

PROPRIEDADES ESPECTROSCÓPICAS DE SISTEMAS DIATÔMICOS DE INTERESSE ATMOSFÉRICO

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Marcelo Motta Venchiarutti (USP, Bolsista PIBIC/CNPq) E-mail: <u>motta_motta@hotmail.com</u>

Dr. Patrícia Regina Pereira Barreto (LAP/INPE, Orientadora) E-mail: <u>patricia@plasma.inpe.br</u>

COLABORADORES

Dr. Vladir Wagner Ribas(LAP/INPE)

Julho de 2009

AGRADECIMENTOS

Agradeço a todos aqueles que me apoiaram e acreditaram na minha dedicação.

À orientadora Dra. Patrícia Regina Pereira Barreto por me encaminhar na área científica, pelo conhecimento que através dela adquiri neste trabalho, pela paciência e pela orientação e apoio deste trabalho.

Ao Dr. Vladir Wagner Ribas pelo conhecimento que me foi passado, pelos conselhos e pelo auxilio durante este trabalho.

Ao Instituto Nacional de Pesquisas Espaciais - INPE pela oportunidade de estudos e utilização de suas instalações.

Aos meus familiares em especial aos meus pais que me apoiaram e me aconselharam nas decisões em todas as fases de minha vida.

À todos os meus amigos em especial à Jessica Akemi pelo incentivo e compreensão.

RESUMO

O objetivo deste trabalho é a caracterização dos sistemas diatômicos de interesse ambiental visando cálculos posteriores de energia de interação, do tipo Van der Waals. Neste trabalho serão abordados os diátomos H₂, OH, CO, O₂, N₂, neutros e carregados. Para caracterizar os sistemas moleculares em questão, duas metodologias foram empregadas: Cálculos diretos de otimização de geometria, freqüência, momento de dipolo, polarizabilidade, entre outras; Construção de superfícies de energia potencial (SEP). A utilização da técnica de Dunham será aplicada para se obter uma série de propriedades espectroscópicas.

SUMÁRIO

LISTA DE FIGURAS

LISTA DE TABELAS

11
12
12
13
14
17
20
21
27
30
31
31

CAPÍTULO 3 – RESULTADOS	
3.1 Diátomo H ₂	
3.2 Diátomo OH	
3.3 Diátomo O ₂	42
3.4 Diátomo CO	43
3.5 Diátomo N ₂	44
CAPÍTULO 4 – CONCLUSÕES E PERSPECTIVAS	45
REFERÊNCIAS	46

LISTA DE FIGURAS

Figura 1 - Etapas envolvidas na caracterização de sistemas moleculares ^[1] 10
Figura 2 - Superfície de energia potencial do H ₂ calculada em vários métodos na base cc-PVQZ 34
Figura 3 - Superfície de energia potencial do H_2^+ calculada em vários métodos na base cc-PVQZ 36
Figura 4 - Superfície de energia potencial do H ₂ ⁻ calculada em vários métodos na base cc-PVQZ 37
Figura 5 - Superfície de energia potencial do H_2 , H_2^+ e H_2^- calculada pelo método CCSD(T) na base cc-PVQZ
Figura 6 - Superfície de energia potencial do OH calculada em vários métodos na base cc-PVQZ 39
Figura 7 - Superfície de energia potencial do OH ⁺ calculada em vários métodos na base cc-PVQZ 40
Figura 8 - Superfície de energia potencial do OH ⁻ calculada em vários métodos na base cc-PVQZ 41
Figura 9 - Superfície de energia potencial do OH, OH ⁺ e OH ⁻ calculada pelo método CCSD(T) na base
cc-PVQZ

LISTA DE TABELAS

PÁGINA

Tabela 3.1.4 - Propriedades espectroscópicas do H_2 , $H_2^+ e H_2^-$ obtidas através da aplicação da técnica de Dunham nas SEPs calculadas em CCSD(T) e ajustadas por uma função de Rydberg de quinta ordem ... 38

CAPÍTULO 1 - Introdução

Atualmente um dos maiores desafios da mecânica quântica é a descrição rigorosa dos sistemas moleculares. O problema molecular consiste na descrição e solução de sistemas formados por núcleos e elétrons. As propriedades físico-químicas de um sistema molecular são representadas pelas funções de onda Ψ . Para se caracterizar um sistema molecular, deve-se seguir algumas etapas, como mostra a figura 1 as quais consistem em determinar, através dos melhores métodos existentes na literatura, as propriedades eletrônicas do sistema em questão. O estudo da estrutura eletrônica, requer o cálculo da energia total do sistema de acordo com os princípios de mecânica quântica e, logo em seguida a minimização da mesma com relação às coordenadas dos núcleos. A determinação da energia total é um problema que envolve muitas partículas e necessita de algumas aproximações, como por exemplo, a aproximação que envolve o tratamento em separado dos núcleos e elétrons de um sistema – a Aproximação de Born-Oppenheimer (ABO). Para o tratamento da interação elétron-elétron outras aproximações como a teoria de Hatree-Fock, são aplicadas posteriormente para a determinação das propriedades de um sistema. Através dos cálculos das energias eletrônicas do sistema, pode-se construir a superfície de energia potencia (SEP) do modelo atômico e/ou molecular, a qual fornecerá todas as informações do sistema, como por exemplo, as propriedades geométrica, elétricas, vibracionais, energia de ligação, entre outras^[1].

Figura 1 - Etapas envolvidas na caracterização de sistemas moleculares^[1].

CAPÍTULO 2 – Fundamentação Teórica

2.1 Métodos ab initio

Os métodos *ab initio* (de origem do latim, que significa "do início") se propõem a predizer teoricamente, as propriedades de sistemas atômicos e/ou moleculares usando, para isso, somente as leis fundamentais da mecânica quântica e algumas constantes físicas universais, tais como massa e carga do elétron, constante de Planck, dentre outras. Particularmente para sistemas com mais de um elétron, são necessárias diversas aproximações que serão discutidas ao longo deste capítulo^[2].

Com o aumento da capacidade computacional, o uso dos métodos *ab initio* tem se tornado mais rigoroso e auxiliado na investigação, em nível quântico, de diversos

fenômenos da química molecular. Para estudos de sistemas atômicos, tais métodos se apresentam como ferramenta fundamental.

2.2 Equação de Schrödinger

Para descrever teoricamente um sistema poliatômico, com rigor, é necessário resolver a equação de Schrödinger, independente do tempo, desprezando-se os efeitos relativísticos e de spin-órbita:

$$\hat{H}\Psi(\vec{r},\vec{R}) = E\Psi(\vec{r},\vec{R})$$
 (1)

onde $\Psi(\vec{r}, \vec{R})$ é a função de onda completa, E é a energia total do sistema, \vec{R} e \vec{r} representam as coordenadas dos núcleos e dos elétrons, respectivamente.

Em unidades atômicas, o operador hamiltoniano não-relativístico para uma molécula com N elétrons e M núcleos é dado por:

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{A=1}^{M} \frac{1}{2M_{A}} \nabla_{A}^{2} - \sum_{A=1}^{M} \sum_{i=1}^{N} \frac{Z_{A}}{r_{Ai}} + \sum_{A=1}^{N-1} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{R_{AB}} + \sum_{i=1}^{N-1} \sum_{j>l}^{N} \frac{1}{r_{ij}}, \quad (2)$$

Sendo que *i* e *j* são os índices referentes aos elétrons, *A* e *B* são índices dos núcleos, M_A são as massas dos núcleos, Z_A e Z_B são os números atômicos dos núcleos A e B, respectivamente, R_{AB} , r_{Ai} e r_{ij} são, as distâncias núcleo-núcleo, núcleo-elétron e elétronelétron, respectivamente.

O primeiro termo da equação (2) é o operador para a energia cinética dos elétrons. O segundo termo é o operador para a energia cinética dos núcleos com massa M_A . O terceiro termo representa a energia potencial de atração entre o elétron *i* e o núcleo *A*. O quarto termo é a energia potencial de repulsão entre os núcleos *A* e *B*. O último termo representa a energia potencial de repulsão entre os elétrons *i* e *j*^[2].

A energia e muitas outras propriedades de uma partícula podem ser obtidas pela resolução da equação de Schrödinger para Ψ , utilizando-se condições de contorno apropriadas. Assim, pode haver muitas soluções para a equação de Schrödinger, que representam estados estacionários distintos do sistema.

2.3 Aproximação de Born-Oppenheimer

Um grande problema na caracterização de modelos moleculares através da equação de Schrödinger é a complexidade em encontrar sua solução exata. Por esse motivo algumas aproximações são feitas para tornar mais rigorosa a sua utilização. A primeira aproximação da equação de Schrödinger é aproximação de Born-Oppenheimer (ABO).

A ABO consiste em separar o movimento dos elétrons e dos núcleos do sistema molecular. Essa aproximação se justifica pela diferença de massa entre elétrons e núcleos, conseqüente diferença de energia cinética entre ambos. Com isto podemos congelar os núcleos em relação aos elétrons. Dessa forma, separa-se a equação de Schrödinger em duas partes, uma envolvendo a contribuição puramente eletrônica e a outra devido a interação nuclear. A função de onda em termos de uma expansão adiabática^[3] parametrizada pode ser representada por:

$$\Psi(\vec{r},\vec{R}) = \psi(\vec{r},\vec{R})\chi(\vec{R})$$
(3)

onde $\psi(\vec{r}, \vec{R})$ representa a função de onda eletrônica dependente das coordenadas dos elétrons e parametricamente das coordenadas nucleares e $\chi(\vec{R})$ representa a função de onda nuclear.

Aplicando o operador Hamiltoniano (2) na função de onda (3), tem-se que:

$$\left[\frac{1}{2}\sum_{i=1}^{N}\nabla_{i}^{2} + \sum_{A=1}^{M}\sum_{i=1}^{N}\frac{Z_{A}}{r_{Ai}} - \sum_{i=1}^{N-1}\sum_{j>l}^{N}\frac{1}{r_{ij}}\right]\psi\chi = E\psi\chi$$
(4)

Desenvolvendo a equação (4):

$$-\frac{1}{2}\sum_{i=1}^{N}\nabla_{i}^{2}\psi\chi - \sum_{A=1}^{M}\frac{1}{2M_{A}}\nabla_{A}^{2}\psi\chi - \sum_{A=1}^{M}\sum_{i=1}^{N}\frac{Z_{A}}{r_{Ai}}\psi\chi + \sum_{A=1}^{M-1}\sum_{B>A}^{M}\frac{Z_{A}Z_{B}}{R_{AB}}\psi\chi + \sum_{i=1}^{N-1}\sum_{j>i}^{N}\frac{1}{r_{ij}}\psi\chi = E\psi\chi \quad (5)$$

Desenvolvendo o segundo termo da equação (5), tem-se:

$$\sum_{A=1}^{M} \frac{1}{2M_{A}} \nabla_{A}^{2} \psi \chi = \sum_{A=1}^{M} \frac{1}{2M_{A}} [\psi(\nabla_{A}^{2} \chi) + \chi(\nabla_{A}^{2} \psi) + 2(\nabla_{A} \chi . \nabla_{A} \psi)] =$$
$$= \sum_{A=1}^{M} \frac{1}{2M_{A}} \psi(\nabla_{A}^{2} \chi) + \sum_{A=1}^{M} \frac{1}{2M_{A}} \chi(\nabla_{A}^{2} \psi) + \sum_{A=1}^{M} \frac{1}{M_{A}} (\nabla_{A} \chi . \nabla_{A} \psi)$$
(6)

De acordo com a ABO a função de onda é escrita em termos de uma expansão adiabática ^[3] o que torna os termos $\sum_{A=1}^{M} \frac{1}{2M_A} \chi(\nabla_A^2 \psi) e \sum_{A=1}^{M} \frac{1}{M_A} (\nabla_A \chi . \nabla_A \psi)$ desprezíveis^[4].

Portanto, a equação (6) pode ser simplificada:

$$\sum_{A=1}^{M} \frac{1}{2M_A} \nabla_A^2 \psi \chi = \sum_{A=1}^{M} \frac{1}{2M_A} \psi (\nabla_A^2 \chi) \qquad (7)$$

Substituindo (7) em (4):

$$-\frac{\psi}{2}\sum_{i=1}^{N}\nabla_{i}^{2}\chi - \sum_{A=1}^{M}\chi\frac{1}{2M_{A}}\nabla_{A}^{2}\psi - \sum_{A=1}^{M}\sum_{i=1}^{N}\frac{Z_{A}}{r_{Ai}}\psi\chi + \sum_{A=1}^{M-1}\sum_{B>A}^{M}\frac{Z_{A}Z_{B}}{R_{AB}}\psi\chi + \sum_{i=1}^{N-1}\sum_{j>i}^{N}\frac{1}{r_{ij}}\psi\chi = E\psi\chi \quad (8)$$

Dividindo a equação (8) por $\psi \chi$ e separando as variáveis tem-se:

$$-\frac{1}{\chi}\sum_{A=1}^{M}\frac{1}{2M_{A}}\nabla_{A}^{2}\chi - E = \frac{1}{2\psi}\sum_{i=1}^{N}\nabla_{i}^{2}\psi + \sum_{A=1}^{M}\sum_{i=1}^{N}\frac{Z_{A}}{r_{Ai}} - \sum_{i=1}^{N-1}\sum_{j>l}^{N}\frac{1}{r_{ij}} - \sum_{A=1}^{M-1}\sum_{B>A}^{M}\frac{Z_{A}Z_{B}}{R_{AB}}$$
(9)

Como descrito anteriormente, a posição dos núcleos é considerada fixa e pode-se escrever tanto o lado direito quanto o lado esquerdo da equação (9) em relação a uma constante relativa às distâncias entre nucleares ($\varepsilon(\vec{R})$):

$$\frac{1}{2\psi} \sum_{i=1}^{N} \nabla_{i}^{2} \psi + \sum_{A=1}^{M} \sum_{i=1}^{N} \frac{Z_{A}}{r_{Ai}} - \sum_{i=1}^{N-1} \sum_{j>l}^{N} \frac{1}{r_{ij}} - \sum_{A=1}^{M-1} \sum_{B>A}^{M} \frac{Z_{A} Z_{B}}{R_{AB}} = -\varepsilon(\vec{R})$$
(10)
$$-\frac{1}{\chi} \sum_{A=1}^{M} \frac{1}{2M_{A}} \nabla_{A}^{2} \chi - E = -\varepsilon(\vec{R})$$
(11)

Multiplicando-se a equação (10) por $-\psi$ e a equação (11) por χ e reorganizando-se os termos, obtêm-se a equação (12) chamada de equação de Schrödinger eletrônica e a equação (13) chamada de equação de Schrödinger nuclear, ambas independentes do tempo^[4]:

$$\left[\frac{1}{2\psi}\sum_{i=1}^{N}\nabla_{i}^{2} + \sum_{A=1}^{M}\sum_{i=1}^{N}\frac{Z_{A}}{r_{Ai}} - \sum_{i=1}^{N-1}\sum_{j>l}^{N}\frac{1}{r_{ij}} - \sum_{A=1}^{M-1}\sum_{B>A}^{M}\frac{Z_{A}Z_{B}}{R_{AB}}\right]\psi = \varepsilon(\vec{R})\psi$$
(12)
$$\left[\sum_{A=1}^{M}\frac{1}{2M_{A}}\nabla_{A}^{2}\chi + \varepsilon(\vec{R})\right]\chi = E\chi$$
(13)

Os operadores das equações (12) e (13) são chamados de operadores Hamiltoniano Eletrônico e Nuclear, respectivamente. Assim sendo:

$$\hat{H}_{ele}\psi(\vec{r},\vec{R}) = \varepsilon(\vec{R})\psi(\vec{r},\vec{R})$$
(14)

$$\hat{H}_n \chi(\vec{R}) = E \chi(\vec{R}) \tag{15}$$

A parte eletrônica da equação de Schrödinger (14) é resolvida para cada configuração nuclear (\vec{R}). Isto significa que para cada configuração nuclear a função de onda $\psi(\vec{r}, \vec{R})$ é diferente em relação às coordenadas eletrônicas. Assim se tem um conjunto de funções de ondas eletrônicas e suas respectivas energias potenciais. Através dessas energias potencias e das distâncias interatômicas é possível construir uma curva. Ajustando essa curva através de uma função analítica ($V(\vec{R})$) consegue-se construir uma superfície de energia potencial (SEP) que será discutida na seção (2.8).

A parte nuclear da equação de Schrödinger (15) descreve a dinâmica dos núcleos. Sua solução descreve a vibração, rotação e translação de um sistema molecular.

2.4 Aproximação de Hartree-Fock

A grande dificuldade em resolver a equação de Schrödinger eletrônica é a presença de muitos elétrons no sistema molecular. Com exceção de sistemas muito simples como a molécula de H_2^+ (sistemas hidrogenóides) aplicar somente a Aproximação de Born-Oppenheimer não torna o problema de fácil resolução^[3]. Assim sendo, torna-se necessário a utilização de outra aproximação chamada aproximação de Hartree-Fock ou aproximação de orbital molecular. Essa aproximação tem grande importância na mecânica quântica, pois representa o ponto de partida para outras aproximações mais rigorosas que incluem os efeitos de correlação eletrônica.

O principio da aproximação de Hartree-Fock é separar um problema de muitos elétrons em uma somatória de N problemas de um elétron. Nessa aproximação o operador Hamiltoniano pode ser escrito como a somatória de vários operadores que descrevem a energia potencial e cinética do *i*-ésimo elétron, dado por:

$$\hat{H} = \sum_{i=1}^{N} h(i) \tag{16}$$

Como \hat{H} é uma soma de operadores do *i*-ésimo elétron, então a função de onda eletrônica $\psi(\vec{r}, \vec{R})$ pode ser expressa como o produto de funções de onda (spin-orbitais) de cada elétron. Assim a função de onda passa ser um produto de várias funções de ondas e é denominada por Produto de Hartree^[3]:

$$\psi^{\text{HP}}(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N) = \phi_i(\mathbf{x}_1)\phi_j(\mathbf{x}_2)...\phi_k(\mathbf{x}_N)$$
(17)

onde ψ^{HP} é a função de onda total caracterizada pelo produto dos N spin-orbitais.

Desconsiderando a repulsão elétron-elétron, pode-se dizer que o operador h(i) é aplicado a um conjunto de spin-orbitais. Assim o operador aplicado a função de onda do *i*-ésimo elétron:

$$\mathbf{h}(1)\phi_i(\mathbf{x}_1) = \varepsilon \phi_i(\mathbf{x}_1) \tag{18}$$

Pode-se obter a energia total do sistema eletrônico aplicando-se o operador Hamiltoniano representado na equação (16) na função de onda total (17):

$$\hat{H}\psi^{\rm HP} = E\psi^{\rm HP} \tag{19}$$

Deste modo a energia total obtida (E) pode ser escrita como a soma das contribuições das energias de cada spin orbital, ou seja:

$$\mathbf{E} = \boldsymbol{\varepsilon}_i + \boldsymbol{\varepsilon}_j + \dots + \boldsymbol{\varepsilon}_k \tag{20}$$

A função de onda ψ^{HP} não respeita o principio da exclusão de Pauli o que exige que a função de onda seja antissimetrica em relação às trocas de coordenadas espaciais de quaisquer elétrons, como mostrado na seguinte expressão:

$$\psi(\mathbf{x}_1, \mathbf{x}_2) = -\psi(\mathbf{x}_2, \mathbf{x}_1)$$
 (21)

Então, para resolver este problema, foi necessário reescrever a função de onda na forma de um determinante conhecido como determinante de Slater^[3]

$$\psi(\mathbf{x}_{1}, \mathbf{x}_{2},...,\mathbf{x}_{N}) = (N!)^{-\frac{1}{2}} \begin{vmatrix} \chi_{i}(x_{1}) & \chi_{j}(x_{1}) & \dots & \chi_{k}(x_{1}) \\ \chi_{i}(x_{2}) & \chi_{j}(x_{2}) & \dots & \chi_{k}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_{i}(x_{N}) & \chi_{j}(x_{N}) & \dots & \chi_{k}(x_{N}) \end{vmatrix}$$
(22)

no qual o fator $(N!)^{-\frac{1}{2}}$ é o fator de normalização.

Podemos escrever a função de onda antissimetrica na forma de um único determinante de Slater que descreve o estado fundamental de um sistema de N elétrons^[3] da seguinte forma:

$$\left|\psi_{0}\right\rangle = \left|\phi_{j}\phi_{k}\ldots\phi_{N}\right\rangle \tag{23}$$

Analisando o determinante 22 percebemos que ele descreve muito bem a função de onda em questão. Isso porque permutar duas linhas do determinante Slater equivale a trocar as coordenas de dois e elétrons, o que implica inversão do sinal do determinante confirmando o principio da antissimetria. Além disso, se houver duas linhas iguais o determinante torna-se igual a zero levando a conclusão de que dois elétrons não podem ocupar o mesmo spin orbital.

Até agora a função de onda eletrônica só dependia das coordenadas dos elétrons e parametricamente das coordenadas nucleares. No entanto, para descrever a função de onda eletrônica deve-se considerar o momento do spin eletrônico que é expresso da seguinte forma:

$$\phi(\mathbf{x}) = \begin{cases} \varphi(\vec{r}, \vec{R}) \alpha(\omega) \\ ou \\ \varphi(\vec{r}, \vec{R}) \beta(\omega) \end{cases}$$
(24)

A partir da expressão (25) introduzem-se na função de onda duas funções de spin de variável(ω) não específica. A função $\alpha(\omega)$ corresponde ao spin "up" (simbolizado por \uparrow) e a função $\beta(\omega)$ corresponde ao spin "down" (simbolizado por \downarrow).

Sabendo que as funções de spin são completas e ortonormais, pode-se adotar o seguinte formalismo:

$$\int \alpha(\omega)^* \alpha(\omega) d\omega = \int \beta(\omega)^* \beta(\omega) d\omega = 1$$
(26)

$$\int \alpha(\omega)^* \beta(\omega) d\omega = \int \beta(\omega)^* \alpha(\omega) d\omega = 0$$
(27)

Agora a função de onda possui tanto as coordenadas espaciais quanto as coordenas de spin. Então podemos utilizar a equação de Hartree-Fock^[3]para encontrar a energia dos spin orbitais:

$$f(1)\phi_j(\mathbf{x}_1) = \varepsilon \phi_j(\mathbf{x}_1) (28)$$

onde f(i) é definido como operador de Fock:

$$f(1) = h(1) + v^{HF}$$
 (29)

, h(1) é o operador hamiltoniano para um elétron (equação 18) e expresso por:

$$\mathbf{h}(1) = -\frac{1}{2}\nabla_1^2 - \sum_{A=1}^M \frac{Z_A}{r_{A1}}$$
(30)

e v^{HF} é um operador do potencial efetivo sentido por um elétron e expresso por:

$$\nu^{HF}(I) = \sum_{b} \left[J_{b}(1) - K_{b}(1) \right] (31)$$

Define-se o operador de Coulomb, $J_b(1)$, pela expressão:

$$J_{b}(1) = \int \left| \phi_{j}(2) \right|^{2} r_{12}^{-1} \phi_{i}(1) dx_{2}$$
 (32)

Define-se o operador de troca, $K_b(1)$, pela expressão:

$$K_{b}(1) = \int \phi_{i}^{*}(2)\phi_{i}(2)r_{12}^{-1}\phi_{i}(2)dx_{2} \quad (33)$$

De acordo com o principio variacional a função de onda normalizada e antissimetrica identificada como ψ_0 tem energia superior a energia da onda eletrônica exata, ou seja:

$$\langle \psi_0 | \hat{H} | \psi_0 \rangle \ge E_0$$
 (34)

No entanto, a melhor função de onda (melhores spin-orbitais) é aquela que possui menor energia, pois, assim a função ψ_0 aproxima-se da função de onda exata. A solução exata da equação (28) representa os spin-orbitais exatos de Hartree-Fock. No entanto, a solução exata é impossível, pois ter-se-ía que considerar um conjunto infinito de spin-orbitais. Na prática utiliza-se um conjunto finito de orbitais que constituem um conjunto autoconsistente (SCF) que se aproxima rapidamente da solução exata de Hartree-Fock^{[5].}

2.5 Métodos Perturbativos

A energia obtida pelo método Hartree-Fock possui um erro que está relacionado com a correlação eletrônica, ou seja, as interações eletrônicas são tratadas como uma interação média autoconsistente. Este erro é uma característica de métodos variacionais baseados em um único determinante. Então, pode-se tratar a energia de correlação como sendo a diferença entre a energia obtida pelo método Hartree-Fock restrito e a energia exata não relativística do sistema, como mostra a equação a seguir:

$$E_{corr} = E_0 - E_{HF} \tag{35}$$

Para a obtenção da energia de correlação eletrônica pode-se utilizar vários métodos teóricos, entre eles estão a Teoria de Perturbação de Muitos Corpos (MBPT - do inglês Many Body Perturbation Theory^[15]) e o método CC (do inglês Coupled Cluster^[16, 17]).

2.5.1 Teoria de Perturbação de Møller-Plesset

A teoria de perturbação de muitos corpos normalmente utiliza a partição de Møller-Plesset (MP) e por isso é chamada também de Teoria de Perturbação de Møller-Plesset, que se baseia na teoria de Rayleigh-Schrödinger ^[34] que separa o Hamiltoniano total do sistema em duas partes:

$$\hat{H} = \hat{H}_0 + \hat{V} \tag{36}$$

A parte de ordem zero (\hat{H}_0) que é uma Hamiltoniana não perturbada, com suas autofunções e seus autovalores conhecidos mais a perturbação (\hat{V}) . O operador (\hat{H}_0) é expresso como sendo a soma de operadores de Fock, dada por:

$$\hat{H}_0 = \sum_{i=1}^N f(i) = \sum_{i=1}^N \left[h(i) + v^{HF}(i) \right]$$
(37)

e \hat{V} é dado pela diferença do termo que representa a repulsão eletrônica e o potencial de Hartree-Fock, ou seja:

$$\hat{V} = \sum_{i < j} r_{ij}^{-i} - \sum_{i} v^{HF}(i)$$
(38)

Para se obter a expansão da perturbação para a energia de correlação, é necessária a escolha de uma Hamiltoniana que pode ser obtida por vários métodos. A Hamiltoniana usada nesse formalismo é a Hamiltoniana de Hartree-Fock (\hat{H}_0) , que foi obtida para um sistema de N-elétrons.

Assim, deseja-se resolver um problema de autovalor do tipo:

$$\hat{H}|\psi_n\rangle = \left(\hat{H}_o + \hat{V}\right)|\psi_n\rangle = E_n|\psi_n\rangle$$
(39)

com as autofunções e autovalores de (\hat{H}_0) conhecidas, ou seja:

$$\hat{H}_{o}\left|\psi_{n}^{(0)}\right\rangle = E_{n}^{(0)}\left|\psi_{n}^{(0)}\right\rangle \tag{40}$$

Se a perturbação \hat{V} é muito pequena, espera-se que $|\psi_n\rangle$ e E_n sejam próximos de $|\psi_n^{(0)}\rangle$ e $E_n^{(0)}$, respectivamente. Para melhorar sistematicamente as autofunções e os autovalores de \hat{H}_0 , bem como para que eles se tornem cada vez mais próximos das autofunções e dos autovalores da Hamiltoniana total, \hat{H} , introduz-se um parâmetro, λ , tal que seja válida a expressão:

$$\hat{H} = \hat{H}_0 + \lambda + \hat{V} \tag{41}$$

Expandindo-se as autofunções e os autovalores em uma série de Taylor de potências de λ , em torno de $\lambda = 0$, tem-se:

$$\left|\psi_{n}\right\rangle = \left|\psi_{n}^{(0)}\right\rangle + \lambda \left|\psi_{n}^{(1)}\right\rangle + \lambda^{2} \left|\psi_{n}^{(2)}\right\rangle + \cdots$$
(42)

$$E_n = E_n^{(0)} + \lambda E_n^{(1)}$$
(43)

onde se chama $E^{(k)}{}_{n}$ como sendo correção da energia de k-ésima ordem. O problema agora passa a ser como expressar estas quantidades em termos da energia de ordem zero e os elementos de matriz da perturbação \hat{V} entre a função de onda não-perturbada, $\langle \psi_{i} | \hat{V} | \psi_{j} \rangle$.

Supondo que as séries dadas pelas equações (42) e (43) convergem para $\lambda = 1$ e que, para uma pequena perturbação em que apenas os primeiros termos da série são considerados, tem-se uma boa aproximação para a verdadeira função de onda e para o autovalor. Exigindo-se que as funções de onda de \hat{H}_0 sejam normalizadas $(\langle \psi_i | \psi_j \rangle = 1)$, faz-se também uma normalização secundária tal que:

$$\left\langle \boldsymbol{\psi}_{n}^{(0)} \left| \boldsymbol{\psi}_{n} \right\rangle = 1 \tag{44}$$

Esta normalização pode sempre ser feita a não ser que $|\psi_n^{(0)}\rangle$ e $|\psi_n\rangle$ sejam ortogonais. Portanto, ao se multiplicar a equação (42) por $\langle \psi_n^{(0)} |$, tem-se:

$$\left\langle \boldsymbol{\psi}_{n}^{(0)} \left| \boldsymbol{\psi}_{n} \right\rangle = \left\langle \boldsymbol{\psi}_{n}^{(0)} \left| \boldsymbol{\psi}_{n}^{(0)} \right\rangle + \lambda \left\langle \boldsymbol{\psi}_{n}^{(0)} \left| \boldsymbol{\psi}_{n}^{(1)} \right\rangle + \lambda^{2} \left\langle \boldsymbol{\psi}_{n}^{(0)} \left| \boldsymbol{\psi}_{n}^{(2)} \right\rangle + \dots = 1 \quad (45)$$

Como a equação acima vale para todos os valores de λ , conseqüentemente, os coeficientes de λ^k devem ser iguais e dessa maneira se tem:

$$\left\langle \psi_{n}^{(0)} \middle| \psi_{n}^{(k)} \right\rangle = 0$$
 $k = 1, 2, 3,...$ (46)

Substituindo-se as eqs.(44) e (45) na eq.(39), tem-se:

$$(\hat{H}_{o} + \hat{V}) ||\psi_{n}^{(0)}\rangle + \lambda ||\psi_{n}^{(1)}\rangle + \lambda^{2} ||\psi_{n}^{(2)}\rangle + \dots) =$$

$$(E_{n}^{(0)} + \lambda E_{n}^{(1)} + \lambda^{2} E_{n}^{(2)} + \dots) ||\psi_{n}^{(0)}\rangle + \lambda ||\psi_{n}^{(1)}\rangle + \lambda^{2} ||\psi_{n}^{(2)}\rangle + \dots)$$

$$(47)$$

Equacionando-se os coeficientes de λ^k , obtém-se:

$$\hat{H}_{o} \left| \psi_{n}^{(0)} \right\rangle = E_{n}^{(0)} \left| \psi_{n}^{(0)} \right\rangle \qquad \text{para } n = 0 \qquad (48)$$

$$\hat{H}_{o} |\psi_{n}^{(1)}\rangle + \hat{V} |\psi_{n}^{(0)}\rangle = E_{n}^{(0)} |\psi_{n}^{(1)}\rangle + E_{n}^{(1)} |\psi_{n}^{(0)}\rangle \qquad \text{para } n = 1$$
(49)

$$\hat{H}_{o} |\psi_{n}^{(2)}\rangle + \hat{V} |\psi_{n}^{(1)}\rangle = E_{n}^{(0)} |\psi_{n}^{(2)}\rangle + E_{n}^{(1)} |\psi_{n}^{(1)}\rangle + E_{n}^{(2)} |\psi_{n}^{(0)}\rangle \qquad \text{para } n = 2$$
(50)

e assim por diante.

Multiplicando-se cada uma dessas equações por $\langle \psi_n^{(0)} |$ e usando a relação de ortogonalidade dada pela eq.(44), obtém-se as seguintes expressões para as energias de n-ésima ordem:

$$E_{n}^{(0)} = \left\langle \psi_{n}^{(0)} \middle| \hat{H}_{0} \middle| \psi_{n}^{(0)} \right\rangle \quad (51)$$
$$E_{n}^{(1)} = \left\langle \psi_{n}^{(0)} \middle| \hat{V} \middle| \psi_{n}^{(0)} \right\rangle \quad (52)$$
$$E_{n}^{(2)} = \left\langle \psi_{n}^{(0)} \middle| \hat{V} \middle| \psi_{n}^{(1)} \right\rangle \quad (53)$$

Todas as correções de ordem superior a dois na energia podem ser utilizadas para resolver o conjunto de equações (47) para $|\psi_n^{(k)}\rangle$ e então determinar a energia de k-ésima ordem.

Reescrevendo a equação (52), que determina a função de onda de primeira ordem, $|\psi_n^{(1)}\rangle$,obtém-se:

$$\left(E_{n}^{(0)}-\hat{H}_{0}\right)\psi_{n}^{(1)}\right\rangle = \left(\hat{V}-E_{n}^{(1)}\right)\psi_{n}^{(0)}\right\rangle = \left(\hat{V}-\left\langle\psi_{n}^{(0)}\left|\hat{V}\right|\psi_{n}^{(0)}\right\rangle\right)\psi_{n}^{(0)}\right\rangle \quad (54)$$

Esta equação não se diferencia muito de uma equação de autovalor, porém é uma equação diferencial não-homogênea (ou, em geral, íntegro-diferencial). Uma maneira de resolver equações semelhantes é quando se expande $|\psi_n^{(1)}\rangle$ em termos das autofunções de \hat{H}_0 , em que se exige que se formem um conjunto completo,

$$\left|\psi_{n}^{(1)}\right\rangle = \sum_{j} c_{j}^{(1)} \left|\psi_{j}^{(0)}\right\rangle \tag{55}$$

Multiplicando-se essa equação por $\left< \psi_{j}^{(0)} \right|$, tem-se:

$$\left\langle \psi_{j}^{(0)} \left| \psi_{n}^{(1)} \right\rangle = \left\langle \psi_{j}^{(0)} \left| \sum_{j} c_{j}^{(1)} \psi_{n}^{(1)} \right\rangle = c_{j}^{(1)},$$
 (56)

pois as autofunções de \hat{H}_0 são ortonormais. Além do mais, da eq.(46) fica claro que $c_n^{(1)} = 0$, também se pode escrever:

$$\left|\psi_{n}^{(1)}\right\rangle = \sum_{j\neq n} \left|\psi_{j}^{(0)}\right\rangle \left\langle\psi_{j}^{(0)}\left|\psi_{n}^{(1)}\right\rangle$$
(57)

Para o somatório acima, o termo j = n está excluído. Multiplicando-se a eq. (46) por $\langle \psi_j^{(0)} |$ e usando o fato de que as funções de onda de ordem zero são ortogonais, obtém-se:

$$\left(E_{n}^{(0)}-E_{j}^{(0)}\right)\!\!\left\langle\psi_{j}^{(0)}\left|\psi_{n}^{(1)}\right\rangle=\left\langle\psi_{j}^{(0)}\left|\hat{V}\right|\psi_{n}^{(0)}\right\rangle$$
(58)

Usando a expansão dada pela eq.(57) na expressão da energia de segunda-ordem dada pela eq.(53), tem-se:

$$E_{n}^{(2)} = \left\langle \psi_{n}^{(0)} \left| \hat{V} \right| \psi_{n}^{(1)} \right\rangle = \sum_{j} \left\langle \psi_{n}^{(0)} \left| \hat{V} \right| \psi_{j}^{(0)} \right\rangle \left\langle \psi_{j}^{(0)} \left| \psi_{n}^{(1)} \right\rangle$$
(59)

Com a eq.(58), finalmente se obtém:

$$E_n^{(2)} = \sum_j \frac{\left\langle \psi_n^{(0)} \left| \hat{V} \right| \psi_j^{(0)} \right\rangle \left\langle \psi_j^{(0)} \left| \hat{V} \right| \psi_n^{(0)} \right\rangle}{E_n^{(0)} - E_j^{(0)}} = \sum_j \frac{\left| \left\langle \psi_n^{(0)} \left| \hat{V} \right| \psi_j^{(0)} \right\rangle \right|^2}{E_n^{(0)} - E_j^{(0)}} \quad (60)$$

que é a expressão para a correção de segunda ordem na energia.

A correção de primeira ordem na energia pode ser calculada com precisão, pois envolve apenas a integral $\langle \psi_n^{(0)} | \hat{V} | \psi_n^{(0)} \rangle$. Já para as outras correções na energia, deve-se calcular todos os elementos matriciais da coluna n (para $E_n^{(2)}$) e ainda todos os elementos matriciais da matriz inteira para $\psi_n^{(1)}$ e $\psi_n^{(2)}$. As maiores contribuições para a correção de segunda-ordem na energia, provêm dos níveis próximos ao nível n, como se pode ver na eq.(60), devido ao fator $\frac{1}{E_n^{(0)} - E_j^{(0)}}$ comum nas correções.

De acordo com o teorema de Brillouin^[14], somente as excitações duplas podem interagir diretamente com o determinante de Hartree-Fock. Com isto, a primeira correção para a energia Hartree-Fock aparece com a energia de perturbação de segunda ordem. Este termo pode ser representado como uma soma de excitações duplas, que pode ser expresso por:

$$E_0^{(2)} = \sum_{\substack{a < b \\ r < s}} \frac{\left| \left\langle ab \right\| rs \right\rangle \right|^2}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s}$$
(61)

onde, ε_i refere-se à energia do orbital molecular i. A soma se estende sobre todos orbitais moleculares ocupados (a, b, ...) e os virtuais (r, s, ...).

2.5.2 Método Coupled Cluster

Nesta seção, apresentar-se-á o método CC (do inglês Coupled Cluster)^{{16,17]}, cujo princípio é representar um sistema de muitos elétrons em vários aglomerados (clusters) com poucos elétrons. Ao fazer uso da segunda quantização, o determinante duplamente excitado $|\Psi_{ij}^{ab}\rangle$ pode ser escrito como:

$$\left|\Psi_{ij}^{ab}\right\rangle = a_{a}^{+}a_{b}^{+}a_{i}a_{j}\left|\Psi_{0}\right\rangle \tag{62}$$

onde os operadores $a_i e a_j$ removem os spin-orbitais ocupados do determinante HF e os operadores $a_a^+ e a_b^+$ os substituem pelos spin-orbitais virtuais.

Introduzindo-se uma nova função de onda, que não contém somente excitações duplas, mas também excitações quádruplas, sextuplas, etc., pode-se escrever a função de onda como:

$$\left|\Psi\right\rangle = e^{\mathrm{T}}\left|\Psi_{0}\right\rangle \qquad (63)$$

onde T é o operador de cluster e é definido como:

$$\mathbf{T} = \mathbf{T}_1 + \mathbf{T}_2 + \dots + \mathbf{T}_p. \tag{64}$$

Os operadores T₁, T₂, ..., são definidos pelas operações:

$$T_{1} \Phi_{0} = \sum_{i,a} C_{i}^{a} \Phi_{i}^{a}, \quad (65)$$
$$T_{2} \Phi_{0} = \sum_{ij,ab} C_{ij}^{ab} \Phi_{ij}^{ab}, \quad (66)$$

Assim, as aplicações de T₁, T₂, ... geram configurações mono, duplamente excitadas, e assim por diante; e Φ_i^a é a configuração onde o orbital ocupado φ_i é substituído pelo orbital virtual φ_a . Os coeficientes C são reais e chamados amplitude de cluster. Basicamente, T₁ é o operador que gera as configurações simplesmente substituídas e, T₂ é o operador que gera as configurações duplamente substituídas, e assim por diante. Nesse contexto, faz-se uma relação com o método de interações de configurações reescrevendo-se a função de onda como:

$$\left|\Psi\right\rangle = (1+U_1+U_2+U_3+\cdots)\left|\Psi_0\right\rangle \qquad (67)$$

Com

$$U_{1} = T_{1},$$

$$U_{2} = T_{2} + \frac{1}{2!}T_{1}^{2} \qquad (68)$$

$$U_{3} = T_{3} + \frac{1}{3!}T_{1}^{3} + T_{1}T_{2}$$

e assim sucessivamente. Pode-se separar os termos Ui em duas partes,

$$U_i = T_i + Q_i \quad (69)$$

onde, T_i é o termo conexo e Q_i é o termo desconexo.

As C's devem ser obtidas de forma que a função de onda $||\Psi\rangle$ seja uma solução da equação de Schrödinger. Dessa forma, tem-se:

$$He^{T} |\Psi_{0}\rangle = Ee^{T} |\Psi_{0}\rangle \qquad (70)$$

Multiplicando a eq.(70) por e^{-T}, obtém-se:

$$e^{-T}He^{T}|\Psi_{0}\rangle = e^{-T}Ee^{T}|\Psi_{0}\rangle \qquad (71)$$

que, conseqüentemente, pode ser reescrita como sendo:

$$\left[H + [H, T] + \frac{1}{2!} [[H, T], T] + \frac{1}{3!} [[[H, T], T], T] + \frac{1}{4!} [[[[H, T], T], T], T]] \right] |\Psi_0\rangle = E |\Psi_0\rangle \quad (72)$$

Dessa forma, a energia determinada pelo método CC pode ser escrita como:

$$E = \frac{\left\langle \Psi_{0} \middle| e^{T^{+}} H e^{T} \middle| \Psi_{0} \right\rangle}{\left\langle \Psi_{0} \middle| e^{T^{+}} e^{T} \middle| \Psi_{0} \right\rangle}$$
(73)

Como citado anteriormente, o teorema de Brillouin mostra que somente contribuições duplas podem interagir com o determinante HF. Mas, as substituições simples, triplas etc., contribuem para a energia de correlação através das substituições duplas. O que demonstra que as substituições duplas devem ser as mais importantes no método CC. A primeira aproximação desse método inclui somente o termo T_2 no operador de cluster e é chamada de aproximação CCD (do inglês Coupled Cluster Double). Com esta simplificação, a equação de Schrödinger passa a ser:

$$e^{-T_2}He^{T_2}|\Psi_0\rangle = E|\Psi_0\rangle \quad (74)$$

Multiplicando a eq.(74) por $\langle \Psi_0 |$ e usando a eq.(66), a energia eletrônica corrigida através deste método passa a ser escrita como:

$$E = E_{SCF} + \sum_{i < j} \sum_{a < b} \langle ij \| ab \rangle C_{ij}^{ab} \quad (75)$$

onde E_{SCF} é a energia Hartree-Fock obtida através do procedimento SCF.

2.6 SEP

De acordo com a aproximação de Born-Oppenhaimer é possível separar a equação de Schrödinger em uma parte eletrônica e uma parte nuclear. Sabe-se que nessa aproximação a parte eletrônica depende parametricamente das coordenadas nucleares.

Logo é possível achar a energia total do sistema em dadas configurações dos núcleos. A superfície de energia potencial é uma função analítica que mostra a energia do sistema variando com a distância entre os núcleos. No entanto, essa curva deve fornecer informações precisas nas regiões de repulsão (distâncias interatômicas pequenas), de atração (região de poço de potencial) e de dissociação (distâncias interatômicas grandes) o que só é possível com níveis de cálculos mais avançados.

2.6.1 Forma Analítica de Rydberg

As funções analíticas para descrever os sistemas de dois átomos são obtidas como o produto de um polinômio na distância internuclear de interesse e de uma função de amortização que tende a zero quando a distância internuclear tende ao infinito.

$$V_i(r) = -D_{e_i} \left(1 + \sum_{j=1}^3 c_{ij} (r_i - r_{e_i})^j \right) \exp(-c_1 (r_i - r_{e_i})) \qquad i = O_2, H_2, CO, \dots (76)$$

Os parâmetros c_{ij} são determinados reproduzindo os dados *ab initio* ou dados espectroscópicos do diátomo.

2.6.2 Técnica de Dunham

Para se obter as propriedades espectroscópicas é possível utilizar a técnica de Dunham na qual o espectro rovibracional é expandido em uma série de Taylor em torno da distância de equilíbrio (R_e):

$$V(R) = V(R_e) + \frac{1}{2!} \left(\frac{d^2 v}{dR^2} \right)_{R_e} (R - R_{eq})^2 + \frac{1}{3!} \left(\frac{d^3 v}{dR^3} \right)_{R_e} (R - R_{eq})^3 + \frac{1}{4!} \left(\frac{d^4 v}{dR^4} \right)_{R_e} (R - R_{eq})^4 + \dots = (77)$$

$$= V(0) + \frac{1}{2}f_2\rho^2 + \frac{1}{6}f_3\rho^3 + \frac{1}{24}f_4\rho^4 + \frac{1}{120}f_2\rho^5 + \dots, \text{ onde } \rho = R - R_{eq}$$
(78)

As derivadas de ordens superiores estão relacionadas com as constantes espectroscópicas da seguinte forma:

$$\omega_e = \frac{1}{2\pi c} \sqrt{\frac{f_2}{m}} \tag{79}$$

$$\omega_e x_e = \frac{\beta_e}{8} \left[15 \left(1 + \frac{\alpha_e \omega_e}{6\beta_e^2} \right)^2 - R_e^2 \frac{f_4}{f_2} \right]$$
(80)

$$\omega_{e} y_{e} = \frac{\beta_{e}^{2}}{2\omega_{e}} \left\{ \frac{7}{12} R_{e}^{3} \left(1 + \frac{\alpha_{e} \omega_{e}}{6\beta_{e}^{2}} \right) \frac{f_{5}}{f_{2}} - \frac{1}{16} \left[\frac{17}{18} \left[15 \left(1 + \frac{\alpha_{e} \omega_{e}}{6\beta_{e}^{2}} \right)^{2} - 8 \frac{\omega_{e} x_{e}}{\beta_{e}} \right] + 75 \left(1 + \frac{\alpha_{e} \omega_{e}}{6\beta_{e}^{2}} \right) \right] \left[15 \left(1 + \frac{\alpha_{e} \omega_{e}}{6\beta_{e}} \right)^{2} - 8 \frac{\omega_{e} x_{e}}{\beta_{e}} \right] - \frac{705}{32} \left(1 + \frac{\alpha_{e} \omega_{e}}{6\beta_{e}^{2}} \right)^{4} \right\}$$
(81)

$$\alpha_e = -\frac{\beta_e^2}{\omega_e} \left(6 + 2R_e \frac{f_3}{f_2} \right) \tag{82}$$

$$\gamma_{e} = \frac{6\beta_{e}^{2}}{6\omega_{e}^{2}} \left\{ 5 - \left\{ 10 - \frac{13}{12} \left[15 \left(1 + \frac{\alpha_{e}\omega_{e}^{2}}{6\beta_{e}^{2}} \right) - 8 \frac{\omega_{e}x_{e}}{\beta_{e}} \right] \right\} + 15 \left(\frac{\alpha_{e}\omega_{e}}{6\beta_{e}^{2}} \right) \left(1 + \frac{\alpha_{e}\omega_{e}}{6\beta_{e}^{2}} \right)^{2} - \frac{3}{2} \left[15 \left(1 + \frac{\alpha_{e}\omega_{e}^{2}}{6\beta_{e}^{2}} \right) - 8 \frac{\omega_{e}x_{e}}{\beta_{e}} \right]$$

$$(83)$$

CAPÍTULO 3 – Resultados

Utilizando o software Guassian $03^{[6]}$ todos os cálculos de otimização de geometria foram feitos utilizando o método CCSD(T) nas bases cc-pVxZ e aug-ccpVxZ (x = D, T, Q, 5). A partir dos dados obtidos com os cálculos de otimização de varias moléculas pôde-se compará-los ao valor de referência e então escolheu-se a base cc-PVQZ a qual reproduziu melhor o sistema diatômico. Além disso, foi levado em consideração o tempo computacional que seria necessário para construir as SEPs em níveis de cálculos mais avançados na escolha da base.

As superfícies foram todas construídas na base cc-PVQZ com o método CCSD(T) e em seguida ajustadas pelo método de Rydberg de quinta ordem. Com a forma analítica da SEP aplicou-se a técnica de Dunham e obtiveram-se as propriedades espectroscópicas do diátomo.

3.1 DIÁTOMO H₂

Para o diátomo H_2 foram feitos cálculos de otimização e construção se superfície de energia potencial tanto da espécie neutra quanto carregada.

H ₂	R _{eq} [Å]	$W_e[cm^{-1}]$	$\alpha[a_0^3]$	E[hartree]
cc-pVDZ	0,76097	4382	2,9614	-1,16367
aug-cc-pVDZ	0,76169	4345	5,2482	-1,16490
cc-pVTZ	0,74279	4408	3,9097	-1,17234
aug-cc-pVTZ	0,74279	4405	5,2184	-1,17264
cc-pVQZ	0,74186	4404	4,4309	-1,17380
aug-cc-pVQZ	0,74186	4403	5,195	-1,17387
cc-pV5Z	0,74186	4401	4,6938	-1,17422
aug-cc-pV5Z	0,74186	4400	5,1869	-1,17425
Referência ^[6]	0,7414	4395	5,3104	

Tabela 3.1.1 - Distância de equilíbrio (R_{eq}), freqüência (w_e), polarizabilidade (α) e energia de equilíbrio (E) do H₂ obtidos através de cálculos de otimização no método CCSD(T) variando as bases.

Na tabela 3.1.1 percebe-se que a distância interatômica de equilíbrio (R_{eq}) a partir da base cc-pvqz permanece constante, bem como a freqüência. No entanto o valor da polarizabilidade é varia para as funções base com e sem difusão.

Figura 2 - Superfície de energia potencial do H2 calculada em vários métodos na base cc-PVQZ

Analisando a Figura 2 percebe-se que os métodos MP2, MP3, MP4D não reproduzem uma curva de energia potencial, pois as energias não assintotam para distâncias interatômicas grandes. Já as curvas em MP4DQ e MP4SDQ para distâncias interatômicas grandes tendem a energias infinitas fato que também impossibilita a reprodução de SEP. No método HF percebe-se que a curva assintoda em uma energia muito alta (em comparação com os valores de referencia) confirmando a imprecisão deste método quando comparando aos métodos que incluem as energias de correlação.

	<u>_</u>	1		2	
H_2^{-}	$R_{eq}[A]$	$W_e[cm^{-1}]$	μ[D]	$\alpha[0^3]$	E[hartree]
cc-pVDZ	1,05337067	2435,0902	0,0137	2,2309491	-0,6002805
aug-cc-pVDZ	1,05969448	2389,4177	0,0136	2,8342784	-0,6012481
cc-pVTZ	1,05714712	2334,713	0,0135	2,63226523	-0,6022447
aug-cc-pVTZ	1,05812176	2322,1018	0,0136	2,85494413	-0,6023017
cc-pVQZ	1,05705443	2324,2283	0,0135	2,7700485	-0,6025209
aug-cc-pVQZ	1,05705443	2323,1989	0,0136	2,85345823	-0,6025356
cc-pV5Z	1,05705443	2323,1108	0,0136	2,8151351	-0,6026202
aug-cc-pV5Z	1.05705443	2322,9106	0.0136	2.8543277	-0.6026226

Tabela 3.1.2 - Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do H_2^+ obtidos através de cálculos de otimização no método CCSD(T) variando as bases

Na tabela 3.1.2 a distância de equilíbrio, a freqüência, o momento de dipolo, a polarizabilidade e a energia ficam constante a partir da base cc-pVQZ. Essa tendência que apareceu tanto no H_2 quanto no H_2^+ já era esperada já que são modelos muito simples (poucos elétrons) tornando o uso de conjuntos de funções de base maiores desnecessário.

Figura 3 - Superficie de energia potencial do H₂⁺ calculada em vários métodos na base cc-PVQZ Vê-se na figura 3 que todos os métodos utilizados conseguiram representar a superfície de energia potencial do H₂⁺. Isso porque o sistema H₂⁺ possui somente um elétron tornando as aproximações muito mais precisas.

H ₂ -	R _{eq} [Å]	$w_e[cm^{-1}]$	μ[D]	$\alpha [0^{3}]$	E[hartree]
aug-cc-pVDZ	0,78060358	3923,2997	6,6301	801,944986	-1,1071862
cc-pVTZ	1,17482818	858,3793	0,0757	11,7801677	-1,0352519
aug-cc-pVTZ	0,73660642	4490,9971	9,0468	-2565,03022	-1,1225655
cc-pVQZ	0,97680968	1550,3488	0,1207	19,2459877	-1,0482738
aug-cc-pVQZ	0,75388332	4170,5792	9,6052	-2467,39871	-1,1287177
cc-pV5Z	0,83801335	2605,2215	0,5113	60,8617381	-1,0675097
aug-cc-n/57	0 7474289	4293 4207	11 4915	-2024 06981	-1 1443092

Tabela 3.1.3 - Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do H_2^- obtidos por cálculos de otimização no método CCSD(T) variando as bases

Na tabela 3.1.3, encontra-se uma tendência diferente das espécies $H_2 e H_2^+$. Os

resultados obtidos já não apresentam um valor constante a partir de alguma base já que o sistema molecular agora apresenta mais elétrons e portanto é mais complexo

Figura 4 - Superfície de energia potencial do H2⁻ calculada em vários métodos na base cc-PVQZ

Na figura 4 nota-se que os métodos HF e PUHF não apresentam boa eficácia na região de poço da SEP. Isso porque neste sistema molecular aparecem mais elétrons e métodos que não envolvem a energia de correlação já não são tão eficazes quanto em espécies de poucos átomos como o H_2^+ e H_2 .

Figura 5 - Superfície de energia potencial do H_2 , H_2^+ e H_2^- calculada pelo método CCSD(T) na base cc-PVQZ

	R _{eq}	De	Be	α_{e}	γe	β	ω _e	ω _e X _e	ω _e y _e	D_{Req}
	[Å]	[kcal/mol]	$[cm^{-1}]$	$[cm^{-1}]$	$[\mathrm{cm}^{-1}]$	$[cm^{-1}]$	$[cm^{-1}]$	$[cm^{-1}]$	$[cm^{-1}]$	[Å]
H_2	0,740	108,824	61,147	3,32845	0,185521	0,0040861	4300,83	106,555	2,023	-0,0490972
H_2^-	1,066	64,413	29,455	1,16994	-0,063938	-6,7282E-05	2342,35	60,737	-0,966	-0,0185685
${\rm H_2}^+$	1,084	25,661	28,485	2,85891	-0,255153	0,1608349	918,68	-109,423	-93,454	-0,0476079

Tabela 3.1.4 Propriedades espectroscópicas do H_2 , $H_2^+ e H_2^-$ obtidas através da aplicação da técnica de Dunham nas SEPs calculadas em CCSD(T) e ajustadas por uma função de Rydberg de quinta ordem

3.2 DIÁTOMO OH

Para o diátomo OH foram feitos cálculos de otimização e construção se superfície de energia potencial tanto da espécie neutra quanto carregada.

ОН	R _{eq} [Å]	$W_e[cm^{-1}]$	μ[D]	$\alpha [0^3]$	E[hartree]
cc-pVDZ	0,979590	3703,823900	1,796300	3,624670	-75,559350
aug-cc-pVDZ	0,979590	3684,007400	1,758500	6,888110	-75,584080
cc-pVTZ	0,971090	3745,031300	1,770500	4,915030	-75,637720
aug-cc-pVTZ	0,973260	3719,168500	1,744000	7,261870	-75,645590
cc-pVQZ	0,969610	3750,205600	1,756200	5,766020	-75,661630
aug-cc-pVQZ	0,970620	3740,034600	1,738400	7,382390	-75,664500
cc-pV5Z	0,969800	3747,297800	1,752400	6,353730	-75,669620
Referencia ^[6]	0.9697	3738	1.660		

Tabela 3.2.1 - Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do OH obtidos através de cálculos de otimização no método CCSD(T) variando as bases

Figura 6 - Superfície de energia potencial do OH calculada em vários métodos na base cc-PVQZ

OH^+	R _{eq} [Å]	$w_e[cm^{-1}]$	μ[D]	$\alpha [0^{3}]$	E[hartree]
cc-pVDZ	1,03516	3175,9317	2,1974	2,85136	-75,01541
aug-cc-pVDZ	1,03361	3119,8282	2,1522	3,8881	-75,02292
cc-pVTZ	1,02772	3166,5576	2,1374	3,42654	-75,07609
aug-cc-pVTZ	1,02892	3148,8988	2,13	3,92891	-75,07873
cc-pVQZ	1,02584	3164,3421	2,1218	3,65043	-75,09458
aug-cc-pVQZ	1,02634	3158,6369	2,1205	3,89165	-75,09553
cc-pV5Z	1,02634	3157,082	2,1225	3,75838	-75,10061

Tabela 3.2.2 - Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do OH⁺ obtidos através de cálculos de otimização no método CCSD(T) variando as bases

Figura 7 - Superfície de energia potencial do OH⁺ calculada em vários métodos na base cc-PVQZ

OH-	R _{eq} [Å]	$w_e[cm^{-1}]$	μ[D]	$\alpha [0^3]$	E[hartree]
cc-pVDZ	0,986666	3399,832100	1,254100	5,4445181	-75,5354831
aug-cc-pVDZ	0,974267	3686,418800	1,486200	21,7141496	-75,6358235
cc-pVTZ	0,967643	3647,470100	1,424500	8,05516247	-75,6576969
aug-cc-pVTZ	0,967643	3726,541300	1,453400	24,8410171	-75,7094248
cc-pVQZ	0,964129	3711,930600	1,480600	10,5927782	-75,7024002
aug-cc-pVQZ	0,965196	3746,390300	1,448400	27,4486712	-75,7303362

Tabela - 3.2.3 Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do OH obtidos através de cálculos de otimização no método CCSD(T) variando as bases

Figura 8 - Superfície de energia potencial do OH⁻ calculada em vários métodos na base cc-PVQZ

Figura 9 - Superfície de energia potencial do OH, OH⁺ e OH⁻ calculada pelo método CCSD(T) na base cc-PVQZ

	R _{eq}	De	Be	α_{e}	γe	β	ω _e	ω _e x _e	$\omega_e y_e$	D_{Req}
	[Å]	[kcal/mol]	$[cm^{-1}]$	$[cm^{-1}]$	$[cm^{-1}]$	$[cm^{-1}]$	$[cm^{-1}]$	$[cm^{-1}]$	$[\mathrm{cm}^{-1}]$	[Å]
OH	0,974	105,464	18,744	0,63558	0,0040682	6,88473E-05	3689,59	66,133	-0,460	-0,031697
OH^+	1,021	113,642	17,047	0,80909	0,0184145	4,76234E-05	3190,07	91,883	2,219	-0,010099
OH	0,959	139,658	19,343	0,85383	0,0085451	2,45546E-05	3783,22	106,139	1,368	0,012969

Tabela 3.2.4 - Propriedades espectroscópicas do OH, OH⁺ e OH⁻ obtidas através da aplicação da técnica de Dunham nas SEPs calculadas em CCSD(T) e ajustadas por uma função de Rydberg de quinta ordem

3.3 DIÁTOMO O2

Para o diátomo O2 foram realizados somente cálculos de otimização.

O_2	R _{eq} [Å]	$W_e[cm^{-1}]$	μ[D]	$\alpha [_0^3]$	E[hartree]
cc-pVDZ	1,21603039	1586,2407	0,0419	6,275655	-149,9858306
aug-cc-pVDZ	1,22046223	1564,2764	0,0500	10,16352	-150,0210791
cc-pVTZ	1,21223693	1583,8458	0,0451	7,630234	-150,1290363
aug-cc-pVTZ	1,21318655	1574,7023	0,0505	10,49992	-150,1410201
cc-pVQZ	1,20783715	1599,2083	0,0469	10,10815	-150,1738899
aug-cc-pVQZ	1,20820975	1595,7055	0,0502	10,55583	-150,1786823
Referência ^[11]	1,2075	1580		1,562	

Tabela 3.3.1 - Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do O₂ obtidos através de cálculos de otimização no método CCSD(T) variando as bases

O_2^+	R _{eq} [Å]	$w_e[cm^{-1}]$	μ[D]	$\alpha [0^3]$	E[hartree]
cc-pVDZ	1,12570698	1928,9875	0,0277	5,07689733	-149,5590645
aug-cc-pVDZ	1,13057972	1906,0891	0,0299	6,5874666	-149,5824001
cc-pVTZ	1,12076076	1914,6778	0,0284	5,73940057	-149,6922645
aug-cc-pVTZ	1,12153671	1906,8467	0,0294	6,57487067	-149,6992226
cc-pVQZ	1,11692683	1933,0517	0,0285	6,15133907	-149,7332634
aug-cc-pVQZ	1,11715247	1931,6277	0,0293	6,51897753	-149,7361018

Tabela 3.3.2 - Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do O_2^+ obtidos através de cálculos de otimização no método CCSD(T) variando as bases

O ₂ -	R _{eq} [Å]	$w_e[cm^{-1}]$	μ[D]	$\alpha [0^3]$	E[hartree]
cc-pVDZ	1,3646502	1117,3568	0,179	-1,5909407	-149,9430678
aug-cc-pVDZ	1,36748904	1066,7317	0,1753	16,3940785	-150,0304677
cc-pVTZ	1,35838637	1138,3446	0,1479	5,76242593	-150,0968676
aug-cc-pVTZ	1,35557713	1114,4266	0,1556	19,4239934	-150,1540447
cc-pVQZ	1,35178298	1142,919	0,1327	10,0419747	-150,1741948
aug-cc-pVQZ	1,34887524	1128,0233	0,1459	21,6006456	-150,1926785

Tabela 3.3.3 - Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do O_2^- obtidos através de cálculos de otimização no método CCSD(T) variando as bases

3.4 DIÁTOMO CO

СО	R _{eq} [Å]	$w_e[cm^{-1}]$	μ[D]	$\alpha [0^{3}]$	E[hartree]
cc-pVDZ	1,14459	2144,5075	0,283	9,77855	-113,05498
aug-cc-pVDZ	1,14728	2104,8138	0,3171	13,15525	-113,06121
cc-pVTZ	1,13577	2153,6415	0,2492	11,39876	-113,15558
aug-cc-pVTZ	1,13596	2144,7596	0,2696	13,1664	-113,16219
cc-pVQZ	1,1314	2164,7216	0,2459	12,2726	-113,18791
aug-cc-pVQZ	1,1318	2160,5624	0,2476	13,11409	-113,19037
cc-pV5Z	1,13073	2165,5578	0,2439	12,71047	-113,19819
Referência ^[6]	1.1283	2170	0.112		

Para o diátomo CO foram realizados somente cálculos de otimização.

Tabela 3.4.1 - Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do CO obtidos através de cálculos de otimização no método CCSD(T) variando as bases

\rm{CO}^+	R _{eq} [Å]	$w_e[cm^{-1}]$	μ[D]	$\alpha [0^{3}]$	E[hartree]
cc-pVDZ	1,12765	2261,1407	3,0838	7,63021	-112,55425
aug-cc-pVDZ	1,12953	2234,302	3,0251	8,86899	-112,56629
cc-pVTZ	1,11918	2276,0726	3,0363	8,22176	-112,64428
aug-cc-pVTZ	1,11886	2272,7717	3,0239	8,73389	-112,64891
cc-pVQZ	1,11443	2292,1902	3,0246	8,47203	-112,67383
aug-cc-pVQZ	1,11465	2290,4718	3,0793	8,64564	-112,67557

Tabela 3.4.2 - Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do CO⁺ obtidos através de cálculos de otimização no método CCSD(T) variando as bases

CO-	R _{eq} [Å]	$w_e[cm^{-1}]$	μ[D]	$\alpha [0^3]$	E[hartree]
cc-pVDZ	1,246410	1644,9619	1,3531	11,8552474	-112,9428205
cc-pVTZ	1,231669	1659,1906	1,482	15,9083187	-113,0694173
aug-cc-pVTZ	1,183182	1471,0251	4,2486	192,732818	-113,1065595
cc-pVQZ	1,224134	1656,8486	1,5898	19,9966329	-113,1122172

Tabela 3.4.3 - Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do CO⁻ obtidos através de cálculos de otimização no método CCSD(T) variando as bases

3.5 DIÁTOMO N₂

Para o diátomo N₂ foram realizados somente cálculos de otimização para ao molécula neutra e carregada positivamente:

N_2	R _{eq} [Å]	$W_e[cm^{-1}]$	μ[D]	$\alpha [0^3]$	E[hartree]
cc-pVDZ	1,23115584	1465,5343	0,0000		
aug-cc-pVDZ	1,23335536	1456,1062	0,0434	9,690308	-149,9721846
cc-pVTZ	1,22542672	1479,8084	0,0379	7,127766	-150,0813942
aug-cc-pVTZ	1,22542672	1475,0120	0,0444	10,09194	-150,0935975
cc-pVQZ	1,22000881	1500,1721	0,0405	8,273476	-150,1267225
aug-cc-pVQZ	1,22000881	1498,2571	0,0442		
Ref.	1,0977	2359			

Tabela 3.5.1 Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do N_2 obtidos através de cálculos de otimização no método CCSD(T) variando as bases

N_2^+	R _{eq} [Å]	$w_e[cm^{-1}]$	μ[D]	$\alpha[0^3]$	E[hartree]
cc-pVDZ	1,13714519	2183,678	0,0491	10,1745513	-108,7240341
aug-cc-pVDZ	1,13871111	2167,8537	0,0523	11,632741	-108,7336511
cc-pVTZ	1,12259004	2195,0334	0,0404	10,84208	-108,8075068
aug-cc-pVTZ	1,12259004	2189,7353	0,041	11,4997878	-108,8113428
cc-pVQZ	1,11848992	2210,7788	0,0381	11,2254807	-108,833797
aug-cc-pVQZ	1,11863543	2209,3882	0,0384	11,5091228	-108,8354083

Tabela 3.5.2 Distância de equilíbrio (R_{eq}), freqüência (w_e), momento de dipolo (μ), polarizabilidade (α) e energia de equilíbrio (E) do N_2^+ obtidos através de cálculos de otimização no método CCSD(T) variando as bases

CAPITULO – 4 CONCLUSÕES E PERSPECTIVAS

O objetivo deste trabalho é caracterizar com precisão sistemas diatômicos para futuros cálculos de clusters de Vander Waals. O estudo de clusters requer grande quantidade de informações dos monômeros que irão formar-los. Por esse motivo, para caracterizar sistema molecular foi utilizado tanto à metodologia de otimização molecular quanto a construção de SEPs.

No entanto devido ao curto período deste trabalho (quatro meses), ao tempo computacional gasto nos cálculos e as limitações de processamento dos computadores não foi possível caracterizar todos os sistemas diatômicos propostos completamente. Como continuidade deste trabalho está programado o encerramento da caracterização dos diátomos propostos, bem como o inicio da caracterização de sistema com mais átomos e o calculo de energia de interação do tipo Van der Walls utilizando os métodos de expansão multipolar, supramolecular ou SEP.

Referências

[1] Ana Claudia

[2] Pereira, Arquimedes Mariano. Estudo *ab initio* e DFT das nitrosaminas. Tese de Mestrado, Universidade Federal da Paraíba, João Pessoa, 2008.

[3] Szabo, A. e Ostlund, N. S. (1996). Modern Quantum Chemistry: Introductionto Advanced Electronic Structure Theory. MacMillan Publishing CO, Inc., New York.

[4] Maíra Coelho Abade. Cálculo Mecânico Quântico Multidimensional. Tese de Mestrado, UnB, Brasília, 2007

[5] PONTES, Frederico José de Santana. Estudo Teórico de Modelos de Catálise Assimétrica e Autocatálise em Reação de Adiação de Organozinco a Aldeído. Tese Mestrado, Recife, UFPE, 2004

[6] James B. foresman e Æleen Frisch. Exploring Chemistry with electronic Structure Methods, Second Edition. Gaussian, Inc., Pittsburgh.

[7] http://cccbdb.nist.gov/