

A INICIAÇÃO CIENTÍFICA NO INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS: UMA RETROSPECTIVA DE NOVE ANOS DE EXISTÊNCIA DO PROGRAMA PIBIC/CNPq NO INPE

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Davi Daniel Naves de oliveira (ETEP, Bolsista PIBIC/CNPq) E-mail: <u>davi.olina@gmail.com</u>

Dr. Maurício Ribeiro Baldan (LAS/INPE, Orientador) E-mail: <u>baldan@las.inpe.br</u>

COLABORADORES

Dr. Claudia Renata Borges Miranda (LAS/INPE) Dr. Neidenei Gomes Ferreira (LAS/INPE)

Julho de 2009

SUMÁRIO

CAPÍTULO 1 – INTRODUÇÃO

- 1.1 Introdução
- 1.2 Objetivo

CAPÍTULO 2 – FUNDAMENTAÇÃO TEÓRICA

- 2.1 Resumo
- 2.2 Cronograma das atividades

CAPÍTULO 3 – MATERIAIS E MÉTODOS

- 3.1 Tipo de Amostra
- 3.2 Preparação e Limpeza
- 3.3 Índio
- 3.4 Solução
- 3.5 Anodização

CAPÍTULO 4 – RESULTADOS E ANÁLISES

- 4.1 Série de Experimentos
- 4.2 Morfologia de Poro com Densidades Altas
- 4.3 Morfologia de Poro em Baixa Densidade
- 4.4 Relação Temperatura e Morfologia de Amostra
- 4.5 Microscopia Eletronica de Varredura MEV
- 4.6 Espectroscopia de Espalhamento RAMAN

CAPÍTULO 5 – CONCLUSÕES E TRABALHOS FUTUROS

- 5.1 Conclusão
- 5.2 Trabalhos Futuros

CAPÍTULO 1 – INTRODUÇÃO

1.1 - Introdução

Este relatório discorre sobre o histórico das atividades de Iniciação Científica realizadas e, observações sobre a caracterização óptica e morfológica do Silício Poroso (PS) no período compreendido entre Julho de 2008 e Julho de 2009.

O Silício é um material de grande aplicação tecnológica por ser abundante, relativamente barato e de fácil obtenção. Chama ainda a atenção de pesquisadores pela possibilidade de aplicação em diversas áreas como a optoeletrônica, foto-resistores, células solares e sub-dispositivos de outros sistemas.

O estudo da integração entre o PS e estas tecnologias, esbarra no controle do fenômeno físico que ocorre durante o processo de obtenção de poros nas lâminas a partir da anodização eletrolítica. A reprodutibilidade de morfologia ainda é um obstáculo a ser superado, pois a superfície irregular e pouco homogênea dificulta a utilização destas em grande parte dos dispositivos baseados em PS.

1.2 – Objetivo

O objetivo desta pesquisa é realizar uma coleta de dados sobre o comportamento das amostras de Silício Poroso; para uma futura e efetiva caracterização, obtida através de processos de anodização eletroquímica baseando-se em parâmetros como: tipo de luz utilizada, concentração da solução, tempo, temperatura e tipo de amostra (Si tipo-n, 100).

Desse modo, será necessário o uso de equipamentos como o MEV (Microscopia de Varredura Eletrônica), AFM (Microscopia de Força Atômica) e ainda a determinação da fotoluminescência das amostras, pois sabe-se que o silício pode emitir luz visível no estado poroso, verificando-se que há uma relação entre a porosidade e o comprimento de onda emitido^[1].

CAPÍTULO 2 – FUNDAMENTAÇÃO TEÓRICA

2.1 – Resumo

Neste trabalho fez-se um breve estudo das características morfológicas do Silício Poroso a partir de referências bibliográficas e técnicas eletroquímicas já desenvolvidas anteriormente. Estudou-se o comportamento de laminas de Silício 10-20 Ω cm em solução de ácido fluorídrico com acetonitrila (HF-MeCN).

Dados de análise por Microscopia Eletrônica de Varredura – MEV, permitiram encontrar-se conclusões amplas sobre a morfologia obtida a partir da anodização em solução aquosa HF:MeCN:H₂O na qual os melhores resultados foram obtidos em baixas densidades de corrente, entre 1,12 e 1,69 mA/cm².

Há ainda o fator da temperatura como variável e parâmetro de importante influencia na morfologia das amostras, considerando-se este como decisivo no controle do processo.

2.2 - Cronograma das Atividades Mensais

08/2008 a 09/2008

Processo de ambientação e introdução aos laboratórios.

Atividades Práticas: Funcionamento e Limpeza do Reator, Seeding, RAMAN.

10/2008 a 11/2008

Atividades Práticas: Corte, Limpeza Característica e Anodização Eletroquímica.

11/2008 a 12/2008

Atividades Práticas: Anodização Eletroquímica, MEV das amostras de Si.

Atividades Práticas: MEV corte lateral.

01/2009 a 02/2009

Seminário sobre as atividades e observações de experimentos.

02/2009 a 03/2009

Experimento sob novos parâmetros.

03/2009 a 04/2009

Estudo de fotoluminescência com lâmpada de luz negra.

Segunda Série de Experimentos com novos parâmetros.

05/2009 a 07/2009

Fotoluminescência no RAMAN

Execução do Relatório Final.

CAPÍTULO 3 – CRIAÇÃO DA BASE DE DADOS

3.1 – Tipo de amostra

Silício tipo-n (100), 1-20 Ωcm, sendo utilizado para caracterização Si poroso a partir de processo eletrolítico em solução de Ácido Fluorídrico e Acetonitrila (HF:MeCN).

3.2 – Preparação e limpeza

Cortou-se os discos de Si com a ajuda de uma ponta de diamante em seções de 2x2cm. Obteve-se um número total 40 de amostras.

A seguir, limpou-se as amostras com a solução H₂O₂:H₂SO₄ pelos seguintes passos (solução piranha):

- Fixação das amostras no suporte de teflon;

- banho em solução HF:H₂O [1:10] revezado com um segundo béquer contendo água deionizada até observar-se o total desprendimento de partículas da superfície;

- banho de 10 minutos em solução H₂O₂:H₂SO₄ [1:2];

- banho solução HF [1:1] durante 4 minutos;

- banho em água deionizada;

- Retirada das amostras do suporte de teflon e secagem destas com jato de nitrogênio; e

- Logo após, guardou-se as amostras em recipientes próprios para tal.

3.3 – Índio

Em seguida, passou-se Índio (In) no lado opaco das amostras para que fosse otimizada a condutividade elétrica durante a anodização. O Índio é um elemento obtido a partir do Zinco e aumenta a condutividade elétrica da amostra.

Utilizou-se uma pinça de aço, um bastão de vidro e uma chapa elétrica à 200 °C. Fundiu-se o In a partir do calor da chapa sendo este espalhado na superfície da amostra.

3.4 – Solução

Escolheu-se no processo de anodização a solução final HF:MeCN:H₂O [4:1:2] que é descrita como ideal para o mesmo de acordo com os estudos da Dra. Claudia Renata^[2]. No preparo da solução utilizou-se os seguintes itens:

- balão volumétrico de 150ml (um);

- frasco de plástico com tampa de 150ml (dois);

- béquer de 200ml;

- MeCN;

- HF [1:1]; e

- água deionizada.

Obs: todos os frascos e a vidrarias foram devidamente lavados para evitar-se uma possível contaminação das soluções.

No balão volumétrico adicionou-se 25 mL de MeCN e completou-se o volume final com água – 175mL. No frasco de plástico adicionou-se 16,8 mL de HF [1:1] e avolumou-se a solução com água novamente – 100 mL.

Por fim misturou-se 25mL da solução H₂O:MeCN com 100mL da solução H₂O:HF juntamente com mais 75 mL de água deionizada.

Acondicionou-se a solução final no segundo frasco de plástico devidamente identificado com a data e o nome no rótulo.

3.5 – Anodização

Fez-se a anodização em solução aquosa de HF-acetonitrila às amostras em dois momentos. Em um primeiro instante com uma fonte do laboratório do LAS e em seguida no prédio do Circuito Impresso. Contou-se como dados efetivos para o estudo apenas os experimentos ocorridos com a segunda fonte.

Neste processo utilizou-se:

- Fonte Estabilizadora Tectrol 1000 Vcc 2000 mA;
- Suporte para lâmpada;
- Lâmpada Fluorescente 60 W;
- Célula eletrolítica de Teflon®;
- Eletrodo de Cobre;
- Contra-eletrodo de Platina;
- Termômetro Digital Oregon;
- Amostra de Silício 2x2cm;
- Solução HF:MeCN:H₂O [4:1:2]
- Multímetro; e
- Fios de conexão.

Ligou-se o sistema do seguinte modo:

Entrada/Fonte - Multímetro - Eletrodo de Trabalho - célula - saída/Fonte

CAPÍTULO 4 – RESULTADOS E ANÁLISES

Tempo	Т. А.	J(mA/cm ²)	T.I. Sol	T.F. Sol
120"	21,2 <i>°</i> C	22,59	27,9°	33,9 <i>°</i> C
120"	22,3 <i>°</i> C	11,29	24,9℃	33,7°C
90"	21,2 <i>°</i> C	22,59	26,2 <i>°</i> C	30,1 ℃
90"	24,7 <i>°</i> C	11,29	24,7℃	34,0°C
60"	25 <i>°</i> C	22,59	-	-
60"	24,3 <i>°</i> C	11,29	27,4 <i>°</i> C	30,4 <i>°</i> C
30"	26,3 <i>°</i> C	22,59	32,6 <i>°</i> C	34,9℃
30"	22,3 <i>°</i> C	11,29	24,4 <i>°</i> C	27,9°C
15"	21,2℃	22,59	26,9 ℃	30,6 <i>°</i> C
15"	21,2°	11,29	24,6 <i>°</i> C	28,2°C

4.1 – Série de Experimentos

Tabela: As anodizações eletrolíticas realizadas da primeira série são mostradas na tabela indicando A temperatura Ambiente do local (TA), Densidade de Corrente utilizada (J) e tempeaturas inicias e finais da Solução HF-acetonitrila respectivamente (TI) e (TF).

Após esta primeira série de amostras foram realizadas diversas discussões teóricas em busca de uma morfologia mais próxima do objetivo.

Fez-se então uma segunda série de anodizações baseadas nos dados já obtidos pelo MEV da primeira. Entendeu-se como mais próximo do ideal as amostras de J=22,50 mA/cm², variando-se assim, apenas o tempo entre 5 e 30 minutos.

Tempo	T. A.		T.I. Sol	T.F. Sol
30"	25,2℃		24,9°	+70 <i>°</i> C
25"	24,3 <i>°</i> C	J	24,1 <i>°</i> C	+70 <i>°</i> C
20"	26,2 <i>°</i> C	22,59	26,2 <i>°</i> C	68,8℃
15"	25,7 <i>°</i> C	mA/cm ²	25,3 <i>°</i> C	63,0°C
10"	24,2 <i>°</i> C	-	24,1 <i>°</i> C	51,3-
5"	24,3 <i>°</i> C		24,0 <i>°</i> C	30,4 <i>°</i> C

Tabela: Anodizações de densidade de corrente constante variando-se o tempo.

Novamente com os resultados encontrados fez-se uma nova série, buscando agora a melhor porosidade em relação a densidade de corrente.

Utilizou-se J entre 5,64 mA/cm² e 1,69 mA/cm², mantendo-se o tempo de 30 minutos para todas as amostras.

Por fim, uma quarta série obtendo-se resultados considerados próximos da porosidade desejada. Pouca profundidade e maior diâmetro.

4.2 – Morfologia de Poro com Densidades Altas

Baseado nas análises por intermédio do MEV das amostras em ambas correntes, concluiu-se que os ataques ocorreram em profundidade, os maiores poros atingiram a marca de 120 µm. Ao contrário do esperado, constatou-se que anodizações com densidade corrente em 11,29 mA/cm² fizeram ataques mais efetivos e de poros em menores tamanhos enquanto os experimentos na corrente de 22,59 mA/cm² possivelmente sofreram uma decapagem encontrando-se poros com maior diâmetro.

Experimento de 90" com corrente de 22,59 mA/cm². Poros de pouca profundidade e grande diâmetro. Ataque infiltrado na amostra.

Experimento de 120" com corrente de 22,59 mA/cm². Poros de grande profundidade e pequeno diâmetro. Ataque profundo.

Nestas condições não foi possível confirmar ainda se há padronização entre amostras de tempo e correntes. A reprodutibilidade do processo que ainda segue em estudo.

4.2 – Morfologia de Poro em Baixa Densidade

Após um período de estudo teórico e discussão do tema junto ao orientador, adotou-se novos parâmetros de anodização ao concluir-se que as densidades de corrente 22,59 e 11,29 mA/cm² eram ainda muito altas para o objeto de estudo. Assim, trocou-se a lâmpada utilizada no processo a fim de minimizar-se o calor gerado durante a anodização, diminui-se ainda o tempo e a densidade de corrente para 1,69 e 1,12 mA/cm².

A partir desta nova série de amostras obteve-se resultados mais próximos de uma morfologia que possa responder ao foco principal deste projeto: a obtenção de laminas de Si poroso que tenham poros de diâmetro grande e pouca profundidade para o crescimento de diamante pelo método de Deposição Química na fase Vapor por Filamento Quente HF-CVD. Este método de crescimento é baseado em um reator de crescimento que usa filamentos de Tungstênio, criando calor suficiente para romper as ligações de CH₄, gás utilizado para a obtenção do carbono que será depositado na amostra em forma de carbono.

Série de anodização de 30 minutos com variação de densidade de corrente. Ficou notável a diferença de porosidade entre as amostras. 5,64 mA/cm², 3,95 mA/cm² e 1,69 mA/cm² respectivamente.

4.3 – Relação Temperatura e Morfologia de Amostra

Por intermédio das análises realizadas no MEV, entendeu-se que a temperatura influencia diretamente o tipo de poro obtido durante as anodizações.

Na célula utilizada não houve modo de controlar este parâmetro o qual apenas foi observado para fins de estudo. Assim, é clara a relação entre densidade de corrente e as temperaturas iniciais e finais de cada experimento e o resultado final obtido.

> "O efeito da temperatura na densidade de corrente característica do metal em contato com os filmes de PS foi observado in experimentos (Pazebutas et al., 1995; Chen et al., 1994a; 1994b; Remaki et al., 2003; Aroutiounian and Ghulinyan, 2003; Balagurov et al., 2001) Estes autores se propuseram a diferentes mecanismos. alguns destes assumiram que a emissão termo-ionica ou a barreira difusora controlava a densidade de corrente dos dispositivos, mas outros autores propuseram que o mecanismo de tunelamento ou a dependência do campo elétrico da condutividade do PS como o mecanismo dominante"^[3]

4.4 – Microscopia Eletronica de Varredura – MEV

A Microscopia Eletrônica de varredura é uma ferramenta de apoio na caracterização morfológica das amostras, por um equipamento capaz de produzir imagens de alta ampliação e resolução. As imagens fornecidas pelo MEV possuem um caráter virtual, pois o que é visualizado no monitor do aparelho é a transcodificação da energia emitida pelos elétrons, ao contrário da radiação de luz a qual estamos habitualmente acostumados.

Tempo	120"		90"		60"	
Densidade de Corrente (mA/cm ²)	22,59	11,29	22,59	11,29	40	20
Temp. final (℃)	33,9	33,7	30,1	34,0		30,4
MEV-topo						
MEV-corte						

Tabela 1: MEV com alta densidade de corrente.

Тетро	30"	25"	20"	15"	10"	5"	
Densidade de Corrente (mA/cm ²)	22,59						
Temp. final (℃)	+70	+70	68,4	63,0	51,3	35,6	
MEV-topo							
MEV-corte							

Tabela 2: MEV com alta densidade de corrente variando-se o tempo.

5,64	3,95	1,69
<u>19-00</u>		
		5,64 3,95 Image: Constraint of the state o

Tabela 3: Anodização com tempo fixo variando-se a baixa densidade de corrente.

Tempo	30"		20"		10"	
Densidade de Corrente (mA/cm ²)	1,694	1,129	1,694	1,129	1,694	1,129
Temp. final (℃)	-	25,2	25,2	25,0	25,1	24,9
MEV-topo						\$
MEV-corte				R	No.	1

Tabela 4: Série final de anodizações. Melhor porosiade obtida.

4.5 – Espectroscopia de Espalhamento RAMAN

A espectroscopia aplicada ao PS é utilizada na verificação da fotoluminescência das lâminas de amostras. Um conjunto de dados pode ser obtido a partir desta análise sobre propriedades ópticas e estruturais. Este processo baseia-se na emissão radiativa espontânea dos materiais. Assim:

"O processo de emissão espontânea em um semicondutor ocorre em quatro etapas básicas definidas em: excitação, relaxação, termalização e recombinação.

No primeiro passo, a incidência de luz com energia maior que o *gap* da lamina de Si cria pares elétron-buraco mediante a promoção de elétrons e seus estados fundamentais. Logo após, na relaxação o excesso de energia absorvido pelos portadores é cedido a rede cristalina. Em seguida o excesso de energia absorvida é cedida a rede cristalina, que tendem a ocupar estados demamis baixa energia possível no fundo das bandas. Depois de um intervalo de tempo que é em geral extremamente curto (entre 10⁻⁹ e 10⁻¹² segundos), o elétron retorna para seu nível fundamental recombinando com o buraco, e a recombinação radiativa gera um fóton (luz). É nesse processo geral que se baseia técnica de fotoluminescência". ^[4]

Gráfico: Raman em amostra de alta densidade de corrente. Apesar da fotoluminescência ser visível a olho nu (luz negra) o pico de intensidade não passa de 30 mil.

Gráfico: Raman de amostra anodizada em baixa densidade de corrente. A fotoluminescência é quase não perceptível a olho nu, tendo porém um pico de intensidade maior que a amostra anterior.

CAPÍTULO 5 – CONCLUSÕES E TRABALHOS FUTUROS

5.1 – Conclusão

Constatou-se que a voltagem necessária média aplicada no início do processo é de 100V. Pois antes da formação do poro, é necessário que a reação rompa a da camada passivadora de óxido (SiO₂) na superfície do Silício que atua como obstáculo para a permissividade da corrente elétrica. Nos experimentos com tempo de duração superior a 60 minutos observou-se que a tensão (voltagem) cai até cerca de 10V mantendo-se assim até o fim. Neste estágio, observou-se também um ataque bem mais heterogêneo.

Anodizações eletrolíticas com menos tempo de ataque permitem um melhor controle da reação em diversos aspectos, pois a variação de temperatura é menor. Assim, os melhores resultados obtidos foram encontrados em ataques de tempo inferior a 30 minutos. O que acabou por evidenciar o fato de que a decapagem observada em ataques com tempo superiores a 30 minutos não ocorre aqui.

Assim como em outros autores – Cecherelo^[5]e Chang^[6]*et al*, observou-se um número considerável de bolhas em razão da liberação de gases (Hidrogênio) causada pela reação de eletrólise em todos os experimentos, que por diversas vezes necessitou-se de remoção manual para que este pudesse continuar quando a tensão (V) cai para zero. Entendeu-se como necessária a colocação de um sistema de circulação na célula para impedir tal acúmulo ou ainda o desenvolvimento de uma nova célula eletrolítica (a ser implementado como uma nova etapa de trabalho).

5.2 – Trabalhos futuros

A influência da temperatura causada pelo uso de uma lâmpada de halogênio foi estudada de forma superficial. Mas acredita-se que a sua substituição por outro tipo, como fluorescente proverá maior estabilidade e controle dos parâmetros utilizados. Novas séries de amostras serão obtidas e caracterizadas a partir da troca da fonte de luz.

A caracterização da rugosidade das amostras por intermédio de análises de Microscopia de Força Atômica (AFM), também serão introduzidas na continuidade do trabalho com o objetivo esclarecer com um maior número de dados, a porosidade alcançada em cada experimento.

Estuda-se a introdução de um novo elemento a solução HF-acetonitrila no intento de diminuir ainda mais a resistividade da solução, o perclorato de tetrabutil amônio que funciona como eletrólito suporte.

Finalmente, após estas etapas de estudo e aplicação, é previsto o crescimento de filmes de diamante em HF-CVD e sua respectiva caracterização.

Referências Bibliográficas

[1] CHANG, D. C. "Caracterização da superfície do Silício poroso por microscopia de força atômica". Dissertação de Mestrado. UNICAMP. 1995.

[2] MIRANDA, C. R. B. "Compósito Diamante/Silício poroso a partir dos processos CVI/CVD". Proposta de Tese. 2007.

[3] Yue Zhag, et al. Influence of polarized bias and porous silicon morphology on the electrical behavior of Au-porous silicon contacts. Zhejiang University, Hangzhou. China. 2005.

[4] LAURETO, Edson et al. "A técnica de fotoluminescência aplicada à investigação de imperfeições estruturais em poços quânticos de materiais semicondutores". Artigo. Semana de Ciências Exatas e Tecnológica. UEL. 2005.

[5] CECHERELO, G. S. S. "Sensores eletroquímicos para detecção de íons e medida de PH baseados em filmes de silício poroso. Dissertação de Mestrado. USP. 2007.

[6] GUNTHERODHT, Springer. "Light Scattering in Solids". 1989.