

PROPRIEDADES ESPECTROSCÓPICAS DE SISTEMAS DIATÔMICOS DE INTERESSE ATMOSFÉRICO

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Marcelo Motta Venchiarutti (USP, Bolsista PIBIC/CNPq) E-mail: motta_motta@hotmail.com

Dr. Patrícia Regina Pereira Barreto (LAP/INPE, Orientadora) E-mail: patricia@plasma.inpe.br

COLABORADORES

Dr. Vladir Wagner Ribas(LAP/INPE)

Julho de 2010

AGRADECIMENTOS

Agradeço a todos aqueles que me apoiaram e acreditaram na minha dedicação.

À orientadora Dra. Patrícia Regina Pereira Barreto por me encaminhar na área científica, pelo conhecimento que através dela adquiri neste trabalho, pela paciência e pela orientação e apoio deste trabalho.

Ao Dr. Vladir Wagner Ribas pelo conhecimento que me foi passado, pelos conselhos e pelo auxilio durante este trabalho.

Ao Instituto Nacional de Pesquisas Espaciais - INPE pela oportunidade de estudos e utilização de suas instalações.

Aos meus familiares em especial aos meus pais que me apoiaram e me aconselharam nas decisões em todas as fases de minha vida.

À todos os meus amigos em especial à Jessica Akemi pelo incentivo e compreensão.

RESUMO

O objetivo deste trabalho é a caracterização dos sistemas atômicos de interesse ambiental visando cálculos posteriores de energia de interação, em cluster de Van der Waals comuns na atmosfera. Neste trabalho serão abordados os diátomos H₂, OH, CO, O₂, N₂, SO, NO neutros e carregados e alguns triátomos como o NO₂, CO₂ e SO₂. Para caracterizar os sistemas diatômicos em questão, duas metodologias foram empregadas: Cálculos diretos de otimização de geometria, freqüência, momento de dipolo, polarizabilidade, entre outras; Construção de superfícies de energia potencial (SEP). A partir da SEPs analítica, a técnica de Dunham será aplicada para se obter uma série de propriedades espectroscópicas. Já para os triátomos foram feitos somente calculos de otimização.

SUMÁRIO

LISTA DE FIGURAS

T	ISTA	DF 1	CABEI	AS
		111		/H \

CAPÍTULO 1 – INTRODUÇÃO9				
CAPÍTULO 2 – FUNDAMENTAÇÃO TEÓRICA	10			
2.1 Métodos <i>ab initio</i>	10			
2.2 Equação de Schrödinger	11			
2.3 Aproximação de Born-Oppenheimer	12			
2.4 Aproximação de Hartree Fock	15			
2.5 Métodos Perturbativos	20			
2.5.1 Teoria de Perturbação de Møller-Plesset	21			
2.5.2 Método Coupled Cluster	27			
2.6 Funções de base	30			
2.7 Superfície de Energia Potencial	33			
2.7.1 Forma Analítica de Rydberg	33			
2.7.2 Técnica de Dunham	34			
CAPÍTULO 3 – RESULTADOS				
3.1.1 Diátomo H ₂				
3.1.2 Diátomo OH				
3.1.3 Diátomo O ₂				
3.1.4 Diátomo CO				
3.1.5 Diátomo N ₂				
3.1.6 Diátomo NO				
3.1.7 Diátomo SO	49			
3.2 Triátomos	50			
3.2.1 Triátomo CO ₂	51			
3.2.3 Triátomo SO ₂	51			
3.2.4 Triátomo NO ₂	51			
CAPÍTULO 4 – CONCLUSÕES	52			
REFERÊNCIAS				

LISTA DE FIGURAS

Figura 1 - Etapas envolvidas na caracterização de sistemas moleculares ^[1]	PÁGINA 10
Figura 2 - Superfície de energia potencial do H ₂ calculada em vários métodos na base cc-PVQZ	37
Figura 3 - Superfície de energia potencial do ${\rm H_2}^+$ calculada em vários métodos na base cc-PVQZ	38
Figura 4 - Superfície de energia potencial do H ₂ calculada em vários métodos na base cc-PVQZ	39
Figura 5 - Superfície de energia potencial do H ₂ , H ₂ ⁺ e H ₂ ⁻ calculada pelo método CCSD(T) na base cc-PVQZ	40
Figura 6 - Superfície de energia potencial do OH, OH ⁺ e OH ⁻ calculada pelo método CCSD(T) na base cc-PVQZ	43
Figura 7 - Superfície de energia potencial do O ₂ calculada pelo método CCSD(T) na base cc-PVQZ	45
Figura 8 - Superfície de energia potencial do CO ⁺ e CO calculada pelo método CCSD(T) na base cc-PVQZ	46
Figura 9 - Superfície de energia potencial doe SO e SOcalculada pelo método CCSD(T) na base cc-PVQZ	50

LISTA DE TABELAS

	PÁGINA
Tabela 1.1.1 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , polarizabilidade (α) e energia de equilíbrio (E) do H_2 obtidos através de cálculos de otimização nos métodos $CCSD(T)$ e $MP2$ variando as bases.	36
Tabela 1.1.2 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , polarizabilidade (α) e energia de equilíbrio (E) do H_2^+ obtidos através de cálculos de otimização no método CCSD(T) variando as bases.	38
Tabela 1.1.3 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , polarizabilidade (α) e energia de equilíbrio (E) do H_2^- obtidos através de cálculos de otimização no método CCSD(T) variando as bases	39
Tabela 1.1.4 - Propriedades espectroscópicas do H ₂ , H ₂ ⁺ e H ₂ ⁻ obtidas através da aplicação da técnica de Dunham nas SEPs calculadas em CCSD(T) e ajustadas por uma função de Rydberg de quinta ordem	40
Tabela 1.1.5 – Elétro afinidade (EA) e pontecial de ionização (PI) para os diátomos H ₂ , H ₂ ⁺ , H ₂ ⁻	41
Tabela 1.2.1 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do OH obtidos através de cálculos de otimização nos métodos CCSD(T) e MP2 variando as bases.	41
Tabela 1.2.2 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do OH^+ obtidos através de cálculos de otimização no método $CCSD(T)$ variando as bases	42
Tabela 1.2.3 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do OH^- obtidos através de cálculos de otimização no método $CCSD(T)$ variando as bases	42
Tabela 1.2.4 - Propriedades espectroscópicas do OH, OH ⁺ e OH ⁻ obtidas através da aplicação da técnica de Dunham nas SEPs calculadas em CCSD(T) e ajustadas por uma função de Rydberg de quinta ordem.	43
Tabela 1.3.1 - Distância de equilíbrio (R_{eq}) , frequência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do O_2 obtidos através de cálculos de otimização nos métodos CCSD(T) e MP2 variando as bases.	44
Tabela 1.3.2 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do ${O_2}^+$ obtidos através de cálculos de otimização no método CCSD(T) variando as bases	44
Tabela 1.3.3 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do O_2^- obtidos através de cálculos de otimização no método CCSD(T) variando as bases	44
Tabela 1.4.1 - Distância de equilíbrio (R_{eq}) , frequência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do CO obtidos através de cálculos de otimização nos métodos CCSD(T) e MP2 variando as bases.	45
Tabela 1.4.2 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do CO^+ obtidos através de cálculos de otimização no método $CCSD(T)$ variando as bases	46

Tabela $1.4.3$ - Distância de equilíbrio (R_{eq}) , frequência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do CO^- obtidos através de cálculos de otimização no método $CCSD(T)$ variando as bases.	46
Tabela 1.5.1 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do N_2 obtidos através de cálculos de otimização nos métodos CCSD(T) e MP2 variando as bases.	47
Tabela 1.5.2 Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do N_2^+ obtidos através de cálculos de otimização no método CCSD(T) variando as bases.	47
Tabela 1.6.1 - Distância de equilíbrio (R_{eq}) , frequência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do NO obtidos através de cálculos de otimização nos métodos CCSD(T) e MP2 variando as bases.	48
Tabela 1.6.2 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do NO^+ obtidos através de cálculos de otimização no método $CCSD(T)$ variando as bases	48
Tabela 1.6.3 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do NO° obtidos através de cálculos de otimização no método $CCSD(T)$ variando as bases	48
Tabela 1.7.1 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do SO obtidos através de cálculos de otimização nos métodos CCSD(T) e MP2 variando as bases.	49
Tabela 1.7.2 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do SO^+ obtidos através de cálculos de otimização no método $CCSD(T)$ variando as bases	49
Tabela 1.7.3 - Distância de equilíbrio (R_{eq}) , frequência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do SO obtidos através de cálculos de otimização no método CCSD(T) variando as bases	49
Tabela 2.1.1 - Distância de equilíbrio (R_{eq}) , Ângulo, freqüências (w_1, w_2, w_3) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do CO_2 obtidos por cálculos de otimização no método MP2 variando as bases	51
Tabela 2.2.1 - Distância de equilíbrio (R_{eq}) , Ângulo, freqüências (w_1, w_2, w_3) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do SO_2 obtidos por cálculos de otimização no método MP2 variando as bases	51
Tabela 2.3.1 - Distância de equilíbrio (R_{eq}) , Ângulo, frequências (w_1, w_2, w_3) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do NO_2 obtidos por cálculos de otimização no método MP2 variando as bases	51

CAPÍTULO 1 - Introdução

Atualmente um dos maiores desafios da mecânica quântica é a descrição rigorosa dos sistemas moleculares. O problema molecular consiste na descrição e solução de sistemas formados por núcleos e elétrons. As propriedades físico-químicas de um sistema molecular são representadas pelas funções de onda Ψ. Para se caracterizar um sistema molecular, deve-se seguir algumas etapas, como mostra a figura 1 as quais consistem em determinar, através dos melhores métodos existentes na literatura, as propriedades eletrônicas do sistema em questão. O estudo da estrutura eletrônica, requer o cálculo da energia total do sistema de acordo com os princípios de mecânica quântica e, logo em seguida a minimização da mesma com relação às coordenadas dos núcleos. A determinação da energia total é um problema que envolve muitas partículas e necessita de algumas aproximações, como por exemplo, a aproximação que envolve o tratamento em separado dos núcleos e elétrons de um sistema – a Aproximação de Born-Oppenheimer (ABO). Para o tratamento da interação elétron-elétron outras aproximações como a teoria de Hatree-Fock, são aplicadas posteriormente para a determinação das propriedades de um sistema. Através dos cálculos das energias eletrônicas do sistema, pode-se construir a superfície de energia potencia (SEP) do modelo atômico e/ou molecular, a qual fornecerá todas as informações do sistema, como por exemplo, as propriedades geométrica, elétricas, vibracionais, energia de ligação, entre outras^[1].

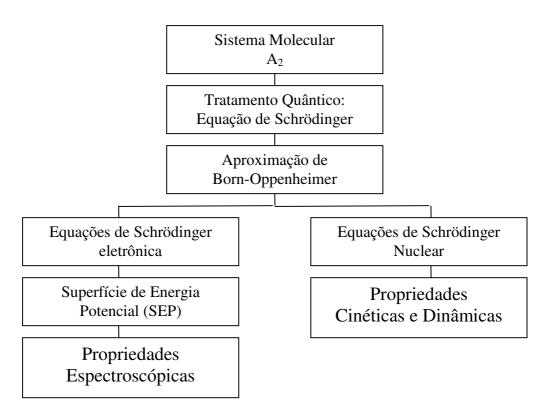


Figura 1 - Etapas envolvidas na caracterização de sistemas moleculares^[1].

CAPÍTULO 2 – Fundamentação Teórica

2.1 Métodos ab initio

Os métodos *ab initio* (de origem do latim, que significa "do início") se propõem a predizer teoricamente, as propriedades de sistemas atômicos e/ou moleculares usando, para isso, somente as leis fundamentais da mecânica quântica e algumas constantes físicas universais, tais como massa e carga do elétron, constante de Planck, dentre outras. Particularmente para sistemas com mais de um elétron, são necessárias diversas aproximações que serão discutidas ao longo deste capítulo ^[2].

Com o aumento da capacidade computacional, o uso dos métodos *ab initio* tem se tornado mais rigoroso e auxiliado na investigação, em nível quântico, de diversos fenômenos

da química molecular. Para estudos de sistemas atômicos, tais métodos se apresentam como ferramenta fundamental.

2.2 Equação de Schrödinger

Para descrever teoricamente um sistema poliatômico, com rigor, é necessário resolver a equação de Schrödinger, independente do tempo, desprezando-se os efeitos relativísticos e de spin-órbita:

$$\hat{H}\Psi(\vec{r},\vec{R}) = E\Psi(\vec{r},\vec{R}) (1)$$

onde $\Psi(\vec{r}, \vec{R})$ é a função de onda completa, E é a energia total do sistema, \vec{R} e \vec{r} representam as coordenadas dos núcleos e dos elétrons, respectivamente.

Em unidades atômicas, o operador hamiltoniano não-relativístico para uma molécula com N elétrons e M núcleos é dado por:

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{A=1}^{M} \frac{1}{2M_{A}} \nabla_{A}^{2} - \sum_{A=1}^{M} \sum_{i=1}^{N} \frac{Z_{A}}{r_{Ai}} + \sum_{A=1}^{M-1} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{R_{AB}} + \sum_{i=1}^{N-1} \sum_{i>J}^{N} \frac{1}{r_{Ii}}, \quad (2)$$

Sendo que i e j são os índices referentes aos elétrons, A e B são índices dos núcleos, M_A são as massas dos núcleos, Z_A e Z_B são os números atômicos dos núcleos A e B, respectivamente, R_{AB} , r_{Ai} e r_{ij} são, as distâncias núcleo-núcleo, núcleo-elétron e elétron-elétron, respectivamente.

O primeiro termo da equação (2) é o operador para a energia cinética dos elétrons. O segundo termo é o operador para a energia cinética dos núcleos com massa M_A . O terceiro termo representa a energia potencial de atração entre o elétron i e o núcleo A. O quarto termo é a energia potencial de repulsão entre os núcleos A e B. O último termo representa a energia potencial de repulsão entre os elétrons i e j [2].

A energia e muitas outras propriedades de uma partícula podem ser obtidas pela resolução da equação de Schrödinger para Ψ , utilizando-se condições de contorno apropriadas. Assim, pode haver muitas soluções para a equação de Schrödinger, que representam estados estacionários distintos do sistema.

2.3 Aproximação de Born-Oppenheimer

Um grande problema na caracterização de modelos moleculares através da equação de Schrödinger é a complexidade em encontrar sua solução exata. Por esse motivo algumas aproximações são feitas para tornar mais rigorosa a sua utilização. A primeira aproximação da equação de Schrödinger é aproximação de Born-Oppenheimer (ABO).

A ABO consiste em separar o movimento dos elétrons e dos núcleos do sistema molecular. Essa aproximação se justifica pela diferença de massa entre elétrons e núcleos, conseqüente diferença de energia cinética entre ambos. Com isto podemos congelar os núcleos em relação aos elétrons. Dessa forma, separa-se a equação de Schrödinger em duas partes, uma envolvendo a contribuição puramente eletrônica e a outra devido a interação nuclear. A função de onda em termos de uma expansão adiabática^[3] parametrizada pode ser representada por:

$$\Psi(\vec{r}, \vec{R}) = \psi(\vec{r}, \vec{R}) \gamma(\vec{R}) \tag{3}$$

onde $\psi(\vec{r}, \vec{R})$ representa a função de onda eletrônica dependente das coordenadas dos elétrons e parametricamente das coordenadas nucleares e $\chi(\vec{R})$ representa a função de onda nuclear.

Aplicando o operador Hamiltoniano (2) na função de onda (3), tem-se que:

$$\left[\frac{1}{2}\sum_{i=1}^{N}\nabla_{i}^{2} + \sum_{A=1}^{M}\sum_{i=1}^{N}\frac{Z_{A}}{r_{Ai}} - \sum_{i=1}^{N-1}\sum_{j>l}^{N}\frac{1}{r_{ij}}\right]\psi\chi = E\psi\chi \tag{4}$$

Desenvolvendo a equação (4):

$$-\frac{1}{2}\sum_{i=1}^{N}\nabla_{i}^{2}\psi\chi - \sum_{A=1}^{M}\frac{1}{2M_{A}}\nabla_{A}^{2}\psi\chi - \sum_{A=1}^{M}\sum_{i=1}^{N}\frac{Z_{A}}{r_{Ai}}\psi\chi + \sum_{A=1}^{M-1}\sum_{B>A}^{M}\frac{Z_{A}Z_{B}}{R_{AB}}\psi\chi + \sum_{i=1}^{N-1}\sum_{j>l}^{N}\frac{1}{r_{ij}}\psi\chi = E\psi\chi$$
 (5)

Desenvolvendo o segundo termo da equação (5), tem-se:

$$\sum_{A=1}^{M} \frac{1}{2M_A} \nabla_A^2 \psi \chi = \sum_{A=1}^{M} \frac{1}{2M_A} [\psi(\nabla_A^2 \chi) + \chi(\nabla_A^2 \psi) + 2(\nabla_A \chi \cdot \nabla_A \psi)] =$$

$$= \sum_{A=1}^{M} \frac{1}{2M_A} \psi(\nabla_A^2 \chi) + \sum_{A=1}^{M} \frac{1}{2M_A} \chi(\nabla_A^2 \psi) + \sum_{A=1}^{M} \frac{1}{M_A} (\nabla_A \chi \cdot \nabla_A \psi)$$
 (6)

De acordo com a ABO a função de onda é escrita em termos de uma expansão adiabática^[3] o que torna os termos $\sum_{A=1}^{M} \frac{1}{2M_A} \chi(\nabla_A^2 \psi) e^{\sum_{A=1}^{M} \frac{1}{M_A}} (\nabla_A \chi. \nabla_A \psi) desprezíveis^[4].$

Portanto, a equação (6) pode ser simplificada:

$$\sum_{A=1}^{M} \frac{1}{2M_{A}} \nabla_{A}^{2} \psi \chi = \sum_{A=1}^{M} \frac{1}{2M_{A}} \psi (\nabla_{A}^{2} \chi)$$
 (7)

Substituindo (7) em (4):

$$-\frac{\psi}{2}\sum_{i=1}^{N}\nabla_{i}^{2}\chi - \sum_{A=1}^{M}\chi\frac{1}{2M_{A}}\nabla_{A}^{2}\psi - \sum_{A=1}^{M}\sum_{i=1}^{N}\frac{Z_{A}}{r_{Ai}}\psi\chi + \sum_{A=1}^{M-1}\sum_{B>A}^{M}\frac{Z_{A}Z_{B}}{R_{AB}}\psi\chi + \sum_{i=1}^{N-1}\sum_{i>l}^{N}\frac{1}{r_{ii}}\psi\chi = E\psi\chi$$
 (8)

Dividindo a equação (8) por $\psi\chi$ e separando as variáveis tem-se:

$$-\frac{1}{\chi} \sum_{A=1}^{M} \frac{1}{2M_{A}} \nabla_{A}^{2} \chi - E = \frac{1}{2\psi} \sum_{i=1}^{N} \nabla_{i}^{2} \psi + \sum_{A=1}^{M} \sum_{i=1}^{N} \frac{Z_{A}}{r_{Ai}} - \sum_{i=1}^{N-1} \sum_{j>i}^{N} \frac{1}{r_{ii}} - \sum_{A=1}^{M-1} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{R_{AB}}$$
(9)

Como descrito anteriormente, a posição dos núcleos é considerada fixa e pode-se escrever tanto o lado direito quanto o lado esquerdo da equação (9) em relação a uma constante relativa às distâncias entre nucleares ($\varepsilon(\vec{R})$):

$$\frac{1}{2\psi} \sum_{i=1}^{N} \nabla_{i}^{2} \psi + \sum_{A=1}^{M} \sum_{i=1}^{N} \frac{Z_{A}}{r_{Ai}} - \sum_{i=1}^{N-1} \sum_{j>l}^{N} \frac{1}{r_{ij}} - \sum_{A=1}^{M-1} \sum_{B>A}^{M} \frac{Z_{A} Z_{B}}{R_{AB}} = -\varepsilon(\vec{R})$$
 (10)

$$-\frac{1}{\chi} \sum_{A=1}^{M} \frac{1}{2M_A} \nabla_A^2 \chi - E = -\varepsilon(\vec{R})$$
(11)

Multiplicando-se a equação (10) por $-\psi$ e a equação (11) por χ e reorganizando-se os termos, obtêm-se a equação (12) chamada de equação de Schrödinger eletrônica e a equação (13) chamada de equação de Schrödinger nuclear, ambas independentes do tempo^[4]:

$$\left[\frac{1}{2\psi}\sum_{i=1}^{N}\nabla_{i}^{2} + \sum_{A=1}^{M}\sum_{i=1}^{N}\frac{Z_{A}}{r_{Ai}} - \sum_{i=1}^{N-1}\sum_{j>l}^{N}\frac{1}{r_{ij}} - \sum_{A=1}^{M-1}\sum_{B>A}^{M}\frac{Z_{A}Z_{B}}{R_{AB}}\right]\psi = \varepsilon(\vec{R})\psi$$
(12)

$$\left[\sum_{A=1}^{M} \frac{1}{2M_A} \nabla_A^2 \chi + \varepsilon(\vec{R})\right] \chi = E\chi \tag{13}$$

Os operadores das equações (12) e (13) são chamados de operadores Hamiltoniano Eletrônico e Nuclear, respectivamente. Assim sendo:

$$\hat{H}_{ele}\psi(\vec{r},\vec{R}) = \mathcal{E}(\vec{R})\psi(\vec{r},\vec{R})$$
 (14)

$$\hat{H}_{n}\chi(\vec{R}) = E\chi(\vec{R}) \tag{15}$$

A parte eletrônica da equação de Schrödinger (14) é resolvida para cada configuração nuclear (\vec{R}) . Isto significa que para cada configuração nuclear a função de onda $\psi(\vec{r},\vec{R})$ é diferente em relação às coordenadas eletrônicas. Assim se tem um conjunto de funções de ondas eletrônicas e suas respectivas energias potenciais. Através dessas energias potencias e das distâncias interatômicas é possível construir uma curva. Ajustando essa curva através de uma função analítica $(V(\vec{R}))$ consegue-se construir uma superfície de energia potencial (SEP) que será discutida na seção (2.8).

A parte nuclear da equação de Schrödinger (15) descreve a dinâmica dos núcleos. Sua solução descreve a vibração, rotação e translação de um sistema molecular.

2.4 Aproximação de Hartree-Fock

A grande dificuldade em resolver a equação de Schrödinger eletrônica é a presença de muitos elétrons no sistema molecular. Com exceção de sistemas muito simples como a molécula de H_2^+ (sistemas hidrogenóides) aplicar somente a Aproximação de Born-Oppenheimer não torna o problema de fácil resolução^[3]. Assim sendo, torna-se necessário a utilização de outra aproximação chamada aproximação de Hartree-Fock ou aproximação de orbital molecular. Essa aproximação tem grande importância na mecânica quântica, pois representa o ponto de partida para outras aproximações mais rigorosas que incluem os efeitos de correlação eletrônica.

O principio da aproximação de Hartree-Fock é separar um problema de muitos elétrons em uma somatória de N problemas de um elétron. Nessa aproximação o operador

Hamiltoniano pode ser escrito como a somatória de vários operadores que descrevem a energia potencial e cinética do *i*-ésimo elétron, dado por:

$$\hat{H} = \sum_{i=1}^{N} h(i) \tag{16}$$

Como \hat{H} é uma soma de operadores do *i*-ésimo elétron, então a função de onda eletrônica $\psi(\vec{r}, \vec{R})$ pode ser expressa como o produto de funções de onda (spin-orbitais) de cada elétron. Assim a função de onda passa ser um produto de várias funções de ondas e é denominada por Produto de Hartree^[3]:

$$\psi^{\text{HP}}(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N) = \phi_i(\mathbf{x}_1) \phi_i(\mathbf{x}_2) ... \phi_k(\mathbf{x}_N)$$
(17)

onde ψ^{HP} é a função de onda total caracterizada pelo produto dos N spin-orbitais.

Desconsiderando a repulsão elétron-elétron, pode-se dizer que o operador h(i) é aplicado a um conjunto de spin-orbitais. Assim o operador aplicado a função de onda do i-ésimo elétron:

$$h(1)\phi_i(x_1) = \varepsilon \phi_i(x_1) \tag{18}$$

Pode-se obter a energia total do sistema eletrônico aplicando-se o operador Hamiltoniano representado na equação (16) na função de onda total (17):

$$\hat{H}\psi^{\rm HP} = E\psi^{\rm HP} \tag{19}$$

Deste modo a energia total obtida (E) pode ser escrita como a soma das contribuições das energias de cada spin orbital, ou seja:

$$E = \mathcal{E}_i + \mathcal{E}_i + \dots + \mathcal{E}_k \tag{20}$$

A função de onda ψ^{HP} não respeita o principio da exclusão de Pauli o que exige que a função de onda seja antissimetrica em relação às trocas de coordenadas espaciais de quaisquer elétrons, como mostrado na seguinte expressão:

$$\psi(\mathbf{x}_1, \mathbf{x}_2) = -\psi(\mathbf{x}_2, \mathbf{x}_1) \tag{21}$$

Então, para resolver este problema, foi necessário reescrever a função de onda na forma de um determinante conhecido como determinante de Slater^[3]

$$\psi(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{N}) = (N!)^{-\frac{1}{2}} \begin{vmatrix} \chi_{i}(x_{1}) & \chi_{j}(x_{1}) & \dots & \chi_{k}(x_{1}) \\ \chi_{i}(x_{2}) & \chi_{j}(x_{2}) & \dots & \chi_{k}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_{i}(x_{N}) & \chi_{j}(x_{N}) & \dots & \chi_{k}(x_{N}) \end{vmatrix}$$

$$(22)$$

no qual o fator $(N!)^{-\frac{1}{2}}$ é o fator de normalização.

Podemos escrever a função de onda antissimetrica na forma de um único determinante de Slater que descreve o estado fundamental de um sistema de N elétrons^[3] da seguinte forma:

$$|\psi_0\rangle = |\phi_j\phi_k \dots \phi_N\rangle \tag{23}$$

Analisando o determinante 22 percebemos que ele descreve muito bem a função de onda em questão. Isso porque permutar duas linhas do determinante Slater equivale a trocar as coordenas de dois e elétrons, o que implica inversão do sinal do determinante confirmando o principio da antissimetria. Além disso, se houver duas linhas iguais o determinante torna-se igual a zero levando a conclusão de que dois elétrons não podem ocupar o mesmo spin orbital.

Até agora a função de onda eletrônica só dependia das coordenadas dos elétrons e parametricamente das coordenadas nucleares. No entanto, para descrever a função de onda eletrônica deve-se considerar o momento do spin eletrônico que é expresso da seguinte forma:

$$\phi(\mathbf{x}) = \begin{cases} \varphi(\vec{r}, \vec{R})\alpha(\omega) \\ ou \\ \varphi(\vec{r}, \vec{R})\beta(\omega) \end{cases}$$
(24)

A partir da expressão (25) introduzem-se na função de onda duas funções de spin de variável (ω) não específica. A função $\alpha(\omega)$ corresponde ao spin "up" (simbolizado por \uparrow) e a função $\beta(\omega)$ corresponde ao spin "down" (simbolizado por \downarrow).

Sabendo que as funções de spin são completas e ortonormais, pode-se adotar o seguinte formalismo:

$$\int \alpha(\omega) * \alpha(\omega) d\omega = \int \beta(\omega) * \beta(\omega) d\omega = 1$$
 (26)

$$\int \alpha(\omega) * \beta(\omega) d\omega = \int \beta(\omega) * \alpha(\omega) d\omega = 0$$
 (27)

Agora a função de onda possui tanto as coordenadas espaciais quanto as coordenas de spin. Então podemos utilizar a equação de Hartree-Fock^[3]para encontrar a energia dos spin orbitais:

$$f(1)\phi_i(\mathbf{x}_1) = \varepsilon \phi_i(\mathbf{x}_1)$$
 (28)

onde f(i) é definido como operador de Fock:

$$f(1) = h(1) + v^{HF}$$
 (29)

, h(1) é o operador hamiltoniano para um elétron (equação 18) e expresso por:

$$h(1) = -\frac{1}{2}\nabla_1^2 - \sum_{A=1}^M \frac{Z_A}{r_{A1}}$$
 (30)

e v^{HF} é um operador do potencial efetivo sentido por um elétron e expresso por:

$$v^{HF}(1) = \sum_{b} [J_b(1) - K_b(1)] (31)$$

Define-se o operador de Coulomb, $\boldsymbol{J}_{\boldsymbol{b}}(1)$, pela expressão:

$$J_b(1) = \int \left| \phi_j(2) \right|^2 r_{12}^{-1} \phi_i(1) dx_2$$
 (32)

Define-se o operador de troca, $K_b(1)$, pela expressão:

$$K_b(1) = \int \phi_j^*(2)\phi_i(2)r_{12}^{-1}\phi_j(2)dx_2$$
 (33)

De acordo com o principio variacional a função de onda normalizada e antissimetrica identificada como ψ_0 tem energia superior a energia da onda eletrônica exata, ou seja:

$$\langle \psi_0 | \hat{H} | \psi_0 \rangle \ge E_0$$
 (34)

No entanto, a melhor função de onda (melhores spin-orbitais) é aquela que possui menor energia, pois, assim a função ψ_0 aproxima-se da função de onda exata. A solução exata da equação (28) representa os spin-orbitais exatos de Hartree-Fock. No entanto, a solução exata é impossível, pois ter-se-ía que considerar um conjunto infinito de spin-orbitais. Na prática utiliza-se um conjunto finito de orbitais que constituem um conjunto autoconsistente (SCF) que se aproxima rapidamente da solução exata de Hartree-Fock^[5].

2.5 Métodos Perturbativos

A energia obtida pelo método Hartree-Fock possui uma falha que está relacionado com a correlação eletrônica, ou seja, as interações eletrônicas são tratadas como uma interação média autoconsistente. Esta falha é uma característica de métodos variacionais baseados em um único determinante. Então, pode-se tratar a energia de correlação como sendo a diferença entre a energia obtida pelo método Hartree-Fock restrito e a energia exata não relativística do sistema, como mostra a equação a seguir:

$$E_{corr} = E_0 - E_{HF} \tag{35}$$

Para a obtenção da energia de correlação eletrônica pode-se utilizar vários métodos teóricos, entre eles estão a Teoria de Perturbação de Muitos Corpos (MBPT - do inglês Many Body Perturbation Theory^[6]) e o método CC (do inglês Coupled Cluster^{[7] [8]}).

2.5.1 Teoria de Perturbação de Møller-Plesset

A teoria de perturbação de muitos corpos normalmente utiliza a partição de Møller-Plesset (MP) e por isso é chamada também de Teoria de Perturbação de Møller-Plesset, que se baseia na teoria de Rayleigh-Schrödinger^[9] que separa o Hamiltoniano total do sistema em duas partes:

$$\hat{H} = \hat{H}_0 + \hat{V} \tag{36}$$

A parte de ordem zero (\hat{H}_0) que é uma Hamiltoniana não perturbada, com suas autofunções e seus autovalores conhecidos mais a perturbação (\hat{V}) . O operador (\hat{H}_0) é expresso como sendo a soma de operadores de Fock, dada por:

$$\hat{H}_0 = \sum_{i=1}^{N} f(i) = \sum_{i=1}^{N} \left[h(i) + v^{HF}(i) \right]$$
 (37)

e \hat{V} é dado pela diferença do termo que representa a repulsão eletrônica e o potencial de Hartree-Fock, ou seja:

$$\hat{V} = \sum_{i < j} r_{ij}^{-i} - \sum_{i} v^{HF}(i)$$
 (38)

Para se obter a expansão da perturbação para a energia de correlação, é necessária a escolha de uma Hamiltoniana que pode ser obtida por vários métodos. A Hamiltoniana

usada nesse formalismo é a Hamiltoniana de Hartree-Fock (\hat{H}_0) , que foi obtida para um sistema de N-elétrons.

Assim, deseja-se resolver um problema de autovalor do tipo:

$$\hat{H}|\psi_n\rangle = (\hat{H}_o + \hat{V})|\psi_n\rangle = E_n|\psi_n\rangle \tag{39}$$

com as autofunções e autovalores de (\hat{H}_0) conhecidas, ou seja:

$$\hat{H}_{o} | \psi_{n}^{(0)} \rangle = E_{n}^{(0)} | \psi_{n}^{(0)} \rangle$$
 (40)

Se a perturbação \hat{V} é muito pequena, espera-se que $|\psi_n\rangle$ e E_n sejam próximos de $|\psi_n^{(0)}\rangle$ e $E_n^{(0)}$, respectivamente. Para melhorar sistematicamente as autofunções e os autovalores de \hat{H}_0 , bem como para que eles se tornem cada vez mais próximos das autofunções e dos autovalores da Hamiltoniana total, \hat{H} , introduz-se um parâmetro, λ , tal que seja válida a expressão:

$$\hat{H} = \hat{H}_0 + \lambda + \hat{V} \tag{41}$$

Expandindo-se as autofunções e os autovalores em uma série de Taylor de potências de λ , em torno de $\lambda=0$, tem-se:

$$\left|\psi_{n}\right\rangle = \left|\psi_{n}^{(0)}\right\rangle + \lambda \left|\psi_{n}^{(1)}\right\rangle + \lambda^{2} \left|\psi_{n}^{(2)}\right\rangle + \cdots \tag{42}$$

$$E_n = E_n^{(0)} + \lambda E_n^{(1)} \tag{43}$$

onde se chama $E^{(k)}{}_n$ como sendo correção da energia de k-ésima ordem. O problema agora passa a ser como expressar estas quantidades em termos da energia de ordem zero e os elementos de matriz da perturbação \hat{V} entre a função de onda não-perturbada, $\langle \psi_i | \hat{V} | \psi_j \rangle$.

Supondo que as séries dadas pelas equações (42) e (43) convergem para $\lambda=1$ e que, para uma pequena perturbação em que apenas os primeiros termos da série são considerados, tem-se uma boa aproximação para a verdadeira função de onda e para o autovalor. Exigindose que as funções de onda de \hat{H}_0 sejam normalizadas $(\langle \psi_i | \psi_j \rangle = 1)$, faz-se também uma normalização secundária tal que:

$$\left\langle \boldsymbol{\psi}_{n}^{(0)} \left| \boldsymbol{\psi}_{n} \right\rangle = 1 \tag{44}$$

Esta normalização pode sempre ser feita a não ser que $\left|\psi_{n}^{(0)}\right\rangle$ e $\left|\psi_{n}\right\rangle$ sejam ortogonais. Portanto, ao se multiplicar a equação (42) por $\left\langle\psi_{n}^{(0)}\right|$, tem-se:

$$\left\langle \boldsymbol{\psi}_{n}^{(0)} \middle| \boldsymbol{\psi}_{n} \right\rangle = \left\langle \boldsymbol{\psi}_{n}^{(0)} \middle| \boldsymbol{\psi}_{n}^{(0)} \right\rangle + \lambda \left\langle \boldsymbol{\psi}_{n}^{(0)} \middle| \boldsymbol{\psi}_{n}^{(1)} \right\rangle + \lambda^{2} \left\langle \boldsymbol{\psi}_{n}^{(0)} \middle| \boldsymbol{\psi}_{n}^{(2)} \right\rangle + \dots = 1 \tag{45}$$

Como a equação acima vale para todos os valores de λ , conseqüentemente, os coeficientes de λ^k devem ser iguais e dessa maneira se tem:

$$\left\langle \psi_{n}^{(0)} \middle| \psi_{n}^{(k)} \right\rangle = 0$$
 $k = 1, 2, 3,...$ (46)

Substituindo-se as eqs.(44) e (45) na eq.(39), tem-se:

$$\left(\hat{H}_{o} + \hat{V}\right)\left|\left(\boldsymbol{\psi}_{n}^{(0)}\right\rangle + \lambda\left|\boldsymbol{\psi}_{n}^{(1)}\right\rangle + \lambda^{2}\left|\boldsymbol{\psi}_{n}^{(2)}\right\rangle + \ldots\right) = \\
\left(E_{n}^{(0)} + \lambda E_{n}^{(1)} + \lambda^{2} E_{n}^{(2)} + \ldots\right)\left|\left(\boldsymbol{\psi}_{n}^{(0)}\right\rangle + \lambda\left|\boldsymbol{\psi}_{n}^{(1)}\right\rangle + \lambda^{2}\left|\boldsymbol{\psi}_{n}^{(2)}\right\rangle + \ldots\right) \tag{47}$$

Equacionando-se os coeficientes de λ^k , obtém-se:

$$\hat{H}_{o} | \psi_{n}^{(0)} \rangle = E_{n}^{(0)} | \psi_{n}^{(0)} \rangle$$
 para n = 0 (48)

$$\hat{H}_{o} | \psi_{n}^{(1)} \rangle + \hat{V} | \psi_{n}^{(0)} \rangle = E_{n}^{(0)} | \psi_{n}^{(1)} \rangle + E_{n}^{(1)} | \psi_{n}^{(0)} \rangle \qquad \text{para n} = 1 \qquad (49)$$

$$\hat{H}_{o}|\psi_{n}^{(2)}\rangle + \hat{V}|\psi_{n}^{(1)}\rangle = E_{n}^{(0)}|\psi_{n}^{(2)}\rangle + E_{n}^{(1)}|\psi_{n}^{(1)}\rangle + E_{n}^{(2)}|\psi_{n}^{(0)}\rangle \qquad \text{para } n = 2 \qquad (50)$$

e assim por diante.

Multiplicando-se cada uma dessas equações por $\langle \psi_n^{(0)} |$ e usando a relação de ortogonalidade dada pela eq.(44), obtém-se as seguintes expressões para as energias de nésima ordem:

$$E_n^{(0)} = \left\langle \boldsymbol{\psi}_n^{(0)} \middle| \hat{H}_0 \middle| \boldsymbol{\psi}_n^{(0)} \right\rangle \quad (51)$$

$$E_n^{(1)} = \left\langle \psi_n^{(0)} \middle| \hat{V} \middle| \psi_n^{(0)} \right\rangle \tag{52}$$

$$E_n^{(2)} = \left\langle \psi_n^{(0)} \middle| \hat{V} \middle| \psi_n^{(1)} \right\rangle \tag{53}$$

Todas as correções de ordem superior a dois na energia podem ser utilizadas para resolver o conjunto de equações (47) para $\left|\psi_{n}^{(k)}\right\rangle$ e então determinar a energia de k-ésima ordem.

Reescrevendo a equação (52), que determina a função de onda de primeira ordem, $\left|\psi_{n}^{(1)}\right>$, obtém-se:

$$\left(E_n^{(0)} - \hat{H}_0 \right) \psi_n^{(1)} \rangle = \left(\hat{V} - E_n^{(1)} \right) \psi_n^{(0)} \rangle = \left(\hat{V} - \left\langle \psi_n^{(0)} \middle| \hat{V} \middle| \psi_n^{(0)} \right\rangle \right) \psi_n^{(0)} \rangle$$
 (54)

Esta equação não se diferencia muito de uma equação de autovalor, porém é uma equação diferencial não-homogênea (ou, em geral, íntegro-diferencial). Uma maneira de resolver equações semelhantes é quando se expande $\left|\psi_{n}^{(1)}\right\rangle$ em termos das autofunções de \hat{H}_{0} , em que se exige que se formem um conjunto completo,

$$\left| \boldsymbol{\psi}_{n}^{(1)} \right\rangle = \sum_{j} c_{j}^{(1)} \left| \boldsymbol{\psi}_{j}^{(0)} \right\rangle \tag{55}$$

Multiplicando-se essa equação por $\left\langle oldsymbol{\psi}_{j}^{(0)} \, \middle| \,$, tem-se:

$$\left\langle \boldsymbol{\psi}_{j}^{(0)} \left| \boldsymbol{\psi}_{n}^{(1)} \right\rangle = \left\langle \boldsymbol{\psi}_{j}^{(0)} \left| \sum_{j} c_{j}^{(1)} \boldsymbol{\psi}_{n}^{(1)} \right\rangle = c_{j}^{(1)}, \tag{56}$$

pois as autofunções de \hat{H}_0 são ortonormais. Além do mais, da eq.(46) fica claro que $c_n^{(1)}=0 \ ,$ também se pode escrever:

$$\left|\boldsymbol{\psi}_{n}^{(1)}\right\rangle = \sum_{i \neq n} \left|\boldsymbol{\psi}_{j}^{(0)}\right\rangle \left\langle \boldsymbol{\psi}_{j}^{(0)} \left|\boldsymbol{\psi}_{n}^{(1)}\right\rangle \tag{57}$$

Para o somatório acima, o termo j = n está excluído. Multiplicando-se a eq. (46) por $\langle \psi_j^{(0)} |$ e usando o fato de que as funções de onda de ordem zero são ortogonais, obtém-se:

$$\left(E_n^{(0)} - E_j^{(0)}\right) \left\langle \psi_j^{(0)} \middle| \psi_n^{(1)} \right\rangle = \left\langle \psi_j^{(0)} \middle| \hat{V} \middle| \psi_n^{(0)} \right\rangle \tag{58}$$

Usando a expansão dada pela eq.(57) na expressão da energia de segunda-ordem dada pela eq.(53), tem-se:

$$E_n^{(2)} = \left\langle \boldsymbol{\psi}_n^{(0)} \middle| \hat{V} \middle| \boldsymbol{\psi}_n^{(1)} \right\rangle = \sum_{j} \left\langle \boldsymbol{\psi}_n^{(0)} \middle| \hat{V} \middle| \boldsymbol{\psi}_j^{(0)} \right\rangle \left\langle \boldsymbol{\psi}_j^{(0)} \middle| \boldsymbol{\psi}_n^{(1)} \right\rangle \quad (59)$$

Com a eq.(58), finalmente se obtém:

$$E_n^{(2)} = \sum_j \frac{\left\langle \psi_n^{(0)} \middle| \hat{V} \middle| \psi_j^{(0)} \middle\rangle \middle\langle \psi_j^{(0)} \middle| \hat{V} \middle| \psi_n^{(0)} \middle\rangle}{E_n^{(0)} - E_j^{(0)}} = \sum_j \frac{\left| \left\langle \psi_n^{(0)} \middle| \hat{V} \middle| \psi_j^{(0)} \middle\rangle \middle|^2}{E_n^{(0)} - E_j^{(0)}}$$
(60)

que é a expressão para a correção de segunda ordem na energia.

A correção de primeira ordem na energia pode ser calculada com precisão, pois envolve apenas a integral $\left\langle \boldsymbol{\psi}_{n}^{(0)} \left| \hat{V} \right| \boldsymbol{\psi}_{n}^{(0)} \right\rangle$. Já para as outras correções na energia, deve-se calcular todos os elementos matriciais da coluna n (para $E_{n}^{(2)}$) e ainda todos os elementos matriciais da matriz inteira para $\boldsymbol{\psi}_{n}^{(1)}$ e $\boldsymbol{\psi}_{n}^{(2)}$. As maiores contribuições para

a correção de segunda-ordem na energia, provêm dos níveis próximos ao nível n, como se pode ver na eq.(60), devido ao fator $\frac{1}{E_n^{(0)}-E_j^{(0)}}$ comum nas correções.

De acordo com o teorema de Brillouin^[14], somente as excitações duplas podem interagir diretamente com o determinante de Hartree-Fock. Com isto, a primeira correção para a energia Hartree-Fock aparece com a energia de perturbação de segunda ordem. Este termo pode ser representado como uma soma de excitações duplas, que pode ser expresso por:

$$E_0^{(2)} = \sum_{\substack{a < b \\ r \in s}} \frac{\left| \left\langle ab \right\| rs \right\rangle \right|^2}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s}$$
 (61)

onde, ε_i refere-se à energia do orbital molecular i. A soma se estende sobre todos orbitais moleculares ocupados (a, b, ...) e os virtuais (r, s, ...).

2.5.2 Método Coupled Cluster

Nesta seção, apresentar-se-á o método CC (do inglês Coupled Cluster)^[16,17], cujo princípio é representar um sistema de muitos elétrons em vários aglomerados (clusters) com poucos elétrons. Ao fazer uso da segunda quantização, o determinante duplamente excitado $\left|\Psi_{ij}^{ab}\right\rangle$ pode ser escrito como:

$$\left|\Psi_{ij}^{ab}\right\rangle = a_a^+ a_b^+ a_i a_j \left|\Psi_0\right\rangle \tag{62}$$

onde os operadores a_i e a_j removem os spin-orbitais ocupados do determinante HF e os operadores a_a^+ e a_b^+ os substituem pelos spin-orbitais virtuais.

Introduzindo-se uma nova função de onda, que não contém somente excitações duplas, mas também excitações quádruplas, sextuplas, etc., pode-se escrever a função de onda como:

$$|\Psi\rangle = e^{\mathrm{T}}|\Psi_0\rangle \qquad (63)$$

onde T é o operador de cluster e é definido como:

$$T = T_1 + T_2 + \cdots + T_p.$$
 (64)

Os operadores T₁, T₂, ..., são definidos pelas operações:

$$T_1 \Phi_0 = \sum_{i,a} C_i^a \Phi_i^a, \quad (65)$$

$$T_2 \Phi_0 = \sum_{ij,ab} C_{ij}^{ab} \Phi_{ij}^{ab}, \quad (66)$$

Assim, as aplicações de T_1 , T_2 , ... geram configurações mono, duplamente excitadas, e assim por diante; e Φ_i^a é a configuração onde o orbital ocupado φ_i é substituído pelo orbital virtual φ_a . Os coeficientes C são reais e chamados amplitude de cluster. Basicamente, T_1 é o operador que gera as configurações simplesmente substituídas e, T_2 é o operador que gera as configurações duplamente substituídas, e assim por diante. Nesse contexto, faz-se uma relação com o método de interações de configurações reescrevendo-se a função de onda como:

$$|\Psi\rangle = (1+U_1+U_2+U_3+\cdots)|\Psi_0\rangle$$
 (67)

 $U_1 = T_1$

Com

$$U_2 = T_2 + \frac{1}{2!} T_1^2 \tag{68}$$

$$U_3 = T_3 + \frac{1}{3!}T_1^3 + T_1T_2$$

e assim sucessivamente. Pode-se separar os termos Ui em duas partes,

$$U_i = T_i + Q_i \quad (69)$$

onde, T_i é o termo conexo e Q_i é o termo desconexo.

As C's devem ser obtidas de forma que a função de onda $|\Psi\rangle$ seja uma solução da equação de Schrödinger. Dessa forma, tem-se:

$$He^T |\Psi_0\rangle = Ee^T |\Psi_0\rangle$$
 (70)

Multiplicando a eq.(70) por e^{-T}, obtém-se:

$$e^{-T}He^{T}|\Psi_{0}\rangle = e^{-T}Ee^{T}|\Psi_{0}\rangle$$
 (71)

que, consequentemente, pode ser reescrita como sendo:

$$\left[H + [H,T] + \frac{1}{2!}[[H,T],T] + \frac{1}{3!}[[H,T],T] + \frac{1}{4!}[[[H,T],T],T] + \frac{1}{4!}[[H,T],T],T]\right] |\Psi_0\rangle = E|\Psi_0\rangle \quad (72)$$

Dessa forma, a energia determinada pelo método CC pode ser escrita como:

$$E = \frac{\left\langle \Psi_0 \middle| e^{T^+} H e^T \middle| \Psi_0 \right\rangle}{\left\langle \Psi_0 \middle| e^{T^+} e^T \middle| \Psi_0 \right\rangle}$$
 (73)

Como citado anteriormente, o teorema de Brillouin mostra que somente contribuições duplas podem interagir com o determinante HF. Mas, as substituições simples, triplas etc., contribuem para a energia de correlação através das substituições duplas. O que

demonstra que as substituições duplas devem ser as mais importantes no método CC. A primeira aproximação desse método inclui somente o termo T_2 no operador de cluster e é chamada de aproximação CCD (do inglês Coupled Cluster Double). Com esta simplificação, a equação de Schrödinger passa a ser:

$$e^{-T_2}He^{T_2}|\Psi_0\rangle = E|\Psi_0\rangle \quad (74)$$

Multiplicando a eq.(74) por $\langle \Psi_0 |$ e usando a eq.(66), a energia eletrônica corrigida através deste método passa a ser escrita como:

$$E = E_{SCF} + \sum_{i < j} \sum_{a < b} \langle ij \| ab \rangle C_{ij}^{ab} \quad (75)$$

onde E_{SCF} é a energia Hartree-Fock obtida através do procedimento SCF.

2.6 Funções de base

A essência destes métodos de resolução da equação de Schrödinger eletrônica é o procedimento Hartree-Fock. Os cálculos *ab initio* mais comuns são os Hartree-Fock (HF), cuja função de onda é descrita por funções matemáticas.

Pode-se descrever uma função qualquer utilizando um conjunto de funções, como descrito na equação (76), cujos coefientes são cuidadosamente escolhidos a fim aproximarse ao máximo o conjunto de funções à função original.

$$f(x) = c_1 \varphi_1 + c_2 \varphi_2 + \dots = \sum_{i=1}^{\infty} c_i \varphi_i$$
 (76)

As funções $\varphi_i(x)$ são chamadas de funções de base e os c_i são seus respectivos coeficeintes. O conjunto necessario funções para descrever o f(x) é chamado de base. Dentro do quadro da mecânica quântica, a base é uma descrição matemática dos orbitais do sistema. Sabe-se que os elétrons possuem uma probabilidade finita de existir em qualquer região do espaço. Este limite corresponde a expansão de uma base infinita.

De forma analoga pode-se descrever um orbital molecular como:

$$\phi_i = \sum_{i=1}^{\infty} c_{i\mu} \varphi_{\mu} \quad (77)$$

Onde os $c_{i\mu}$ são chamados de coeficientes de expansão dos orbitais moleculares ou autovetores da função de onda.

Para representar os orbitais geralmente são utilizadas funções gaussianas as quais tornam a resolução das integrais mais simples. Abaixo estão representadas 3 funções gaussinas chamadas de "gaussianas primitivas" que representam os orbitais s, p_y , d_{xy} , respectivamente.

$$g_{1s}(\zeta, \vec{r}) = \left(\frac{2\zeta}{\pi}\right)^{3/4} e^{-\zeta r^2}$$

$$g_{2p_y}(\zeta, \vec{r}) = \left(\frac{128\zeta^8}{\pi^3}\right)^{1/4} ye^{-\zeta r^2}$$

$$g_{3d_{xy}}(\zeta, \vec{r}) = \left(\frac{128\zeta^7}{\pi^3}\right)^{1/4} xye^{-\zeta r^2}$$

Onde r esta relacionado com as coodernadas cartesianas e ζ com a extensão radial.

As funções gaussianas primitivas são utilizadas para formas as funções de base gaussianas contraidas e podem ser descritas de forma genérica pela equação (78).

$$\varphi_{\mu} = \sum_{p} d_{p\mu} g_{p} \quad (78)$$

Onde $d_{p\mu}$ são contantes chamadas de coeficientes de contração Portanto podemos contruir o orbital molecular da seguinte forma:

$$\phi_{i} = \sum_{i=1}^{\infty} c_{i\mu} \varphi_{\mu} = \sum_{i=1}^{\infty} c_{i\mu} \left(\sum_{p} d_{p\mu} g_{p} \right)$$
 (79)

Um grande número de tipos de cálculos começam com um cálculo HF e depois corrigem explicitamente a repulsão elétron-elétron. Independente do método *ab initio* utilizado, é necessário escolher as bases que permitam a descrição rigorosa do sistema atômico.

A maioria das funções de base foram desenvolvidas para sistemas atômicos e adaptadas para o uso em cálculos realizados em moléculas. No entanto, o conjunto de base desenvolvido em ambiente atômico não leva em consideração distorções da nuvem eletrônica. Assim, funções extras são adicionadas à função de base original para contornar esse problema e descrever, mais adequadamente, a distribuição eletrônica no ambiente molecular: as *funções de polarização e de difusão*.

As funções de polarização possuem momento angular diferente do apresentado pela função de base original, e contribuem para a descrição das distorções da nuvem eletrônica. As funções difusas levam expoentes que descrevem mais adequadamente a região de valência, permitindo uma melhor expansão dessa região se elétrons são adicionados ao sistema, ou se o átomo possui pares de elétrons livres.

As bases desenvolvidas por Dunning e seus colaboradores foram contruidas para covergir sistematicamente para um conjunto de funções de base completa usando técnicas de extrapolação. Utilizou-se nesse estudo as bases "correlation consistent, polarized valence

double/triple/quadruple/quintuple" ou cc-pVXZ (X=D, T, Q,5) com e sem funções difusas. O termo "cc-pv" quer dizer (correlação consistente de bases polarizadas) o termo "V" diz respeito a valência das camadas de polarização maiores, combinando os orbitais do tipo d,f,g,etc e o termo "aug" esta relacionado com a inclusão de funções difusas ao conjunto de funções de base [10].

2.7 Superficie de Energia Potencial

De acordo com a aproximação de Born-Oppenhaimer é possível separar a equação de Schrödinger em uma parte eletrônica e uma parte nuclear. Sabe-se que nessa aproximação a parte eletrônica depende parametricamente das coordenadas nucleares. Logo é possível achar a energia total do sistema em dadas configurações dos núcleos. A superfície de energia potencial é uma função analítica que mostra a energia do sistema variando com a distância entre os núcleos. No entanto, essa curva deve fornecer informações precisas nas regiões de repulsão (distâncias interatômicas pequenas), de atração (região de poço de potencial) e de dissociação (distâncias interatômicas grandes) o que só é possível com níveis de cálculos mais avançados.

2.7.1 Forma Analítica de Rydberg

As funções analíticas para descrever os sistemas de dois átomos são obtidas como o produto de um polinômio na distância internuclear de interesse e de uma função de amortização que tende a zero quando a distância internuclear tende ao infinito.

$$V_i(r) = -D_{e_i} \left(1 + \sum_{j=1}^{3} c_{ij} (r_i - r_{e_i})^j \right) \exp(-c_1 (r_i - r_{e_i})) \qquad i = O_2, H_2, CO, \dots (80)$$

Os parâmetros c_{ij} são determinados reproduzindo os dados *ab initio* ou dados espectroscópicos do diátomo.

2.7.2 Técnica de Dunham

Para se obter as propriedades espectroscópicas é possível utilizar a técnica de Dunham na qual o espectro rovibracional é expandido em uma série de Taylor em torno da distância de equilíbrio (R_e):

$$V(R) = V(R_e) + \frac{1}{2!} \left(\frac{d^2 v}{dR^2} \right)_{R_e} (R - R_{eq})^2 + \frac{1}{3!} \left(\frac{d^3 v}{dR^3} \right)_{R_e} (R - R_{eq})^3 + \frac{1}{4!} \left(\frac{d^4 v}{dR^4} \right)_{R_e} (R - R_{eq})^4 + \dots = (81)$$

$$= V(0) + \frac{1}{2}f_2\rho^2 + \frac{1}{6}f_3\rho^3 + \frac{1}{24}f_4\rho^4 + \frac{1}{120}f_2\rho^5 + \dots, \text{ onde } \rho = R - R_{eq}$$
 (82)

As derivadas de ordens superiores estão relacionadas com as constantes espectroscópicas da seguinte forma:

$$\omega_e = \frac{1}{2\pi c} \sqrt{\frac{f_2}{m}} \tag{83}$$

$$\omega_e x_e = \frac{\beta_e}{8} \left[15 \left(1 + \frac{\alpha_e \omega_e}{6\beta_e^2} \right)^2 - R_e^2 \frac{f_4}{f_2} \right]$$
 (84)

$$\omega_{e} y_{e} = \frac{\beta_{e}^{2}}{2\omega_{e}} \left\{ \frac{7}{12} R_{e}^{3} \left(1 + \frac{\alpha_{e} \omega_{e}}{6\beta_{e}^{2}} \right) \frac{f_{5}}{f_{2}} - \frac{1}{16} \left[\frac{17}{18} \left[15 \left(1 + \frac{\alpha_{e} \omega_{e}}{6\beta_{e}^{2}} \right)^{2} - 8 \frac{\omega_{e} x_{e}}{\beta_{e}} \right] + \frac{1}{16} \left[\frac{17}{18} \left[15 \left(1 + \frac{\alpha_{e} \omega_{e}}{6\beta_{e}^{2}} \right)^{2} - 8 \frac{\omega_{e} x_{e}}{\beta_{e}} \right] \right] + \frac{1}{16} \left[\frac{17}{18} \left[\frac{17}{18} \left[\frac{17}{18} \left[\frac{17}{18} \left[\frac{\alpha_{e} \omega_{e}}{6\beta_{e}^{2}} \right] \right] \right] + \frac{1}{16} \left[\frac{17}{18} \left[\frac{1$$

$$+75\left(1+\frac{\alpha_{e}\omega_{e}}{6\beta_{e}^{2}}\right)\left[15\left(1+\frac{\alpha_{e}\omega_{e}}{6\beta_{e}}\right)^{2}-8\frac{\omega_{e}x_{e}}{\beta_{e}}\right]-\frac{705}{32}\left(1+\frac{\alpha_{e}\omega_{e}}{6\beta_{e}^{2}}\right)^{4}\right\}$$
(85)

$$\alpha_e = -\frac{\beta_e^2}{\omega_e} \left(6 + 2R_e \frac{f_3}{f_2} \right) \tag{86}$$

$$\gamma_{e} = \frac{6\beta_{e}^{2}}{6\omega_{e}^{2}} \left\{ 5 - \left\{ 10 - \frac{13}{12} \left[15 \left(1 + \frac{\alpha_{e}\omega_{e}^{2}}{6\beta_{e}^{2}} \right) - 8 \frac{\omega_{e}x_{e}}{\beta_{e}} \right] \right\} + 15 \left(\frac{\alpha_{e}\omega_{e}}{6\beta_{e}^{2}} \right) \left(1 + \frac{\alpha_{e}\omega_{e}}{6\beta_{e}^{2}} \right)^{2} - \frac{13}{6} \left(1 + \frac{\alpha_{e}\omega_{e}}{6\beta_{e}^{2}} \right) \left(1 + \frac{\alpha_{e}\omega_{e}}{6\beta_{e}^{2}} \right)^{2} \right\}$$

$$-\frac{3}{2}\left[15\left(1+\frac{\alpha_e\omega_e^2}{6\beta_e^2}\right)-8\frac{\omega_e x_e}{\beta_e}\right] \tag{87}$$

CAPÍTULO 3 – Resultados

3.1 DIÁTOMOS

Utilizando o software Guassian03^[11] foram realizados cálculos de otimização de geometria foram feitos utilizando o método CCSD(T) e MP2 nas bases cc-pVxZ e aug-cc-pVxZ (x = D, T, Q, 5) para os sistemas diatômicos neutros. Para os ions monovalentes foram realizados cálculos de otimização utilizando o método CCSD(T). A partir dos dados obtidos com os cálculos de otimização de varias moléculas pôde-se compará-los ao valor de referência e então escolheu-se a base cc-PVQZ a qual reproduziu melhor o sistema diatômico. Além disso, foi levado em consideração o tempo computacional que seria necessário para construir as SEPs em níveis de cálculos mais avançados na escolha da base.

As superfícies foram todas construídas na base cc-PVQZ com o método CCSD(T) e em seguida ajustadas pelo método de Rydberg de quinta ordem. Com a forma analítica da SEP aplicou-se a técnica de Dunham e obtiveram-se as propriedades espectroscópicas do diátomo.

3.1.1 DIÁTOMO H₂

Para o diátomo H_2 foram feitos cálculos de otimização e construção se superfície de energia potencial tanto da espécie neutra quanto carregada.

H_2	$R_{eq}[\mathring{A}]$		w _e [cm ⁻¹]		$\alpha[a_0^3]$		E[hartree]	
	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2
cc-pVDZ	0,76097	0,702921	4382	4500,1412	2,9614	2,9461	-1,16367	-1,1552183
aug-cc-pVDZ	0,76169	0,703306	4345	4459,7804	5,2482	5,1952	-1,16490	-1,1562164
cc-pVTZ	0,74279	0,694282	4408	4524,2196	3,9097	3,8790	-1,17234	-1,1646498
aug-cc-pVTZ	0,74279	0,694517	4405	4514,8068	5,2184	5,1761	-1,17264	-1,1650231
cc-pVQZ	0,74186	0,693740	4404	4519,8085	4,4309	4,3904	-1,17380	-1,1665888
aug-cc-pVQZ	0,74186	0,693860	4403	4514,6129	5,1950	5,1495	-1,17387	-1,1667398
cc-pV5Z	0,74186	0,693589	4401	4520,3619	4,6938	4,6493	-1,17422	-1,1672812
aug-cc-pV5Z	0,74186	0,693589	4400	4519,7636	5,1869	5,1370	-1,17425	-1,1673678
Referência ^[12]	0,7414		4395		5,3104			

Tabela 1.1.1 - Distância de equilíbrio (R_{eq}), freqüência (w_e), polarizabilidade (α) e energia de equilíbrio (E) do H_2 obtidos através de cálculos de otimização nos métodos CCSD(T) e MP2 variando as bases.

Na tabela 1.1.1 percebe-se que a distância interatômica de equilíbrio (R_{eq}) a partir da base cc-pvqz permanece constante, bem como a freqüência. No entanto o valor da polarizabilidade varia para as funções base com e sem difusão.

Comparando os valores da tabelas 1.1.1 com os valores da referência observa-se que no caso do diátomo H_2 os cálculos utilizando o método CCSD(T) aproximam-se mais do valor experimental. Esse fato já era previsto já que o método CCSD(T) é mais rigoroso.

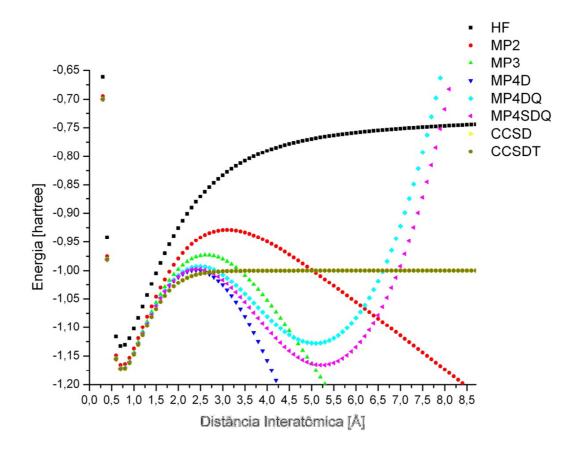


Figura 2 - Superfície de energia potencial do H2 calculada em vários métodos na base cc-PVQZ

Analisando a Figura 2 percebe-se que os métodos MP2, MP3, MP4D não reproduzem uma curva de energia potencial, pois as energias não assintotam para distâncias interatômicas grandes. Já as curvas em MP4DQ e MP4SDQ para distâncias interatômicas grandes tendem a energias infinitas fato que também impossibilita a reprodução de SEP. No

método HF percebe-se que a curva assintoda em uma energia muito alta (em comparação com os valores de referencia) confirmando a imprecisão deste método quando comparando aos métodos que incluem as energias de correlação.

${\rm H_2}^+$	$R_{eq}[\mathring{A}]$	$w_e[cm^{-1}]$	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	1,05337067	2435,0902	0	2,2309491	-0,6002805
aug-cc-pVDZ	1,05969448	2389,4177	0	2,8342784	-0,6012481
cc-pVTZ	1,05714712	2334,713	0	2,63226523	-0,6022447
aug-cc-pVTZ	1,05812176	2322,1018	0	2,85494413	-0,6023017
cc-Pvqz	1,05705443	2324,2283	0	2,7700485	-0,6025209
aug-cc-pVQZ	1,05705443	2323,1989	0	2,85345823	-0,6025356
cc-pV5Z	1,05705443	2323,1108	0	2,8151351	-0,6026202
aug-cc-pV5Z	1,05705443	2322,9106	0	2,8543277	-0,6026226

Tabela 1.1.2 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , polarizabilidade (α) e energia de equilíbrio (E) do H_2^+ obtidos através de cálculos de otimização no método CCSD(T) variando as bases

Na tabela 1.1.2 a distância de equilíbrio, a freqüência, o momento de dipolo, a polarizabilidade e a energia ficam constante a partir da base cc-pVQZ. Essa tendência que apareceu tanto no H_2 quanto no H_2^+ já era esperada já que são modelos muito simples (poucos elétrons) tornando o uso de conjuntos de funções de base maiores desnecessário.

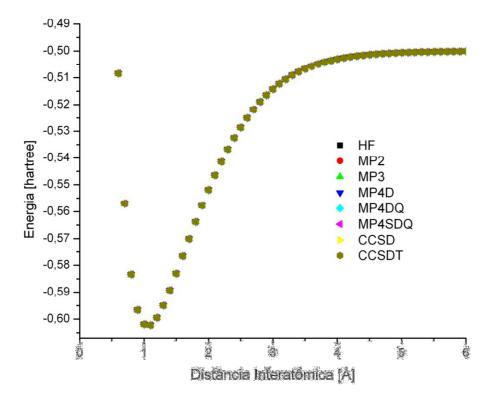


Figura 3 - Superfície de energia potencial do H₂⁺ calculada em vários métodos na base cc-PVQZ

Vê-se na figura 3 que todos os métodos utilizados conseguiram representar a superfície de energia potencial do ${\rm H_2}^+$. Isso porque o sistema ${\rm H_2}^+$ possui somente um elétron tornando as aproximações muito mais precisas.

H_2^-	$R_{eq}[\mathring{A}]$	w _e [cm ⁻¹]	μ[D]	$\alpha[_0^3]$	E[hartree]
aug-cc-pVDZ	0,78060358	3923,2997	0	8,944986	-1,1071862
cc-pVTZ	1,17482818	858,3793	0	11,7801677	-1,0352519
aug-cc-pVTZ	0,73660642	4490,9971	0		-1,1225655
cc-pVQZ	0,97680968	1550,3488	0	19,2459877	-1,0482738
aug-cc-pVQZ	0,75388332	4170,5792	0		-1,1287177
cc-pV5Z	0,83801335	2605,2215	0	60,8617381	-1,0675097
aug-cc-pV5Z	0,7474289	4293,4207	0		-1,1443092

Tabela 1.1.3 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do H_2^- obtidos por cálculos de otimização no método CCSD(T) variando as bases

Na tabela 1.1.3, encontra-se uma tendência diferente das espécies H_2 e H_2^+ . Os resultados obtidos já não apresentam um valor constante a partir de alguma base já que o sistema molecular agora apresenta mais elétrons e portanto é mais complexo

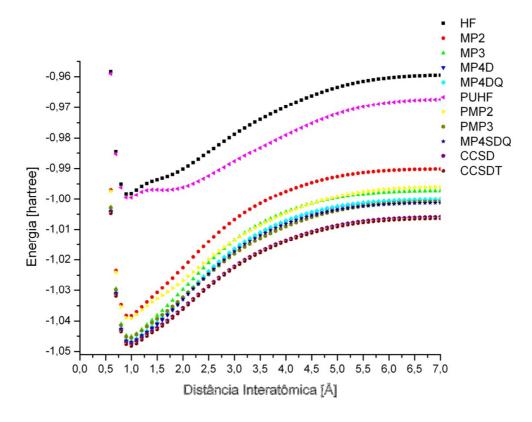


Figura 4 - Superfície de energia potencial do H₂ calculada em vários métodos na base cc-PVQZ

Na figura 4 nota-se que os métodos HF e PUHF não apresentam boa eficácia na região de poço da SEP. Isso porque neste sistema molecular aparecem mais elétrons e métodos que não envolvem a energia de correlação já não são tão eficazes quanto em espécies de poucos elétrons como o ${\rm H_2}^+$ e ${\rm H_2}$.

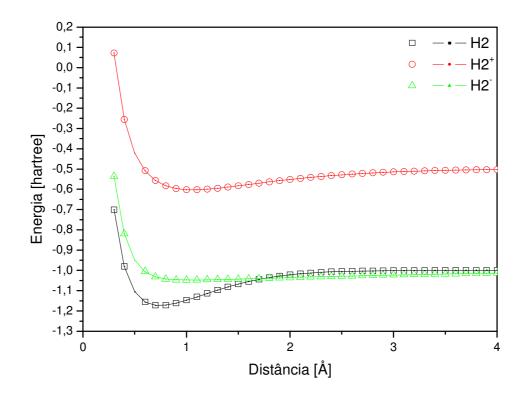


Figura 5 - Superfície de energia potencial do H₂, H₂⁺ e H₂⁻ calculada pelo método CCSD(T) na base cc-PVQZ

A partir da figura 5 pode-se comparar as SEP do diátomo H_2 neutro e carregado. A espécie que apresenta menor enegergia é o H_2 mostrando sua maior estabilidade quando comparado aos seus ions monovalentes. A energia de dissociação da especie H_2^+ é maior quando comparada as espécies H_2 e H_2^- .

	R _{eq}	D_{e}	B_{e}	α_{e}	γe	β	ω_{e}	$\omega_{e}x_{e}$	$\omega_{\rm e} y_{\rm e}$	D_{Req}
	[Å]	[kcal/mol]	[cm ⁻¹]	[cm ⁻¹]	[cm ⁻¹]	[cm ⁻¹]	[cm ⁻¹]	[cm ⁻¹]	[cm ⁻¹]	[Å]
H_2	0,740	108,824	61,147	3,32845	0,185521	0,0040861	4300,83	106,555	2,023	-0,0490972
H_2	1,066	64,413	29,455	1,16994	-0,063938	-6,7282E-05	2342,35	60,737	-0,966	-0,0185685
H_2^+	1,084	25,661	28,485	2,85891	-0,255153	0,1608349	918,68	-109,423	-93,454	-0,0476079

Tabela 1.1.4 Propriedades espectroscópicas do H_2 , H_2^+ e H_2^- obtidas através da aplicação da técnica de Dunham nas SEPs calculadas em CCSD(T) e ajustadas por uma função de Rydberg de quinta ordem

Comparando os valores de distância de equilibrio (R_{eq}) e frequencia (ω_e) obtidos via SEP para a molécula de H_2 com a referência, observa-se uma grande proximidade. Isso ocorre pois o sistema é bem simples (possui somente um elétron) possibilitando a contrução de uma SEP bem definida e consequentemente propriedades espectroscópicas bem proximas dos valores de referência.

	H_2 H_2^+		H_2^-	EA	PI
		E[hartree]		[kcal/mol]	[kcal/mol]
cc-pVDZ	-1,1637	-0,6003	-1,00821	-91,2907	350,7744
aug-cc-pVDZ	-1,1649	-0,6012	-1,10719	-31,3518	350,9262
cc-pVTZ	-1,1723	-0,6022	-1,03525	-85,3721	354,8006
aug-cc-pVTZ	-1,1726	-0,6023	-1,12257	-26,361	354,9393
cc-pVQZ	-1,1738	-0,6025	-1,04827	-78,9401	355,5341
aug-cc-pVQZ	-1,1739	-0,6025	-1,12872	-24,2716	355,5688
cc-pV5Z	-1,1742	-0,6026	-1,06751	-66,6758	355,738
aug-cc-pV5Z	-1,1743	-0,6026	-1,14431	-16,2495	355,7565

Tabela 1.1.5 – Elétro afinidade (EA) e pontecial de ionização (PI) para os diátomos H₂, H₂⁺, H₂⁻

3.1.2 DIÁTOMO OH

Para o diátomo OH foram feitos cálculos de otimização e construção se superfície de energia potencial tanto da espécie neutra quanto carregada.

ОН	$R_{eq}[\mathring{A}]$		w _e [cm ⁻¹]		$\alpha[a_0^3]$		μ[D]	E[hart	ree]
	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2
cc-pVDZ	0,9796	0,9725	3704	3792	3,62467	3,58052	1,7963	1,8072	-75,55935	-75,5428
aug-cc-pVDZ	0,9796	0,9724	3684	3771	6,88811	6,78814	1,7585	1,7746	-75,58408	-75,5656
cc-pVTZ	0,9711	0,9688	3745	3818	4,91503	4,87533	1,7705	1,7849	-75,63772	-75,6189
aug-cc-pVTZ	0,9734	0,9698	3719	3793	7,26187	7,20101	1,7440	1,7610	-75,64559	-75,6263
cc-pVQZ	0,9696	0,9680	3750	3823	5,76602	5,72512	1,7562	1,7717	-75,66163	-75,6436
aug-cc-pVQZ	0,9706	0,9685	3740	3812	7,38239	7,34092	1,7384	1,7555	-75,66450	-75,6466
cc-pV5Z	0,9698		3747		6,35373		1,7524	·	-75,66962	
Referência ^[12]	0.969	97	3738	3	1.66	50				

Tabela 1.2.1 - Distância de equilíbrio (R_{eq}), freqüência (w_e), polarizabilidade (α), momento de dipolo (μ), e energia de equilíbrio (E) do OH obtidos através de cálculos de otimização nos métodos CCSD(T) e MP2 variando as bases.

Comparando os valores da tabelas 1.2.1 com os valores da referência observa-se que no caso do diátomo OH os cálculos utilizando o método CCSD(T) aproximam-se mais do valor experimental. Esse fato já era previsto já que o método CCSD(T) é mais rigoroso.

Todos os métodos apresentados na figura 6 conseguem descrever uma superfície de energia potencial. No entanto o método que fornece menor energia é o CCSD(T) já que dentre os métodos utilizados é o mais rigoroso.

OH ⁺	$R_{eq}[\mathring{A}]$	$w_e[cm^{-1}]$	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	1,03516	3175,9317	2,1974	2,85136	-75,01541
aug-cc-pVDZ	1,03361	3119,8282	2,1522	3,8881	-75,02292
cc-pVTZ	1,02772	3166,5576	2,1374	3,42654	-75,07609
aug-cc-pVTZ	1,02892	3148,8988	2,1300	3,92891	-75,07873
cc-pVQZ	1,02584	3164,3421	2,1218	3,65043	-75,09458
aug-cc-pVQZ	1,02634	3158,6369	2,1205	3,89165	-75,09553
cc-pV5Z	1,02634	3157,082	2,1225	3,75838	-75,10061

Tabela 1.2.2 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do OH^+ obtidos através de cálculos de otimização no método CCSD(T) variando as bases

OH ⁻	$R_{eq}[\mathring{A}]$	$w_e[cm^{-1}]$	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	0,986666	3399,832100	1,254100	5,4445181	-75,5354831
aug-cc-pVDZ	0,974267	3686,418800	1,486200	21,7141496	-75,6358235
cc-pVTZ	0,967643	3647,470100	1,424500	8,05516247	-75,6576969
aug-cc-pVTZ	0,967643	3726,541300	1,453400	24,8410171	-75,7094248
cc-pVQZ	0,964129	3711,930600	1,480600	10,5927782	-75,7024002
aug-cc-pVQZ	0,965196	3746,390300	1,448400	27,4486712	-75,7303362

Tabela - 1.2.3 Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do OH obtidos através de cálculos de otimização no método CCSD(T) variando as bases.

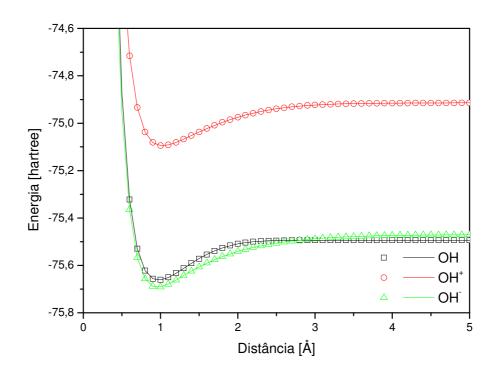


Figura 6 - Superfície de energia potencial do OH, OH⁺e OH⁻ calculada pelo método CCSD(T) na base cc-PVQZ

A partir da figura 6 pode-se comparar as SEP do diátomo OH neutro e carregado. A espécie que apresenta menor enegergia é o OH⁻ mostrando sua maior estabilidade quando comparado aos estado neutro e ao cátion monovalente. A energia de dissociação da especie OH⁺ é maior quando comparada as espécies OH e OH⁻.

	R_{eq}	D_{e}	B_{e}	α_{e}	γe	β	ω_{e}	$\omega_{e}x_{e}$	$\omega_{\rm e} y_{\rm e}$	D_{Req}
	[Å]	[kcal/mol]	[cm ⁻¹]	[cm ⁻¹]	[cm ⁻¹]	[cm ⁻¹]	[cm ⁻¹]	$[cm^{-1}]$	[cm ⁻¹]	[Å]
ОН	0,974	105,464	18,744	0,63558	0,0040682	6,88473E-05	3689,59	66,133	-0,460	-0,031697
OH^+	1,021	113,642	17,047	0,80909	0,0184145	4,76234E-05	3190,07	91,883	2,219	-0,010099
OH^{-}	0,959	139,658	19,343	0,85383	0,0085451	2,45546E-05	3783,22	106,139	1,368	0,012969

Tabela 1.2.4 - Propriedades espectroscópicas do OH, OH⁺ e OH⁻ obtidas através da aplicação da técnica de Dunham nas SEPs calculadas em CCSD(T) e ajustadas por uma função de Rydberg de quinta ordem

Da mesma forma que na moléculas de H_2 , os valores de distância de equilibrio (R_{eq}) e frequencia (ω_e) obtidos via SEP para a molécula de OH quando comparado com a referêcia são bem próximos.

3.1.3 DIÁTOMO O₂

Para o diátomo O_2 foram realizados cálculos de otimização e contrução da SEP para a espécie O_2^-

O_2	$R_{eq}[\mathring{A}]$		$w_e[cm^{-1}]$		$\alpha[{a_0}^3]$		E[hartree]	
	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2
cc-pVDZ	1,216030	1,283054	1586	1224	6,27566	4,84298	-149,98583	-149,92289
aug-cc-pVDZ	1,220462	1,283656	1564	1225	10,16352	8,83486	-150,02108	-149,95549
cc-pVTZ	1,212237	1,278617	1584	1264	7,63023	6,30712	-150,12904	-150,06305
aug-cc-pVTZ	1,213187	1,278551	1575	1262	10,49992	9,36727	-150,14102	-150,07472
cc-pVQZ	1,207837	1,275430	1599	1291	10,10815	7,50864	-150,17389	-150,10977
aug-cc-pVQZ	1,208210	1,275248	1596	1291	10,55583	9,54420	-150,17868	-150,11516
Referência ^[12]	1,20)75	1580)	1,562			

Tabela 1.3.1 - Distância de equilíbrio (R_{eq}), freqüência (w_e), polarizabilidade e energia de equilíbrio (E) do O_2 obtidos através de cálculos de otimização nos métodos CCSD(T) e MP2 variando as bases.

Comparando os valores da tabela 1.3.1 com os valores da referência observa-se que no caso do diátomo O_2 os cálculos utilizando o método CCSD(T) aproximam-se mais do valor experimental. Esse fato já era previsto já que o método CCSD(T) é mais rigoroso.

O_2^+	$R_{eq}[\mathring{A}]$	w _e [cm ⁻¹]	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	1,12570698	1928,9875	0,0277	5,07689733	-149,5590645
aug-cc-pVDZ	1,13057972	1906,0891	0,0299	6,5874666	-149,5824001
cc-pVTZ	1,12076076	1914,6778	0,0284	5,73940057	-149,6922645
aug-cc-pVTZ	1,12153671	1906,8467	0,0294	6,57487067	-149,6992226
cc-pVQZ	1,11692683	1933,0517	0,0285	6,15133907	-149,7332634
aug-cc-pVQZ	1,11715247	1931,6277	0,0293	6,51897753	-149,7361018

Tabela 1.3.2 - Distância de equilíbrio (R_{eq}) , frequência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do O_2^+ obtidos através de cálculos de otimização no método CCSD(T) variando as bases

O_2^-	$R_{eq}[\mathring{A}]$	$w_e[cm^{-1}]$	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	1,3646502	1117,3568	0,179	-1,5909407	-149,9430678
aug-cc-pVDZ	1,36748904	1066,7317	0,1753	16,3940785	-150,0304677
cc-pVTZ	1,35838637	1138,3446	0,1479	5,76242593	-150,0968676
aug-cc-pVTZ	1,35557713	1114,4266	0,1556	19,4239934	-150,1540447
cc-pVQZ	1,35178298	1142,919	0,1327	10,0419747	-150,1741948
aug-cc-pVQZ	1,34887524	1128,0233	0,1459	21,6006456	-150,1926785

Tabela 1.3.3 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do O_2^- obtidos através de cálculos de otimização no método CCSD(T) variando as bases.

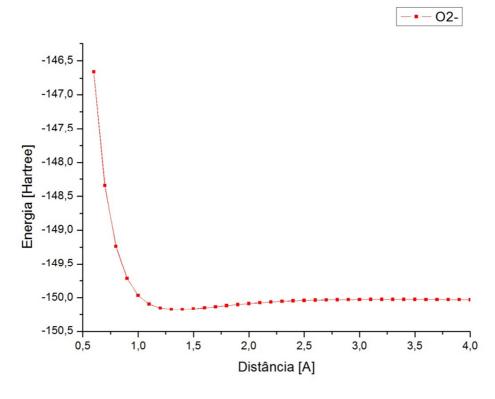


Figura 7 - Superfície de energia potencial do O₂ calculada pelo método CCSD(T) na base cc-pVQZ.

3.1.4 DIÁTOMO CO

CO	$R_{eq}[\mathring{A}]$		$w_e[cm^{-1}]$		$\alpha[a_0^3]$		μ[D]		E[hartree]	
	CCSD(T	MP2		MP2		MP2		MP2		MP2
)		CCSD(T)		CCSD(T)		CCSD(T)		CCSD(T)	
cc-pVDZ	1,1446	1,1546	2145	2114	9,77855	9,88408	0,2830	0,3266	-113,05498	-113,0368
aug-cc-pVDZ	1,1473	1,1561	2105	2072	13,15525	13,23077	0,3171	0,3679	-113,06121	-113,0550
cc-pVTZ	1,1358	1,1502	2155	2121	11,39876	11,49892	0,2492	0,2957	-113,15558	-113,1357
aug-cc-pVTZ	1,1360	1,1505	2145	2110	13,1664	13,28310	0,2696	0,3202	-113,16219	-113,1424
cc-pVQZ	1,1314	1,1480	2165	2128	12,2726	12,38174	0,2459	0,2961	-113,18791	-113,1699
aug-cc-pVQZ	1,1318	1,1486	2161	2123	13,11409	13,24591	0,2476	0,2996	-113,19037	-113,1729
cc-pV5Z	1,1307		2166		12,71047		0,2439		-113,19819	
Referência ^[12]	1.12	283	2170	0	0.1	.12				

Tabela 1.4.1 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , polarizabilidade (α) , momento de dipolo (μ) , e energia de equilíbrio (E) do CO obtidos através de cálculos de otimização nos métodos CCSD(T) e MP2 variando as bases.

Comparando os valores da tabela 1.4.1 com os valores da referência observa-se que no caso do diátomo CO os cálculos utilizando o método CCSD(T) aproximam-se mais do valor experimental. Esse fato já era previsto já que o método CCSD(T) é mais rigoroso.

CO ⁺	$R_{eq}[\mathring{A}]$	$w_e[cm^{-1}]$	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	1,12765	2261,1407	3,0838	7,63021	-112,55425
aug-cc-pVDZ	1,12953	2234,302	3,0251	8,86899	-112,56629
cc-pVTZ	1,11918	2276,0726	3,0363	8,22176	-112,64428
aug-cc-pVTZ	1,11886	2272,7717	3,0239	8,73389	-112,64891
cc-pVQZ	1,11443	2292,1902	3,0246	8,47203	-112,67383
aug-cc-pVQZ	1,11465	2290,4718	3,0793	8,64564	-112,67557

Tabela 1.4.2 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do CO^+ obtidos através de cálculos de otimização no método CCSD(T) variando as bases

CO ⁻	$R_{eq}[\mathring{A}]$	$w_e[cm^{-1}]$	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	1,246410	1644,9619	1,3531	11,8552474	-112,9428205
cc-pVTZ	1,231669	1659,1906	1,482	15,9083187	-113,0694173
aug-cc-pVTZ	1,183182	1471,0251	4,2486	192,732818	-113,1065595
cc-pVQZ	1,224134	1656,8486	1,5898	19,9966329	-113,1122172

Tabela 1.4.3 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do CO^- obtidos através de cálculos de otimização no método CCSD(T) variando as bases

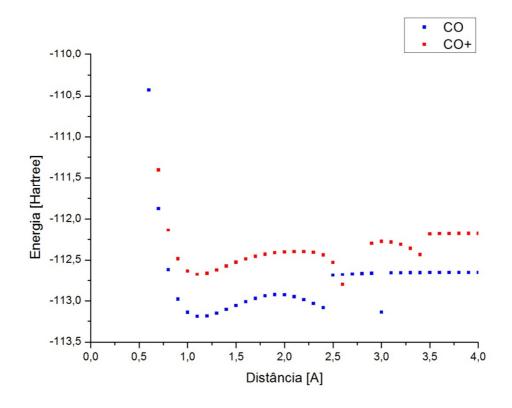


Figura 8 - Superfície de energia potencial do CO e CO^+ calculada pelo método CCSD(T) na base cc-pVQZ.

Através da analise da figura 8 percebe-se que o método CCSD(T) não conseguiu contruir uma SEP bem definida para o diátomo CO neutro e seu cátion monovalente já que na região de 1,75Å à 3,5Å há uma deformação na curva. Portanto não seria correto obter as propriedades espectroscópicas via SEP já que forneceria valores pouco precisos comparados a referência.

3.1.5 DIÁTOMO N₂

Para o diátomo N_2 foram realizados somente cálculos de otimização para ao molécula neutra e carregada positivamente.

N_2	$R_{eq}[\mathring{A}]$		w _e [cm	$w_e[cm^{-1}]$		u ₀ ³]	E[hartree]	
	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2
cc-pVDZ	1,231156	1,113789	1466	2173		8,15312		-109,26295
aug-cc-pVDZ	1,233355	1,114729	1456	2157	9,69031	11,69170	-149,97218	-109,28065
cc-pVTZ	1,225427	1,105662	1480	2195	7,12777	9,54673	-150,08139	-109,35776
aug-cc-pVTZ	1,225427	1,105892	1475	2187	10,09190	11,67452	-150,09360	-109,36480
cc-pVQZ	1,220009	1,104037	1500	2205	8,27348	10,50309	-150,12672	-109,39021
aug-cc-pVQZ	1,220009	1,104208	1498	2202		11,64190		-109,39369

Tabela 1.5.1 - Distância de equilíbrio (R_{eq}), freqüência (w_e), polarizabilidade e energia de equilíbrio (E) do N_2 obtidos através de cálculos de otimização nos métodos CCSD(T) e MP2 variando as bases.

N_2^+	$R_{eq}[\mathring{A}]$	w _e [cm ⁻¹]	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	1,13714519	2183,678	0,0491	10,1745513	-108,7240341
aug-cc-pVDZ	1,13871111	2167,8537	0,0523	11,632741	-108,7336511
cc-pVTZ	1,12259004	2195,0334	0,0404	10,84208	-108,8075068
aug-cc-pVTZ	1,12259004	2189,7353	0,041	11,4997878	-108,8113428
cc-pVQZ	1,11848992	2210,7788	0,0381	11,2254807	-108,833797
aug-cc-pVQZ	1,11863543	2209,3882	0,0384	11,5091228	-108,8354083

Tabela 1.5.2 Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do N_2^+ obtidos através de cálculos de otimização no método CCSD(T) variando as bases

3.1.6 DIÁTOMO NO

Para o diátomo NO foram realizados somente cálculos de otimização para a molécula neutra e seus ions monovalentes.

NO	R _{eq} [Å]	$w_{e}[cm^{-1}]$		$\alpha[a_0^3]$		μ[D]		E[har	E[hartree]	
	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2	
cc-pVDZ	1,1608	1,1454	2053	3662	7,16154	5,75648	0,2831	0,2799	-129,59816	-129,5774	
aug-cc-pVDZ	1,1640	1,1465	2016	3667	11,17519	9,69913	0,2273	0,2261	-129,62503	-129,6022	
cc-pVTZ	1,1530	1,1439	2107	3338	8,56160	7,63559	0,2282	0,2207	-129,71683	-129,6936	
aug-cc-pVTZ	1,1532	1,1439	2096	3332	11,30348	10,41378	0,2860	0,2030	-129,70667	-129,70249	
cc-pVQZ	1,1498	1,1432	2106	3239	9,64292	8,86066	0,2126	0,2067	-129,75440	-129,73291	
aug-cc-pVQZ	1,1499	1,1431	2102	3248	12,49185	10,60928	0,2018	0,1965	-129,75810	-129,73703	
cc-pV5Z	1,1491		2103	·	10,34476		0,2074		-129,76681		
Referência ^[12]	1.12	283	2170)	0.1	.12					

Tabela 1.6.1 - Distância de equilíbrio (R_{eq}), freqüência (w_e), polarizabilidade (α), momento de dipolo (μ), e energia de equilíbrio (E) do NO obtidos através de cálculos de otimização nos métodos CCSD(T) e MP2 variando as bases.

NO ⁺	$R_{eq}[\mathring{A}]$	$w_e[cm^{-1}]$	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	1,07904829	2373,4494	0,7513	5,9455880	-129,2754607
aug-cc-pVDZ	1,08194594	2337,1375	0,6715	7,1017714	-129,2912449
cc-pVTZ	1,06910944	2361,8737	0,6536	6,5074632	-129,3837817
aug-cc-pVTZ	1,06882233	2356,8915	0,6378	6,9982524	-129,3892299
cc-pVQZ	1,06535459	2377,3187	0,6336	6,7725314	-129,4182017
aug-cc-pVQZ	1,06557508	2375,1026	0,6294	6,9334187	-129,4203162
cc-pV5Z	1,06467027	2380,0453	0,6276	6,8486380	-129,4292372

Tabela 1.6.2 Distância de equilíbrio (R_{eq}) , freqüência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do NO^+ obtidos através de cálculos de otimização no método CCSD(T) variando as bases.

NO ⁻	$R_{eq}[\mathring{A}]$	$w_e[cm^{-1}]$	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	1,28596676	1394,4317	0,4099	8,1831556	-129,4991123
aug-cc-pVDZ	1,26986131	1358,8695	0,9414	27,5280338	-129,5825297
cc-pVTZ	1,27546294	1393,8453	0,5252	10,9700204	-129,6475096
aug-cc-pVTZ	1,25790940	1366,0582	1,0222	32,5846594	-129,6624859
cc-pVQZ	1,26894209	1403,4998	0,6083	13,7559307	-129,6986065
cc-pV5Z	1,26448283	1400,6461	0,7210	16,9489000	-129,7201338

Tabela 1.6.3 Distância de equilíbrio (R_{eq}) , frequência (w_e) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do NO^- obtidos através de cálculos de otimização no método CCSD(T) variando as bases.

3.1.7 DIÁTOMO SO

Para o diátomo SO foram realizados cálculos de otimização para a molécula neutra e seu ânion monovalentes.

SO	$R_{eq}[\mathring{A}]$		$w_e[cm^{-1}]$		$\alpha[{a_0}^3]$		μ[D]		E[hartree]	
	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2	CCSD(T)	MP2
cc-pVDZ	1,5349	1,5381	1076	1073	14,56971	12,22536	2,0033	1,9292	-472,66388	-472,6426
aug-cc-pVDZ	1,5396	1,5410	1071	1071	23,05017	20,75041	2,0091	1,9228	-472,70249	-472,6778
cc-pVTZ	1,5004	1,5012	1143	1138	17,66694	16,35637	1,9869	1,9141	-472,80959	-472,7784
aug-cc-pVTZ	1,5021	1,5019	1135	1136	23,16633	21,78363	1,9939	1,9110	-472,82144	-472,7897
cc-pVQZ	1,4904	1,4909	1152	1148	14,11363	18,87416	1,9656	1,9022	-472,66208	-472,8218
aug-cc-pVQZ		1,4842		1148		21,99276		1,8971		-472,8268

Tabela 1.7.1 - Distância de equilíbrio (R_{eq}) , freqüência (w_e) , polarizabilidade (α) , momento de dipolo (μ) , e energia de equilíbrio (E) do SO obtidos através de cálculos de otimização nos métodos CCSD(T) e MP2 variando as bases.

SO ⁺	$R_{eq}[\mathring{A}]$	$w_e[cm^{-1}]$	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	1,47082941	1226,9208	3,0102	12,3400874	-472,3029420
aug-cc-pVDZ	1,47736436	1208,1166	2,8844	15,8996701	-472,3285089
cc-pVTZ	1,44363158	1295,8051	2,8824	14,0207692	-472,4369426
aug-cc-pVTZ	1,44493975	1288,2577	2,8587	15,6136257	-472,4439915

Tabela 1.7.2 Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do SO^+ obtidos através de cálculos de otimização no método CCSD(T) variando as bases.

SO	$R_{eq}[\mathring{A}]$	$w_e[cm^{-1}]$	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	1,4708294100	1226,9208	3,0102	12,3400874	-472,3029420
aug-cc-pVDZ	1,4773643600	1208,1166	2,8844	15,8996701	-472,3285089
cc-pVTZ	1,4436315800	1295,8051	2,8824	14,0207692	-472,4369426
aug-cc-pVTZ	1,4449397500	1288,2577	2,8587	15,6136257	-472,4439915

Tabela 1.7.3 Distância de equilíbrio (R_{eq}), frequência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do SO obtidos através de cálculos de otimização no método CCSD(T) variando as bases.

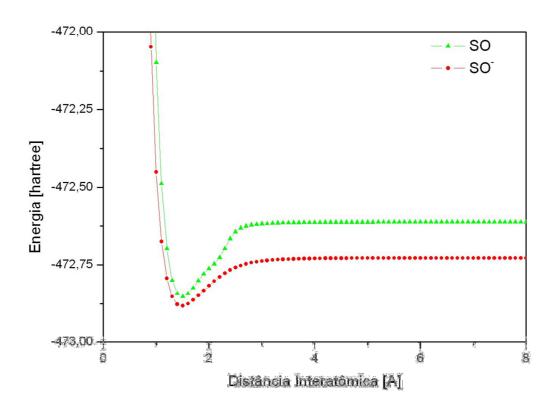


Figura 9 - Superfície de energia potencial do SO e SO calculada pelo método CCSD(T) na base cc-pVQZ.

A partir da figura 9 pode-se comparar as SEP do diátomo SO neutro e carregado negativamente. A espécie que apresenta menor enegergia é o SO mostrando sua maior estabilidade quando comparado aos estado neutro. A energia de dissociação da especie SO é maior que a espécie SO.

3.2 Triátomos

Utilizando o software Guassian $03^{[11]}$ foram realizados cálculos de otimização de geometria através do método MP2 nas bases cc-pVxZ e aug-cc-pVxZ (x = D, T, Q, 5) para os sistemas triatômicos neutros.

3.2.1 TRIÁTOMO CO₂

CO_2	$R_{eq}[\mathring{A}]$	Ângulo	$W_1[cm^{-1}]$	$W_2[cm^{-1}]$	W ₃ [cm ⁻¹]	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	1,1771	180,0	647,58	1328,44	2441,24	0	12,9245	-188,1335527
aug-cc-pVDZ	1,1802	180,0	655,50	1305,39	2379,23	0	17,8024	-188,1697004
cc-pVTZ	1,1694	180,0	655,80	1331,00	2426,05	0	15,0756	-188,3083640
aug-cc-pVTZ	1,1702	180,0	658,97	1325,78	2401,40	0	17,9353	-188,3216407
cc-pVQZ	1,1662	180,0	665,15	1334,81	2420,73	0	26,4996	-188,3680277

Tabela 2.1.1 - Distância de equilíbrio (R_{eq}), Ângulo, freqüências (w_1 , w_2 , w_3), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do CO_2 obtidos por cálculos de otimização no método MP2 variando as bases.

3.2.2 TRIÁTOMO SO₂

SO_2	$R_{eq}[\mathring{A}]$	Ângulo	$W_1[cm^{-1}]$	$W_2[cm^{-1}]$	$W_3[cm^{-1}]$	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-Pvdz	1,4939	118,68	483,25	1048,60	1256,35	2,4742	19,0701	-547,7046517
aug-cc-pVDZ	1,5055	118,17	462,73	1021,53	1021,53	2,3503	27,3681	-547,7691699
cc-pVTZ	1,4599	119,07	501,14	1114,41	1331,01	2,2067	21,8284	-547,9452144
aug-cc-pVTZ	1,4635	118,74	493,50	1099,49	1305,60	2,1854	26,6177	-547,9650096
cc-pVQZ	1,4500	119,30	505,62	1123,23	1340,35	2,1117	23,8337	-548,0225537

Tabela 2.2.1 - Distância de equilíbrio (R_{eq}), Ângulo, freqüências (w_1, w_2, w_3), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do SO_2 obtidos por cálculos de otimização no método MP2 variando as bases.

3.2.3 TRIÁTOMO NO₂

NO_2	$R_{eq}[\mathring{A}]$	Ângulo	$W_1[cm^{-1}]$	$W_2[cm^{-1}]$	$W_3[cm^{-1}]$	μ[D]	$\alpha[_0^3]$	E[hartree]
cc-pVDZ	1,2085	134,14	767,50	1388,46	2372,18	0,7294	6,7855	-204,5891359
aug-cc-pVDZ	1,2115	133,81	761,03	1367,75	2489,91	0,6666	9,3400	-204,6342717
cc-pVTZ	1,2009	134,12	771,30	1372,65	4224,22	0,6897		-204,7795639
aug-cc-pVTZ	1,2010	134,09	768,41	1363,64	4483,24	0,6592		-204,7958638
cc-pVQZ	1,1976	134,12	773,97	1378,02	7823,30	0,6744		-204,8441737

Tabela 2.3.1 - Distância de equilíbrio (R_{eq}) , Ângulo, freqüências (w_1, w_2, w_3) , momento de dipolo (μ) , polarizabilidade (α) e energia de equilíbrio (E) do NO_2 obtidos por cálculos de otimização no método MP2 variando as bases.

CAPITULO - 4 CONCLUSÃO

O objetivo deste trabalho é caracterizar com precisão sistemas diatômicos para futuros cálculos de clusters de Vander Waals. O estudo de clusters requer grande quantidade de informações dos monômeros que irão formar-los. Por esse motivo, para caracterizar sistema molecular foi utilizado tanto à metodologia de otimização molecular quanto a construção de SEPs. Na maioria dos sistemas, ambos as metodologias se mostram válidas para a obtenção das propriedades espectroscópicas pois aproximaram-se dos valores de referência.

Devido ao tempo computacional gasto nos cálculos e as limitações de processamento dos computadores não foi possível caracterizar todos os sistemas diatômicos propostos completamente. Alem disso algum sistemas como N₂, N₂+, N₂-, CO-, O₂+, O₂, SO+ e NO apresentaram problema de convergência fato que impossibilitou a contrução das SEP desses sistemas e necessitou muito tempo de pesquisa para tentar sanar o problema. Recentemente encontrou-se um meio de solucionar esse problema utilizando outro algoritimo para o cálculo do SCF. Apesar de ser muito mais custoso, esse novo algoritimo que já esta incluso no pacote Gaussian03^[11] utiliza um convergência quadrática baseada no método de Bracskay. Esse algoritimo combina a minimização linear com o algoritmo de Newton-Raphson sugerido por Bacskay para chegar a um ponto estacionário sanando a maioria dos problemas de convergência^[13]. No entanto essa alternativa foi encontrada recentemente e por isso não houve tempo de aplicá-la.

Comparou-se também os métodos MP2 e CCSD(T) e foi possível concluir que o método mais rigoroso e o métodos cujos valores se aproximam mais da referênciaé o CCSD(T). Porem o método MP2 mesmo sendo menos rigoroso é de grande valia pois é bem menos custoso que o CCSD(T).

Referências

- [1] Pinheiro da Silva Cruz, Ana Cláudia. Determinação de propriedades termodinâmicas de espécies químicas em gases químicamente reagentes. Relatório, São José dos Campos, 2005
- [2] Pereira, Arquimedes Mariano. Estudo *ab initio* e DFT das nitrosaminas. Tese de Mestrado, Universidade Federal da Paraíba, João Pessoa, 2008.
- [3] Szabo, A. e Ostlund, N. S. (1996). Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. MacMillan Publishing CO, Inc., New York.
- [4] Maíra Coelho Abade. Cálculo Mecânico Quântico Multidimensional. Tese de Mestrado, UnB, Brasília, 2007
- [5] PONTES, Frederico José de Santana. Estudo Teórico de Modelos de Catálise Assimétrica e Autocatálise em Reação de Adiação de Organozinco a Aldeído. Tese Mestrado, Recife, UFPE, 2004
- [6] C. Møller e M. S. Plesset, Phys. Rev. 46,618 (1934)
- [7] J. A. Pople, R.Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quant. Chem. XIV, 545 (1978)
- [8] R. J. Bartlett and G. D. Purvis, Int. J. Quant. Chem. 14, 516 (1978)

- [9] Eugen Merzbacher, *Quantum Mechanics*, Wiley International Edition 2° ed, New York, (1976)
- [10] T.H Dunning, Jr J. Chem. Phys. 90, 1007 (1989); R.A. Kendall, T.H. Dunning, Jr. andR.J. Harrison, J. Chem. Phys. 96, 6796 (1992)
- [11] James B. foresman e Æleen Frisch. Exploring Chemistry with electronic Structure Methods, Second Edition. Gaussian, Inc., Pittsburgh.
- [12] http://cccbdb.nist.gov/
- [13] http://wanglab.bu.edu/g03guide/G03Guide/www.gaussian.com/g_ur/k_scf.htm