

VARIAÇÃO COM O CICLO SOLAR DAS PULSAÇÕES GEOMAGNÉTICAS DE PERÍODOS LONGOS (1,0 – 10 mHz) NA REGIÃO DA ANOMALIA MAGNÉTICA DO ATLÂNTICO SUL AMAS

RELATÓRIO FINAL DE ATIVIDADES DE INICIAÇÃO CIENTÍFICA (PIBIC/INPE – CNPq/MCT)

PROCESSO Nº. 111288/2009-6

Willian Rigon Silva - Bolsista PIBIC/INPE – CNPq/MCT Laboratório de Física Solar do Meio Interplanetário e Magnetosferas LFSMIM/CRS/CCR/INPE – MCT Centro Regional Sul de Pesquisas Espaciais CRS/CCR/INPE – MCT E-mail: <u>Willian.sky88@gmail.com</u>

> Dr. Severino Luiz Guimarães Dutra - Orientador Divisão de Geofísica Espacial DGE/CEA/INPE – MCT Instituto Nacional de Pesquisas Espaciais INPE - MCT E-mail: dutra@dge.inpe.br

> > Santa Maria, Julho de 2010

RELATÓRIO FINAL DE INICIAÇÃO CIENTÍFICA DO PROGRAMA: PIBIC/INPE - CNPq/MCT

PROJETO

VARIAÇÃO COM O CICLO SOLAR DAS PULSAÇÕES GEOMAGNÉTICAS DE PERÍODOS LONGOS (1,0 – 10 mHz) NA REGIÃO DA ANOMALIA MAGNÉTICA DO ATLÂNTICO SUL AMAS

PROCESSO: 111288/2009-6

Relatório elaborado por WILLIAN RIGON SILVA relatando as atividades executadas por:

Willian Rigon Silva - Bolsista PIBIC/INPE – CNPq/MCT E-mail: <u>Willian.sky88@gmail.com</u>

> Dr. Severino Luiz Guimarães Dutra - Orientador Divisão de Geofísica Espacial – DGE/CEA/INPE – MCT E-mail: <u>dutra@dge.inpe.br</u>

Dr. Nelson Jorge Schuch - Co-Orientador Centro Regional Sul de Pesquisas Espaciais – CRS/CCR/INPE – MCT E-mail: <u>njschuch@lacesm.ufsm.br</u>

Dr. Nalin Babulal Trivedi – Co-Orientador Divisão de Geofísica Espacial – DGE/CEA/INPE – MCT E-mail: trivedi@dge.inpe.br

DADOS DE IDENTIFICAÇÃO:

Bolsista:

Willian Rigon Silva

Curso de Física – Bacharelado Centro de Ciências Naturais e Exatas Universidade Federal de Santa Maria – UFSM

Processo:

N ° 111288/2009-6

Orientador:

Dr. Severino Luiz Guimarães Dutra

Divisão de Geofísica Espacial - DGE/CEA/INPE - MCT

Co-Orientadores:

Dr. Nelson Jorge Schuch

Centro Regional Sul de Pesquisas Espaciais - CRS/CCR/INPE - MCT

Dr. Nalin B.Trivedi

Divisão de Geofísica Espacial - DGE/CEA/INPE - MCT

Colaboradores:

Fernando de Souza Savian

Acadêmico do Curso de Engenharia Elétrica - UFSM

Andirlei Claudir da Silva

Acadêmico do Curso de Física – UFSM

Local de Trabalho/Execução do projeto:

Laboratório de Física Solar do Meio Interplanetário e Magnetosferas -

LFSMIM/CRS/INPE – MCT, em Santa Maria, RS.

Observatório Espacial do Sul - OES/CRS/INPE – MCT, em São Martinho da Serra, RS.

Trabalho desenvolvido no âmbito da parceria INPE/MCT - UFSM, através do Laboratório de Ciências Espaciais de Santa Maria - LACESM/CT - UFSM.

	litetório dos Crupo	s de Pesquisa no E	Brasti
Clima Espaci Interaç	Grupo de Pesquisa al, Magnetosferas, ções Terra - Sol, Na	Geomagnetismo: noSatC-Br	Certificado pela instituição
Identificação	Recursos Humanos	Linhas de Pesquisa	Indicadores do Grupo
Identificação			
Dados básicos			
Nome do grupo: Clima Esp Status do grupo: certificad Ano de formação: 1996 Data da última atualização Líder(es) do grupo: Nelso	oacial, Magnetosferas, Geom do pela instituição o: 29/05/2010 18:15 n Jorge Schuch	agnetismo: Interações Terra	- Sol, NanoSatC-Br
	ael Rodrigues Gomes	A	
Area predominante: Cienc	las Exatas e da Terra; Geoci-	encias INDE	
Órgão: Coordenação de Ge	estão Científica - CIE	Unidade: Centro Regional S - CRS	Sul de Pesquisas Espaciais
Endereço			
Logradouro: Caixa Postal &	5021		
Bairro: Camobi		CEP: 97110970	
Cidade: Santa Maria		UF: RS	
Telefone: 33012026		Fax: 33012030	
		Home page: http://	
Repercussões dos trabal	hos do grupo	~	

CLIMA ESPACIAL, MAGNETOSFERAS, GEOMAGNETISMO:INTERAÇÃO TERRA-SOL do Centro O Grupo -Regional Sul de Pesquisas Espaciais - CRS/INPE-MCT, em Santa Maria, e Observatório Espacial do Sul -OES/CRS/INPE - MCT, Lat. 29º26 24"S, Long. 53º48 38"W, Alt. 488m, em São Martinho da Serra, RS, criado por Nelson Jorge Schuch em 1996, colabora com pesquisadores da: UFSM (CT-LACESM), INPE, CRAAM-Universidade P. Mackenzie, IAG/USP, OV/ON, DPD/UNIVAP e SEFET/GO, no Brasil e internacionais do: Japão (Universidades: Shinshu, Nagoya, Kyushu, Takushoku e National Institute of Polar Research), EUA ((Bartol Research Institute/University of Delaware e NASA (Jet Propulsion Laboratory e Goddard Space Flight Center)), Alemanha (University of Greifswald e Max Planck Institute for Solar System Research), Australia (Australian Government Antarctic Division e University of Tasmania), Armênia (Alikhanyan Physics Institute) e Kuwait (Kuwait University), Linhas de Pesquisas: MEIO INTERPLANETÁRIO - CLIMA ESPACIAL, MAGNETOSFERAS $\hat{\mathsf{x}}$ GEOMAGNETIŚMO, AERONOMÍA - IONOSFERAS x AEROLUMINESCÊNCIA, NANOSATC-BR. Áreas de interesse: Heliosfera, Física Solar, Meio Interplanetário, Clima Espacial, Magnetosferas, Geomagnetismo, Aeronomia, Ionosferas, Aeroluminescência, Raios Cósmicos, Muons, Pequenos Satélites Científicos. Objetivos: Pesquisar o acoplamento energético na Heliosfera, mecanismos de geração de energia no Sol, Vento Solar, sua propagação no Meio Interplanetário, acoplamento com as magnetosferas planetárias, no Geoespaço com a lonosfera e a Atmosfera Superior, previsão de ocorrência de tempestades magnéticas e das intensas correntes induzidas na superfície da Terra, Eletricidade Atmosferica e seus Eventos Luminosos Transientes (TLEs). As Pesquisas base de dados de sondas no Espaco Interplanetário e dentro de magnetosferas planetárias, e de modelos computacionais físicos e estatísticos. Vice-Líderes: Alisson Dal Lago, Nalin Babulau Trivedi, Otávio Santos Cupertino Durão, Natanael Rodrigues Gomes.

Recursos humanos		
Pesquisadores		Total: 46
Ademar Michels	Jean Pierre Raulin	
Alan Prestes	<u>Joao Paulo Minussi</u>	
Alicia Luisa Clúa de Gonzalez	Jose Humberto Andrade So	bral
Alisson Dal Lago	Juliano Moro	
Antonio Claret Palerosi	Lucas Ramos Vieira	
Barclay Robert Clemesha	Mangalathayil Ali Abdu	
Caitano Luiz da Silva	Marcelo Barcellos da Rosa	
Carlos Roberto Braga	Marco Ivan Rodrigues Samp	<u>paio</u>
Cassio Espindola Antunes	Marcos Vinicius Dias Silveir	<u>a</u>
Clezio Marcos De Nardin	Nalin Babulal Trivedi	
Cristiano Max Wrasse	Natanael Rodrigues Gomes	
Cristiano Sarzi Machado	Nelson Jorge Schuch	
Delano Gobbi	Nivaor Rodolfo Rigozo	
Eurico Rodrigues de Paula	Odim Mendes Junior	
Ezequiel Echer	Osmar Pinto Junior	
Fabiano Luis de Sousa	Otavio Santos Cupertino Du	<u>irão</u>
Fábio Augusto Vargas dos Santos	Pawel Rozenfeld	
Fernanda de São Sabbas Tavares	Petrônio Noronha de Souza	
Fernando Luís Guarnieri	Polinaya Muralikrishna	
Gelson Lauro Dal' Forno	Rafael Lopes Costa	
<u>Hisao Takahashi</u>	Rajaram Purushottam Kane	
Ijar Milagre da Fonseca	Severino Luiz Guimaraes Dutra	
Jean Carlo Santos	Walter Demetrio Gonzalez A	Alarcon
Estudantes		Total: 22
Carlos Pinto da Silva Neto	Igor Freitas Fagundes	
Cássio Rodinei dos Santos	Lucas Antunes Tambara	
Claudio Machado Paulo	Lucas Lopes Costa	
Dimas Irion Alves	Lucas Lourencena Caldas F	ranke
Edson Rodrigo Thomas	Luciano Homercher Dalsass	<u>30</u>
Eduardo Escobar Bürger	Nikolas Kemmerich	
Eduardo Weide Luiz	Rubens Zolar Gehlen Bohre	<u>er</u>
Felipe Cipriani Luzzi	Tardelli Ronan Coelho Stek	<u>el</u>
Fernando de Souza Savian	Thalis José Girardi	
Guilherme Grams	William do Nascimento Gua	<u>reschi</u>
Guilherme Simon da Rosa	Willian Rigon Silva	
Técnicos		Total: 2

Fernando Sobroza Pedroso - Graduação - \Outra Função Henrique Sobroza Pedroso - Graduação - Analista de Sistemas

Linhas de pesquisa

- <u>AERONOMIA IONOSFERAS x AEROLUMINESCÊNCIA</u>
- Desenvolvimento de CubeSats NANOSATC-BR
- MAGNETOSFERAS x GEOMAGNETISMO

Total: 4

• MEIO INTERPLANETÁRIO - CLIMA ESPACIAL

Relações com o setor produtivo	Total: 0

Indicadores de recursos humanos do grupo	
Integrantes do grupo	Total
Pesquisador(es)	46
Estudante(s)	22
Técnico(s)	2

Linha de Pesquisa Desenvolvimento de CubeSats - NANOSATC-BR

Linha de pesquisa

Desenvolvimento de CubeSats - NANOSATC-BR

Nome do grupo: Clima Espacial, Magnetosferas, Geomagnetismo: Interações Terra - Sol, NanoSatC-Br

Palavras-chave: CubeSats; Desenvolvimento de Engenharias - Tecnologias; Miniaturização; Nanosatélites; Nanotecnologia; Pesquisa do Geoespaço;

Pesquisadores:

Ademar Michels Alicia Luisa Clúa de Gonzalez Alisson Dal Lago Antonio Claret Palerosi Cassio Espindola Antunes Clezio Marcos De Nardin Cristiano Sarzi Machado **Ezequiel Echer** Fabiano Luis de Sousa Fernando Luís Guarnieri Ijar Milagre da Fonseca Jean Pierre Raulin Jose Humberto Andrade Sobral Lucas Ramos Vieira Nalin Babulal Trivedi Natanael Rodrigues Gomes Nelson Jorge Schuch Nivaor Rodolfo Rigozo Odim Mendes Junior Otavio Santos Cupertino Durão Pawel Rozenfeld Petrônio Noronha de Souza Rafael Lopes Costa Severino Luiz Guimaraes Dutra Walter Demetrio Gonzalez Alarcon

Estudantes:

Dimas Irion Alves Eduardo Escobar Bürger Fernando de Souza Savian Guilherme Grams Guilherme Simon da Rosa Igor Freitas Fagundes Lucas Antunes Tambara Lucas Lopes Costa Lucas Lourencena Caldas Franke Nikolas Kemmerich Rubens Zolar Gehlen Bohrer Tardelli Ronan Coelho Stekel William do Nascimento Guareschi Willian Rigon Silva

Árvore do conhecimento:

Ciências Exatas e da Terra; Astronomia; Astrofísica do Sistema Solar; Ciências Exatas e da Terra; Geociências; Instrumentação Científica; Engenharias; Engenharia Aeroespacial; Engenharia Aeroespacial - Pequenos Satélites;

Setores de aplicação:

Aeronáutica e Espaço

Objetivo:

Pesquisas: Geoespaço e em Engenharias/Tecnologias: eletrônica, comunicações, mecânica, lançamento de pequenos satélites científico universitário - iniciação científica: CubeSat (100g-1Kg, 10x10x10cm), Nanosatélite (1Kg-10Kg); Carga útil: magnetômetro e detector de partículas; Desenvolvimentos: estrutura mecânica, computador-bordo, programas, estação terrena, testes/integração, sub-sistemas: potencia, propulsão, telemetria, controle: atitude, térmico, Vice-Líder: Otávio Santos Cupertino Durão

Linha de Pesquisa **MAGNETOSFERAS x GEOMAGNETISMO**

Linha de pesquisa

MAGNETOSFERAS x GEOMAGNETISMO

Nome do grupo: Clima Espacial, Magnetosferas, Geomagnetismo: Interações Terra - Sol, NanoSatC-Br

Palavras-chave: Anomalia Magnética do Atlântico Sul - AMAS; Desenvolvimento de Instrumentação Espacial; Eletricidade Atmosférica - Descargas Elétricas; Física Magnetosferas, Física Solar e Heliosférica; Geomagnetismo; Magnetômetros;

Pesquisadores:

Alisson Dal Lago Cassio Espindola Antunes Clezio Marcos De Nardin Gelson Lauro Dal' Forno Jean Carlo Santos Joao Paulo Minussi Mangalathayil Ali Abdu Nalin Babulal Trivedi Nivaor Rodolfo Rigozo Osmar Pinto Junior Pawel Rozenfeld Severino Luiz Guimaraes Dutra

Estudantes:

Claudio Machado Paulo **Dimas Irion Alves** Edson Rodrigo Thomas Fernando de Souza Savian Lucas Lourencena Caldas Franke Luciano Homercher Dalsasso Rubens Zolar Gehlen Bohrer Tardelli Ronan Coelho Stekel William do Nascimento Guareschi Willian Rigon Silva

Árvore do conhecimento:

Ciências Exatas e da Terra; Geociências; Geofísica; Geofísica Aplicada; Ciências Exatas e da Terra; Geociências; Geofisica Espacial; Ciências Exatas e da Terra; Geociências; Instrumentação Científica;

Setores de aplicação:

Produtos e Serviços Voltados Para A Defesa e Proteção do Meio Ambiente, Incluindo O Desenvolvimento Sustentado

Objetivo:

Pesquisas: acoplamento da Heliosfera, Meio Interplanetário e Magnetosferas Planetárias, com dados de sondas espaciais e nas magnetosferas; modelos físicos/estatísticos; variação secular do Campo Total-F, 22883 nT no OES, na razão -28 nT/ano; deslocamento para oeste da AMAS observado desde 1985, via Cooperação: UFSM-ON-INPE com o SERC/KU-Japão; pulsações contínuas e/ou impulsivas observadas na componente H amplificadas pela precipitação na região da AMAS. Vice-Líder: Nalin Babulau Trivedi.

Agradecimentos

Agradeço a todos os servidores do CRS/CCR/INPE-MCT e do LACESM/CT – UFSM que de várias maneiras contribuíram para oferecer ótimas condições de trabalho;

Ao Programa PIBIC/INPE – CNPq/MCT pela aprovação do Projeto de Pesquisa, proporcionando uma ótima experiência de trabalho e desenvolvimento pessoal; Ao Coordenador Dr. José Carlos Becceneri e a Sra. Egidia Inácio da Rosa, Secretária do Programa PIBIC/INPE – CNPq/MCT, pelo constante apoio, alertas e sua incansável preocupação com toda a burocracia e datas limites do Programa para com os bolsistas de I. C. & T do CRS/CCR/INPE - MCT.

Agradeço ao Dr. Nelson Jorge Schuch – CRS/CCR/INPE-MCT, meu coorientador, pela oportunidade de poder interagir com este Centro de Pesquisas e pela confiança em mim depositada. Ao Dr. Severino Luiz Guimarães Dutra – DGE/INPE-MCT, meu orientador de Projeto de Pesquisa, e ao Dr. Nalin Babulal Trivedi – DGE/INPE-MCT, meu co-orientador, pela atenção, sugestões e apoio técnico e científico

Agradeço em especial, aos meus grandes amigos e irmãos que a vida me permitiu escolher, Josemar de Siqueira, Andirlei Claudir da Silva, Fernando de Souza Savian, Níkolas Kemmerich, Maurício Souza, Thalis José Girardi e Cristiano Sarzi Machado; pela amizade, companheirismo e excepcional espírito de corpo, sempre estiveram dispostos para ajudar a qualquer momento, não medindo esforços para tornar o trabalho e o dia-a-dia cada vez mais entusiasmante e agradável.

ÍNDICE DE FIGURAS

FIGURA 1.1: O CENTRO REGIONAL SUL DE PESQUISAS ESPACIAIS – CRS/ INPE-MCT.	13
FIGURA 1.2: PRÉDIO PRINCIPAL DO OBSERVATÓRIO ESPACIAL DO SUL OES/CRS/INPE - MCT.	.13
FIGURA 2.1: INTERAÇÃO SOL – TERRA COM SUAS CARACTERÍSTICAS IDENTIFICADAS.	
FIGURA 2.2: REPRESENTAÇÃO ARTÍSTICA DA INTERAÇÃO TERRA- SOL. MOSTRANDO A FORMA DA MAGNETOSFERA TERRESTE	RE
	16
FIGURA 2.3: DISTRIBUIÇÃO GLOBAL DOS OBSERVATÓRIOS KP.	.17
FIGURA 2 4: ESTRUTURAS DA MAGNETOSEERA TERRESTRE	19
FIGURA 2.5. CINTURÃO DE RADIAÇÃO DE VAN AUEN AO REDOR DA TERRA	20
FIGURA 2.6: ATIVIDADE SOLAR RELACIONADA COM O CICLO SOLAR	21
TABELA 2.2: A LOUNS DADOS ESTATÍSTICOS DO SOL	22
FONTE: INTRODUCTION TO SPACE DEVISION MARGADET & KIVELSON CHRISTOPHER T. RUSSELL CAMPRIDGE 1995	. 22
(ADAPTADO DE R F. DE KEMMERICH, N. 2010)	22
FIGURE 2.7 - FIECÃO DE MASSA CODONIAL EM 27 DE EEVEDEIDO DE 2000 OBSEDVADA DOB LASCO C2 E C3 SATÉLITE	. 22
SOHO EDITE: UTT: //SOHO NASCOM NASA COV/CALLEDY/MAGES/LASO2 UTMAL	22
SUND. FUNTE, HTTP.//SUND.NASCUMI.NASA.GUV/GALLERY/IMAGES/LASUZ.HTML.	.23
FIGURA 2.6 - IVIANCHA SOLAR OBTIDA NO DIA 25 DE SETEMBRO DE 2000. A FOTO COMPARA O TAMANHO DA TERRA COM	י רב
	.25
FIGURA 3.1. ELEMENTOS VETORIAIS DO CAMPO GEOMAGNETICO.	.20
FIGURA 3.3: CAMPO GEOMAGNETICO, MODELO DIPOLAR	.29
FIGURA 3.4: O MIODELO 3D FEITO POR GLATZMAIER-ROBERTS SIMULANDO O CAMPO GEOMAGNETICO (GEODINAMO). AS	,
LINHAS AZUIS "ENTRAM" E AS LINHAS LARANJAS "SAEM". O EIXO DE ROTAÇÃO DA TERRA E VERTICAL AO CENTRO. AS	S
LINHAS DO CAMPO SE ESTENDEM ATE DUAS VEZES O RAIO DA TERRA.	
FIGURA 3.5: VARIAÇAO GEOMAGNETICA, COORDENADAS GEOGRAFICAS EM 1600.	.31
FIGURA 3.6: VARIAÇÃO GEOMAGNÉTICA, COORDENADAS GEOGRÁFICAS EM 1700.	.31
FIGURA 3.7: VARIAÇÃO GEOMAGNÉTICA, COORDENADAS GEOGRÁFICAS EM 1900.	32
FIGURA 3.8: VARIAÇÃO GEOMAGNÉTICA, COORDENADAS GEOGRÁFICAS EM 2000	32
FIGURA 3.9: DIVISÃO DA ATMOSFERA E IONOSFERA.	.33
TABELA 3.1: CLASSIFICAÇÃO DAS PULSAÇÕES CONTÍNUAS	.34
TABELA 3.2: CLASSIFICAÇÃO DAS PULSAÇÕES IRREGULARES.	.34
FIGURA 3.10: MAPA MAGNÉTICO DA TERRA. A ANOMALIA MAGNÉTICA DO ATLÂNTICO SUL EM AZUL ESCURO	.35
FIGURA 3.11: A POSIÇÃO DE SATÉLITES ONDE SOFRERAM DANOS NA MEMÓRIA DO COMPUTADOR. MAIOR CONCENTRAÇÃO)
SOBRE A REGIÃO DA AMAS.	.36
FIGURA 4.1: CIRCUITO DO MAGNETÔMETRO FLUXGATE INSTALADO NO OBSERVATÓRIO ESPACIAL DO SUL –OES/CRS/INP	'E -
MCT	.39
FIGURA 4.2 – ILUSTRAÇÃO ARTÍSTICA DO SATÉLITE ACE DA NASA.	.39
FIGURA 4.3: O SATÉLITE SOHO EM FASE DE MONTAGEM.	.40
FIGURA 5.1: DIAGRAMA MUSICAL DE BARTELS DO ANO 2001	.47
FIGURA 5.2: DIAGRAMA MUSICAL DE BARTLES DO ANO DE 2008	.50
FIGURA 5.3: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	.52
SMS – 04/02/2001	.52
Figura 5.4: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS –	
04/02/2001	.52
FIGURA 5.5: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	.53
SMS – 28/06/2001	.53
Figura 5.6: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS –	
28/06/2001	.53
FIGURA 5.7: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	.54
SMS – 31/05/2001	.54
FIGURA 5.8: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. SMS –	
31/05/2008	.54
FIGURA 5.9: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	55
SMS – 01/01/2001.	55
FIGURA 5.10: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO	55
SMS – 01/01/2001.	55

Centro Regional Sul de Pesquisas Espaciais– CRS/INPE – MCT_____2 Relatório Final de Atividades 2010

FIGURA 5.11: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS SMS – 28/07/2001.	56 56
FIGURA 5.12: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO	56
SIVIS - 28/07/2001	
FIGURA 5.13: VARIAÇÃO DIARIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNETICOS VSS – 28/06/2001	57 57
FIGURA 5.14: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. VSS – 28/06/2001.	57
FIGURA 5 15: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	58
VSS – 31/05/2001	58
EICLIDA E 16: INTENCIDADE DAS DUI SACÕES DO E NAS COMPONENTES HIS DIDO CAMPO OFOMACNÉTICO. VSS -	
31/05/2001.	58
FIGURA 5.17: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	59
VSS – 01/01/2001.	59
FIGURA 5.18: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. VSS –	50
FIGURA 5.19: VARIAÇÃO DIARIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNETICOS	
VSS – 28/07/2001	60
FIGURA 5.20: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. VSS – 28/07/2001.	60
FIGURA 5.21: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	61
VSS – 18/02/2001	61
FIGURA 5.22: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. VSS –	
18/02/2001	61
FIGURA 5.23: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS KOU – 04/02/2001.	62 62
FIGURA 5.24: INTENSIDADE DAS PUI SACÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. KOU –	-
04/02/2001	62
Είς μα 5.25: Μαθιας δα οιάρια οια ιντενικίσασε σας 2 σομασοιεντες νετορίας σο σαμασι σεσμασικέτισος	
$V \cap I = 29 / 06 / 2001$	05 62
E_{1} E 26/00/2001.	03
29 /06 /2001	62
	05
FIGURA 5.27. VARIAÇÃO DIARIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNETICOS	
KOU – 31/05/2001.	64
FIGURA 5.28: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. KOU – 31/05/2001.	64
FIGURA 5.29: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	65
KOU – 01/01/2001	65
FIGURA 5.30: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. KOU –	
01/01/2001	65
FIGURA 5.31: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	66
KOU – 28/07/2001	66
FIGURA 5.32: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. KOU – 28/07/2001	66
FIGURA 5 33: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	67
SMS – 31/03/2001.	
FIGURA 5 34' INTENSIDADE DAS PUI SACÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO	67
SMS – 31/03/2001	67
Είς μα 5 25: Μαθιας δα οιάρια οα ιντενικίσασε σας 2 σομασοιεντες νετορίας οα σαμασι σε ομασικέτισος	68
SMS – 06/11/2001.	
FIGURA 5.36: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO	68
SMS – 06/11/2001	68
FIGURA 5.37: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	69
SMS – 22/10/2001	69
FIGURA 5.38: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO	69

Centro Regional Sul de Pesquisas Espaciais– CRS/INPE – MCT_____3 Relatório Final de Atividades 2010

SMS 22/10/2001	60
SIVIS – 22/10/2001	
SMS – 21/11/2001	70
Sivij 24/11/2001. E_{1} Sivij 24/11/2001. E_{1} Sivij 24/11/2001. Sivij 24/11/	70
r = 24/11/2001	70
Σίνισ - 24/11/2001	70
TIGORA 5.41. VARIAÇÃO DIARIA DA INTENSIDADE DAS 5 COMPONENTES VETORIAS DO CAMPO GEOMAGNETICOS CMC $= 02/04/2001$	71
SIVIS - 00/04/2001.	71
Γ IGORA 3.42. INTENSIDADE DAS FOLSAÇÕES FC-3 NAS COMPONENTES ITE D DO CAMPO GEOMAGNETICO	71
SIVIS - 00/04/2001.	71
TIGORA 5.45. VARIAÇÃO DIARIA DA INTENSIDADE DAS 5 COMPONENTES VETORIAS DO CAMPO GEOMAGNETICOS	72
V33 - 51/03/2001.	
PIGURA 3.44. INTENSIDADE DAS POLSAÇÕES PC-5 NAS COMPONENTES Π E D DO CAMPO GEOMAGNETICO. V35 - 21/02/2001	72
51/05/2001	72
FIGURA 5.45. VARIAÇÃO DIARIA DA INTENSIDADE DAS 5 COMPONENTES VETORIAS DO CAMPO GEOMAGNETICOS	כ / כד
$V_{33} = 00/11/2001$	/5
FIGURA 5.40. INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES IT E D DO CAMPO GEOMAGNETICO. V55 -	72
FIGURA 5.47. VARIAÇÃO DIARIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNETICOS	74
VSS – 22/10/2001.	
FIGURA 5.48: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNETICO. VSS –	74
22/10/2001	
FIGURA 5.49: VARIAÇÃO DIARIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNETICOS	
VSS – 24/11/2001.	
FIGURA 5.50: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. VSS –	
24/11/2001	75
FIGURA 5.51: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	76
VSS – 08/04/2001	76
FIGURA 5.52: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. VSS –	
08/04/2001	76
FIGURA 5.53: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	77
KOU – 31/03/2001	77
FIGURA 5.54: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. KOU –	
31/03/2001	77
FIGURA 5.55: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	78
KOU – 06/11/2001	78
FIGURA 5.56: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. KOU –	
06/11/2001	78
FIGURA 5.57: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	79
KOU – 22/10/2001.	79
FIGURA 5.58: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. KOU –	
22/10/2001	79
FIGURA 5.59: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	80
KOU – 24/11/2001.	80
FIGURA 5.60: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. KOU –	
24/11/2001	80
FIGURA 5.61: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	81
SMS – 01/12/2008	81
FIGURA 5.62: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO	81
SMS – 01/12/2008	81
FIGURA 5.63: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	82
SMS – 02/12/2008	82
FIGURA 5.64: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO	82
SMS – 02/12/2008	82
FIGURA 5.65: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	83
SMS – 22/11/2008	83

Centro Regional Sul de Pesquisas Espaciais– CRS/INPE – MCT_____4 Relatório Final de Atividades 2010

FIGURA 5.66: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO	83 83
FIGURA 5.67: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	84
	04
FIGURA 5.68: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNETICO SMS – 13/09/2008	84 84
FIGURA 5.69: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	85 85
Είς μαστά τη 2000. Είς μαστά τη 2000.	05 0E
FIGURA 3.70. INTENSIDADE DAS POLSAÇÕES PC-S NAS COMPONENTES ITE DIDO CAMPO GEOMAGNETICO	0J 0E
VSS – 02/12/2008.	86 86
FIGURA 5.72: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. VSS – 02/12/2008.	86
FIGURA 5.73: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	87
VSS – 09/10/2008.	87
FIGURA 5.74: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. VSS –	87
09/10/2000	
VSS – 21/11/2008.	88
FIGURA 5.76: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. VSS – 21/11/2008.	88
FIGURA 5.77: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	89 80
VSS = 12/09/2000.	
FIGURA 5.78. INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES E E D DO CAMPO GEOMAGNETICO. V55 –	00
FIGURA 5.79: VARIAÇÃO DIARIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNETICOS	90
VSS – U2/U4/2008.	90
FIGURA 5.80: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNETICO. VSS – 02/04/2008.	90
FIGURA 5.81: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	91
KOU – 01/12/2008	91
FIGURA 5.82: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. KOU – 01/12/2008	91
Είς μα 5 83: Μαρίας δα οιάρια οα ιντενικίσασε σας 3 σομαρονεντες νετορίας σο σαμαρό σερμαζοιέτισος	
$V_{011} = 02/12/2009$	
$F_{\rm LCUDA} = 6.2/12/2000$	
PIGURA 3.64. INTENSIDADE DAS POLSAÇÕES PC-5 NAS COMPONENTES E E DIDO CAMPO GEOMAGNETICO. NOU -	02
	92
FIGURA 5.85: VARIAÇÃO DIARIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNETICOS	93
KOU – 22/11/2008.	93
FIGURA 5.86: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNETICO. KOU –	
22/11/2008	93
FIGURA 5.87: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	94
KOU – 13/09/2008.	94
FIGURA 5.88: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. KOU – 13/09/2008.	94
FIGURA 5.89: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	95
KOU – 21/11/2008	95
FIGURA 5.90: INTENSIDADE DAS PUI SACÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. KOU –	
21/11/2008.	95
FIGURA 5.91: VARIAÇÃO DIARIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	
SMS – 27/03/2008.	96
FIGURA 5.92: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO.	96
SMS – 27/03/2008.	96
FIGURA 5.93: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	97

Centro Regional Sul de Pesquisas Espaciais– CRS/INPE – MCT_____5 Relatório Final de Atividades 2010

SMS – 11/10/2008.	97
FIGURA 5.94: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO	97 97
Είς μα 5 95: Μαριαςδο σιάρια σα ιντενισμασε σας 3 componentes vetopias σο campo geomacnéticos	, رو مع
SMS – 29/02/2008.	
FIGURA 5.96: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO.	98
SMS – 29/02/2008.	98
FIGURA 5.97: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS SMS – 04/09/2008	
FIGURA 5.98: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO.	
SMS – 04/09/2008.	
FIGURA 5.99: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	100
SMS – 09/03/2008.	100
FIGURA 5.100: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO	100
SMS – 09/03/2008.	100
FIGURA 5.101: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	101
VSS – 27/03/2008.	101
FIGURA 5.102: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. VSS –	
27/03/2008	101
FIGURA 5.103: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	
VSS – 29/02/2008.	102
FIGURA 5.104: INTENSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. VSS –	-
29/02/2008	
FIGURA 5.105: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS.	
VSS – 04/09/2008	
FIGURA 5.106: INTENSIDADE DAS PUI SACÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. VSS –	
04/09/2008	
FIGURA 5 107: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	104
VSS – 09/03/2008	
FIGURA 5 108' INTENSIDADE DAS PULISAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO VSS –	
09/03/2008	
FIGURA 5 109: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	105
VSS – 03/10/2008.	
FIGURA 5 110' INTENSIDADE DAS PULISAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO VSS –	
03/10/2008	105
FIGURA 5 111: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	106
KOII = 27/03/2008	106
FIGURA 5 112' INTENSIDADE DAS PULISAÇÕES PC-5 NAS COMPONENTES H E D DO CAMPO GEOMAGNÉTICO. KOU –	
27/03/2008	106
FIGURA 5 113' VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	107
KOU = 11/10/2008	107
Είςμεια 5.114: Ιντενισματέ τας Ρίμεραςδές PC-5 νας componentes H ε D το campo geomagnético. KOLL-	
11/10/2008	107
FIGURA 5 115: VARIAÇÃO DIÁRIA DA INTENSIDADE DAS 3 COMPONENTES VETORIAS DO CAMPO GEOMAGNÉTICOS	108
$K_{011} = 29/02/2008$	108
Είς με 5 116: Ιντενισιαστε αλαγματικά κατά το δια δια το δια το δια το δια τη δια τη δια τη δια τη δια τη δια τ	100
29/02/2008	108
Είς μα 5 117: Μαθιας δα οιάρια σα ιντενισμασε σας 3 σομασινεντες νετορίας σο σαμασι σεομαζοιέτισος	100
$K \cap I = 0 / /00 /2008$	100
Γίου μα 5 118: Ιντενισίο τος Ρίμι σαζδές Ρα-5 νας αραθονεντές Η ε D το σάλαρο σεολάζου της ΜΟΠ-	109
1 IGON 3.110. INTENSIDADE DAS E CESAÇÕES E CES INAS COMPONENTES ΠΕ D DO CAMPO GEOMAGNETICO. NOU - ΩΛ/ΩΩ/20Ω8	100
υτι συι 2000 Είςμας 5 119: Μαρίας δα διάτα δα ιντενισίδασε δας 2 σολαθονιεντές νετορίας δο σαλάδο σεολάλονιστισος	110
$K_{011} = 00/03/2008$	110
FIGURA 5 120' ΙΝΤΕΝSIDADE DAS PULSAÇÕES PC-5 NAS COMPONENTES HED DO CAMPO GEOMAGNÉTICO ΚΟΙΙ-	
09/03/2008	

Centro Regional Sul de Pesquisas Espaciais– CRS/INPE – MCT_____6 Relatório Final de Atividades 2010

FIGURA 5.121: SUNSPOTS E CORONAL HOLES – 04/02/2001	111
FIGURA 5.122: SUNSPOTS E CORONAL HOLES- 28/06/2001	112
FIGURA 5.123: SUNSPOTS E CORONAL HOLES- 31/05/2001	112
FIGURA 5.124: SUNSPOTS E CORONAL HOLES-01/01/2001.	
FIGURA 5.125: SUNSPOTS E CORONAL HOLES – 28/07/2001	
FIGURA 5.126: SUNSPOTS E CORONAL HOLES – 31/03/2001	
FIGURA 5.127: SUNSPOTS E CORONAL HOLES – 06/11/2001	
FIGURA 5.128: SUNSPOTS E CORONAL HOLES – 22/10/2001	
FIGURA 5.129: SUNSPOTS E CORONAL HOLES – 24/11/2001.	
FIGURA 5.130: SUNSPOTS E CORONAL HOLES – 08/04/2001	
FIGURA 5.131: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 01/12/2008	
FIGURA 5.132: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 02/12/2008.	
FIGURA 5.133: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 22/11/2008.	
FIGURA 5.134: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 13/09/2008.	
FIGURA 5.135: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 21/11/2008.	
FIGURA 5.136: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 09/10/2008.	
FIGURA 5.138: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 12/09/2008.	
FIGURA 5.139: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 02/04/2008.	
FIGURA 5.140: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 27/03/2008.	
FIGURA 5.141: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 11/10/2008.	
FIGURA 5.142: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 29/02/2008.	
FIGURA 5.143: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 04/09/2008.	
FIGURA 5.144: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 09/03/2008.	
FIGURA 5.145: SUNSPOTS, CORONAL HOLES E SIMULAÇÃO – 03/10/2008.	

ÍNDICE DE TABELAS

	10
TABELA 2.1. INDICE ZNP EM RELAÇÃO AO INDICE AP	10
TABELA S. 1. CLASSIFICAÇÃO DAS PULSAÇÕES CONTINUAS	
TABELA 5.1:	
DIAS CALMOS DO MAXIMO SOLAR - SMS(CM).	45
TABELA 5.2:	45
DIAS PERTURBADOS DO MÁXIMO SOLAR -SMS (PM).	45
TABELA 5.3:	46
DIAS CALMOS DO MÁXIMO SOLAR - VSS(CM).	46
TABELA 5.4:	46
DIAS PERTURBADOS DO MÁXIMO SOLAR - VSS(PM).	46
TABELA 5.5:	46
DIAS CALMOS DO MÁXIMO SOLAR - KOU(CM).	46
TABELA 5.6:	46
DIAS PERTURBADOS DO MÁXIMO SOLAR - KOU (PM).	46
TABELA 5.7:	48
DIAS CALMOS DO MÍNIMO SOLAR - SMS(CM)	48
TABELA 5.8:	48
DIAS PERTURBADOS DO MÍNIMO SOLAR -SMS (PM).	48
TABELA 5.9:	49
DIAS CALMOS DO MÍNIMO SOLAR - VSS(CM)	49
TABELA 5.10:	49
DIAS PERTURBADOS DO MÍNIMO SOLAR - VSS(PM)	49
TABELA 5.11:	49
DIAS CALMOS DO MÍNIMO SOLAR - KOU(CM).	49
TABELA 5.12:	49
DIAS PERTURBADOS DO MÍNIMO SOLAR - KOU (PM)	49
TABELA 5.13: VALORES RMS DAS PULSAÇÕES PC5 DOS DIAS CALMOS PARA SMS, VSS E KOU.	132
TABELA 5.14: VALORES RMS DAS PULSAÇÕES PC5 DOS DIAS PERTURBADOS PARA SMS, VSS E KOU.	134

Sumário

RESUMO	10
CAPÍTULO 1 - Introdução	11
1.1. Características Gerais do Trabalho	11
1.2. Estrutura do Relatório	14
CAPÍTULO 2 – Interação Sol – Terra	15
2.1. Características Gerais	15
2.2. Índices Geomagnéticos	17
2.1.1 Índice ΣKp	18
2.1.2 Índice Ap	18
2.2. Magnetosfera Terrestre	19
2.3. Cinturão de Radiação de Van Allen	20
2.4. Atividade e Ciclo Solar	21
2.4.1. Ejeções de Massa Coronal (CME's)	23
2.4.2. Manchas Solares (sunspots)	25
CAPÍTULO 3 – Campo Geomagnético	26
3.1. Aspectos Gerais do Campo Geomagnético	26
3.2. Variações do Campo Geomagnético	30
3.2.1. Variação Secular	31
3.2.2. Variações Diurna	33
3.3. Reversões do Campo Geomagnético	34
3.4. Pulsações Geomagnéticas	34
3.5. Anomalia Magnética do Atlântico Sul – AMAS	35
CAPÍTULO 4 – Metodologia de Aquisição e Análise dos dados	37
4.1. Instrumentação e Aquisição dos dados	37
4.1.1. Magnetômetro <i>fluxgate</i> (núcleo saturado)	38
4.2.2. Dados de Satélites e Simulação do Campo Geomagnético	39
4.2. Metodologia de Análise dos dados	41
4.2.1. Escolha dos dados	41
4.2.2. Filtragem digital	42
CAPÍTULO 5 - RESULTADOS	43
5.1. Resultados	43
5.1.1. Dias Escolhidos da Fase de Máximo Solar	45
5.1.2. Dias Escolhidos da Fase de Mínimo Solar	48

Centro Regional Sul de Pesquisas Espaciais– CRS/INPE – MCT_____9 Relatório Final de Atividades 2010

5.2. Processamento dos Dados dos Dias Escolhidos
5.2.1 Processamento dos Dias Escolhidos para a Fase do Máximo Solar 51
5.2.1.1 Processamento dos Dias Calmos da Fase do Máximo Solar (CM)51
5.2.1.2 Processamento dos Dias Perturbados da Fase do Máximo Solar (PM) 67
5.2.2 Processamento dos Dias Escolhidos para a Fase do Mínimo Solar
5.2.2.1 Processamento dos Dias Calmos da Fase do Mínimo Solar (Cm)
5.2.2.2 Processamento dos Dias Perturbados da Fase do Mínimo Solar (Pm) 96
5.3. Dados Complementares (ACE, SOHO e simulações do campo geomagnético)111
5.3.1. Dados Complementares do Máximo Solar
5.3.2. Dados Complementares do Mínimo Solar
5.4. Análise dos Dados
5.4.1 Comparação CM – Cm
5.4.2 Comparação PM – Pm
5.4.3 Comparação PM – CM e Pm – Cm
5.4.4 Comparação PM – Cm e Pm – CM
CAPÍTULO 6 – Conclusões
6.1. Conclusões
Referências
ANEXOS
ANEXOS 1 – Programas em Linguagem MATLAB Utilizados 144
Programa CONVNAROD1440.M 145
Programa FIGMTM5.M147
Programa INTERMAGNET_FIGMTM5149
ANEXOS 2 – Resumos Submetidos e Aceitos em eventos (2010) 152
ANEXOS 3 – Certificados de Participação em Eventos

RESUMO

O Campo Magnético da Terra é essencial para a manutenção da vida terrestre. A hipótese mais aceita de sua origem é a do dínamo geomagnético (Geodínamo). Ou seja, o campo principal tem sua origem no movimento de correntes elétricas no núcleo externo líquido do planeta. Sem o campo geomagnético, a superfície da Terra seria bombardeada com partículas de altas energias oriundas do espaço exterior e do vento solar, tornando o meio ambiente terrestre extremamente hostil à vida. Uma de suas características, a Anomalia Magnética do Atlântico Sul (AMAS), com centro situado na vizinhança do Observatório Espacial do Sul - OES/CRS/CCR/INPE-MCT, em São Martinho da Serra, RS, (29.42°S, 53.87°O, 480 m a.n.m.), é a região de menor intensidade de todo o campo geomagnético, tornando mais fácil a precipitação de partículas de altas energias na sua atmosfera. O campo geomagnético observado apresenta, variações temporais que vão desde pequenos períodos, na faixa de milisegundos, até períodos longos, em séculos. As variações de intervalo de tempo curto são conhecidas como pulsações geomagnéticas (entre 0,2 e 1000 segundos) e são resultantes da interação do vento solar com o campo geomagnético. A interação origina a magnetosfera terrestre, com suas linhas de campo alongadas ao longo do espaço no lado noturno e comprimidas no diurno. O Sol possui vários ciclos na sua atividade e o principal, de 11 anos, possui em geral 4 fases distintas de seu ciclo sendo uma fase de mínima atividade (mínimo solar), uma ascendente, uma de máxima (máximo solar) e uma descendente. O objetivo do Projeto é estudar as pulsações geomagnéticas de períodos entre 100 e 1000 segundos (1.0 - 10mHz), com maior ênfase nas pulsações contínuas Pc5 (períodos entre 150-600 segundos e freqüência na faixa 2-7 milihertz), relacionadas com o ciclo solar e a região da AMAS. A aquisição de dados é feita através de magnetômetros fluxgate instalados no Observatório Espacial do Sul. A análise dos dados é feita com programas de filtragem digital em linguagem Matlab.

CAPÍTULO 1 - Introdução

1.1. Características Gerais do Trabalho

Através do Programa de Iniciação Científica, PIBIC/INPE-CNPq/MCT, foram planejadas e realizadas atividades de pesquisa no Projeto "VARIAÇÃO COM CICLO SOLAR DAS PULSAÇÕES GEOMAGNÉTICAS DE PERÍODOS LONGOS (1,0 -10 mHz) NA REGIÃO DA ANOMALIA MAGNÉTICA DO ATLÂNTICO SUL -AMAS", que se encontra em desenvolvimento no Laboratório de Física Solar do Meio Interplanetário e Magnetosferas - LFSMIM/CRS/CCR/INPE - MCT, do Centro Regional Sul de Pesquisas Espaciais - CRS/CCR/INPE – MCT, Figura 1.1. O objetivo do Projeto é fazer um estudo das características das pulsações geomagnéticas de períodos longos, entre 100 e 1000 segundos, da faixa espectral de 1,0 – 10 mHz na região da Anomalia Magnética do Atlântico Sul. Na atual fase do Projeto está sendo dada ênfase ao estudo das características das pulsações de períodos entre 150 - 600 segundos (2 – 7 mHz), conhecidas por Pc5 (pulsações contínuas).

O estudo das variações geomagnéticas pode revelar importantes informações sobre os processos físicos que ocorrem na magnetosfera através da interação do vento solar com o campo magnético da Terra. O estudo é importante, pois através dele podemos compreender e prever com alguma antecedência a ocorrência de tempestades geomagnéticas. As tempestades geomagnéticas são capazes de afetar qualquer tipo de equipamento eletrônico sensível. Dependendo da intensidade da tempestade geomagnética ela pode afetar tanto satélites quanto redes de comunicação em geral, redes de fornecimento de energia e, em alguns casos extremos, aumentar a radiação UV sobre a superfície do nosso planeta, atingindo os seres vivos.

A teoria mais bem aceita hoje em dia da origem do campo geomagnético referese ao movimento de fluídos ionizados pelas altas temperaturas no núcleo externo da Terra. Provocando correntes elétricas (de grande escala espacial) que produzem um grande e intenso campo magnético, no caso, criando o chamado geodínamo. Sendo

assim o campo geomagnético tem sua origem basicamente interna. Se não fosse a influência de fatores externos à Terra e correntes de pequena escala no núcleo, que distorcem e causam perturbações no campo, ele poderia ser visto como um campo dipolar.

No campo magnético terrestre ocorrem variações de sua intensidade em períodos de tempo que vão desde frações de segundos até milhões de anos. Podemos separá-las em: variações de longo período, como a variação secular e variações de curto período como as tempestades geomagnéticas, variações diurnas Sq e pulsações geomagnéticas. As variações seculares ocorrem por fatores internos da Terra, enquanto as variações de curto período são de origem externas a Terra e estão associadas à atividade solar.

O campo magnético da Terra é assimétrico. Sua mais baixa intensidade total sobre a superfície terrestre se encontra no sul da América do Sul. Este fenômeno é denominado Anomalia Magnética do Atlântico Sul (AMAS) e abrange os estados brasileiros de São Paulo até o sul do Rio Grande do Sul. Como conseqüência o cinturão de radiação que circunda o planeta, conhecido como cinturão de Van Allen, fica a uma menor altitude sobre a atmosfera local, fazendo com que ela receba um maior bombardeamento de partículas de altas energias oriundas do espaço exterior. Nesta área há uma penetração maior de raios cósmicos (em relação à região circunvizinha) e precipitação de partículas do geoespaço (como o vento solar) ocasionando assim perturbações na ionosfera e no campo geomagnético.

A região da AMAS, descoberta no início da era dos satélites nos anos 50, é um laboratório natural e singular de pesquisa sobre Física de Plasmas e da Radiação, Geofísica Espacial, Geomagnetismo, Aeronomia e Clima Espacial.

A coleta de dados é feita com magnetômetros instalados na estação geomagnética do Observatório Espacial do Sul - OES/CRS/CCR/INPE – MCT (figura 1.2), no município de São Martinho da Serra, RS, Brasil. A estação geomagnética é identificada como SMS e tem coordenadas 29,43° S, 53,82° W, elevação 488m a.n.m. Uma das atividades realizadas foi a operação dos equipamentos (magnetômetros) do Laboratório de Física Solar, do Meio Interplanetário e Magnetosferas do Centro Regional Sul - CRS//INPE-MCT, instalados no Observatório Espacial do Sul.

Figura 1.1: O Centro Regional Sul de Pesquisas Espaciais - CRS/ CCR/INPE-MCT. Fonte: http://www.inpe.br/crs/

Através da coleta de dados contínua em SMS, é possível fazer uma análise da característica do campo geomagnético nesta região do nosso planeta, relacionando as pulsações de períodos longos com o ciclo solar.

Figura 1.2: Prédio principal do Observatório Espacial do Sul OES/CRS/CCR/INPE - MCT. Fonte: arquivo LFSMIM/CRS/CCR/INPE – MCT

1.2. Estrutura do Relatório

O Relatório se organiza da seguinte maneira; primeiramente uma revisão teórica sobre o assunto abordado e da metodologia de pesquisa utilizada. Logo após está apresentada a metodologia utilizada na obtenção dos dados, seguido do processamento dos dados utilizados nas análises deste trabalho.

Sendo assim este relatório reune uma boa base de dados para futuros trabalhos e também consulta por parte de outros pesquisadores que julgarem interessantes os dados aqui processados e obtidos.

Ao final estão os resultados obtidos, correlacionando com fenômenos solares, e as conclusões sobre o Projeto de Pesquisa e sobre os dados analisados até a presente etapa do Projeto. Tendo a consciência de que as conclusões até o momento da entrega deste relatório são preliminares, pois provavelmente muitos outros detalhes/fenômenos desconhecidos pelo autor, ou que simplesmente não se tem um conhecimento maior acerca destes, podem também ser levados em consideração, alcançando ainda mais precisão e riqueza de detalhes nas conclusões finas sobre as pulsações de períodos longos (Pc5) na região da AMAS através do ciclo solar.

Os programas utilizados para a filtragem digital em linguagem MATLAB estão nos anexos. Participações em eventos, trabalhos apresentados e resumos submetidos e aceitos para congressos estão nos anexos.

CAPÍTULO 2 – Interação Sol – Terra

2.1. Características Gerais

Constantemente o nosso Planeta é bombardeado por partículas de altas energias oriundas do Sol, esta "brisa" denomina-se "vento solar". Ao longo do tempo podem ocorrer fenomênos no Sol que são fontes de "vento solar" de maior intensidade, por exemplo as manchas solares e os buracos coronais. O "vento solar" viaja a velocidades supersônicas através do espaço, consequentemente ele chegará as proximidades do nosso planeta até interagir diretamente com o campo magnético do nosso planeta. Esta interação produz perturbações diversas no campo geomagnético, que são diretamente relacionadas com a maior ou menor velocidade e densidade do vento solar ao chegar nas proximidades do nosso planeta. Esta é a chamada interação Sol – Terra, ao longo da vida na Terra procurou-se entender e caracterizar este fenômeno com o maior nível de detalhes possiveis. Se não conhececemos o mínimo necessário desta interação, não seria seguro planejar uma viagem espacial ou simplesmente não seria possível obter sucesso em missões de satélites não tripulados para orbitar o nosso planeta continuamente enviando dados de diversos tipos (TV, Rádio, Internet, Telefonia, etc...).

É importante o monitoramento quantitativo da perturbação geomagnética ao longo do tempo. Vários índices são usados para essa finalidade. Inicialmente são índices locais, de estações magnéticas de determinada coordenada geográfica. A partir destes índices locais é formulado um índice internacional (ou planetário) para determinação de dias magneticamente calmos e perturbados. Estes índices são usados com sucesso em vários campos além do Geomagnetismo, como por exemplo Clima Espacial, Física Solar, Raios Cósmicos e Ionosfera.

O "vento solar" foi observado por Parker (1958), que fez um estudo pioneiro mostrando que a temperatura no gás da coroa solar era suficientemente alta para sobrepor a atração gravitacional do Sol, criando assim um transporte supersônico (expansão) de principalmente hélio e hidrogênio ionizados. A velocidade supersônica do "vento solar" é alcançada a uma distância aproximadamente de 2 a 3 raios solares. O vento solar com seu contínuo fluxo de plasma, arrasta consigo as linhas do seu campo magnético, levando-o à distâncias além de Plutão, figuras 2.1 e 2.2.

O principal responsável para a ocorrência das tempestades geomagnéticas é o "vento solar" no seu momento de maior variação e intensidade. As tempestades são consequências do aumento de correntes magnetosféricas e ionosféricas devido a interação entre o "vento solar" e o campo geomagnético, e a incidência de raios X solares e radiação UV solar, aumentando os sistemas de correntes ionosféricas de tal maneira que o campo geomagnético experimenta fortes perturbações. Uma tempestade típica pode ser divida da seguinte maneira:

- Fase inicial, com duração de quatro horas em média.

- Fase principal, com várias horas de duração,

- Fase de recuperação, com duração de algumas horas a alguns dias, dependendo da intensidade da tempestade.

Figura 2.1: Interação Sol - Terra com suas características identificadas. Fonte: http://space.rice.edu/image/livefrom/5_magnetosphere.jpg

Figura 2.2: Representação artística da interação Terra- sol, mostrando a forma da magnetosfera terrestre. Fonte: //usrlazio.artov.rm.cnr.it/eclisse2006/Interventi_file/lezione1_file/slide0017_image096.jpg

2.2. Índices Geomagnéticos

Os índices usados neste trabalho foram os índices Ap e Kp (índice planetário). Estes dois índices são usados para indicar a atividade geomagnética em toda a Terra, de forma internacional. São utilizados como referência para estudos coordenados preliminares, preferencialmente é usado o valor do índice Ap. Estes dois índices são a base para determinação dos cinco dias quietos e os cinco dias perturbados de cada mês internacionalmente (definidos pela IAGA).

Cada valor Kp é obtido a cada 3 horas em diferentes estações magnéticas ao redor do globo, totalizando 13 estações no total sendo a maioria delas em uma latitude em torno de 60° no hemisfério norte, figura 2.3.

Figura 2.3: Distribuição global dos observatórios Kp. Fonte: http://isgi.cetp.ipsl.fr/des_kp_ind.html

2.1.1 Índice ΣKp

O índice Σ Kp é uma soma diária de oito valores Kp que indicam se o dia é magneticamente calmo ou perturbado. Ele possui uma escala de 0o até 9°, expressados em terços de unidades (por exemplo, 5- é igual a quatro + 2/3; 5o é igual a cinco e 5+ é igual a cinco + 1/3), cada valor Σ Kp tem um valor "ap" (em nT) correspondente, demonstrado na tabela 2.1:

ΣКр	00	0+	1-	1°	1+	2-	2°	2+	3-	3°	3+	4-	4°	4+
ap	0	2	3	4	5	6	7	9	12	15	18	22	27	32
ΣКр	5-	5°	5+	6-	6°	6+	7-	7°	7+	8-	8°	8+	9-	9°
ap	39	48	56	67	80	94	111	132	154	179	207	236	300	400

Tabela 2.1: Índice ΣKp em relação ao índice ap.

2.1.2 Índice Ap

O índice Ap é a média aritmética diária dos 8 valores ap, que por sua vez é um índice com relação linear com o índice Σ Kp. A recomendação por parte da IAGA é de que o uso deste índice tenha preferência em relação ao índice Σ Kp.

2.2. Magnetosfera Terrestre

A existência do campo geomagnético (e a região originada, a magnetosfera) é importante para a vida terrestre, uma vez que ele protege a superfície terrestre de partículas de altas energias oriundas do vento solar e de parte dos raios cósmicos. O vento solar se choca com o campo geomagnético em velocidades supersônicas.

A magnetosfera é a região do espaço em que o "vento solar" (plasma) se encontra o campo geomagnético (figura 2.4). É uma estrutura dinâmica que tem sua forma alterada devido à pressão exercida pelo "vento solar". A forma aproximadamente dipolar do campo magnético, alinhado com o eixo de rotação (caso não houvesse interação Sol – Terra), se mostra distorcida pela ação do "vento solar". Assim que o "vento solar" chega a Terra ele se encontra com o campo geomagnético e modifica sua forma, comprimindo o campo na face voltada para o sol (lado diurno) formando uma onda de choque (bow shock). Após a onda de choque o plasma solar vai desacelerando numa região chamada bainha magnética (*magnetosheath*) até encontrar uma região onde a intensidade do campo geomagnético é suficientemente forte para agir como uma barreira, fazendo as partículas ionizadas do plasma solar fluírem contornando a Terra, esta região é chamada de magnetopausa (*magnetopause*).

Na direção contrária (lado noturno) forma-se uma extensa cauda magnética (*magnetotail*) que possui aproximadamente 100 raios terrestres.

Figura 2.4: Estruturas da magnetosfera terrestre. Fonte: http://www.apolo11.com/

2.3. Cinturão de Radiação de Van Allen

Em trabalhos feitos por Carl Störmer em 1907, início do século XX, que tratava sobre o movimento de partículas eletricamente carregadas ao longo do campo geomagnético da aurora polar, mostrou que era teoricamente possível o aprisionamento dessas partículas no campo geomagnético quando consideradas outras latitudes [Dutra, 2004]. No final dos anos 50 foram descobertas regiões imensas de radiação dentro da magnetosfera terrestre. Essas regiões foram denominadas de "cinturão de radiação de Van Allen", em homenagem ao seu descobridor. Esses cinturões contêm prótons e elétrons de alta energia entre 1-100 Mev, oferecendo grande risco aos astronautas, pois podem penetrar em um veículo espacial que estiver na região. O cinturão de Van Allen consiste de um cinturão interno de prótons (entre 2.200 e 5.000 km de distância da superfície) e um cinturão externo de elétrons (entre 13.000 55.000 km de distância da superfície), figura 2.5. O cinturão de radiação de Van Allen encontra-se em menor altitude na região da Anomalia Magnética do Atlântico Sul por conseqüência da menor intensidade do campo geomagnético na superfície terrestre.

Figura 2.5: Cinturão de radiação de Van Allen ao redor da Terra. Fonte: http://www.physics.sjsu.edu/becker/physics51/mag_field.htm

2.4. Atividade e Ciclo Solar

O Sol possui um ciclo de atividade de 11 anos indicado pela contagem de manchas solares (*sunspots*) presentes na sua superfície voltada para a Terra. É caracterizado por um aumento no número de manchas solares atingindo um período de máxima atividade e reduzindo sua atividade logo em seguida até atingir um período de mínima atividade. O campo magnético interplanetário tem uma relação direta com o ciclo solar, durante esse ciclo são identificadas fases distintas: (1) fase de mínimo solar; (2) fase ascendente; (3) fase de máximo solar; e (4) fase descendente, figura 2.6.

Figura 2.6: Atividade solar relacionada com o ciclo solar. Fonte: http://solarscience.msfc.nasa.gov/images/ssn_predict_l.gif

Durante o máximo do ciclo pode ocorrer um aumento de fluxo de "vento solar" sendo ejetado das regiões ativas associadas às manchas solares (*sunspots*) ou buracos coronais (*coronal holes*). Estes fenômenos são chamados de explosões solares (*solar flares*), podendo estar associados a ejeções coronais de massa (*CME*) e a consequentes tempestades geomagnéticas. Efeitos importantes da atividade no Sol, devido a maior

intensidade do vento solar chegando à magnetosfera, são os prejuízos causados em telecomunicações, sistemas de navegação, órbita de satélites, exploração de recursos minerais, sistemas de fornecimento de energia, oleodutos, sistemas biológicos e os danos das radiações ionizantes de origem solar que podem atingir missões espaciais tripuladas (colocando em risco a saúde dos astronautas pela exposição a grande quantidade de radiação). Atualmente estamos saindo de uma fase de mínima atividade solar (intenso mínimo solar em 2009) e iniciando uma fase ascendente de atividade solar (ciclo solar número 24). Na tabela 2.2 estão algumas informações sobre o Sol.

Tabela 2.2: Alguns dados estatísticos do Sol.

Fonte: Introduction to space physics, Margaret G. Kivelson, Christopher, T. Russell. Cambridge, 1995. (adaptado de R.F. de Kemmerich, N., 2010).

Idade	$4,5 \times 10^9$ anos
Massa	$1,99 \times 10^{30} kg$
Raio	696,000 <i>km</i>
Densidade média	$1,4 \times 10^3 kg.m^{-3}$
Distância média da Terra (1 UA)	150×10^6 km(250 raios solares)
Aceleração gravitacional na superfície	274 $m.s^{-2}$
Radiação emitida (Luminosidade)	$3,86 \times 10^{26} W$
Período de rotação equatorial	26 dias terrestres
Composição	Aproximadamente 90% de H (hidrogênio), 10% He (hélio), 0,1% outros elementos

2.4.1. Ejeções de Massa Coronal (CME's)

A primeira Ejeção de Massa Coronal (*CME – Coronal Mass Ejection*) foi observada pela *Orbiting Solar Observatory*, OSO-7 (Howard et al., 1997) em 14 de dezembro de 1971. O termo "Ejeções de Massa Coronais" foi primeiramente usada por Gosling et al. (1975). Estudos mostraram que as *CME's* muitas vezes estavam associadas a explosões solares (*flares*) e proeminências. A primeira idéia era de que as *CME's* eram causadas pelas Explosões Solares (Dryer, 1982; Dryer e wu, 1985). Uma *CME* libera uma energia de 10^{31-32} ergs (Illing e Hundhausen, 1986) sendo juntamente com as *flares* os dois fenômenos mais energéticos da coroa solar. *CME's* liberam energia em forma de trabalho (Low, 1996) e, em comparação com *flares*, são fenômenos de grande escala. São grandes bolhas de gás magnetizado que podem levar diversas horas para serem expelidas ao espaço. A Figura 2.7 mostra uma *CME* observada em 27 de fevereiro de 2000. (adaptado do R.F. de Kemmerich, N., 2010)

Figura 2.7 - Ejeção de Massa Coronal em 27 de fevereiro de 2000 observada por LASCO C2 e C3, satélite SOHO. Fonte: http://soho.nascom.nasa.gov/gallery/images/las02.html.

CME's estão diretamente relacionadas com o ciclo solar. Elas tem frequência de um evento por semana no mínimo e de 2 a 3 eventos por dia nos períodos de máximo solar. A grande quantidade de material que carrega as linhas de campo magnético do Sol que é ejetada para o meio interplanetário com uma *CME* é chamada de Ejeção de Massa Coronal Interplanetária (*ICME – Interplanetary Coronal Mass Ejection*). A interação da *ICME* com a magnetosfera terrestre causa distúrbios geomagnéticos devido

Centro Regional Sul de Pesquisas Espaciais– CRS/INPE – MCT_ Relatório Final de Atividades 2010

à velocidade das partículas ejetadas do Sol ter várias centenas de km/s. As *ICME's* geralmente estão acompanhadas de ondas de choque. Ejeções de Massa Coronais podem alterar o fluxo do "vento solar" e produzir alterações que atingem a Terra e algumas vezes com resultados nocivos e perigosos às atividades humanas. A identificação no "vento solar" do material ejetado em uma *CME* é ainda um desafio.

Não há uma característica única exibida por todas as nuvens de Plasma resultantes de *CME's*. Segundo Neugebauer e Goldstein (1997), varias características podem aparecer juntas ou isoladas. São elas:

1. Temperatura cinética de íons ou elétrons baixa para uma dada velocidade do "vento solar". Esta característica baseia-se na expansão da estrutura;

2. Anisotropia não usual da distribuição de prótons com temperatura paralela superior a temperatura perpendicular ao Campo Magnético Interplanetário, causado pela conservação do momento magnético dos íons à medida que o Plasma se expande;

- 3. Abundancia de Helio não usual.
- 4. Abundancia de outras espécies iônicas;

5. Feixes bidirecionais de elétrons supra-termais e íons energéticos. Ao caracterizar uma configuração de Campo Magnético Interplanetário, é possível que seja o campo magnético interno de uma ejeção, fechado e com extremidades presas no Sol;

6. Suave e intenso Campo Magnético interfere nos valores de parâmetro β de Plasma, que quando combinado com baixas temperaturas levam o parâmetro β a baixos valores. Este parâmetro é geralmente menor que 0,1;

7. Presença de rotação do Campo Magnético, algumas destas configurações são chamadas de Nuvens Magnéticas quando possuem: aumento de seu campo magnético por um fator maior que 2; suave rotação por um amplo intervalo de ângulo; e baixa temperatura iônica;

Decréscimo do fluxo de Raios Cósmicos;
(adaptado do R.F. de Kemmerich, N., 2010).

2.4.2. Manchas Solares (sunspots)

A existência de manchas solares, com até alguns milhares de Km de diâmetro, é conhecida a centenas de anos (Figura 2.8). Elas são constituídas de uma região central escura com temperatura de 4100 K e campo magnético de 0,3 T (tesla) envolto pela penumbra, região um pouco mais clara que a escura.

O campo é quase vertical na sombra e quase horizontal na penumbra. Existe saída radial de gás através da superfície fotosférica da penumbra do contorno interno da sombra de 6 km/s, chamado efeito Evershed. Algumas manchas são unipolares, outras bipolares e outras mais complexas. Podem durar até 100 dias e elas ocorrem em um ou outro lado do equador solar. Pode-se verificar a atividade solar observando o número de manchas na sua superfície, é observado que existe uma regularidade de número manchas solares, isto caracteriza o ciclo solar (Figura 2.6). Elas aparecem em médias latitudes e migram para o equador solar, baixas latitudes. Este processo leva em média 11 anos.

Após 11 anos o campo magnético inverte a polaridade e consequentemente a polaridade dos pares de manchas também se inverte para o dos hemisférios. As regiões de acumulo de linhas de campo se aproximam gradativamente ao equador ao longo de 11 anos, assim à medida que se observa as manchas, elas migram para o equador solar. (adaptado do R.F. de Kemmerich, N., 2010)

Figura 2.8 - Mancha solar obtida no dia 23 de setembro de 2000. A foto compara o tamanho da Terra com uma mancha solar. Fonte: SOHO - NASA – ESA.

CAPÍTULO 3 – Campo Geomagnético

3.1. Aspectos Gerais do Campo Geomagnético

O campo geomagnético é um campo vetorial ortogonal, isto é, tem seus eixos perpendiculares entre si. Possui componentes distintas em seus três eixos coordenados ortogonais **X**, **Y** e **Z**. Portanto possui intensidade, direção e sentido. A intensidade total é chamada de **B** (ou **F**) e é independente do sistema de coordenadas (figura 3.1).

Figura 3.1: Elementos vetoriais do Campo Geomagnético.

Elementos lineares:

- X componente geográfica norte (positiva no sentido do norte geográfico);
- Y componente geográfica leste (positiva para leste);
- Z componente magnética vertical (positiva quando aponta para baixo);
- H componente magnética horizontal (define o norte magnético local);
- B (ou F) intensidade total do campo magnético no ponto medido.

Elementos angulares:

D – declinação magnética. É o ângulo entre o norte geográfico (**X**) e a componente horizontal do campo magnético (**H**), positivo quando medido do norte para o leste;

I – inclinação magnética. É o ângulo entre a componente magnética horizontal (**H**) e o vetor intensidade total do campo magnético (**B**), positivo quando medido do plano horizontal para baixo.

Desde crianças temos contato com o campo geomagnético mesmo sem podermos perceber ele diretamente através dos nossos sentidos, mas conhecemos uma utilização básica da bússola como instrumento de orientação sobre a Terra. A bússola usa o princípio de que o campo geomagnético se aproxima daquele gerado por um imã permanente (dipolar), aproximadamente alinhado com o eixo de rotação do planeta, onde é possível distinguir um "pólo magnético norte", um "pólo magnético sul" e um "equador magnético", semelhantemente ao que ocorre com as referências geográficas. Neste sentido, podemos falar de "meridiano magnético" como a projeção, na superfície da Terra, das linhas de campo definidas pela componente H.

Foi Gauss, C. F. (1777-1855) que desenvolveu a matemática de análise por harmônicos esféricos que proporcionou uma demonstração mais detalhada do campo. Com este método matemático ele demonstrou que a maior parte do campo geomagnético era de origem interna e que mais de 90% dele podia ser representado pelo campo de um dipolo centrado na Terra. Nessa época se tinha concluído que o campo magnético terrestre manifestava uma variação secular e que as variações com pequenos intervalos de tempo tinham correlação com fenômenos atmosféricos (como as auroras boreais).

Recentemente a teoria mais aceita sobre a origem do campo magnético e sua manutenção refere-se a teoria do dínamo hidromagnético (ou geodínamo), desenvolvida entre os anos 1940 - 1950 por W. M. Elsasser e Sir Edward C. Bullard-H. Gellman.

Um campo magnético tende a sumir ao longo do tempo sem a interferência de agentes externos (na forma de sistemas de correntes elétricas). O motivo pelo qual com o campo geomagnético não acontece isso é teoricamente devido a movimentos do magma no núcleo líquido externo da Terra, produzindo correntes elétricas que dão origem a um campo magnético no próprio (de acordo com a teoria do geodínamo), formando assim
Centro Regional Sul de Pesquisas Espaciais– CRS/INPE – MCT Relatório Final de Atividades 2010

um "dínamo auto-sustentável". De acordo com esta teoria a produção do campo geomagnético se deve quase que em sua totalidade ao movimento de fluido altamente viscoso no núcleo líquido da Terra, que gira lentamente em relação ao manto sólido. O ponto crucial da teoria do geodínamo é explicar os mecanismos que existem para a manutenção do movimento das correntes no núcleo líquido (Figura 3.2).

Figura 3.2: Origem do campo geomagnético. Fonte: http://www.glossary.oilfield.slb.com/files/OGL98116.gif

A inclinação magnética (I) é o ângulo das linhas de campo com o plano tangente à Terra no ponto de observação. Uma inclinação de +90° corresponde ao pólo magnético norte (por convenção), da mesma maneira que uma inclinação de -90° corresponde ao pólo magnético sul. O equador magnético é constituído pelo conjunto de pontos na superfície terrestre de inclinação nula.

A forma final do campo geomagnético assemelha-se muito a um dipolo magnético, figura 3.3 e figura 3.4, com as linhas de campo alongadas no espaço devido à interação com o "vento solar". Os pólos do campo magnético terrestre são ligeiramente afastados dos pólos geográficos formando um ângulo entre os eixos magnético e de rotação de 10,3 ° (em 2005).

Figura 3.3: Campo Geomagnético, modelo dipolar Fonte: http://formacao.es-loule.edu.pt/biogeo/geo12/temaI/imagens/campo_magnetico

Figura 3.4: O Modelo 3D feito por Glatzmaier-Roberts simulando o campo geomagnético (geodínamo). As linhas azuis "entram" e as linhas laranjas "saem". O eixo de rotação da Terra é vertical ao centro. As linhas do campo se estendem até duas vezes o raio da Terra. Fonte: http://www.sdsc.edu/pub/envision/v16.1/images/geo2.jpg

3.2. Variações do Campo Geomagnético

No campo geomagnético ocorrem variações de variados períodos, que vão desde frações de segundo até milhões de anos (dentro de vários espectros delas). De maneira geral, as variações lentas são causadas por fenômenos internos da Terra (movimento do fluido viscoso no núcleo da Terra), enquanto que as variações rápidas estão associadas a "vento fenômenos externos ao planeta (chegada de solar de maior velocidade/intensidade). As variações do campo geomagnético ligadas a interação Sol -Terra são variações rápidas. Dependendo da fase do ciclo solar as variações podem ser mais ou menos intensas.

As variações geomagnéticas são classificadas em:

- Seculares, para períodos maiores que um ano;
- Diurnas, para período de 24 horas;
- Distúrbios, quando associados à tempestades geomagnéticas e com períodos bastantes variáveis;
- Pulsações, para períodos entre 0,2 e 1000 segundos; e
- Atmosféricas, quando períodos inferiores a 1 segundo.

As variações estudadas neste projeto são variações rápidas ligadas a interação Sol – Terra, isto é, relacionadas diretamente com a atividade solar. Especificadamente são variações das intensidades das componentes H, D e Z do campo geomagnético de períodos entre 180 – 900 segundos, são variações com período aproximado das pulsações contínuas Pc5.

3.2.1. Variação Secular

É uma variação lenta e contínua observada no campo geomagnético (figuras: 2.5 -2.6 - 2.7 - 2.8). Ela está relacionada com as correntes elétricas que fluem no núcleo externo da Terra e fornece informações importantes para uma melhor análise dessa camada do planeta. Tem uma escala temporal que chega há mil anos e é dada pela mudança anual no valor do campo.

Figura 3.5: Variação Geomagnética, Coordenadas geográficas em 1600. Fonte: http://swdcwww.kugi.kyoto-u.ac.jp/igrf/anime/index.html

Figura 3.6: Variação Geomagnética, Coordenadas geográficas em 1700. Fonte: http://swdcwww.kugi.kyoto-u.ac.jp/igrf/anime/index.html

Figura 3.7: Variação Geomagnética, Coordenadas geográficas em 1900. Fonte: http://swdcwww.kugi.kyoto-u.ac.jp/igrf/anime/index.html

Figura 3.8: Variação Geomagnética, Coordenadas geográficas em 2000. Fonte: http://swdcwww.kugi.kyoto-u.ac.jp/igrf/anime/index.html

3.2.2.Variações Diurna

Devido a sistemas de correntes elétricas, geradas pelo movimento das camadas atmosféricas ionizadas através das linhas do campo geomagnético, são originadas as variações diurnas. Em períodos quietos (sem atividade geomagnética) e eliminando-se as contribuições de menor escala temporal, como as pulsações geomagnéticas e da Lua, tem-se a variação diurna. A região da ionosfera na qual circula o sistema de correntes que origina essa variação é a região E (entre 80 e 120 km de altitude), figura 2.9.

Figura 3.9: Divisão da atmosfera e ionosfera. Fonte: http://www.daviddarling.info/encyclopedia/I/ionosphere.html

A variação diária é relacionada à época do ano, à atividade solar e à latitude geomagnética. A atividade do campo geomagnético pode ser classificada através de índices, relacionados à:

- Variação Sq (do inglês *Solar quiet*), para dias magneticamente calmos.

- Variação SD (Solar Disturbed) para dias de atividade mais intensa.

- Variação Dst (*Storm Time Disturbance*) nos dias de ocorrência de tempestades geomagnéticas.

3.3. Reversões do Campo Geomagnético

Há evidências de que o campo geomagnético sofreu várias reversões durante o seu tempo de vida. Estas evidências foram conseguidas com análises magnéticas, realizadas por navios, no meio dos oceanos e provam haver reversões do campo geomagnético ao longo da história. Durante a reversão o momento de dipolo decresce para zero, enquanto mantém sua orientação. No intervalo em que não há a componente dipolar, a parte não-dipolar parece persistir (Dutra, 2004).

3.4. Pulsações Geomagnéticas

As pulsações geomagnéticas são ondas de ultra baixa frequência (*ULF Waves*) que se originam na região magnetosférica e se propagam até a superfície terrestre, tem uma frequência que varia de 1,0mHz até 1,0Hz. São consideradas pulsações de ultra baixa frequência (*ULF*) quando a frequência das ondas são abaixo da frequência natural do plasma.

As pulsações geomagnéticas tem origem externa a Terra, devido a interação Sol - Terra. As pulsações são variações do campo geomagnético resultantes de interações entre as partículas carregadas eletricamente do "vento solar" chegando a região da magnetosfera. Elas são classificadas como regulares (ou contínuas, Pc1 a Pc5) e irregulares (Pi1 e Pi2). Podem ser subdivididas em subgrupos, dependendo de seus períodos, segundo as seguintes faixas (Jacobs *et al.* 1964), tabelas 2.1 e 2.2:

Contínuas	Pc1	Pc2	Pc3	Pc4	Pc5
f	0,2–5 Hz	0,1–0,2 Hz	22–100 mHz	7–22 mHz	2–7 mHz
<i>T</i> (s)	0,2–5	5-10	10–45	45–150	150-600

Tabela 3.1: Classificação das pulsações contínuas.

Tabela 3.2: Classificação das pulsações irregulares.

Irregulares	Pi 1	Pi 2
f	0,025–1 Hz	2–25 mHz
<i>T</i> (s)	1–40	40–150

Considera-se a Pc6, acima de 600 segundos, e a Pi3, com períodos acima de 150 segundos, ambas até 1.000 segundos. Samson (1991), baseado nos processos físicos e

nos mecanismos de geração, considera as pulsações divididas em três categorias: baixa freqüência (1,0 - 10 mHz), média freqüência (10 mHz - 0,1 Hz) e alta freqüência (0,1 - 10 Hz).

3.5. Anomalia Magnética do Atlântico Sul - AMAS

Caso não houvesse a ação do "vento solar" sobre o campo geomagnético, as linhas do campo geomagnético teriam um formato aproximadamente esférico (dipolo). Porém o campo geomagnético não é simétrico, formando algumas anomalias na intensidade total ao redor da superfície da Terra. A única região com menor intensidade em todo o globo fica na América do Sul, denominada Anomalia Magnética do Atlântico Sul (AMAS), tem seu centro situado aproximadamente nas coordenadas 25° S e 48°O e possui um raio aproximado de 900 km, ficando sobre o território brasileiro desde o estado de São Paulo até o extremo sul do Rio Grande do Sul, figura 3.10.

Figura 3.10: Mapa magnético da Terra. A Anomalia Magnética do Atlântico Sul em azul escuro. Fonte: NASA

A menor intensidade do campo geomagnético na região da AMAS explica-se como sendo resultante, em grande parte, do deslocamento excêntrico do campo geomagnético em relação ao centro da Terra. Por conseqüência, o cinturão de radiação de Van Allen se encontra permanentemente em menor altitude sobre a região da AMAS, aumentando assim o fluxo de partículas ionizadas e oferecendo interferência no funcionamento e na comunicação de satélites, figura 3.11, (muitos deles ao passarem pela região da AMAS são desligados para evitarem possíveis danos). Esse fluxo mais intenso de partículas ionizadas na região da AMAS também oferece risco a saúde das tripulações de veículos-espaciais que passam por esta região (radiação elevada).

Por outro lado, por ter uma maior precipitação de partículas de altas energias do que em outros pontos do globo terrestre, esta região torna-se um excelente laboratório natural para estudos de fenômenos atmosféricos em condições de campo magnético fraco. A intensidade do campo geomagnético do nosso planeta tem decrescido nos últimos mil anos e irá desaparecer dentro dos próximos dois mil anos se a presente taxa de decrescimento persistir. Observou-se também que a taxa de decréscimo é maior próxima da América do Sul. Como na região da AMAS a intensidade total do campo geomagnético já é baixa, o campo geomagnético da América do Sul poderá desaparecer dentro de algumas centenas de anos. Sabe-se que os pólos magnéticos da Terra frequentemente sofreram reversões durante a história do planeta. Quando os pólos magnéticos da Terra revertem, a intensidade do campo magnética torna-se muita fraca. Considera-se que os seres humanos terão que viver sobre um campo magnético extremamente fraco no futuro, implicando um maior bombardeamento de partículas de altas energias oriundas do "vento solar" e de raios cósmicos na atmosfera terrestre, elevando os índices de radiação sobre a atmosfera e também no nível da superfície, afetando diretamente a vida na Terra. Esta precipitação de partículas energéticas pode agravar os problemas na redução temporária na camada de ozônio observado na região sul do Brasil, como consequência de efeitos secundários do buraco de ozônio antártico.

É interessante e importante a implementação de estudos das consequências do maior bombardeamento de partículas ionizadas sobre a superfície da Terra e a vida como a conhecemos.

Figura 3.11: A posição de satélites onde sofreram danos na memória do computador. Maior concentração sobre a região da AMAS.

Fonte: http://astro.if.ufrgs.br/esol/esol.htm

CAPÍTULO 4 – Metodologia de Aquisição e Análise dos dados

4.1. Instrumentação e Aquisição dos dados

Para medir a intensidade das componentes ortogonais do campo geomagnético é necessária a interação do campo com outros processos físicos para produção de efeitos mensuráveis. Devido a grande extensão espacial desse campo em relação à dimensão dos sensores, apenas medidas pontuais são obtidas. O instrumento utilizado para realizar a medição do campo geomagnético são os magnetômetros. A aquisição de dados no Projeto esta sendo realizada utilizando um magnetômetro tipo *fluxgate* (núcleo saturado) instalado no Observatório Espacial do Sul no Município de São Martinho da Serra, RS, Brasil (SMS - 29,43° S, 53,82° W, elevação 488m a.n.m.). Os dados são organizados e armazenados em um banco de dados no Laboratório de Física Solar, do Meio Interplanetário e Magnetosferas – LFSMIM/CRS/CCR/INPE – MCT.

Também foram utilizados dados geomagnéticos de regiões próximas da borda e externas da AMAS. Dados nas bordas da AMAS foram coletados no Observatório Magnético de Vassouras, RJ, (VSS; 22,40°S; 43,65°O), Unidade do Observatório Nacional. Dados de uma região completamente externa da região da AMAS foram coletados no Kourou Geomagnetic Observatory, em Kourou, Guiana Francesa (KOU; 5,21°N; 52,73°O), Unidade do Institut de Physique du Globe de Paris (IPGP). Estes dados foram fornecidos pela rede INTERMAGNET (International Real-time Magnetic Observatory Network), ao qual agradeço pela disponibilização dos dados e aos institutos que apóiam sua operação (www.intermagnet.org).

Para tornar a interação Sol – Terra mais clara foi utilizado dados solares dos satélites ACE e SOHO. O satélite ACE forneceu dados para velocidade, densidade e temperatura do "vento solar" nas proximidades da magnetosfera e o satélite SOHO forneceu imagens do sol em diferentes freqüências de luz, mostrando buracos coronais e manchas solares.

4.1.1. Magnetômetro *fluxgate* (núcleo saturado)

Magnetômetros de núcleo saturado (*fluxgate magnetometer*) são equipamentos destinados à obtenção de dados sobre o comportamento de um determinado campo magnético. O seu funcionamento deve-se a propriedades magnéticas de certos materiais ferromagnéticos que apresentam uma histerese com ponto de saturação elevado. A alta permeabilidade dos materiais utilizados na construção dos núcleos é essencial para a detecção do campo magnético que se deseja mensurar. Este tipo de magnetômetro é geralmente usado em observações geomagnéticas no solo e no espaço, na prospecção mineral, análise estrutural de materiais, aplicações na biomedicina e operações militares.

A técnica utilizada no magnetômetro *fluxgate* consiste em expor um núcleo ferromagnético a um campo de excitação **H** gerado por uma bobina ao redor deste núcleo. Nesta bobina são induzidos pulsos periódicos de corrente que são responsáveis pela variação do fluxo magnético do material até seu ponto de saturação.

Nesse momento o fluxo deixa de se concentrar no núcleo, não importando a intensidade do campo ao qual ele estiver exposto. Quando o material deixa o estado de saturado, a intensidade de fluxo magnético varia, gerando assim uma força eletromotriz induzida numa segunda bobina (enrolamento secundário) existente ao redor do conjunto formado pelo núcleo e o primário. O sinal de tensão gerado no secundário apresenta um conteúdo altamente harmônico que é diretamente influenciado pelo campo magnético. Os harmônicos pares do sinal detectado são os que mais sofrem influência do campo geomagnético. O segundo harmônico do sinal é o que apresenta a maior linearidade com relação à variação do campo magnético terrestre.

O magnetômetro de núcleo saturado utilizado neste projeto de pesquisa é de baixo ruído e com um período de aquisição de dois segundos (taxa de 0,5 Hz). São coletados dados das variações geomagnéticas detectadas na superfície terrestre, para as componentes **H** (norte-sul magnético), **D** (leste-oeste magnético) e **Z** (vertical magnético), sendo que o relógio do equipamento é sincronizado com os sinais do sistema GPS presentes no Observatório Espacial do Sul, figura 4.1.

Figura 4.1: Circuito do magnetômetro fluxgate instalado no Observatório Espacial do Sul –OES/CRS/INPE - MCT. Fonte: LFSMIM/CRS/INPE - MCT

4.2.2. Dados de Satélites e Simulação do Campo Geomagnético

Dados dos parâmetros do vento solar são obtidos pelos instrumentos a bordo do satélite ACE (*Advanced Composition Explorer*) da NASA. O satélite ACE orbita o ponto de Lagrangeano L1, ponto de equilíbrio gravitacional entre o Sol e a Terra. A Figura 4.2 ilustra a localização do satélite ACE.

Figura 4.2 – Ilustração artística do satélite ACE da NASA. Fonte: http://www.srl.caltech.edu/ACE/

O satélite ACE fica em média a 1,5.10⁶km da Terra e a 1,5.10⁸km do Sol. O instrumento que mede os parâmetros de plasma solar em direção a Terra é o SWEPAM (*The Solar Wind Electron, Proton, and Alpha Monitor*).

Imagens do Sol foram captadas pelo satélite SOHO (*Solar & Heliospheric Observatory*), projetado e operado pela ESA com colaboração da NASA (Figura 4.3). Para visualização das manchas solares é utilizado o instrumento MDI (*Michelson Doppler Imager*) e para visualização de buracos coronais são utilizados os instrumentos EIT (*Extreme ultraviolet Imaging Telescope*). O SOHO também orbita no ponto Lagrangeano L1.

Figura 4.3: O Satélite SOHO em fase de montagem. Fonte: http://sohowww.nascom.nasa.gov/gallery/Spacecraft/soho_photo3.html

Para dados do mínimo solar (2008) foram utilizados simulações computadorizadas da interação do "vento solar" com o campo geomagnético, realizado pelo NICT (*National Institute of Information and Comunications Technology*) do Japão. Este tipo de simulação foi proporcionado através do avanço na tecnologia de processamento dos computadores e dos métodos numéricos computacionais.

Os parâmetros de entrada da simulação são os dados (preliminares) fornecidos pelo satélite ACE em tempo real. Os dados utilizados são parâmetros do "vento solar" e intensidade do campo magnético interplanetário.

4.2. Metodologia de Análise dos dados

A metodologia para organização e análise dos dados foi dividida nas seguintes etapas:

- Seleção de 5 dias calmos e 5 dias perturbados para as fases de máximo e de mínimo solar.

- Selecionar uma estação geomagnética no interior da AMAS, uma nas proximidades da borda da AMAS e uma região fora da AMAS (respectivamente neste trabalho são as estações SMS, VSS e KOU).

- Obter os dados das intensidades geomagnéticas (H, D e Z) para cada dia selecionado e para cada estação selecionada.

- Realizar a filtragem digital necessária para se obter as variações no período da pulsação desejado (neste trabalho é de 180 – 900 segundos, pulsações Pc5).

- Calcular o valor RMS (*Root Mean Square*) da variação das pulsações Pc5 de cada dia selecionado.

- Analisar os valores encontrados fazendo comparações cruzadas entre dias calmos/perturbados do máximo/mínimo solar e entre diferentes estações.

 Analisar e realçar as características solares para dias em que houve intensa atividade solar ou atividade geomagnética nula (ΣKp=0) utilizando dados dos satélites ACE e SOHO e também simulações da interação Sol – Terra.

4.2.1. Escolha dos dados

Procurou-se selecionar 5 dias calmos e 5 dias perturbados para diferentes extremos da fase solar (mínimo e máximo solar), com o propósito de realçar as diferenças ou semelhanças na observação das pulsações Pc5 em diferentes períodos de atividade solar.

Para a seleção dos dias foram utilizados os dias calmos e perturbados previamente escolhidos pela IAGA, na medida em que havia dados das estações geomagnéticas disponíveis para aqueles dias (SMS, VSS e KOU). A segunda base de escolha foram os índices Ap e Σ Kp, a observação do Diagrama Musical de Bartels ajudou nesta etapa.

Seria ideal que a análise fosse feita para exatamente os mesmos dias nas 3 estações geomagnéticas, mas quando não foi possível isto foi selecionado o próximo dia na seleção da IAGA.

4.2.2. Filtragem digital

Ao fazermos o gráfico da intensidade das três componentes **H**, **D** e **Z** do campo geomagnético *versus* tempo, ele nos mostrará a variação diária (período de 24 horas) do campo geomagnético em cada componente. Como o objetivo deste trabalho é estudar as pulsações geomagnéticas com períodos entre 180 e 900 segundos (Pc5), se torna necessário filtrar o sinal da variação diária, permitindo que passem somente o sinal da pulsação (Pc5).

O propósito da filtragem digital é obter a informação específica contida no sinal, produzindo assim um realce nas características espectrais na faixa desejada. Para estudar as pulsações geomagnéticas necessita-se de um filtro que deixe passar apenas sinais em uma banda de freqüências. Esses filtros são chamados de filtros passa-faixa ou passa-banda. A aplicação de um filtro passa-banda na variação original do campo geomagnético permite obter o sinal de freqüência que se deseja estudar. O filtro é aplicado nas direções direta e reversa, para não alterar a fase do sinal original, com ganho unitário dentro da banda de freqüência estipulado pela filtragem. Para este trabalho de filtragem digital foi utilizado programas em linguagem *Matlab* (ver Anexos).

Os dados coletados no magnetômetro *fluxgate* usado no Observatório Espacial do Sul saem em formato binário. O primeiro processamento destes dados ocorre com o auxílio de um programa que transforma estes dados binários em um arquivo em formato ASCII. O arquivo em formato ASCII, contendo a informação da variação diária para as 3 componentes do campo geomagnético, é utilizado nos demais processamentos feitos em programas com linguagem *Matlab*, obtemdo-se além das pulsações Pc5 outras informações sobre esta variação diária. O programa de filtragem digital foi testado com dados sintéticos para comprovar sua funcionalidade.

Os dados da variação diária das estações de Vassouras (VSS) e Kourou (KOU), fornecidos pela rede INTERMAGNET, são disponibilizados em formato ASCII (padrão da IAGA). Portanto a filtragem digital em linguagem *Matlab* pode ser aplicada diretamente nestes dados.

CAPÍTULO 5 - RESULTADOS

5.1. Resultados

Foram realizadas atividades inerentes à aquisição de dados no Observatório Espacial do Sul – OES/CRS/CCR/INPE – MCT e ao estudo de diversos fenômenos do Geomagnetismo, Geofísica Espacial e Clima Espacial. Os dados foram pré-processados e foi organizado um banco de dados contendo informações de eventos geomagnéticos em diversas estações magnéticas para serem estudadas ao longo das atividades do projeto, mantendo um bom monitoramento deles e fonte de consulta permanente para os demais integrantes do grupo no Laboratório de Física Solar, do Meio Interplanetário e Magnetosferas. Foram realizadas visitas semanais ao Observatório Espacial do Sul – OES/CRS/CCR/INPE-MCT para aperfeiçoamento nas medições de declinação e inclinação do campo geomagnético e para manutenção do sistema *MAGDAS* da rede mundial de observação geomagnética, que está em funcionamento através de um convênio com a Universidade de Kyushu, Japão.

Os resultados obtidos comparam as características das pulsações contínuas Pc-5 (2 – 7 mHz) do interior, borda e exterior da AMAS durante as fases extremas do ciclo solar (mínimo e máximo). Foram escolhidos cinco dias magneticamente calmos e cinco magneticamente perturbados para cada fase do ciclo solar e para cada estação (SMS, VSS e KOU, totalizando 60 dias selecionados. Porém o dia 24/dezembro para a estação de Kourou (KOU) no máximo solar (2001) tem um índice Ap muito inferior aos outros dias, portanto não foi computado para os cálculos (ver tabela 5.6).

Como já foi citado anteriormente (seção 4.2.1) foi utilizado os índices Ap e Σ Kp, sendo que o índice Ap é derivado do Σ Kp. Este último foi criado para medir a radiação das partículas oriundas do vento solar através de seus efeitos magnéticos. Se o Σ Kp de dois dias escolhidos for igual, mostrando que aparentemente os dois dias tiveram atividade geomagnética de mesma proporção, então é utilizado o índice Ap para verificar qual dia é mais calmo (ou perturbado) que o outro.

Para auxiliar o trabalho de escolha dos dias calmos e perturbados para cada fase do ciclo solar foi utilizado o Diagrama Musical de Bartels. Que relaciona os oito valores diários kp (medidos de 3 em 3 horas) para cada dia do ano com os dias da rotação solar. Para determinarmos qual período de dados está mais próximo do máximo ou mínimo solar usamos como base a figura 2.6, que mostra a atividade solar relacionada com o ciclo solar ao longo do tempo. Notamos que o ponto de maior atividade solar, fase do máximo solar, é entre os anos 2000 – 2001. O período de menor atividade solar, fase do mínimo solar, é entre os anos 2008 – 2009.

Os dados utilizados para o processamento foram das estações magnéticas do Observatório Espacial do Sul (SMS; 29,43° S, 53,82° O) que fica aproximadamente no centro da região da AMAS, do Kourou Geomagnetic Observatory (KOU; 5,21°N; 52,73°O) que fica nas proximidades da borda da AMAS e do Observatório Magnético de Vassouras, RJ, (VSS; 22,40°S; 43,65°O) que fica numa região totalmente externa a AMAS.

5.1.1. Dias Escolhidos da Fase de Máximo Solar

Começamos escolhendo cinco dias calmos e cinco dias perturbados na fase do máximo solar. O melhor período para se analisar seria do começo do ano 2000 até o começo do ano de 2001, mas infelizmente não há dados coletados para este período no Observatório Espacial do Sul. Portanto foi escolhido o período mais próximo deste, o de começo de 2001 até final do mesmo ano. Na medida da disponibilidade de dados geomagnéticos das 3 estações (SMS, VSS e KOU) tentou-se analisar exatamente os mesmos dias selecionados.

Para determinação dos dias calmos e perturbados da fase de máximo solar foram utilizados os índices Σ Kp e Ap com o auxílio do Diagrama Musical de Bartels do ano 2001 (figura 5.1), tendo como base os dias magneticamente calmos e perturbados definidos pela IAGA (disponibilizadas no *site* http://isgi.cetp.ipsl.fr/lesdonne.htm). Os dias selecionados para cada estação magnética (SMS, VSS e KOU) estão nas tabelas 5.1 até 5.6 (lembrando que o dia 24/dez da estação KOU não foi utilizado para as análises pois seu valor Ap é muito inferior aos demais).

Dias calmos do máximo solar (CM): 2001

Dias calmos do máximo solar - SMS(CM).					
SMS	Ар	Кр			
04/fevereiro	1	2+			
28/junho	2	3-			
31/maio	2	40			
01/janeiro	2	4+			
28/julho	3	4+			

Dias perturbados do máximo solar (PM): 2001

Tabela 5.2: Dias perturbados do máximo solar -SMS (PM).				
SMS	Ар	Кр		
31/março	192	61		
06/novembro	142	54		
22/outubro	96	49-		
24/novembro	104	47-		
08/abril	63	39-		

Tabela 5.3: Dias calmos do máximo solar - VSS(CM).				
VSS	Ар	Кр		
28/jun	2	3-		
31/mai	2	40		
1/jan	2	4+		
28/jul	3	4+		
18/fev	3	5-		

Tabela 5.4:				
Dias perturbados do máximo solar - VSS(PM).				

VSS	Ар	Кр
31/mar	192	610
6/nov	142	540
22/out	96	49-
24/nov	104	47-
8/abr	63	39-

Tabela	5.5:
1 40 014	· · · ·

Dias calmos do máximo solar - KOU(CM).				
KOU	Ар	Кр		
4/fev	1	2+		
28/jun	2	3-		
31/mai	2	40		
1/jan	2	4+		
28/jul	3	4+		

Tabela 5.6:

Dias perturbados do máximo solar - KOU (PM).				
KOU	Ар	Кр		
31/mar	192	610		
6/nov	142	540		
22/out	96	49-		
24/nov	104	47-		
24/dez	23	29-		

Figura 5.1: Diagrama Musical de Bartels do ano 2001. Fonte: GeomaExt_ActivKp_WDC-Kyoto.

5.1.2. Dias Escolhidos da Fase de Mínimo Solar

Assim como foi feito para o período de máximo solar, foram escolhidos cinco dias calmos e cinco dias perturbados na fase do mínimo solar (2008). Na medida da disponibilidade de dados geomagnéticos das 3 estações (SMS, VSS e KOU) tentou-se analisar exatamente os mesmos dias selecionados.

Para determinação dos dias calmos e perturbados da fase de mínimo solar foram utilizados os índices Σ Kp e Ap com o auxílio do Diagrama Musical de Bartels do ano 2008 (figura 5.2), tendo como base os dias magneticamente calmos e perturbados definidos pela IAGA (disponibilizadas no *site* http://isgi.cetp.ipsl.fr/lesdonne.htm). Os dias selecionados para cada estação magnética (SMS, VSS e KOU) estão nas tabelas 5.7 até 5.12 (notar que os dias 1° e 2 de dezembro apresentaram atividade geomagnética nula).

Tabela 5.7: Dias calmos do mínimo solar - SMS(Cm).				
SMS	Ap	Кр		
1/dez	0	0		
2/dez	0	0		
22/nov	0	0+		
13/set	0	1-		
21/nov	0	1-		

Dias calmos do mínimo solar (Cm): 2001

Dias perturbados do mínimo solar (Pm): 2001

Dias perturbados do mínimo solar -SMS (Pm).			
SMS	Ар	Кр	
27/mar	36	34+	
11/out	34	30+	
29/fev	31	330	
4/set	31	30+	
9/mar	30	320	

Dias calmos do mínimo solar - VSS(Cm).			
VSS	Ар	Кр	
2/dez	0	0	
9/out	0	1-	
21/nov	0	1-	
12/set	1	10	
2/abr	1	20	

Tabela 5.9: Dias calmos do mínimo solar - VSS(Cm).			
VSS	Ap	Кр	
2/dee	0	0	

	Tab	ela	5.10:		
-	-			-	

Dias perturbados do mínimo solar - VSS(Pm).			
VSS	Ар	Кр	
27/mar	36	34+	
29/fev	31	330	
4/set	31	30+	
9/mar	30	320	
3/out	14	23+	

Tabela 5.11: Dias calmos do mínimo solar - KOU(Cm).			
KOU	Ар	Кр	
1/dez	0	0	
2/dez	0	0	
22/nov	0	0+	
13/set	0	1-	
21/nov	0	1-	

Tabela 5.12: Dias perturbados do mínimo solar - KOU (Pm).			
KOU	Ар	Кр	
27/mar	36	34+	
11/out	34	30+	
29/fev	31	330	
4/set	31	30+	
9/mar	30	320	

Figura 5.2: Diagrama Musical de Bartles do ano de 2008. Fonte: GeomaExt_ActivKp_WDC-Kyoto

5.2. Processamento dos Dados dos Dias Escolhidos

Após a escolha dos dias geomagneticamente calmos e perturbados para cada fase do ciclo solar é iniciado o processamento dos dados de cada dia escolhido, visando obter o máximo de informações e características da atividade geomagnética de cada dia. Primeiro é obtido os dados da variação diária das intensidades das três componentes do campo geomagnético. Identificando seus valores máximos e mínimos e pico-apico(*range*). Logo depois ocorre o processamento dos dados utilizando filtros digitais para realçar somente as pulsações contínuas Pc-5 (180 – 900 segundos), novamente é identificado os valores máximos e mínimos e pico-a-pico(*range*) alcançados nas pulsações das componentes $\mathbf{H} \in \mathbf{D}$ para cada dia. São obtidas informações sobre o grau de polarização e espectros do período das pulsações. Mas para esta análise somente serão usados as variações diárias das intensidades das 3 componentes vetoriais e as variações diárias das pulsações Pc-5 nas componentes $\mathbf{H} \in \mathbf{D}$. Notar que a escala de tempo informa a hora ZULU (ou *Universal Time*, +3 horas do horário de Brasília).

Notar que para as estações VSS e KOU não foram registrados os valores pico-apico (*range*) da variação diária das 3 componentes (**H**, **D** e **Z**), somente os valores *range* das pulsações Pc5 (que é o foco do trabalho).

5.2.1 Processamento dos Dias Escolhidos para a Fase do Máximo Solar

Aqui são apresentados os dados processados para os cinco dias calmos e cinco dias perturbados da fase do máximo solar nas 3 estações magnéticas (SMS, VSS e KOU).

5.2.1.1 Processamento dos Dias Calmos da Fase do Máximo Solar (CM)

São apresentando os dados processados dos dias calmos do máximo solar (CM) nas figuras: 5.3 a 5.32, (ver tabelas 5.1; 5.3; 5.5):

SMS (CM)

Figura 5.3: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 04/02/2001.

Figura 5.4: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS - 04/02/2001.

Figura 5.5: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 28/06/2001.

Figura 5.6: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 28/06/2001.

Figura 5.7: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 31/05/2001.

Figura 5.8: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 31/05/2008.

Figura 5.9: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 01/01/2001.

Figura 5.10: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 01/01/2001.

Figura 5.11: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 28/07/2001.

Figura 5.12: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 28/07/2001.

VSS (CM)

Figura 5.13: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 28/06/2001.

Figura 5.14: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 28/06/2001.

Figura 5.15: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 31/05/2001.

Figura 5.16: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS- 31/05/2001.

Figura 5.17: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 01/01/2001.

Figura 5.18: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 01/01/2001.

Figura 5.19: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 28/07/2001.

Figura 5.20: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 28/07/2001.

Figura 5.21: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 18/02/2001.

Figura 5.22: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 18/02/2001.

Figura 5.23: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 04/02/2001.

Figura 5.24: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 04/02/2001.

Figura 5.25: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 28/06/2001.

Figura 5.26: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 28/06/2001.

Figura 5.27: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 31/05/2001.

Figura 5.28: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 31/05/2001.

Figura 5.29: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 01/01/2001.

Figura 5.30: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. ${\rm KOU}-01/01/2001.$

Figura 5.31: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 28/07/2001.

Figura 5.32: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 28/07/2001.

5.2.1.2 Processamento dos Dias Perturbados da Fase do Máximo Solar (PM)

Os dados processados dos dias perturbados do máximo solar (PM) são apresentados nas figuras de 5.33 a 5.60, (ver tabela 5.2; 5.4; 5.6).

SMS (PM)

Figura 5.33: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 31/03/2001.

Figura 5.34: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 31/03/2001.

Figura 5.35: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 06/11/2001.

Figura 5.36: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 06/11/2001.

Figura 5.37: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS - 22/10/2001.

Figura 5.38: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 22/10/2001.

Figura 5.39: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 24/11/2001.

Figura 5.40: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 24/11/2001.

Figura 5.41: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 08/04/2001.

Figura 5.42: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 08/04/2001.

Figura 5.43: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 31/03/2001.

Figura 5.44: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 31/03/2001.

_73

Figura 5.45: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 06/11/2001.

Figura 5.46: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 06/11/2001.

Figura 5.47: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 22/10/2001.

Figura 5.48: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 22/10/2001.

Figura 5.49: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 24/11/2001.

Figura 5.50: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS- 24/11/2001.

Figura 5.51: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 08/04/2001.

Figura 5.52: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 08/04/2001.

KOU (PM)

Figura 5.53: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 31/03/2001.

Figura 5.54: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 31/03/2001.

<u>Centro Regional Sul de Pesquisas Espaciais– CRS/INPE – MCT</u> Relatório Final de Atividades 2010

Figura 5.55: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 06/11/2001.

Figura 5.56: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 06/11/2001.

Centro Regional Sul de Pesquisas Espaciais– CRS/INPE – MCT Relatório Final de Atividades 2010

Figura 5.57: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 22/10/2001.

Figura 5.58: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 22/10/2001.

Figura 5.59: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 24/11/2001.

Figura 5.60: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 24/11/2001.

5.2.2 Processamento dos Dias Escolhidos para a Fase do Mínimo Solar

São apresentados os dados processados para os cinco dias calmos e cinco dias

perturbados da fase do mínimo solar nas 3 estações magnéticas (SMS, VSS e KOU).

5.2.2.1 Processamento dos Dias Calmos da Fase do Mínimo Solar (Cm)

Os dados processados dos dias calmos do mínimo solar (Cm) são apresentados nas figuras: de 5.61 a 5.90, (ver tabelas 5.7; 5.9; 5.11).

Figura 5.61: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 01/12/2008.

Figura 5.62: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 01/12/2008.

_81

Figura 5.63: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 02/12/2008

Figura 5.64: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 02/12/2008.

Figura 5.65: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 22/11/2008.

Figura 5.66: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 22/11/2008.

Figura 5.67: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 13/09/2008.

Figura 5.68: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 13/09/2008.

Figura 5.69: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 21/11/2008.

Figura 5.70: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 21/11/2008.

INTERMAGNET Figura 5.71: Variação diária da intensidade das 3 componente

Figura 5.72: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 02/12/2008.

INTERMAGNET Figura 5.73: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos.

Figura 5.73: Variação diária da intensidade das 3 componentes vetorias do campo geomagn VSS – 09/10/2008.

Figura 5.74: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 09/10/2008.

Figura 5.75: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos.

VSS – 21/11/2008.

Figura 5.76: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 21/11/2008.

Figura 5.77: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 12/09/2008.

Figura 5.78: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 12/09/2008.

Figura 5.79: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 02/04/2008.

Figura 5.80: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 02/04/2008.

KOU (Cm)

Figura 5.81: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 01/12/2008.

Figura 5.82: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 01/12/2008.

Figura 5.83: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 02/12/2008.

Figura 5.84: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 02/12/2008.

Centro Regional Sul de Pesquisas Espaciais– CRS/INPE – MCT Relatório Final de Atividades 2010

Figura 5.85: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 22/11/2008.

Figura 5.86: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 22/11/2008.

Figura 5.87: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 13/09/2008.

Figura 5.88: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 13/09/2008.

Figura 5.89: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 21/11/2008.

Figura 5.90: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU-21/11/2008.

5.2.2.2 Processamento dos Dias Perturbados da Fase do Mínimo Solar (Pm)

Os dados processados dos dias perturbados do mínimo solar (Pm) são apresentados nas figuras: de 5.91 a 5.120, (ver tabelas 5.8; 5.10; 5.12).

SMS (Pm)

Figura 5.91: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 27/03/2008.

Figura 5.92: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 27/03/2008.

Figura 5.93: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 11/10/2008.

Figura 5.94: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 11/10/2008.

Figura 5.95: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 29/02/2008.

Figura 5.96: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 29/02/2008.

Figura 5.97: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 04/09/2008.

Figura 5.98: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 04/09/2008.

Figura 5.99: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. SMS – 09/03/2008.

Figura 5.100: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. SMS – 09/03/2008.

Figura 5.101: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 27/03/2008.

Figura 5.102: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 27/03/2008.

Figura 5.103: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 29/02/2008.

 (\mathbf{D})

INTERMAGNET

Figura 5.104: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 29/02/2008.

Figura 5.105: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 04/09/2008.

Figura 5.106: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 04/09/2008.

INTERMAGNET

Figura 5.107: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 09/03/2008.

Figura 5.108: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 09/03/2008.

INTERMAGNET Figura 5.109: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. VSS – 03/10/2008.

Figura 5.110: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. VSS – 03/10/2008.

KOU (Pm)

Figura 5.111: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 27/03/2008.

Figura 5.112: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 27/03/2008.

Figura 5.113: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 11/10/2008.

Figura 5.114: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 11/10/2008.

Figura 5.115: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 29/02/2008.

Figura 5.116: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 29/02/2008.

Figura 5.117: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 04/09/2008.

Figura 5.118: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 04/09/2008.

Figura 5.119: Variação diária da intensidade das 3 componentes vetorias do campo geomagnéticos. KOU – 09/03/2008.

Figura 5.120: Intensidade das Pulsações Pc-5 nas componentes H e D do campo geomagnético. KOU – 09/03/2008.

5.3. Dados Complementares (ACE, SOHO e simulações do campo geomagnético)

Nesta seção serão apresentados os dados dos satélites ACE (Solar Wind parâmetros do "vento solar") e SOHO (sunspots e coronal holes). Algumas vezes os dados disponíveis são de um dia anterior ou posterior, o que não irá afetar na análise final. Para a fase de mínimo solar também será apresentado imagens da simulação do campo geomagnético (fornecidas pelo NICT).

Os dados são referentes a cada dia escolhido para a análise, notar que para dias iguais entre as três ou duas estações magnéticas não será necessário repetir os dados já apresentados. Fonte de todos os dados presentes nesta seção (com exceção das simulações geomagnéticas): http://spaceweather.com

5.3.1. Dados Complementares do Máximo Solar

Dias Calmos (CM)

- 2001/Fevereiro/04:

Solar Wind velocity: 297.4 km/s density:8.3 protons/cm³

Figura 5.121: Sunspots e Coronal Holes – 04/02/2001.

- 2001/Junho/28:

Solar Wind

velocity: 346.9 km/s density:5.9 protons/cm³

Figura 5.122: Sunspots e Coronal Holes- 28/06/2001.

- 2001/Maio/31:

Solar Wind velocity: 334.5 km/s density:4.3 protons/cm³

Figura 5.123: Sunspots e Coronal Holes- 31/05/2001.

- 2001/Janeiro/01:

Solar Wind velocity: 287.1 km/s density:5.8 protons/cm³

Figura 5.124: Sunspots e Coronal Holes-01/01/2001.

- 2001/Julho/28:

Solar Wind velocity: 350.3 km/s density:2.7 protons/cm³

Figura 5.125: Sunspots e Coronal Holes – 28/07/2001.

- 2001/Fevereiro/18:

DADOS NÃO DISPONIVEIS

Dias Perturbados (PM)

- 2001/Março/31:

Solar Wind velocity: 694.1 km/s density:7.6 protons/cm³

Figura 5.126: Sunspots e Coronal Holes – 31/03/2001.

- 2001/Novembro/06:

Solar Wind velocity: 264.0 km/s density:0.3 protons/cm³

Figura 5.127: Sunspots e Coronal Holes – 06/11/2001.

- 2001/Outubro/22:

Solar Wind velocity: 515.7 km/s density:4.6 protons/cm³

Figura 5.128: Sunspots e Coronal Holes – 22/10/2001.

- 2001/Novembro/24:

Solar Wind speed: 845 km/s density:1.0 protons/cm³

Figura 5.129: Sunspots e Coronal Holes – 24/11/2001.

- 2001/Abril/08:

Solar Wind

velocity: 740.5 km/s density:**5.6** protons/cm³

Figura 5.130: Sunspots e Coronal Holes – 08/04/2001.

5.3.2. Dados Complementares do Mínimo Solar

Dias Calmos (Cm)

- 2008/Dezembro/01:

Solar wind speed: 298.9 km/sec density: **1.4** protons/cm³

Figura 5.131: Sunspots, Coronal Holes e Simulação – 01/12/2008

- 2008/Dezembro/02:

Solar wind speed: 295.5 km/sec density: **3.7** protons/cm³

Figura 5.132: Sunspots, Coronal Holes e Simulação – 02/12/2008.

- 2008/Novembro/22:

Solar wind speed: 284.4 km/sec density: **3.6** protons/cm³

Figura 5.133: Sunspots, Coronal Holes e Simulação – 22/11/2008.

- 2008/Setembro/13:

Solar wind speed: 283.8 km/sec density: **2.9** protons/cm³

Figura 5.134: Sunspots, Coronal Holes e Simulação – 13/09/2008.

- 2008/Novembro/21:

Solar wind speed: 280.2 km/sec density: **0.9** protons/cm³

Figura 5.135: Sunspots, Coronal Holes e Simulação – 21/11/2008.

- 2008/Outubro/09:

Solar wind speed: 303.8 km/sec density: **1.4** protons/cm³

Figura 5.136: Sunspots, Coronal Holes e Simulação – 09/10/2008.

- 2008/Setembro/12:

Solar wind speed: 331.3 km/sec density: **0.8** protons/cm³

Figura 5.138: Sunspots, Coronal Holes e Simulação – 12/09/2008.

- 2008/Abril/02:

Solar wind speed: 384.6 km/sec density: **0.3** protons/cm³

Figura 5.139: Sunspots, Coronal Holes e Simulação – 02/04/2008.

Dias Perturbados (Pm)

- 2008/Março/27:

Solar wind speed: 634.5 km/sec

density: **1.9** protons/cm³

Figura 5.140: Sunspots, Coronal Holes e Simulação – 27/03/2008.

- 2008/Outubro/11:

Solar wind speed: 534.9 km/sec density: **1.7** protons/cm³

Figura 5.141: Sunspots, Coronal Holes e Simulação – 11/10/2008.

- 2008/Fevereiro/29:

Solar wind

speed: 733.9 km/sec density: **1.5** protons/cm³

Figura 5.142: Sunspots, Coronal Holes e Simulação - 29/02/2008.

- 2008/Setembro/04:

Solar wind

speed: 557.9 km/sec density: **1.8** protons/cm³

Figura 5.143: Sunspots, Coronal Holes e Simulação – 04/09/2008.

- 2008/Março/09:

Solar wind

speed: 632.7 km/sec density: **2.3** protons/cm³

Figura 5.144: Sunspots, Coronal Holes e Simulação – 09/03/2008.

- 2008/Outubro/03:

Solar wind speed: 664.3 km/sec density: **1.0** protons/cm³

Figura 5.145: Sunspots, Coronal Holes e Simulação - 03/10/2008.

5.4. Análise dos Dados

Através do processamento dos dados do campo geomagnético coletados nas 3 estações magnéticas (SMS, VSS e KOU), para dias calmos e perturbados de diferentes fases do ciclo solar, de diferentes regiões em relação a AMAS, podemos identificar algumas características.

Observando os dados obtidos no processamento, podemos fazer comparações entre as intensidades e ocorrências de pulsações Pc5 para cada estação magnética, entre dias calmos da fase de máximo e de mínimo solar (CM – Cm), entre dias perturbados da fase de máximo e mínimo solar (PM – Pm) e comparações cruzadas entre dias calmos e perturbados de diferentes fases e de diferentes estações magnéticas (PM – CM, Pm – Cm, PM – Cm, Pm – CM). Para análises de comparação foram utilizados os valores RMS (*Root Mean Square*). É esperado que a maior diferença entre estas comparações aconteça com a análise dos dias perturbados do máximo solar com os dias calmos do mínimo (PM – Cm).

É importante notar que nos gráficos da variação diária das intensidades para as três componentes vetoriais do campo geomagnético **H**, **D** e **Z**, por uma convenção do programa em linguagem *Matlab* utilizado para a estação SMS, a componente vetorial **Z** tem seu valor invertido. Pois no hemisfério norte, por convenção, a componente **Z** tem valores positivos, pois o campo tem sentido de "cima para baixo". Na região da AMAS onde o estudo foi realizado, no hemisfério sul, o campo tem sentido negativo por convenção, pois o campo tem sentido "de baixo para cima". Portanto os valores da variação da componente **Z** apresentados nos gráficos de intensidades das três componentes do campo geomagnético na estação magnética SMS tem o sinal invertido.

Utilizando o valor RMS das variações diárias das intensidades das componentes **H** e **D** e das variações das intensidades das pulsações contínuas Pc5 nas componentes **H** e **D** de cada dia escolhido para a análise, podemos comparar quais dias (calmos ou perturbados) e qual fase do ciclo solar (máximo ou mínimo solar) teve maior variação diária e/ou ocorrência de pulsações Pc5, os valores se encontram nas tabelas: 5.13, 5.14.

^{*} marcação vermelha = dados não disponíveis (KOU 24/dez = não utilizado); marcação amarela = dia substituto.

Dias Calmos*

Tabela 5.13: Valores RMS das pulsações Pc5 dos dias calmos para SMS, VSS e KOU.

ESTAÇÃO	DIA	Кр	Ар	Ano	FASE SOLAR	Pc5 - RMS		Pc5 - RMS (média)		Pc5 - Std.Dev	
						H (nt)	D (nt)	H (nt)	D (nt)	H (nt)	D (nt)
	04/fev	2+	1			0,174	0,167		0,104	0,025	0,037
	28/jun	3-	2		MÁXIMO	0,114	0,07	0,138			
	31/mai	40	2	2001		0,114	0,082				
	01/jan	4+	2			0,151	0,101				
SMS (São	28/jul	4+	3			0,137	0,103				
Martinho da Serra)											
	01/dez	0	0			0,142	0,085				
	02/dez	0	0			0,232	0,16				0,052
	22/nov	0+	0	2008	MÍNIMO	0,242	0,175	0,189	0,121	0,055	
	13/set	1-	0			0,119	0,051				
	21/nov	1-	0			0,21	0,136				

_						H (nt)	D (nt)	H (nt)	D (nt)	H (nt)	D (nt)
	04/fev	2+	1								
	28/jun	3-	2	2001	MÁXIMO	0,108	0,025			0,012	0,002
	31/mai	40	2			0,104	0,028	0,118	0,028		
	01/jan	4+	2			0,133	0,028				
	28/jul	4+	3			0,125	0,033				
	18/fev	5-	3			0,121	0,028				
VSS											
(Vassouras)	01/dez	0	0								
	02/dez	0	0			0,145	0,035				
	22/nov	0+	0								
	13/set	1-	0	2000		_		0.440	0.020	0.024	0.005
	09/out	1-	0	2008	MINIMO	0,139	0,028	0,119	0,028	0,031	0,005
	21/nov	1-	0			0,143	0,031				
	12/set	10	1			0,084	0,023				
	02/abr	20	1			0,088	0,023				

						H (nt)	D (nt)	H (nt)	D (nt)	H (nt)	D (nt)
	04/fev	2+	1			0,099	0,108				
	28/jun	3-	2			0,081	0,087				
	31/mai	40	2	2001	MÁXIMO	0,078	0,107	0,087	0,095	0,01	0,014
	01/jan	4+	2			0,085	0,074				
	28/jul	4+	3			0,096	0,103				
KOU (Kourou)											
	01/dez	0	0			0,071	0,064	·			
	02/dez	0	0			0,086	0,09				
	22/nov	0+	0	2008	MÍNIMO	0,099	0,078	0,085	0,075	0,01	0,012
	13/set	1-	0			0,082	0,063				
	21/nov	1-	0			0,087	0,084				

Dias Perturbados*

Tabela 5.14: Valores RMS das pulsações Pc5 dos dias perturbados para SMS, VSS e KOU.

ESTAÇÃO	DIA	Кр	Ар	Ano	FASE SOLAR	Pc5 - RMS	Pc5 - RMS (média)			Pc5 - Std.Dev		
						H (nt)	D (nt)	H (nt)	D (nt)	H (nt)	D (nt)	
	31/mar	610	192	-		6,47	2,14			2,699	0,785	
	06/nov	540	142		MÁXIMO	4,69	1,35	1	1,698			
	22/out	49-	96	2001		2,91	1,71	4,62				
	24/nov	47-	104			7,89	2,68					
	08/abr	39-	63			1,14	0,61					
SMS (São Martinho da Serra)												
,	27/mar	34+	36			0,484	0,33					
	11/out	30+	34			0,726	0,365				0,0709	
	29/fev	330	31	2008	MÍNIMO	0,754	0,454	0,699	0,365	0,1336		
	04/set	30+	31			0,688	0,269					
	09/mar	320	30			0,845	0,407					

						H (nt)	D (nt)	H (nt)	D (nt)	H (nt)	D (nt)
	31/mar	610	192	2001	MÁXIMO	5,221	0,51		0,407	2,336	0,209
	06/nov	540	142			3,662	0,35				
	22/out	49-	96			2,175	0,346	3,792			
VSS (Vassouras)	24/nov	47-	104			6,876	0,698				
	08/abr	39-	63			1,027	0,135				
	27/mar	34+	36			0,414	0,065				
	11/out	30+	34								0,011
	29/fev	330	31			0,522	0,082				
	04/set	30+	31	2008	MÍNIMO	0,592	0,065	0,54	0,069	0,105	
	09/mar	320	30			0,689	0,081				
	03/out	23+	14			0,483	0,056				

						H (nt)	D (nt)	H (nt)	D (nt)	H (nt)	D (nt)
	31/mar	610	192	-	MÁXIMO	4,349	1,916		1,608	1,364	0,611
	06/nov	540	142			2,262	1,044				
	22/out	49-	96	2001		1,489	1,156	3,016			
	24/nov	47-	104	2001		3,967	2,318				
	08/abr	39-	63								
	24/dez	29-	23								
KOU (Kourou)											
	27/mar	34+	36			0,311	0,243			-	0,028
	11/out	30+	34			0,342	0,283		0,261		
	29/fev	330	31	2008	MÍNIMO	0,34	0,244	0,393		0,086	
	04/set	30+	31			0,486	0,237				
	09/mar	320	30			0,489	0,302				
5.4.1 Comparação CM – Cm

A análise dos gráficos das seções 5.2.1.1 e 5.2.2.1 da variação diária das intensidades das 3 componentes vetoriais dos dias calmos do máximo e mínimo solar (CM – Cm), em SMS, VSS e KOU, pode-se notar que basicamente todos os dias obedecem a um padrão natural de um dia geomagneticamente calmo, a componente **H** sobe enquanto as componentes **D** e **Z** decrescem.

Entre as 3 estações magnéticas para os dias calmos do máximo solar nota-se que a média do valor RMS das pulsações Pc5 na componente **H** tem um decréscimo sutil sendo SMS > VSS > KOU. Isto pode estar atribuido a maior precipitação de partículas de altas energias no interior da AMAS, o que já era esperado. Nota-se a presença de manchas solares e buracos coronais voltados para a Terra em todos os dias calmos do máximo solar. A velocidade média do "vento solar" foi de 323,24km/s.

Entre as 3 estações magnéticas para os dias calmos do mínimo solar nota-se que a média do valor RMS das pulsações Pc5 na componente **H** também tem um decréscimo sutil sendo SMS > VSS > KOU, com valores CM – Cm de VSS e KOU praticamente iguais. A maior diferença está com a comparação CM – Cm da estação SMS, que apresentou a média dos valores RMS da Pc5 na componente **H** do Cm superiores ao dias CM. Isto é interessante pois nos dias Cm quase não há presença de manchas solares, apenas buracos coronais. A velocidade média do "vento solar" chegando na Terra é relativamente menor em Cm (306,68Km/s). A densidade de de protons por cm³ também é menor nos dias Cm do que CM. Nas simulações do campo geomagnético para os dias calmos do mínimo (Cm) nota-se a pouca pressão de onda de choque do "vento solar" na região da magnetosfera.

Entre as estações magnéticas a maior diferença da média RMS (Pc5) da componente **H** foi entre SMS e KOU, com SMS > KOU. Deixando claro que no interior da região da AMAS há mais intensidade das pulsações Pc5 do que no seu exterior.

5.4.2 Comparação PM – Pm

A análise dos gráficos das seções 5.2.1.2 e 5.2.2.2 da variação diária das intensidades das 3 componentes vetoriais dos dias perturbados do máximo e mínimo solar (PM – Pm), em SMS, VSS e KOU, pode-se notar que cada dia perturbado tem sua característica única, não obedecendo padrões, visto que dependem de fatores como velocidade e intensidade do vento solar ao interagir com o campo geomagnético. Nas simulações do campo geomagnético para os dias perturbados do mínimo (Pm) nota-se a grande pressão que o "vento solar" exerce sobre o campo geomagnético. A cada "brisa" mais intensa do "vento solar" o campo geomagnético responde de maneira única e diferente em cada situação. Nota-se também a concentração de partículas ionizadas na face noturna da Terra.

Entre as 3 estações magnéticas para os dias perturbados do máximo e do mínimo solar nota-se que a média do valor RMS das pulsações Pc5 na componente **H** tem um decréscimo sendo SMS > VSS > KOU. Mostrando que realmente há maior intensidade de pulsações Pc5 no interior da AMAS.

Nos dias perturbados do máximo solar há várias manchas solares presentes e também buracos coronais, atingindo uma média de velocidade do "vento solar" de 611,86km/s. Porém nos dias perturbados do mínimo solar não há quase nenhuma presença de manchas solares, mesmo assim há ocorrência de uma velocidade elevada do "vento solar", atingindo uma média de 626,36Km/s, isto mostra que os buracos coronais também são fontes de vento solar de alta velocidade.

Entre as estações magnéticas a maior diferença da média RMS (Pc5) da componente **H** foi entre SMS e KOU, com SMS > KOU. Reforçando a idéia de que no interior da região da AMAS há mais intensidade das pulsações Pc5 do que no seu exterior.

5.4.3 Comparação PM – CM e Pm – Cm

Com a comparação entre os dias perturbados e calmos do máximo solar e entre os dias perturbados e calmos do mínimo solar, através das tabelas 5.13 e 5.14 (PM – CM e Pm – Cm), notamos que a atividade solar influência bastante na intensidade das pulsações Pc5 para todas as estações magnéticas analisadas, a maior diferença sendo de SMS (PM- CM), no interior da AMAS.

Para a comparação Pm – Cm utilizando as simulações do campo geomagnético, vemos que a pressão exercida na magnetosfera pelo "vento solar" é muito diferente em cada período. Nos dias calmos do mínimo há uma pressão pouco intensa, já nos dias perturbados do mínimo há uma pressão muito intensa sobre a magnetosfera.

5.4.4 Comparação PM – Cm e Pm – CM

Com a comparação entre os dias perturbados do máximo solar com os dias calmos do mínimo solar (PM – Cm) e dos dias perturbados do mínimo solar com os dias calmos do máximo solar (Pm – CM), através das tabelas 5.13 e 5.14, notamos que para as duas fases que os dias perturbados das 3 estações magnéticas tem um valor RMS da componente **H** mais elevado do que os dias calmos.

Os valores RMS da componente **H** durante os dias calmos do máximo e do mínimo solar são aproximadamente iguais, portanto a diferença dos valores na comparação PM – CM e Pm – CM são aproximadamente idênticas a PM – CM e Pm – Cm.

CAPÍTULO 6 – Conclusões

6.1. Conclusões

Mais uma etapa do Projeto de Pesquisa sobre a investigação da intensidade e ocorrência das pulsações Pc5 relacionando com o ciclo solar e com a região da AMAS foi concluida. Os dados obtidos, processados e organizados fornecem uma boa base para análises futuras, alcançando uma riqueza de detalhes cada vez maior sobre os fenômenos ocorridos na magnetosfera. Para análises futuras espera-se obter os espectros de potência e polarização da pulsação Pc5 em cada dia. Está programado uma análise abrangendo fases intermediárias do ciclo solar bem como maior amostra de dias e estações a serem analisadas, correlacionando os dados já obtidos da pulsação Pc5 com o decréscimo de múons no Observatório Espacial do Sul (OES/CRS/CCR/INPE - MCT).

Chegamos a cada vez mais detalhes sobre a evidencia de que a intensidade na variação de pulsações de períodos longos (Pc5) são diretamente ligadas ao período de maior atividade solar, a fase de máximo solar.

Todas as atividades de embasamento teórico em Geofísica Espacial e Geomagnetismo, pesquisa, coleta de dados, processamento e organização foram feitas no Laboratório de Física Solar, do Meio Interplanetário e Magnetosferas e no Observatório Espacial do Sul do Centro Regional Sul de Pesquisas Espaciais – CRS/CCR /INPE – MCT.

O estudo das pulsações de períodos longos fornece informações importantes de como a interação se desenvolve na região da magnetosfera e como o campo geomagnético atua em determinadas condições do clima espacial. A variação rápida do campo geomagnético depende principalmente da atividade Solar e pode apresentar escala temporal de dias, horas, minutos e segundos. Em período de maior atividade solar, caracterizado pelo máximo solar, têm-se perturbações maiores na intensidade do campo geomagnético, podendo ocorrer uma tempestade geomagnética.

Em casos extremos de tempestades geomagnéticas pode haver bloqueio total de comunicações de alta frequência (HF) no lado diurno inteiro da Terra, podendo se estender para o lado noturno. Perde-se a precisão de sinais de baixas freqüências utilizados em navegação aérea e marítima, tornando insegura a navegação. Há danos

sérios e inevitáveis de radiação para astronautas ao realizar atividades extra-veicular (AEV). Alto nível de radiação para pessoas em vôos de altas altitudes (aproximadamente 100 radiografias de raios-x). Sistemas elétricos em geral podem se colapsar (linhas de alta tensão, etc). A aurora poderá ser vista em latitudes muito baixas (Dutra, 2004).

Portanto, é importante o estudo e monitoramento da atividade geomagnética e da interação Sol - Terra para melhor compreendermos os fenômenos ocorridos no nosso planeta, na nossa atmosfera. Para garantir a sobrevivência do nosso mundo cada vez mais eletrônico e tecnológico, pois "dependemos" de aparelhos sensíveis a perturbações eletromagnéticas, é necessário desenvolver e aperfeiçoar ao longo do tempo dispositivos ou métodos capazes de prever com uma boa margem de segurança e antecedência a ocorrência de uma tempestade geomagnética.

Referências

- Amarante, J.A.A. Tópicos gerais sobre geomagnetismo e estudo sobre a ocorrência de micropulsações em São José dos Campos. Conselho Nacional de Pesquisas, São José dos Campos, SP, Brasil. Relatório Interno CNAE-LAFE-048, 1966.
- [2] Campbell, W.H. Introduction to Geomagnetic Fields. Cambridge University Press, 1997.
- [3] Dutra, S.L.G. Noções Básicas de Geomagnetismo. INPE, São José dos Campos, dezembro de 2004 (texto preliminar).
- [4] Jacobs, J.A.; Kato, Y.; Matsushita, S.; Troitskaya, V.A. Classification of Geomagnetic Micropulsations. Journal of Geophysical Research, 69(1):180–181, Jan. 1964.
- [5] Pinto, O., Jr., Gonzalez, W.D. Anomalia magnética Brasileira. INPE, São José dos Campos, 1989.
- [6] Samson, J.C. Geomagnetic Pulsations and Plasma Waves in the Earth's Magnetosphere. In: Jacobs, J.A. ed., Geomagnetism, London, Academic Press, 4:481–592, 1991.
- [8] Thomson, D. J. Spectrum Estimation and Harmonic Analysis. IEEE Proc., 70(9):1055–1096, 1982.
- [9] Zanandrea, A. Estudo das Micropulsações Geomagnéticas em Latitudes Muito Baixas, no Brasil. INPE, São José dos Campos, 1998.
- [10] Zanandrea, A. Micropulsações Geomagnéticas em Santa Maria RS. INPE, São José dos Campos, maio de 1994.

[11] De Lucas, A., Estudo da Dinâmica da Corrente de Anel Durante a Fase Principal de Supertempestades Geomagnéticas, INPE, São José dos Campos, 2007. [12] GELVAM ANDRÉ HARTMANN. A Anomalia Magnética do Atlântico Sul:

Causas e Efeitos. USP, São Paulo, 2005.

[13] Luís Eduardo Antunes Vieira., Estruturas Geoefetivas e a Previsão de

Tempestades Magnéticas Intensas, INPE, São José dos Campos, 2002.

ANEXOS

ANEXOS 1 – Programas em Linguagem MATLAB Utilizados

Programa CONVNAROD1440.M

```
%reads Narod_Mag data GPS Timing 2 second sampling
%Writes two data files, one for 2 second data 43200 points a day and
% the other for one minute average data 1440 points a day
clear all
str_temp1 = input('Filename: ','s');
str_temp1 = sprintf('%s.dat',str_temp1);
data = load(str_temp1);
%t=data(:,1);
h = data(:,3);
d = data(:, 4);
z = data(:,5);
n=length(h);
t=1:length(h)
t=t / length(h)*24;
str_temp = input('filename ( 2 sec): ','s');
fid = fopen(str_temp,'w');
for i=1:n
    fprintf(fid,'%6d \t %8.2f \t %8.2f \t %8.2f\n',i,h(i),d(i),z(i));
end
fclose(fid);
8_____
str_temp2=input('filename Output 1: ','s');
fileout1 = sprintf('%s.dat',str_temp2);
fid = fopen(fileout1,'w');
k = 1;
for i=1:30:(length(h)-29)
    i0 = i;
    i1 = i0+29;
    h1(k) = mean(h(i0:i1));
    d1(k) = mean(d(i0:i1));
    z1(k) = mean(z(i0:i1));
    t1(k) = mean(t(i0:i1));
    fprintf(fid,'%8d \t %8.3f \t %8.3f \t
%8.3f\n',k,h1(k),d1(k),z1(k));
   k = k+1;
end
fclose(fid);
8_____
figure(1)
ndim=3;
nn=1;
subplot(ndim,1,nn), plot(t,h,t1,h1);
ylabel('H (nT)');
grid on
title(str_temp1)
set(gca,'XTickLabel','');
nn=nn+1;
```

```
subplot(ndim,1,nn), plot(t,d,t1,d1);
ylabel('D (nT)');
grid on
set(gca,'XTickLabel','');
nn=nn+1;
subplot(ndim,1,nn), plot(t,z,t1,z1)
ylabel('Z (nT)');
grid on
nn=nn+1;
xlabel('Time in Hours')
a=['!rem grafico00.tif' str_temp1 '.tif']
eval (a)
```

Programa FIGMTM5.M

```
clear all
str_temp1 = input('Filename: ','s');
str temp1 = sprintf('%s.dat',str temp1);
data = load(str_temp1);
il=input('inicio: ')
i2=input(' fim: ' )
t=data(i1:i2,1)*60/3600;
xx=data(i1:i2,2);
yy=data(i1:i2,3);
zz=data(i1:i2,4);
N=length(xx);
d=60.0;
W=2;
%---filtragem dos dados-----
fl=1/900;
fh=1/180;
fs=1/60;
[x]=bandpass(xx',fs,fl,fh,8);
[y]=bandpass(yy',fs,fl,fh,8);
[z]=bandpass(zz',fs,fl,fh,8);
%___
[E,VV]=dpss(N,W);
k=length(E(1,:));
for i=1:k,
  tapsum=0.0;
  tapsq=0.0;
  tapsum=sum(E(:,i));
  tapsq=sum((E(:,i)).^2);
  aa=sqrt(tapsq/N);
  E(:,i) = E(:,i) / aa;
end
[SX,c,wkx,skx] = mtm(x,W,'dap',.95,E,VV);
[SY,c,wky,sky]=mtm(y,W,'dap',.95,E,VV);
[SZ, c, wkz, skz] = mtm(z, W, 'dap', .95, E, VV);
for i=1:length(SX)
  freq(i)=(i-1)/(2*(length(SX)-1)*d);
  mx=(skx(i,:))';
  my=(sky(i,:))';
% mz=(skz(i,:))';
  m=[mx,my];
  [U,S,V] = svd(m);
  pxy(i) = V(2,1) / V(1,1);
  fxy(i)=atan2(imag(pxy(i)),real(pxy(i)))*180/pi;
  grau(i)=sqrt((S(1,1)-S(2,2))^2/(S(1,1)+S(2,2))^2)*100;
  psp(i)=S(1,1)-S(2,2);
  V(3,1) = 0 + 0i;
  [elp(i),ang(i)]=POLAR(V(1,1),V(2,1),V(3,1));
end
figure
% str_temp = sprintf('Filename: %s (%d:%d)',str_temp1);
```

Centro Regional Sul de Pesquisas Espaciais– CRS/INPE – MCT_____ 148 Relatório Final de Atividades 2010

```
tlim=[round(min(t)) round(max(t))];
xlim=[round(min(x)-0.5) round(max(x)+0.5)];
ylim=[round(min(y)-0.5) round(max(y)+0.5)];
subplot(2,1,1),plot(t,x,'k'),axis([tlim xlim]),ylabel('H (nT)'),
text(min(t),max(x)*1.2,str_temp1);
subplot(2,1,2),plot(t,y,'k'),axis([tlim ylim]),
xlabel('Hours (LT)'),ylabel('D (nT)')
hold off
per=1./freq;
figure
res=[per',psp',grau',elp',ang'];
xlim=[300 1000];
xticks=linspace(min(xlim),max(xlim),5);
subplot(2,2,1)
plot(per,psp,'k'),axis([xlim min(psp) max(psp)]),ylabel('PPD
(A^2/Hz)'
set(gca,'XTick',xticks);
text(min(xlim),1.05*max(psp),'(a)');
text(min(xlim)*1.5,1.05*max(psp),str_temp1);
hold off
subplot(2,2,2)
plot(per,grau,'k'),axis([xlim 0 110]),ylabel('Degree of Polarization')
set(gca,'XTick',xticks);
text(min(xlim),116,'(b)');
hold off
subplot(2,2,3),
plot(per,elp,'k'),axis([xlim -1 1]),xlabel('Period
(s)'),ylabel('Ellipticity'),
set(gca,'XTick',xticks);
text(min(xlim),1.1,'(c)');
hold off
subplot(2,2,4)
plot(per,ang,'k'),axis([xlim -100 100]),xlabel('Period
(s)'),ylabel('Azimuth')
set(gca,'XTick',xticks);
text(min(xlim),110,'(d)');
hold off
```

%save d:\user\ademil\pola\res.dat res -ascii

Programa INTERMAGNET_FIGMTM5

```
%CONV INTERMAGNET DATA TO USE IN FIGMTM5 and FIGMTM6 PROGAMS
clear all
str_temp1 = input('Filename: ','s');
str_temp1 = sprintf('%s.min',str_temp1);
data = load(str_temp1);
%t=data(:,1);
h = data(:, 4);
d = data(:,5);
z = data(:,6);
n=length(h);
t=1:length(h)
t=t / length(h)*24;
str_temp = sprintf('%s.dat',str_temp1);
fid = fopen(str_temp,'w');
for i=1:n
    fprintf(fid,'%6d \t %8.2f \t %8.2f \t %8.2f\n',i,h(i),d(i),z(i));
end
fclose(fid);
clear all
str_temp1 = input('Filename: ','s');
str_temp1 = sprintf('%s.dat',str_temp1);
data = load(str_temp1);
i1=input('inicio: ')
i2=input(' fim: ' )
t=data(i1:i2,1)*60/3600;
xx=data(i1:i2,2);
yy=data(i1:i2,3);
zz=data(i1:i2,4);
N=length(xx);
d=60.0;
W=2;
%---filtragem dos dados-----
fl=1/900;
fh=1/180;
fs=1/60;
[x]=bandpass(xx',fs,fl,fh,8);
[y]=bandpass(yy',fs,fl,fh,8);
[z]=bandpass(zz',fs,fl,fh,8);
8_____
```

[E,VV]=dpss(N,W);

```
k=length(E(1,:));
for i=1:k,
  tapsum=0.0;
  tapsq=0.0;
  tapsum=sum(E(:,i));
  tapsq=sum((E(:,i)).^2);
  aa=sqrt(tapsq/N);
  E(:,i) = E(:,i) / aa;
end
[SX,c,wkx,skx] = mtm(x,W,'dap',.95,E,VV);
[SY,c,wky,sky]=mtm(y,W,'dap',.95,E,VV);
[SZ,c,wkz,skz]=mtm(z,W,'dap',.95,E,VV);
for i=1:length(SX)
  freq(i)=(i-1)/(2*(length(SX)-1)*d);
  mx=(skx(i,:))';
 my=(sky(i,:))';
% mz=(skz(i,:))';
  m = [mx, my];
  [U,S,V] = svd(m);
  pxy(i) = V(2,1) / V(1,1);
  fxy(i)=atan2(imag(pxy(i)),real(pxy(i)))*180/pi;
  grau(i) = sqrt((S(1,1)-S(2,2))^2/(S(1,1)+S(2,2))^2)*100;
  psp(i)=S(1,1)-S(2,2);
  V(3,1) = 0 + 0i;
  [elp(i),ang(i)]=POLAR(V(1,1),V(2,1),V(3,1));
end
figure
% str_temp = sprintf('Filename: %s (%d:%d)',str_temp1);
tlim=[round(min(t)) round(max(t))];
xlim=[round(min(x)-0.5) round(max(x)+0.5)];
ylim=[round(min(y)-0.5) round(max(y)+0.5)];
subplot(2,1,1),plot(t,x,'k'),axis([tlim xlim]),ylabel('H (nT)'),
text(min(t),max(x)*1.2,str_temp1);
subplot(2,1,2), plot(t,y,'k'), axis([tlim ylim]),
xlabel('Hours (LT)'),ylabel('D (nT)')
hold off
per=1./freq;
figure
res=[per',psp',grau',elp',ang'];
xlim=[300 1000];
xticks=linspace(min(xlim),max(xlim),5);
subplot(2,2,1)
plot(per,psp,'k'),axis([xlim min(psp) max(psp)]),ylabel('PPD
(A^2/Hz)')
set(gca,'XTick',xticks);
text(min(xlim),1.05*max(psp),'(a)');
text(min(xlim)*1.5,1.05*max(psp),str_temp1);
hold off
subplot(2,2,2)
plot(per,grau,'k'),axis([xlim 0 110]),ylabel('Degree of Polarization')
set(gca,'XTick',xticks);
text(min(xlim),116,'(b)');
hold off
subplot(2,2,3),
plot(per,elp,'k'),axis([xlim -1 1]),xlabel('Period
(s)'),ylabel('Ellipticity'),
```



```
set(gca,'XTick',xticks);
text(min(xlim),1.1,'(c)');
hold off
subplot(2,2,4)
plot(per,ang,'k'),axis([xlim -100 100]),xlabel('Period
(s)'),ylabel('Azimuth')
set(gca,'XTick',xticks);
text(min(xlim),110,'(d)');
hold off
```

%save d:\user\ademil\pola\res.dat res -ascii

ANEXOS 2 – Resumos Submetidos e Aceitos em eventos (2010)

SOUTH ATLANTIC MAGNETIC ANOMALY ANALYSES OF PC5 GEOMAGNETIC PULSATIONS VARIATION WITH SOLAR CYCLE

WILLIAN RIGON SILVA [1]; SEVERINO LUIZ GUIMARÃES DUTRA [2]; NELSON JORGE SCHUCH [1]; NALIN BABULAL TRIVEDI [2]; ANDIRLEI CLAUDIR DA SILVA [1] FERNANDO DE SOUZA SAVIAN [1];

[1] Southern Regional Space Research Center - CRS/INPE - MCT, in collaboration with the

Santa Maria Space Science Laboratory - LACESM/CT- UFSM, Santa Maria, RS, Brasil.

[2] National Institute for Space Research - DGE/CEA/INPE - MCT, São José dos Campos, SP, Brasil.

Abstract

A basic investigation of the Ultra-low frequency (ULF) waves in the Pc5 band (1.67 - 6.67 mHz) at different phases of the solar cycle in the South Atlantic Magnetic Anomaly (SAMA) is presented.

The geomagnetic field data were obtained using a three axis fluxgate magnetometer (H, D and Z components) at the Southern Space Observatory (SSO/CRS/INPE - MCT, São Martinho da Serra (29.42°S, 53.87°W, 480m a.s.l.), RS, Brazil. In order to highlight the Pc5 band pulsations, a digital filtering is applied in the daily geomagnetic field variation.

The data for the analyzed days were selected from the IAGA defined days and planetary Kp index (Bartels Musical Diagram). Five perturbed and five quiet geomagnetic days for each solar cycle phase (solar maximum and solar minimum) were selected.

The analyses correlate data from the Pc5 amplitudes with solar wind parameters (velocity, temperature and density) from the ACE satellite and SOHO satellite images. The results show that the Pc5 pulsations have highest amplitude for the solar maximum, mainly in the geomagnetic perturbed days, reaching a top of 134,45 nT for the H component on November 24th, 2001.

Centro Regional Sul de Pesquisas Espaciais– CRS/INPE – MCT_____154 Relatório Final de Atividades 2010

38th COSPAR Scientific Assembly 2010

Space Plasmas in the Solar System, including Planetary Magnetospheres (D) Energy Transport from Solar Wind to Magnetosphere and Ionosphere: Co-ordinated Satellite and Ground-based Observations and Modelling (D34)

Consider as poster only.

LONG PERIODS (1 - 10 MHZ) GEOMAGNETIC PULSATIONS VARIATION WITH SOLAR CYCLE IN SOUTH ATLANTIC MAGNETIC ANOMALY

Willian Rigon Silva, von alucard@hotmail.com

Southern Regional Space Research Center { CRS/INPE { MCT in collaboration with the Space Science Laboratory of Santa Maria { LACESM/CT { UFSM, Santa Maria, Brazil, Santa Maria, Brazil

Nelson Jorge Schuch, njschuch@lacesm.ufsm.br Southern Regional Space Research Center { CRS/INPE { MCT in collaboration with the Space Science Laboratory of Santa Maria { LACESM/CT { UFSM, Santa Maria, Brazil, Santa Maria - RS, Brazil

Severino Luiz Guimar~aes Dutra, dutra@dge.inpe.br National Institute for Space Research-INPE-Brazil, S~ao Jos_e Dos Campos, Brazil

Nalin Babulal Trivedi, trivedi@dge.inpe.br **INPE**, Brazil

Andirlei Claudir Da Silva, andibuda@yahoo.com.br Southern Regional Space Research Center { CRS/INPE { MCT in collaboration with the Space Science Laboratory of Santa Maria { LACESM/CT { UFSM, Santa Maria, Brazil, Santa Maria, Brazil

Fernando Souza Savian, savian.fernando@gmail.com Southern Regional Space Research Center { CRS/INPE { MCT in collaboration with the Space Science Laboratory of Santa Maria { LACESM/CT { UFSM, Santa Maria, Brazil, Brazil

Tardelli Ronan Coelho Stekel, tardelli@lacesm.ufsm.br Southern Regional Space Research Center { CRS/INPE { MCT in collaboration with the Space Science Laboratory of Santa Maria { LACESM/CT { UFSM, Santa Maria, Brazil, Santa Maria, Brazil

Josemar De Siqueira, josemarsiqueira@gmail.com Brazil

Cassio Espindola Antunes, cassio@lacesm.ufsm.br Southern Regional Space Research Center { CRS/INPE { MCT in collaboration with the Space Science Laboratory of Santa Maria { LACESM/CT { UFSM, Santa Maria, Brazil, Santa Maria, Brazil

The occurrence and intensity of the geomagnetic pulsations Pc-5 (2 - 7 mHz) and its relationship with the solar cycle in the South Atlantic Magnetic Anomaly (SAMA) is presented. The study of geomagnetic pulsations is important to help the understanding of the physical processes that occurs in the magnetosphere region and help to predict geomagnetic storms. The fluxgate magnetometers H, D and Z, three axis geomagnetic _eld data from the Southern Space Observatory - SSO/CRS/INPE - MCT, São Martinho da Serra (29.42_S, 53.87_W, 480m a.s.l.), RS, Brasil, were analyzed and correlated with the solar wind parameters (speed, density and temperature) from the ACE and SOHO satellites. A digital _ltering to enhance the 2{7 mHz geomagnetic pulsations was used. Five quiet days and _ve perturbed days in the solar minimum and in the solar maximum were selected for this analysis. The days were chosen based on the IAGA de nition and on the Bartels Musical Diagrams (Kp index) for 2001 (solar maximum) and 2008 (solar minimum). The biggest Pc-5 amplitude averages di_erences between the H-component is 78,35 nT for the perturbed days and 1,60nT for the quiet days during the solar maximum. For perturbed days the average amplitude during the solar minimum is 8,32 nT, con_rming a direct solar cycle inuence in the geomagnetic pulsations intensity for long periods.

ANEXOS 3 – Certificados de Participação em Eventos

Participou da 23ª Jornada Acadêmica Integrada da PERÍODOS LONGOS (1.0 10 MHZ) NA REGIÃO DA ANOMALIA MAGNÉTICA DO ATLÂNTICO GENES RAVIAZI I FARRAGUI Chole do GAP - CT - UFSM Universidade Federal de Santa Maria, de 03 a 06 de Novembro de 2008, como APRESENTADOR 14 VARIAÇÃO COM O CICLO SOLAR DAS PULSAÇÕES GEOMAGNÉTICAS DE SUL AMAS SICINPE 2008 WILLIAN RIGON SILVA Certificamos que do trabalho e e . 6 1 T 1 6 ľ L -12/211 . 1953 81 --1 4 under Dete

Certificado	ficamos que	cipou da 24ª Jornada Acadêmica Integrada, da Universidade ral de Santa Maria, entre os dias 10 e 13 de novembro de 2009,	CO-AUTOR do trabalho ÃO ENTRE ATIVIDADE SOLAR E VARIAÇÕES GEOMAGNÉTICAS NA REGIÃO DA ANOMALIA MAGNÉTICA DO O SUL	Consistent to the second and the sec
	Certifico	participo	COMO C RELAÇÃO E ATLÂNTICO SU	Contise 24º JU

GOVERNO FEDERAL Conferimos o presente Certificado a WILLIAN RIGON SILVA por sua participação no Seminário de Iniciação Científica do INPE-SICINPE, realizado em São José dos Campos-SP, de 06 a 08 de julho de 2009 e apresentação do trabalho intitulado: "VARIAÇÃO COM O CICLO SOLAR DAS PULSAÇÕES GEOMAGNÉTICAS DE PERÍODOS LONGOS (1.0-10 mHz) NA REGIÃO DA ANOMALIA MAGNÉTICA DO ATLÂNTICO SUL - AMAS", orientado pelo(a) Prof(a). Severino Luiz Ministério da Ciência e Tecnologia PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIACÃO CIENTÍFICA - PIBIC/INPE/CNPq São José dos Campos, 08 de julho de 2009. Coordenador Institucional do PIBIC Dr José Carlos Beceneri E CORNELL 0.00 INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS MINISTÉRIO DA CIÊNCIA E TECNOLOGIA Guimarães Dutra.

INPE - 454

Integrada do Centro de Ciências Naturais e Exatas, Curso Física, no período de 30 de setembro a Certificamos que WILLIAN RIGON SILVA participou da 8ª Semana Acadêmica Martha Bohrer Adaime lettra lda Diretora do CCNE UNIVERSIDADE FEDERAL DE SANTA MARIA, 10 de novembro de 2009 CERTIFICADO 02 de outubro de 2009, perfazendo um total de 18 horas. Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas José Antônio Trindade Borges da Costa Coordenador do Curso de Física Ministério da Educação antro M. dea L

	is teólogos: a vida e a obra astronómica de Galileu Galileir , com Prof. Dr.		or Rundsthen Nader	com Prof. Pedro Faria	UNIVERSIDADE FEDERAL D	Ministério da Educação Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Direção	Registrado à fl. 38 do Livro respectivo n 02, sob registro n. 0026 Santa Maria, novembro de 2009.	
PROGRAMAÇÃO:	Quarta-feira - 30/09 08:30 – 10:00 MINICURSO 10:30 – 11:30 - Sessão Planetário para os cursos de FÍSICA 10:30 – 11:30 - Estagio supervisionado em Física 16:00 – 17:00 - Lançamento do Livro A Vída e a Obra Astronômica de Galileu Galileu 19:30 – 21:30 - Solenidade de abertura e Palestra Integrada I - "Entre o céu dos astrônomos e o céu o Antônio Augusto Vídeira	Quinta-feira – 01/10	08:30 – 10:00 MINICURSO 13:30 – 15:30 - Palestra Integrada II - "O Uso da Astronomia como ferramenta de ensino", com Prof. 15:30 – 17:00 - Palestra "O lado escuro do universo", com Profa. Thaisa Bergmann - UFRGS 20:30 – 21:30 - Visita ao Telescópio da UFSM	Sexta-feira – 02/10 8:30 – 09:30 - Palestra Integrada III - "A Química das Sensações e a Interdisciplinaridade no Ensino" 8:30 – 09:30 - Palestra Integrada III - "A Química das Sensações e a Interdisciplinaridade no Ensino" Instituto de Química – UNCAMP Campinas, São Paulo 16:00 – 17:30 - Palestra "Planetas Extra-Solares e a vida fora da Terra", com Eduardo Balbinot - OEI 16:00 – 20:30 - Palestra "A fonte de Entraçia das galáxias de núcleo ativo", com Rogério Riffel - OEIV	20:30 - 22:00 - OEI - Observações de alto profinemento de outrativa en profile a			