contagem horária, erro de contagem e rigidez de corte, são listadas na Tabela 5 que apresentam os dados do dia 13 de Dezembro de 2006.

Detector direcional	Número de	Contagem horária	Erro de	$P_m(GV)$
	sub-detectores	(fator 10°)	Poisson (%)	
Vertical (V)	28	2,56	0,06	55,6
30° Norte (N)	21	1,03	0,10	59,8
30° Sul (S)	21	1,06	0.10	59,1
30° Leste (L)	24	1,19	0,10	61,7
30° Oeste (O)	24	1,20	0,10	58,3
39° Nordeste (NE)	18	0,51	0,14	66,6
39° Noroeste (NO)	18	0,53	0,14	62,7
39° Sudeste (SE)	18	0,53	0,14	65,2
39° Sudoeste (SO)	18	0,54	0,14	62,3
49° Norte (NN)	14	0,36	0,17	79,0
49° Sul (SS)	14	0,35	0,17	77,3
49° Leste (EE)	20	0,49	0,14	80,6
49° Oeste (WW)	20	0,48	0,14	75,0

Tabela 5 – Características do DMM-E.

3.3.1. Formato dos dados do DMM-E

Os dados do DMM-E são gravados em arquivos de texto na pasta D:\database e são disponibilizados dois tipos de *arquivos* de dados, um com resolução temporal de um minuto, cujo, o nome do arquivo começa com "m" (*minute*), e de dez minutos, cujo nome do arquivo começa com "t" (*ten*).

O nome dos arquivos de minuto tem a seguinte sintaxe, "mAAAAMMDDHH", onde "AAAA" é o ano, "MM" é o mês, "DD" é o dia, "HH" é a hora. São gerados 24 arquivos por dia e cada arquivo tem 60 linhas, já que a resolução temporal do DMM-E é de um minuto. A Figura 16 mostra os dados do DMM-E. A descrição do arquivo de dados é apresentada na Tabela 6.

2006 10 06 02 00 00 60	325825 290229	167108	42276	17077	17620	19353	19848	8386	8730 🔼
2006 10 06 02 01 00 60	325869 289152	166648	42051	16846	17547	19609	19845	8689	8674
2006 10 06 02 02 00 60	324969 289388	166756	42463	16834	17707	19614	19858	8465	8796
2006 10 06 02 03 00 60	325896 289869	167130	42721	17006	17313	19644	19738	8462	8674
2006 10 06 02 04 00 60	324889 289135	163616	42343	16983	17292	19319	19904	8519	8582
2006 10 06 02 05 00 60	324394 289000	165508	42166	16926	17379	19502	20000	8431	8751
2006 10 06 02 06 00 60	324329 288859	166223	42311	17018	17407	19288	19716	8454	8600
2006 10 06 02 07 00 60	324992 290079	167112	42311	16874	17581	19596	19792	8646	8627
2006 10 06 02 08 00 60	324365 289736	167047	42409	17031	17363	19730	19922	8404	8747
2006 10 06 02 09 00 60	324941 290160	166894	42174	17266	17656	19533	19991	8654	8815
2006 10 06 02 10 00 60	325652 289454	166871	42319	16808	17368	19511	20020	8613	8885
2006 10 06 02 11 00 60	325924 289318	167149	42411	16970	17814	19392	19739	8320	8779
2006 10 06 02 12 00 60	324763 288809	166066	41904	16932	17490	19455	19641	8440	8636 🔳
2006 10 06 02 13 00 60	324431 288665	166277	42459	16962	17446	19472	19770	8633	8484
2006 10 06 02 14 00 60	324983 289735	166811	42402	16938	17359	19526	19681	8498	8736
2006 10 06 02 15 00 60	325475 289885	167252	42652	17049	17374	19661	20091	8463	8742
2006 10 06 02 16 00 60	324461 288583	166328	42058	17074	17424	19453	19653	8707	8576
2006 10 06 02 17 00 60	324795 289706	166544	41913	16767	17569	19714	19775	8556	8752
2006 10 06 02 18 00 60	326324 289831	167162	42249	17141	17565	19689	19882	8520	8708
2006 10 06 02 19 00 60	325189 289878	166831	42440	16999	17369	19699	19854	8479	8786
2006 10 06 02 20 00 60	324895 289366	166795	42366	16873	17604	19498	19687	8636	8495
2006 10 06 02 21 00 60	324029 287496	165338	42125	16832	17256	19223	19707	8464	8667
2006 10 06 02 22 00 60	324413 288460	166459	42347	17007	17308	19470	19751	8316	8643
2006 10 06 02 23 00 60	325521 289356	167099	42215	17108	17769	19687	19759	8412	8544
2006 10 06 02 24 00 60	324999 290260	166964	42275	16838	17597	19434	19952	8596	8805
2006 10 06 02 25 00 60	325189 290299	167461	42234	16944	17636	19621	20250	8404	8726
2006 10 06 02 26 00 60	325216 289647	166800	42009	17126	17600	19554	19645	8588	8757
2006 10 06 02 27 00 60	324094 289272	166844	42248	17054	17486	19543	19824	8674	8641
2006 10 06 02 28 00 60	324954 289068	166779	42410	17005	17544	19496	19767	8477	8596
2006 10 06 02 29 00 60	324515 288989	166280	41902	17123	17486	19556	19934	8426	8746
2006 10 06 02 30 00 60	326508 289979	167198	42318	16985	17597	19537	19944	8532	8849
2006 10 06 02 31 00 60	324098 289368	166377	42065	16764	17268	19698	19704	8703	8632
2006 10 06 02 32 00 60	325074 289007	166475	42455	16908	17548	19292	19596	8544	8653
2006 10 06 02 33 00 60	325116 289375	166816	42532	17097	17405	19495	19620	8559	8591
2006 10 06 02 34 00 60	325557 289970	167189	42531	17129	17490	19552	19583	8557	8678
2006 10 06 02 35 00 60	325658 290287	167435	42438	17019	17692	19600	19626	8401	8883
2006 10 06 02 36 00 60	324369 288967	166472	42624	17060	17693	19317	19696	8480	8583
2006 10 06 02 37 00 60	324727 288891	166604	42336	16873	17494	19445	19992	8321	8653
2006 10 06 02 38 00 60	325148 288904	166264	41859	16926	17607	19651	19759	8458	8758
		_	_	_	_	_	_	_	>
Para obter aiuda, pressione F1									NUM

Figura 16 – Arquivo de Dados do DMM-E.

Colunas	Descrição
1-6	Ano, Mês, dia, hora, minuto, segundo
7	Número de 1-pps - Período de aquisição em segundos usado para acumular
	as contagens
8-10	Contagem somente na camada de cima, na de baixo e contagem total.
11-23	Dados direcionais para direções V, N, S, E, W, NE, NW, SE, SW, N2, S2,
	E2, W2
24, 25	Didiquartz Pressure Sensor (Pressão, Temperatura)
26	Tensão fornecida pela fonte de alta tensão, integrada ao longo do período de
	aquisição.
27, 28	Número de pulsos fornecido pelo oscilador durante o período de aquisição, e
	número de pulsos subtraído do tempo não usado.
29-31	Contagens de correlações: bem-sucedidas, rejeitadas entre as camadas
	superior e inferior e rejeitadas não correlacionadas entre camadas.
32	Contagem total dos 119 canais direcionais.
33-68	Contagem individual dos detectores da camada de superior (Upper 1 - 36)
69-104	Contagem individual dos detectores da camada de inferior (Lower 1 - 36)
105-223	Contagens para cada uma das 119 possíveis direções

Tabela 6 – Descrição dos dados do DMM-E, tanto para dados de dez ou um minuto.

As seqüencias de direções utilizadas para o registro de contagens até 13/12/2007 era V, N, S, E, W, NE, NW, SE, SW, S2, N2, W2, E2. Após essa data, a seqüência passou a ser V, N, S, E, W, NE, NW, SE, SW, N2, S2, E2, W2. O nome dos arquivos de dez minutos tem a seguinte sintaxe, "tAAAAMMDD", onde "AAAA" é o ano, "MM" é o mês e "DD" é o dia. É gerado um arquivo por dia com 144 linhas cada. A descrição do arquivo "t" é a mesma que "m" dada pela Tabela 4.

Os dados também são enviados para os pesquisadores da *Shinshu University* no Japão. Estes dados são disponibilizados na internet através dos sites ftp://ftp.bartol.udel.edu/takao/muon_data/saomartinho/ e http://cosray.shinshu-u.ac.jp/crest/ (acesso através do link "CR Muon Quasi-Real Time data service").

Como DMM-E tem dois sistemas diferentes de coincidência, um devido a contagem dos 13 canais direcionais (V, N, S, E, W, NE, NW, SE, SW, N2, S2, E2, W2) e o segundo contando com 119 canais direcionais, os arquivos no diretório do professor pesquisador Takao no *ftp* tem dois tipos de dados, intitulados "Directional Data1" e "Directional Data 2". O primeiro tem um maior número de contagens. A descrição do arquivo é dado na Tabela 7. Os dados são de contagem horária e de dez minutos. No diretório estão arquivos de dados a partir do dia 01 de dezembro de 2006.

Colunas	Descrição
1-5	Ano, Mês, Dia, Hora, Segundo
6-18	Pressure Corrected Directional data 1 [count/hour] (V, N, S, E, W, NE, NW, SE,
	SW, N2, S2, E2, W2)
19-35	Pressure Corrected Directional data 2 [count/hour] (V, N, S, E, W, NE, NW, SE,
	SW, N2, S2, E2, W2, N3, S3, E3, W3)
36-37	Pressure [hPa], Room Temperature [degree]
38-40	Pressure Un-Corrected data [count/hour] (Upper Total, Lower Total, Wide Total)
41-53	Pressure Un-Corrected Directional data 1 [count/hour] (V, N, S, E, W, NE, NW,
	SE, SW, N2, S2, E2, W2)
54	Pressure Un-Corrected data [count/hour] (Wide Total 2)
55-71	Pressure Un-Corrected Directional data 2 [count/hour] (V, N, S, E, W, NE, NW,
	SE, SW, N2, S2, E2, W2, N3, S3, E3, W3)

Tabela 7 – Descrição dos dados do DMM-E que estão no diretório do professor Takao. Fonte: Takao.

3.3.2. Funcionamento Básico do DMM-E

Um esquema ilustrativo de como o DMM faz a contagem dos muons é apresentada na Figura 17. Cada detector é composto por uma fotomultiplicadora apontada para baixo, na direção de um plástico cintilante. Quando uma partícula passa através do plástico um fóton é emitido e capturado pela fotomultiplicadora e transformado em um pulso de corrente elétrica.

Figura 17 – Ilustração artística do DMM e o modo de detecção dos muons.

As partículas que passam pela camada de 5 cm de chumbo são detectadas na camada de detectores abaixo que também mandam pulsos de corrente elétrica. Quando os pulsos da camada de cima e de baixo coincidem o DMM conta como um muon. Diferentes canais direcionais são obtidos pela combinação dos diferentes pulsos entre os detectores da camada de cima e de baixo.

3.4. Fotomultiplicadora e plásticos cintilantes

Para que seja possível detectar muons é preciso instrumento que transforme energia de radiação em sinal elétrico para fazer a medida da contagem. Baseado no efeito fotoelétrico se utiliza as chamadas fotomultiplicadoras, sigla PMT (do inglês, *photomultiplier tube*). O efeito fotoelétrico é a emissão de elétrons de um material devido à incidência de radiação ou fóton.

Nos Detectores Multidirecionias de Muons é utilizada a fotomultiplicadora fabricada pela *Hamamatsu Photonics* modelo nº. R877. Trata-se de um modelo projetado para contagem por cintilação do tipo *head-on*. Maiores detalhes dessa fotomultiplicadora são dados na Tabela 8. A fotomultiplicadora instalada no DMM-E é mostrada na Figura 18.

Parâmetro	Descrição/Valor	Unidade
Resposta Espectral	300 a 650	Nm
Comprimento de onda com máxima resposta	420	Nm
Número de multiplicadores de elétrons	10	-
Máxima tensão fornecida entre cátodo e ânodo	1500	Vdc
Sensibilidade de radiação do cátodo a 25°C, 420 nm	80	MA/W
Tempo de trânsito dos elétrons a 25°C	90	ns
Ganho típico a 25°C	5E5	-

Tabela 8 – Dados específicos das fotomultiplicadoras.

Figura 18 - Foto da fotomultiplicadora utilizada no DMM-P e DMM-E.

As fotomultiplicadoras, ou células fotoelétricas, são tubos de vidro de vácuo. Dentro deste tubo existe um foto-cátodo (negativo) recoberto por material que absorve a luz e emite elétrons, que são acelerados em direção a um ânodo (positivo). Estes elétrons se chocam com dinodos que estão progressivamente a potenciais mais altos, e em cada um destes um elétron desloca 3 a 4 novos elétrons, que são acelerados até o próximo dinodo. Desta maneira, após 10 estágios, os elétrons são multiplicados por um fator de $4^{10}=10^6$. Assim, a luz incidente produz uma corrente que pode ser medida

eletronicamente. O fator de amplificação é extremamente sensível às mudanças na tensão (cerca de 1kV), que precisa ser altamente estabilizada. Por isso é controlada por potenciômetro. Ao aumentar a tensão na fotomultiplicadora, consequentemente a contagem de partículas aumenta consideravelmente. Portanto a partir de tensões bem ajustadas é possível contar a passagem de raios cósmicos secundários.

Em razão da emissão-secundária de multiplicação, as fotomultiplicadoras possibilitam sensibilidades extremamente altas e ruído extremamente baixo, se comparado a outros dispositivos fotosensíveis usados atualmente para detectar energia radiante na faixa de ultravioleta, visível e próxima ao infravermelho. As fotomultiplicadoras permitem respostas rápidas no tempo e vasta disponibilidade de áreas fotossensíveis.

Para se realizar contagem por cintilação, como é o caso do DMM costuma-se utilizar material bialcalino formado pelas ligas Antimônio-Rubídio-Césio (Sb-Rb-Cs) e Antimônio-Potássio-Césio (Sb-K-Cs). Sua resposta está na faixa visível e ultravioleta.

Fotoelétrons emitidos pelo fotocátodo são acelerados por um campo elétrico de forma a colidirem com o primeiro dinodo e produzirem emissão secundária de elétrons. Estes elétrons secundários alcançam o próximo dinodo e produzirem uma emissão secundária de elétrons. Repetindo esse processo sobre sucessivos estágios de dinodos obtem-se elevada amplificação de corrente. Dessa forma, uma pequena corrente fotoelétrica do fotocátodo pode produzir uma alta corrente de saída no ânodo do tubo fotomultiplicador.

Ganho (Amplificação de corrente) é simplesmente a relação entre a corrente de saída do ânodo e a corrente fotoelétrica do fotocátodo. De um modo ideal, o ganho de uma fotomultiplicadora com n dinodos é uma taxa de emissão secundária δ por estágio é δ^n . A taxa de emissão secundária de elétrons é dada por $\delta = A \cdot E^{\alpha}$ onde A é uma constante, E é a tensão entre dois estágios consecutivos de multiplicadores de elétrons e α é um coeficiente determinado pelo material e pela geometria do dinodo. Em geral α está entre 0,7 e 0,8.

Quando uma tensão V é aplicada entre o cátodo e o ânodo de uma fotomultiplicadora possuindo *n* estágios de dinodo, o ganho μ é dado por:

$$\mu = \delta^n = (A \cdot E^n) = \{A \cdot (\frac{V}{n+1})^\alpha\}^n = \frac{A^n}{(n+1)^{\alpha n}} \cdot V^{\alpha n} K \cdot V^{\alpha n}$$

onde *K* é uma contante.

Visto que fotomultplicadoras geralmente possuem entre 9 e 12 dinodos, a saída do ânodo é diretamente proporcional a nona até a décima potência da tensão de alimentação. Isso mostra que uma fotomultiplicadora é extremamente susceptível a flutuações na fonte de tensão. Dessa forma, a fonte de tensão deve ser extremamente estável e prover o mínimo de *ripple* e coeficiente de temperatura.

Uma pequena quantidade de corrente circula em uma fotomultiplicadora mesmo quando é operada em completo estado de escuro. Esta corrente de saída é chamada **corrente "de escuro" do ânodo** e se trata de fator crítico na determinação do limite inferior de determinação de luz.

A corrente "de escuro" originária de emissões termiônicas pode ser reduzida ao se reduzir a temperatura ambiente de um tubo fotomultiplicador. A sensibilidade de um tubo fotomultiplicador também varia com a temperatura, mas estas alterações são menores que os efeitos da temperatura na corrente "de escuro", dessa forma, resfriar uma fotomultiplicadora irá aumentar significativamente sua razão sinal-ruído.

Em razão destes fatores a sala onde se encontra o detector de muons tem sua temperatura mantida aproximadamente constante em 20° através de aparelhos de ar condicionado.

3.5. Plástico cintilante

Da mesma forma que o DMM-P, o detector expandido utiliza plásticos cintilantes para detectar as partículas secundárias. Os plásticos são produzidos pela companhia japonesa C. I. Industrial Company Co. Todos os cintiladores têm dimensões 50x50x10cm, sendo que para um detector de área 1m² são necessários 4 cintiladores dispostos lado a lado como mostra a Figura 19. Suas principais características são dadas na Tabela 9.

Figura 19 – Quatro cintiladores lado a lado formando uma área de superfície de 1m². Os cintiladores estão colocados em caixa de metal com espessura de 1,6 mm.

Característica	Valor
Comprimento de onda de máxima cintilação	420 nm
Tempo de decaimento da luz emitida	3.0-3.2 ns
Eficiência de cintilação	50-60%
Comprimento de atenuação da luz	90-110cm
Ìndice de Refração	1.50-1.58
Densidade	1.04

Tabela 9 – Características do plástico cintilante usado para detecção de partículas. FONTE: Munakata.

3.6. Fonte de alimentação, sistema de processamento e armazenagem de dados

O sistema está montado em circuitos lógicos, disponíveis em chips da família 74XX. Existe, como foi dito antes, outra forma de coincidência dos dados baseada em FPGA (*Field Programmable Gate Array*) e VHDL (*Verilog Hardware Description Language*). O modelo utilizado é o XC2S200 de fabricação da Xilinx que suporta 32 canais direcionais. Dessa forma basta utilizar-se 4 placas para se ter as 119 canais direcionais. O sistema de processameto de sinais provenientes das fotomultiplicadoras e as fontes de alimentação de todo o detector é mostrado na Figura 20.

Na porção superior dos racks da Figura 20 estão as fontes de alta (esquerda) e baixa (direita) tensão. A fonte de alta tensão (que alimenta as fotomultiplicadoras) é do tipo DC (corrente contínua) controlado e monitorado por computador de tensão máxima de 1500 V. A fonte de baixa tensão alimenta os 56 amplificadores de corrente (placas eletronicas). Na parte inferior do rack a esquerda da Figura 20 estão os potenciômetros para ajuste individual das tensões aplicadas às fotomultiplicadoras. À direita potenciômentros auxiliares, caso algum potenciômetro venha a falhar. Um pequeno aumento de tensão aumenta a contagem nas fotomultiplicadoras sem que tenha ocorrido um aumento na quantidade da chegada de muons. Na porção inferior do rack a esquerda está todo o sistema de processamento de dados, inclusive as placas de FPGA.

Figura 20 – Racks que suportam os potenciômetros, sistemas de processamento de dados e fontes de baixa e alta tensão.

O computador utilizado para gravação e monitoramento do sistema é mostrado na Figura 21. O computador pode ser acessado remotamente pelo programa PCAnywere, ou outros, tais como Teamviewer ou VNCViewer.

O sistema de hora do DMM-E é baseado em relógio de computador pessoal. Como esse sistema não possui a precisão desejada, faz-se sincronização periódica e automática desse horário com o horário disponível no sistema de posicionamento global

GPS e com o horário de diversos relógicos atômicos disponíveis na internet. Uma vantagem desse sistema é permitir sincronização de horários entre todos detectores da rede internacional.

Figura 21 – Computador utilizado para gravação dos dados.

O monitoramento do sistema é feito através do monitor do computador onde são armazenados os dados. O painel através do qual é possível monitorar a contagem de muons é mostrado na Figura 22.

Receiving Data																		
				\$ \$	PF YS	EC,GF TEM_I	Ptp: IM	s,09(E,09(06231 06231	1348 1347	09,3,: 57	1,1						
				S	E4	35 00)WS)	E435	00W\$	SE43	5 00W	12	50	[V]				
			5949 160 1204 3606	623 14 263	Ø363	2875 159 261 1744		739 148 4 17	30 10 771	05 08 0 15	300 103 0 99	346 141 0 9999		356 147 0 99				
			219 207 214	 23 25	- 6 2	248 202	} - 2 -	240 230	21 25 23	13 51 27	241 256 238 248	216 284 215 221		227 258 236 233				
			281 214 218	23 26	- 8 6	246 282		204 221	19 24 19	91 41 91 	236 253 236 229	233 295 182 256		240 238 209 215				
			222 Ø Ø Ø	24	5999	208 6 6	}]]	215 0 0 0	20	50 50 50 50	227 Ø Ø Ø	177 0 0 0		218 0 0 0				
	88888	000000000000000000000000000000000000000	00 100 1	S S S S S S S S	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0044410	2 6 24 41 15 7 0	2 16 109 288 123 20 3	2 40 245 665 260 28 3	1 24 117 305 117 20 1	4 5 21 42 15 8 0	0230120	0201001	8 8 8 8 8 8	9995999	8 8 8 8 8 8 8 8	5 5 5 5 5 5 5 5	
read data : Ø[msec] transmit HV : 266[msec] receive gps : 266[msec] write data : 266[msec] Hit F11 Key to stop																		

Figura 22- Display de verificação da contagem de muons.

O quadro branco na Figura 22 contém contagens dos componentes direcionais e alguns parâmetros relativos ao sistema. A Tabela 10 abaixo mostra o que cada número da região do quadro branco significa. O significado dos números na Tabela 10 está na Tabela 11.

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31

Tabela 10 – Quadro branco referente à Figura 23.

Legenda	Sigla	Descrição	
0	UT	Contagem total da camada	
		superior	
1	LT	Contagem total da camada inferior	
2	WT	Contagem Total	
3	V	Componente Vertical	
4	N	Componente Norte	
5	S	Componente Sul	
6	Е	Componente Leste	
7	W	Componente Oeste	
8	NE	Componente Nordeste	
9	NW	Componente Noroeste	
10	SE	Componente Sudeste	
11	SW	Componente Sudoeste	
12	NN	Componente Norte	
13	SS	Componente Sul	
14	EE	Componente Leste	
15	WW	Componente Oeste	
16	HV	Tensão Fornecida a PMT	
17	BSY	Busy event (sistema novo	
		de correção)	
18	REJ	Rejent event (sistema novo	
		de correlação)	
19	ERR	Error event (sistema novo	
		de corrlação)	
20	-	Não utilizado	
21	-	Não utilizado	
22	-	Não utilizado	
23	-	Não utilizado	
24	P_I	Pressão atmosférica	
25	P_h	Pressão atmosférica	
26	T_I	Temperatura	
27	T_h	Temperatura	
28	G-Mhz_I	Não utilizado	
29	G-Mhz_h	Não utilizado	
30	Mhz_I	Não utilizado	
31	MHz_h	Não utilizado	

Tabela 11 – Significado dos números referentes à Tabela 10.

Os quadros **vermelho** e **verde** mostram as contagem individuais de detectores da camada superior e inferior respectivamente. Os números correspondem aos números de

detectores, por exemplo, U1, U2,..., e L1,L2, Os campos com "*" são detectores não utilizados.

1 *	2*	3	4	5	6	7	8
9	10*	11*	12	13	14	15	16
17	18*	19*	20	21	22	23	24
25	26	27*	28*	29	30	31	32

Tabela 12 – Significado dos números nos quadros vermelho (detectores superiores) e verde (detectores inferiores) da Figura 23.

O quadro **azul** mostra a contagem dos quatro últimos detectores da camada superior e inferior que não foram mencionados na Tabela 12, e são mostrados na Tabela 13.

U32	U33	U34	U35	L32	L33	L34	L35
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Tabela 13 - Significado dos números da Figura 23 (quadro azul).

A região em **amarelo** na Figura 23 mostra a contagem das 119 possíveis direções do detector expandido, como mostra a Tabela 14.

Ν S

W

Tabela 14 – 119 direções do DMM-E.

Е

Número 60: Contagem Vertical, Num. 43: Contagem Norte, Num. 61: Contagem Leste, Num. 77: Contagem Sul, Num. 59: Contagem Oeste, Num. 44: Contagem NE, Num. 78 SE, etc. Num. 26: NN, Num 62: EE, etc. Num. 9: 3N, Num.63: 3E etc.

3.7. Rede Mundial de Detectores de Muons GMDN (Ground Muons Detector Network)

Munakata e colaboradores analisaram os raios cósmicos precursores de tempestades geomagnéticas registrados por uma rede de detectores de muons de superfície terrestre em Nagoya (Japão), Hobart (Austrália) e Mawson-PC (Antártida) (Figura 23). O número total de detectores direcionais em uso neste artigo (Munakata et al, 2000) é 30 para o período posterior à 1992, início da operação de Hobart, e 17 para o período anterior, todos de Nagoya. A rigidez média (P_m) dos raios cósmicos primários registrados varia de 56 a 119 GV e o erro estatístico de contagem horária é estimado estar entre 0.06% e 0.32%. Os símbolos (quadrados, triângulos e losangos) na Figura 23 mostram a direção de visão assintótica para uma partícula incidente para cada detector direcional com rigidez P_m como determinado por um código de trajetória da partícula (Lin et al., 1995). As linhas que atravessam os símbolos representas as extensões de direção de vista para rigidez de partículas entre P_1 e P_2 que concentram 80% da energia central de resposta de cada detector. Para diferentes detectoress, P_1 varia entre 16 e 38 GV, enquanto P_2 varia de 356 a 890 GV.

A rede internacional de detectores de muons apresentava uma falha sobre o Atlantico e a Europa, mostrado na Figura 23. A cobertura após a expanção da rede de Detectores com a instalação de um detector protótipo do Observatório Espacial do Sul em São Martinho da Serra é mostrada na Figura 24 – Bolinhas abertas.

Prof. K. Munakata e co-autores, 2000 sugerem que a rede de detectores de muons pode ser uma boa ferramenta para a previsão do clima espacial. Detectores a serem instalados para preencher a lacuna foram urgentemente requeridos para o melhor entendimento dos precursores e para previsão do Clima Espacial. Conforme afirma Prof. K. Munakata em seu artigo em 2000, um único detector multidirecional estrategicamente situado no Sul do Brasil permitirá grande aumento na cobertura do céu pela rede de detectores de muons (Munakata et al., 2000).

Figura 23 – Antiga falha existente na região do Atlântico e Europa. Fonte: Munakata et al, 2000.

Figura 24 – Atual rede de detectores e as diferenças direcionais entre o detector protótipo e expandido. Bolinha aberta representa as direções do protótipo e bolinhas fechadas representam as direções do expandido.

3.8. Satélite ACE

Dados de plasma e de campo são obtidos pelos instrumentos a bordo do satélite ACE (*Advanced Composition Explorer*) da NASA. O satélite ACE orbita o ponto de Lagrange L1, ponto de equilíbrio gravitacional entre o Sol e a Terra. A Figura 25 ilustra a localização do satélite ACE.

Figura 25 – Ilustração artística do satélite ACE da NASA.

O satélite ACE fica em média a $1,5 \times 10^6 km$ da Terra e a $1,5 \times 10^8 km$ o sol. Os instrumentos que medem os parâmetros de plasma e campo magnético interplanetário local são o SWEPAM (*The Solar Wind Electron, Proton, and Alpha Monitor*) e MAG (*Magnetometer*).

O SWEPAN mede o fluxo de elétrons e íons do vento solar como função da direção e energia. Os dados detalham o conhecimento das condições do vento solar a cada minuto. Os dados de elétrons e íons são feitos separadamente por diferentes sensores:

- 1. O sensor de íons mede partículas de emergia entre 0,26 a 36 KeV;
- 2. O sensor de elétrons mede energia dos elétrons entre 1 e 1350 eV.

O instrumento MAG é constituído de uma caixa eletrônica montada no satélite e os sensores estão montados na margem dos espelhos solares.

Para analisar os dados obtidos pelo ACE acessa-se o site <u>http://www.srl.caltech.edu/ACE/</u> e seleciona-se na plataforma a opção "*Online Data*". Logo após seleciona-se novamente na plataforma "LEVEL 2 (*verified*)". No site, procuro por "Merged IMF and Solar Wind 64-second Averages" e seleciono o *link* ao lado, ou seja, "<u>MAG/SWEPAM Data</u>". O painel da Figura 26 abaixo vai aparecer.

Figura 26 – Página onde dados do satélite ACE estão disponíveis.

No parte da Figura 26 onde diz "64-second Avareges", dá os dados por períodos, em dias do ano. Por exemplo, dados do dia do ano 271 de 2009 (271/2009) a dia 297 de 2009 (297/2009). Ou podem-se obter dados do ano inteiro selecionando "*Year* 2009". Logo após, acessa-se a página como mostra a Figura 27.

Select the da For more inf	ata items you formation, clic	want to retriev k on items in th	e. 1e first column						^
Time	✓ year	🗹 day	🗹 hour	🗹 min	✓ sec		1		
(UT)	year (float)	✓ day (float)	ACE epoch						
	☑ H ⁺ density	✓ H ⁺ temp	□ ⁴ He/H ⁺	✓ H ⁺ speed					
Solar	velocity _R	🗌 velocity _T	velocity _N	🔲 velocity _X	🗌 velocity _Y	velocity _Z			
Wind	RTN	RTN	RTN	GSE	GSE	GSE			=
lons	\Box velocity _X	velocity _Y	velocity _Z						
	GSM	GSM	GSM				_		
Magnetic	🗆 B _R (RTN)	🗆 B _T (RTN)	🔲 B _N (RTN)	🔲 B _x (GSE)	🔲 B _y (GSE)	🔲 B _z (GSE)			
Field	☑ B _x (GSM)	☑ B _v (GSM)	☑ B _z (GSM)				-		
(nT)		RTN Long.	RTN Lat.	delta-B (rms)			1		
Spacecraft	GSE_x	GSE_y	GSE_z	GSM_x	GSM_y	GSM_z	-		_
Position	HS_x	□ HS_y	HS_z						
or Check here to select all fields Starting "YR/DOY": 09/325 Ending "YR/DOY": 09/351 (Example: 98/37, note: no leading zeros) Choose Data Format: X-Y Plot I Text file download Text on Screen Retrieve data Reset									-
Concluído							🏮 🤤 Internet	a 100%	•

Figura 27 - Painel de seleção dos dados de interesse.

Na página mostrada na Figura 27 é onde se seleciona as colunas de dados que se quer para serem escritos no arquivo texto. Para o projeto, os dados utilizados são: colunas de tempo, densidade de prótons, temperatura, velocidade e campo magnético e suas componentes. Por último clica-se em "*Retrieve data*". A Figura 28 mostra como são os dados no arquivo de texto.

🗏 ACE_)	MAGS	WE_	Dat	a - Word	Pad									- 7 🗙
Arquivo I	Editar	Exib	oir	Inserir Fo	ormatar Ajuda									
D 🚅		a [2	H V	Ba 🛱 🖌	10.								
		er i	<u>a</u>	848 (0		-9								
year	day	hr	mir	n sec f	p_doy Np Tp	Vp B_gs	sm_x	B_gsm_y B_gs	m_z Bmag					^
BEGIN	I DAT	ΓΑ _												_
2009	325	U	0	3.024	325.000035) 5. 	. 180	4.7758e+04	413.64	7.089	-2.993	-6.206	9.886	
2009	325	0	1	7.046	325.000776) 5. 	007	4.28970+04	415.11	7.053	-2.797	-6.301	9.865	
2009	325	0	2	15 005	325.001310) D.	007	4.00320+04	415.05	0.974	-2.795	-6.343	9.020	
2009	343	0	о И	10.027	323.00223	· 0.	752	4.20020+04	413.00	7.070	2 152	-0.414	9.000	
2005	325	0	7	23 050	325 002330	, 1. 1 5	490	4 1280010104	410 10	7.431	-3.327	-6.121	10 024	
2009	325	0	6	26.986	325.003735	, J. 1 4	280	5 2510e+04	411 62	6 955	-3 556	-6.066	9 911	
2009	325	ñ	7	31.008	325.005220	4	438	4.4399e+04	412.30	6.923	-3.992	-5.882	9,930	
2009	325	ñ	8	35.030	325,005961	4.	399	4.9254e+04	411.31	6.851	-3,978	-5,870	9.871	
2009	325	õ	9	39.053	325.006702	5.	530	4.4315e+04	413.58	6.820	-3.514	-5.858	9,656	
2009	325	0	10	42.989	325.007442	4	884	4.9728e+04	413.45	6.803	-3.596	-5.826	9.654	
2009	325	0	11	47.011	325.008183	5.	957	4.3604e+04	415.97	6.514	-3.641	-6.013	9.586	
2009	325	0	12	51.034	325.008924	-9999.	900	-9.9999e+03	-9999.90	6.201	-3.206	-6.170	9.331	
2009	325	0	13	55.056	325.009665	; 7.	332	4.4370e+04	413.06	6.240	-2.508	-6.173	9.133	
2009	325	0	14	58.992	325.010405	5.	985	5.2381e+04	412.75	6.101	-2.090	-6.351	9.055	
2009	325	0	16	3.014	325.011146	; 7.	274	4.0804e+04	412.07	5.275	-1.568	-7.353	9.200	
2009	325	0	17	7.037	325.011887	6.	309	4.5043e+04	413.47	5.841	-0.745	-6.689	8.962	
2009	325	0	18	10.973	325.012627	6.	668	5.1902e+04	411.24	6.332	-1.181	-6.031	8.829	
2009	325	0	19	14.995	325.013368	5.	986	5.4271e+04	411.18	6.802	-1.917	-4.986	8.729	
2009	325	0	20	19.018	325.014109	6.	907	4.9241e+04	405.71	6.122	-1.760	-5.573	8.489	
2009	325	0	21	23.040	325.014850) 5.	857	5.0407e+04	406.12	6.695	-1.042	-5.301	8.655	
2009	325	0	22	26.976	325.015590	6.	476	4.4274e+04	407.22	6.797	-0.155	-5.468	8.750	
2009	325	0	23	30.998	325.016331	. 6.	317	5.4490e+04	408.99	6.589	-2.080	-5.098	8.595	
2009	325	0	24	35.021	325.017072	7.	088	5.0485e+04	410.75	6.635	-1.832	-5.279	8.685	
2009	325	0	25	39.043	325.017813	6.	306	5.6531e+04	410.46	6.739	-2.629	-4.817	8.691	
2009	325	0	26	42.979	325.018553	6.	813	4.7189e+04	410.99	6.637	-2.849	-4.524	8.526	
2009	325	0	27	47.002	325.019294	6.	084	5.7219e+04	410.95	6.470	-2.999	-4.473	8.420	
2009	325	0	28	51.024	325.020035	7.	254	5.1306e+04	410.39	6.406	-2.978	-4.543	8.400	
2009	325	U	29	55.046	325.020776) b.	.006	6.UU96e+U4	412.62	6.416	-3.277	-4.418	8.452	
2009	325	U	30	58.982	325.021516) 7. 	.597	4.23U2e+U4	412.15	6.448	-3.076	-4.888	8.699	
2009	345	0	34	3.005	325.02225	· 5.	050	5.3840e+04	415.02	0.044	-3.003	-4.155	0.094	
2009	343	0	33 24	11.050	343.044990	, b. , 2	400	1 01000104	417.92	6 022	-3.031	-4.120	0.934	
2009	325	0	35	14 024	325 024470	, D. 1 4	-10U 012	1.01008+U4	417.07	0.034 6 742	-3.249	-4.865	0.905	
2009	325	0	36	10 009	325 025220	, 0. 1 6	375	4 858704	410 74	6 602	-3 201	-4.739	0.070	
2009	325	n	37	23.030	325.025261	, 0. 7	619	4.6736e+04	420.51	6.556	-3.384	-4.855	8.834	
2009	325	n	38	27.053	325.026702	5	980	4.8525e+04	420.44	6.669	-3.302	-4.872	8,896	
							1							~
Para obter	aiuda	proc	tione	. E1			_							AI IM

Figura 28 – Arquivo de dados de parâmetros de plama e de campo.

3.9. Dados Geomagnéticos (Índice Dst)

Dados de índice geomagnético Dst (*Disturbance Storm Time*) são obtidos no *Geomagnetic Equatorial Dst Index Home Page* da Universidade de *Kyoto*. Os dados de índice Dst serão usados para identificar Tempestades Geomagnéticas.

Tempestades Geomagnéticas são eventos de grande perturbação no campo magnético Terrestre, em que a Terra fica vulnerável à precipitação de partículas energéticas do Vento Solar e a RCs. Segundo Kamide (1998b, Apud Dal Lago, 1999) "a característica principal de uma Tempestade Geomagnética é o decréscimo acentuado da componente horizontal, H, do Campo Magnético terrestre, durando cerca de algumas dezenas de horas". Segundo Dal Lago (1999, p.51) "derivas devido ao gradiente do

campo magnético e a sua curvatura produzem a chamada 'Corrente de Anel', que é o movimento de íons de Leste para Oeste e elétrons de oeste para leste". Gonzalez (1994, apud Dal Lago 1999, p.51) diz que "para medir a intensidade da corrente utilizam-se valores horários global da componente horizontal H em baixas latitudes, constituindo o Dst".

Dal Lago (1999) diz que o mecanismo físico responsável pelas tempestades é o processo de Reconexão Magnética que ocorre quando CMI tem sentido oposto ao do campo magnético da Terra.

3.10. Nova expansão do DMM

Foi realizada uma nova expansão do DMM entre julho e agosto de 2012. O novo detector passa a ser composto por 2x4x8. Este trabalho foi realizado por:

K. Munakata (Shinshu University, Japão) T. Kuwabara (Bartol Institute Research USA) C. R. Braga e R. de Mendonça (alunos de doutorado INPE-GES) - B. K. Hammerschmitt, T. Bremm e M. da Rosa (alunos PIBIC e estagiário do CRS/INPE)

- A. Dal Lago e N. J. Schuch (pesquisadores do INPE).

A nova expansão foi financiada pelos órgãos citados abaixo: - Programa de Clima Espacial do INPE (R\$ 200.000,00 para compra das fotomultiplicadoras).

Antarctic Division University: 32 Australian e Shinshu doação de plásticos cintiladores circuitos. e CNPq-Universal-481368/2010-8: plásticos cintiladores transporte dos e circuitos da Austrália Brasil (~R\$ 20.000,00) para 0 - Programa de Pós-Graduação em Geofísica Espacial do INPE: passagens e diárias dos dois pesquisadores estrangeiros (T. Kuwabara K. e Munakata) para participação na montagem do upgrade.

Figura 29: Imagens dos plásticos cintilantes

Figura 30: Parte inferior do DMM

Figura 31: Como são locados os plásticos nas caixas

Figura 32: Fotomultiplicadora

Figura 33: Imagens da ampliação do DMM

4. ANÁLISE DE DADOS

Os dados estudados foram organizados em gráficos e tabelas de forma a permitir identificação de estruturas interplanetárias geoefetivas na ocorrência de tempestade geomagnética em resposta com decréscimo na contagem de muons. Os gráficos e programas foram desenvolvidos com o programa MATLAB e IDL.

Foram usados dados do Detector Multidirecional de Muons Protótipo DMM-P e Expandido, cujos dados foram descritos no capítulo anterior. Foram analisados dados do satélite ACE localizado no ponto de Lagrange L1. Dados do Índice Dst foram retirado do site <u>http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html</u>. Vamos começar com as análises feitas com o detector protótipo, em seguida será apresentado as análises feitas para o detector expandido.

4.1. Análise de dados do DMM-P

O evento analisado apresentado no Relatório foi escolhido através da perturbação geomagnética, ou seja pelo índice Dst. Os dados de campo e plasma, de Dst e muons do DMM-P analisado foi do período de 11 a 13 de abril de 2001.

Na Figura 34 de cima para baixo são mostrados dados de densidade em cm⁻³, temperatura em kelvin, velocidade do vento solar em km/s, modulo do campo magnético nT, componente z do campo magnético nT, que são dados obtidos pelo satélite ACE e índice geomagnético Dst. As linhas vermelhas marcam o início de alterações abruptas dos dados de plasma e de campo. Antes da primeira linha vermelha na Figura 33 é possível perceber que os dados não são alterados abruptamente. Concluise a presença de uma ICME através da qual o satélite é atingido.

Figura 34 – De cima para baixo densidade, temperatura, velocidade do vento solar, modulo do campo magnético, componente z do campo magnético e índice geomagnético Dst.

Instantes após a ICME atingir o satélite, alcança a Terra, causando uma Tempestade Geomagnética intensa, com máximo valor de Dst de -271 nT. Dados do DMM-P são apresentados na Figura 35. Na mesma Figura estão marcadas as linhas vermelhas indicando a passagem da ICME pelo satélite ACE. De cima para baixo na Figura 35 são apresentadas as contagens da variação percentual de muons na direção vertical, norte e sul. É possível perceber um decréscimo da contagem de muons de aproximadamente 4%. Os gráficos são de variação percentual, pois é possível ver mais

claramente os decréscimos e acréscimos na contagem de muons. Os decréscimos perceptíveis na Figura 35, depois das duas linhas vermelhas, são em todas as direções, caracterizando um decréscimo isotrópico, ou seja, em todas as direções, embora as outras direções do DMM-P não sejam mostradas.

Figura 35 – De cima para baixo as contagens da variação percentual de muons na direção vertical, norte e sul.

O decréscimo isotrópico, chamado decréscimo de *Forbush*, acontece devido à rarefação de raios cósmicos no *downstream* do choque (ou atrás do choque) causado pela ICME (Munakata, 2000). Com uma Tabela de ocorrências de nuvens magnéticas já registradas pela NASA estimados por campos magnéticos modelos (Lepping et al., 1990) foi possível confirmar que a ICME, cujos dados são apresentadas na Figuras 33, é uma nuvem magnética, com inicio dia 12 de abril às 7,9 horas e final às 17,9 horas, com qualidade nível 2, ou seja, qualidade boa. Se a qualidade fosse 1, significaria qualidade excelente de ser uma nuvem magnética.

Os decréscimos mostrados na análise feita para o DMM-P sugere que se a resolução temporal de muons fosse de um tempo menor, seria possível melhorar a identificação de acréscimos e decréscimos de muons, diminuindo também os erros experimentais. A Tabela 15 nos mostra a direção dos detectores com o ângulo em

relação a vertical, combinação dos detectores que formam a direção, contagem horária, erros na contagem e rigidez de corte geomagnética. Os erros experimentais devem ser bem menores que a variação percentual da contagem de muons. Os valores correspondentes na Tabela 15 são dos dados do dia 11 de abril de 2001.

Direção dos	Combinação	Contagem Horária	Erro de	P _m (GV)
detectors	de detectors	(fator 10^4)	contagem(%)	
Vertical (V)	U1-L1 U2-L2	39.4	0.16	53
	U3-L3 U4-L4			
30° Norte (N)	U1-L3 U2-L4	11.3	0.30	58
30° Sul (S)	U4-L2 U3-L1	11.4	0.30	57
30° Leste (E)	U2-L1 U4-L3	11.0	0.30	59
30° Oeste (W)	U1-L2 U3-L4	11.5	0.30	56
39° Nordeste	U2-U3	4.7	0.46	64
(NE)				
39° Noroeste	U1-U4	5.4	0.43	61
(NW)				
39° Sudeste (SE)	U4-L1	5.3	0.43	63
39° Sudoeste	U3-L2	5.5	0.43	60
(SW)				

Tabela 4 – Resultados de contagem, erro de contagem do DMM-P no dia 11de abril de 2001.

4.2. Análise de dados do DMM-E

Em termos de recursos, o DMM-E têm vantagens sobre o DMM-P no número de canais direcionais e resolução temporal de dados. Enquanto que o DMM-P apresentava 9 direções principais, o detector expandido apresenta 13 direções principais e 119 canais direcionais. Além de fornecer dados de resolução temporal de um minuto tem-se armazenado dados com resolução de 10 minutos. Outra vantagem é que a expansão preencheu a falha existente na Figura 24 (bolinhas fechadas).

Os dados de campo e plasma, de Dst e muons do DMM-E analisado foi do período de 19 a 21 de novembro de 2007.

A Figura 36 mostra dados de densidade, temperatura, velocidade do vento solar, modulo do campo magnético, componente z do campo magnético, índice geomagnético Dst, contagem de muons na direção vertical, norte e sul. Os valores de plasma e de campo são alterados abruptamente na presença da ICME. O valor do índice Dst chega a -63nT, definindo uma tempestade moderada. Mesmo sendo uma tempestade moderada, há queda na intensidade de muons que fica na faixa de aproximadamente 1,5%.

A ICME é classificada como uma nuvem magnética que teve início 19 de novembro de 2007 às 23,4 horas e final em 20 de novembro de 2007 às 12,9 horas.

Figura 36 – Tempestade moderada ocorrida em novembro de 2007. De cima para baixo densidade, temperatura, velocidade do vento solar, módulo do campo magnético, componente z do campo magnético, índice geomagnético Dst, contagem de muons na direção vertical, norte e sul.

Na Figura 37 são apresentados gráficos de outras direções do DMM-E. De cima para baixo contagem de muons na direção leste (E), oeste (W), nordeste (NE), noroeste (NW), sudeste (SE), sudoeste (SW), norte 2 (N2), sul 2 (S2) e leste 2 (E2). É possível visualizar o decréscimo de muons em todas as componentes, caracterizando o decréscimo de *Forbush*.

Figura 37 – De cima para baixo contagem de muons na direção leste, oeste, nordeste, noroeste, sudoeste, norte 2, sul 2 e leste 2.

Foi analisado o período de 297 a 301 de 2011, correspondente aos dias 24 a 28 de outubro do mesmo ano. A Figura 38 mostra um painel de gráficos, listando de cima para baixo, a densidade, a temperatura, a velocidade do vento solar, o módulo do campo magnético e a componente Bz do campo magnético (todos no sistema de coordenadas GSM). Observa-se ainda a variação percentual de muons e o índice DST no painel.

Figura 38: Painel com os gráficos do meio interplanetário de Outubro de 2011.

No gráfico, observa-se o choque, que ocorre no final do dia 24 de outubro, causando um aumento nos parâmetros de plasma interplanetário. A velocidade do vento solar passa de 350 Km/s para 500 Km/s, mantendo-se elevada por um longo período de tempo.

A coordenada Bz do campo magnético sofre uma rotação variando de aproximadamente 15 nT a -15nT, característica de uma subsequente reconexão magnética. Há ainda uma leve queda no valor dos muons, no dia seguinte ao choque interplanetário.

É possível observar que a densidade aumenta na região do choque, o que indica uma compressão do plasma pela onda de choque da estrutura.

A nuvem magnética causou uma tempestade geomagnética intensa, com pico de índice DST = -137 nT, no dia 25 de outubro (FONTE: <u>http://wdc.kugi.kyoto-u.ac.jp/dst_realtime/201110/index.html</u>).

A Figura 39 referente ao período correspondente aos dias 14 a 18 de julho de 2012, mostra um painel de gráficos realizados, listando de cima para baixo, a densidade, a temperatura, a velocidade do vento solar, o módulo do campo magnético e a componente Bz do campo magnético (todos no sistema de coordenadas GSM). Observa-se ainda a intensidade de muons e o índice DST.

Figura 39: Painel mostrando os gráficos do meio interplanetário de julho de 2012.

No gráfico observa-se os parâmetros de plasma do meio interplanetário com um padrão calmo, até cerca de 12 horas do dia 14 de julho. Em seguida houve uma abrupta elevação em todos os parâmetros, o que é característica da zona conhecida como bainha de plasma. Na bainha de plasma ocorre uma compressão de plasma, causada pelo choque da estrutura e sua velocidade maior que a do meio.

O módulo do campo magnético atinge cerca de 30 nT, observando-se ainda uma oscilação da coordenada Bz do campo magnético. A intensidade de muons cai suavemente após o choque da estrutura.

No gráfico, percebe-se que a velocidade do vento solar passa de aproximadamente 360 Km/s para 700 Km/s. A densidade aumenta na região de choque da estrutura, reafirmando que houve uma compressão de plasma na estrutura.

Em decorrência da passagem da estrutura, ocorreu uma variação no índice DST, chegando a DST = -133 nT, no dia 15 de julho, sendo classificada como intensa. (FONTE: <u>http://wdc.kugi.kyoto-u.ac.jp/dst_realtime/201207/index.html</u>).

Após ter analisado os dados de DMM-E, é importante voltarmos para a análise dos erros experimentais atribuídos ao DMM-E comparando-os com os erros experimentais do DMM-P.

O período de análise de erros foi escolhido sendo o dia 08 de outubro de 2008 e 07 de janeiro de 2009. Estas datas foram escolhidas porque em dezembro de 2008 foi recebida a visita do Prof. K. Munakata juntamente com Marlos Rockenbach da Silva. Eles substituíram os potenciômetros que regulavam a tensão de contagem de muons do DMM-E, ao qual era uma fonte de erro na contagem de muons, pois o tempo de uso dos potenciômetros pode fazer os mesmos se tornarem instáveis quanto a regulagem de tensão.

Os erros das contagens para o período de um dia, 08 de outubro de 2008, antes da substituição, são mostrados na Tabela 16.

Detector	Número de	Contagem horária	Erro de
direcional	pares de	$(fator 10^6)$	contagem(%)
	detectores		
Vertical (V)	28	2.50	0.06
30° Norte (N)	21	1.01	0.10
30° Sul (S)	21	1.04	0.10
30° Leste (E)	24	1.16	0.10
30° Oeste (W)	24	1.18	0.09
39° Nordeste	18	0.5	0.14
(NE)			
39° Noroeste	18	0.51	0.14
(NW)			
39° Sudeste (SE)	18	0.52	0.14
39° Sudoeste	18	0.52	0.14

(SW)			
49° Norte 2 (N2)	14	0.33	0.17
49° Sul 2 (S2)	14	0.35	0.17
49° Leste 2 (E2)	20	0.45	0.15
49° Oeste (W2)	20	0.46	0.15

Tabela 5 – Erros na contagem de para o dia 08 de outubro de 2008.

Apresenta-se abaixo, na Tabela 17, o erro para os dados de 07 de janeiro de 2009. Pode-se perceber que o erro na contagem não varia muito se comparado com o período de 2006, após a substituição dos potenciômetros.

Detector	Número de	Contagem horária	Erro de
direcional	pares de	(fator 10^6)	contagem(%)
	detectores		
Vertical (V)	28	2.70	0.06
30° Norte (N)	21	1.07	0.97
30° Sul (S)	21	1.11	0.95
30° Leste (E)	24	1.24	0.09
30° Oeste (W)	24	1.25	0.09
39° Nordeste	18	0.54	0.14
(NE)			
39° Noroeste	18	0.55	0.13
(NW)			
39° Sudeste (SE)	18	0.56	0.13
39° Sudoeste	18	0.56	0.13
(SW)			
49° Norte 2 (N2)	14	0.36	0.17
49° Sul 2 (S2)	14	0.38	0.16
49° Leste 2 (E2)	20	0.48	0.14
49° Oeste 2 (W2)	20	0.49	0.14

Tabela 6 – Análise de erros para o dia 7 de janeiro de 2009.

Assim, se compararmos os erros experimentais do DMM-P e DMM-E, houve redução de erros de 0,16 a 0,06 % para a direção vertical e uma média de 0,35 em outras direções.

Com a nova expansão espera-se que possa reduzir ainda mais os erros nas contagens de muons devido ao aumento do número de canais direcionais do DMM a fim de proporcionar uma qualidade ainda melhor de dados para as suas devidas análises.

Centro Regional Sul de Pesquisas Espaciais – CRS/CCR/INPE – MCTI Relatório Final de Atividades 2013

5. CONCLUSÕES FINAIS

No Relatório demonstro as atividades desenvolvidas no Projeto "AMPLIAÇÃO DO PROTÓTIPO DE TELESCÓPIO MULTIDIRECIONAL DE RAIOS CÓSMICOS DE ALTA ENERGIA – MUONS: PARTICIPAÇÃO DO DESENVOLVIMENTO TÉCNICO E DE ENGENHARIA, E ANÁLISE PRELIMINAR DOS DADOS." que desenvolvi no período de Agosto de 2012 a Julho de 2013, no Laboratório de Clima Espacial do Centro Regional Sul de Pesquisas Espaciais – LCETM/CRS/CCR/INPE – MCTI, em Santa Maria, RS.

No Relatório Final do Projeto de Iniciação Científica, realizo no Capítulo 1 considerações a respeito do que é Clima Espacial, alguns objetivos e fenômenos percebidos. Clima Espacial é a terminologia usada para definir os fenômenos físicos provenientes da interação Sol-Terra. Graças a variabilidade solar vários fenômenos na Terra são induzidos. Devido à grande utilização de instrumentos tecnológicos, tais como satélites, é preciso manter os mesmos em funcionamento constante, porém, os artefatos em órbita são afetados pelo Clima Espacial. Os danos nos sistemas tecnológicos estão diretamente relacionados com a variabilidade solar de 11 anos. Viu-se que há uma grande perda de dados nos satélites na região do Anomalia Magnética do Atlântico Sul, por causa da precipitação de partículas energéticas emitidas pelas Ejeções de Massa Coronais e "*flares*".

No Capítulo 2 apresento modelos teóricos que auxiliam a construir o conhecimento sobre a interação Sol-Terra. O ciclo solar exibe alta atividade solar no máximo solar, quando há maiores ocorrências de CMEs, aumentando as chances de causar tempestades magnéticas na Terra, ou seja, evento de grande perturbação do campo magnético terrestre. A perturbação magnética pode ser medida através do Índice Dst, e quanto mais negativo os valores de Dst mais intensa é a tempestade. A injeção de partículas da ICME na magnetosfera da Terra ocasiona um enfraquecimento no campo magnético terrestre devido à intensificação da corrente de anel na alta atmosfera da Terra, que induz um campo magnético contrário ao da Terra. Acredita-se que o processo responsável pelas tempestades é o de reconexão de campos.

Centro Regional Sul de Pesquisas Espaciais – CRS/CCR/INPE – MCTI Relatório Final de Atividades 2013

As estruturas que se propagam no meio interplanetário, as ICME, são acompanhadas por choques, isto é, a velocidade da ICME é maior que a velocidade magnetossônica. As regiões do choque causam decréscimos na densidade de raios cósmicos atrás do choque (*Downstream*) e na frente de choque (*Upstream*).

No Capítulo 3 descrevo a metodologia usada para análise de dados prevista no projeto de pesquisa. Dados de plasma e de campo são obtidos pelo Satélite ACE da NASA, localizado na região de Lagrange L1. O Detector Multidirecional de Muons protótipo (DMM-P) foi instalado em 2001 no Observatório Espacial do Sul -OES/CRS/CCR/INPE - MCTI (29.4°S, 53.8° W, 480 m acima do nível do mar), em São Martinho da Serra, Brasil, RS. O DMM-P era formado por duas camadas de 4 detectores com resolução temporal de uma hora. O protótipo foi expandido em 2005 integrando a rede mundial de detectores de muons GMDN (Grouns Muon Detector Network), que além de cobrir a falha existente aumentou a área de detecção da região do céu. O DMM-E era formado por 56 detectores e resolução temporal de um minuto e dez minutos. Os erros experimentais foram reduzidos, como visto nas Tabelas 16 e 17. A expansão do DMM-P permitiu a observação de raios cósmicos de maior energia, porque as novas direções de observação tem maiores inclinações com relação à vertical. O sistema do DMM-E aumentou o número de direções principais de observação de 09 para 13, com possível aumento de direções para 17, pois o sistema ainda não está completamente integrado. O DMM foi novamente expandido entre julho e agosto de 2012 contendo agora 64 detectores. Futuramente o DMM-E será expandido para 72 detectores, 36 detectores na camada de cima e 36 na camada de baixo. O DMM-P e DMM-E detectam as partículas, muons, usando um sistema que correlaciona dois pulsos vindos de quaisquer combinações entre dois detectores. As partículas não são detectadas se a camada de chumbo entre quaisquer dois detectores blindar partículas de menor energia de aproximadamente 50 GeV ou se o ângulo de incidência da partícula for maior que 49°, para o protótipo, ou 75° para o expandido em relação à vertical.

As análises de dados do DMM-E e DMM-P foram apresentados no Capítulo 4. Os dados de muons apresentaram resposta a tempestades geomagnéticas na forma de decréscimo na contagem de muons em todas as direções. O decréscimo isotrópico é chamado de decréscimo de *Forbush*, e deve-se ao fato de a ICME blindar a passagem dos raios cósmicos atrás do choque.

Detectores de partículas de alta energia terrestres são ferramentas úteis para estudo de modulação de raios cósmicos e previsão de tempestades geomagnéticas intensas.

Conclui-se que os dados do DMM-E devem ser continuamente acompanhados e analisados visto que a manutenção do banco dados contribuem para o bom funcionamento próprio detector.

6. REFERÊNCIAS BIBLIOGRÁFICAS

BRAGA, Carlos Roberto. Instruções para Coleta e Utilização de Dados do Telescópio Cintilador Detector de Muons (TCM) do OES, Abril de 2007.

BRANT, J. Introduction to the solar wind. San Francisco (1970).

BURLAGA, L.F Interplanetary Magnetohydrodynamics, New York: oxford University Press, 1995, 256p.

CANE, H. V., CMEs and Forbush Decreases, Space Science Ver., 10, 41-62, 2000.

DAL LAGO, A. **Estudo das estruturas geoefetivas no meio interplanetário e de suas causas solares**. Tese (Doutorado em Geofísica Espacial) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos (2004).

______. **Estudo de Nuvens Magnéticas Geoefetivas no meio interplanetário.** São José dos Campos. 122p. (INPE – 7263 – TDI/705). Dissertação (Mestrado em Geofísica Espacial) – Instituto Nacional de Pesquisas Espaciais, 1999.

DRYER, M. Coronal transient phenomena. Space Sci. Rev. v.33, p.233-275, 1982.

DRYER, M.; Wu, S. T. Comments on "density distribution in looplike coronal transients: a comparison of observations and a theoretical model" by D. G. Sime, **R. M. MacQueen, and A. J. Hanhausen**. J. Geophys. Res. v.90, n.A1, p.559-561, 1985.

E. Echer, W. D. Gonzalez, F. L. Guarnieri, A. Dal Lago, L. E. A. Vieira, **Introduction to Space Weathe**. Advances in Space Research , Volume 35, Issue 5, p. 855-865.

FOX, N. J., M. PEREDO, and B. J. Thompson, Cradle to grave tracking of the January 6–11, 1997 Sun-Earth connection event, *Geophys. Res. Lett.*, 25, 2461–2464, 1998.

GEOPHYSICAL RESEARCH LETTERS, V. 32, L03S04, doi:10.1029/2004GL021469, 2005.

GONZALEZ, W. D.; Joselyn, J. A.; Kamide, Y.; Kroehl, H. W.; Rostoker, G.; Tsurutani, B. T.; e Vasyliunas, V. M. What is a magnetic storm?. J. Geophys. Res., v.99, n.A4, p.5771-5792, Apr. 1994.

GOSLING, J. T.; Hildner, E.; Macqueen, R. M.; Munro, R. H.; Poland, A. I.; Ross, C. L. **Direct observations of a flare related coronal and solar-wind disturbance**. Solar Phys. v.40, n.2, p.439-448, 1975.

GOSLING, J. T. Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Russel, C. T. Priest, E. N., Lee, L. C. ed. Physics of magnetic flux ropes, Washington, DC: AGU, 1990. v.58, p.343-364.

HOWARD, R. A., et al. **Observations of CME from SOHO/LASCO**. In: Crooker, N.; Joselyn J. A.; Feynman, J. ed. Coronal mass ejections. Washington, DC: AGU, 1997. v. 99, p.17-26.

Illing, R. M.; Hundhausen, A. J. **Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection**. J. Geophys. Res. v.91, n.A10, p.10951-10960, 1986.

Jokipii, J. R., and B. T. Thomas, Effects of drift on the transport of cosmic rays, 5, Modulation by a wavy interplanetary current sheet, *Astrophys.*, *J.*, *243*, 1115, 1981.

Centro Regional Sul de Pesquisas Espaciais – CRS/CCR/INPE – MCTI Relatório Final de Atividades 2013

Kamide, Y.; Yokoyama, N.; Gonzalez, W. D.; Tsurutani, B. T.; Daglis, I. A.; Brekke, A.; Masuda, S. **Two-step depelopment of geomagnetic storms**. J. Geophys. Res., v. 103, A4, 6917-6921 (1998).

KIVELSON, Margaret G; CHRISTOPHER, T.Russell. Introduction to space physics, Cambridge , 1995.

Low, B. C. Solar activity and the corona. Solar Phys. v.167, p.217-265, 1996.

LUCAS, Aline de. Estudo da Dinâmica da Corrente de Anel Durante a Fase Principal de Supertempestades Magnéticas. Dissertação de Mestrado do Curso de Pós-Graduação em Geofísica Espacial, aprovada em 31 de maio de 2005.

Petry, a. Banco de dados para o telescópio cintilador de muons instalado no observatório espacial do sul, santa maria (inpe-00000-man/0000), 2009.

K. Munakata, T. Kuwabara, S. Yasue, C. Kato, S. Akahane, M. Koyama, Y. Ohashi, A. Okada, T. Aoki, K. Mitsui, H. Kojima, and J. W. Bieber, A "loss cone" precursor of an approaching shock observed by a cosmic ray muon hodoscope on October 28, 2003,

Munakata, K.; Bieber, J.; Yasue, S.; Kato, C.; Koyama, M.; Akahane, S.; Fujimoto, K.; Fujii, Z.; Humble, J.; Duldig, M. **Precursors of Geomagnetic Storms Observed by the Muon Detector Network**. Journal of Geophysical Research, v. 105, A12,27.457-27.468, 2000.

MURSULA, K.; USOSKIN, I. Heliospheric Physics ans Cosmic Rays, lectures fall 2003.

Munakata, K.; Bieber, J.; Hattori, T.; Inoue, K.; Yasue, S.; Kato, C.; Koyama, M.; Fujii, Z.; Fujimoto, K.; Duldig, M.; Humble, J.; Trivedi, N.; Gonzalez, W.; Da Silva, M.; Tsurutani, B.; Schuch, N. A Prototype Muon Detector Network Covering a Full Range of Cosmic Ray Pitch Angles. Proceedings of ICRC 2001 (2001).

NEUGEBAUER, M.; e GOLDSTEIN, R.. Particle and field signatures of coronal mass ejections in the solar wind. In: Crooker, N.; Joselyn J. A.; Feynman, J. ed. Coronal mass ejections, Washington, DC: AGU, 1997. v. 99, p.245-251.

NEUGEBAUER M., P. C. Liewer, B. E. Goldstein, X Zhou, and J. T. Steinberg (2004), Solar Wind stream interaction regions without sectors boundaries, J. Geophys. Res., 109, A10102, 2004.

PARKER, E. N. The stellasr-wind regions. Astrophys. J., v.134, p.20-27, Feb. 1961.

PETRY, a. **Banco de dados para o telescópio cintilador de muons instalado no observatório espacial do sul**, santa maria (inpe-00000-man/0000), 2009.

RICHARDSON, I. G. (2004), Energetic Particles and Corotating Interaction Regions in the Solar Wind, Space. Sci. Rev., 111, 267-376.

ROCKENBACK, M. R. Variação da intensidade dos Raios Cósmicos em Resposta a Diferentes Estruturas Magnéticas do Meio Interplanetário. Dissetação de Mestrado em Geofísica Espacial, INPE-15242-TDI/1329, 2008.

______. Detecção de Distúrbios Solar-Interplanetários Combinando Observações de Satélites e de Raios Cósmicos de Superfície para Aplicação em Clima Espacial, Tese de Doutorado em Geofísica Espacial, 2010.

RUFFOLO, D.; BIEBER, J.; EVENSON, P.; PYLE, R. **Precursors to forbush** decrease and space weather prediction. In: Proc. Int. Cosmic Ray Conf. 26th. [S.l.: s.n.], 1999.

SILVA, M. R. da, Contreira, D. B., Monteiro, S., Trivedi, N. B., Munakata, K., Kuwabara, T., Schuch, N. J. Cosmic Ray muon observation at Southern Space Observatory - SSO (29°S, 53°W). Astrophysics and Space Science 290, 389-397 (2004).

______. Variação da Intensidade dos Raios Cósmicos em Resposta a Diferentes Estruturas Magnéticas do Meio Interplanetário. Dissertação (Mestrado em Geofísica Espacial) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, São Paulo (2005).

SMITH, E. J., B. T. Tsurutani, and R. L. Rosenberg, **Observations of the** interplanetary sector structure up to heliographic latitudes of 16°: Pioneer 11, *J. Geophys. Res.*, 83, 717, 1978.

Yoshitaka Okazaki. Three dimensional anisotropy and density gradient of galactic Cosmic rays measured by global muon detector network. Tohoku University.Departmentof Geophysics. March2008.

7. PUBLICAÇÕES

Até a presente data o aluno submeteu e apresentou em eventos científicos, como autor, o trabalho científico:

1 - BRUNO KNEVITZ HAMMERSCHMITT; Alisson Dal Lago; Nelson Jorge Schuch; Roger Hatwig de Lima. Ampliação do Protótipo de Telescópio Multidirecional de Raios Cósmicos de Alta Energia Muons: Participação do Desenvolvimento Técnico e de Engenharia, e Análise Preliminar dos Dados - SICCRS 2011.

2 - BRUNO KNEVITZ HAMMERSCHMITT; Alisson Dal Lago; Nelson Jorge Schuch; Tiago Bremm; Vinícius Deggeroni. **Ampliação do Protótipo de Telescópio Multidirecional de Raios Cósmicos de Alta Energia Muons: Participação do Desenvolvimento Técnico e de Engenharia, e Análise Preliminar dos Dados -SICCRS 2012.**

3 - HAMMERSCHMITT, B. K. ; LAGO, A. D. ; SCHUCH, N. J. ; DE SOUZA, M. R. ; BREMM, T. . **Modulação de Raios Cósmicos Causada Por Transientes Solares**. In: IV Simpósio Brasileiro de Geofísica Espacial e Aeronomia, 2012, São Paulo. SBGEA-2012.

4 - BRUNO KNEVITZ HAMMERSCHMITT; Alisson Dal Lago; Nelson Jorge Schuch; Tiago Bremm; Vinícius Deggeroni; Cassiano Vasconcelos. **Ampliação do Protótipo de Telescópio Multidirecional de Raios Cósmicos de Alta Energia Muons:** Participação do Desenvolvimento Técnico e de Engenharia, e Análise Preliminar dos Dados - SICCRS 2013.