

MINISTÉRIO DA CIÈNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

ANÁLISE E SIMULAÇÃO DE REENTRADAS ATMOSFÉRICAS CONTROLADAS

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Bolsista - Ariane de Oliveira Braga (ETEP Faculdades, Bolsista PIBIC/CNPq)

E-mail: <u>arianebraga01@hotmail.com</u>

Orientador - Dr. Marcelo Lopes de Oliveira e Souza (DMC/ETE/INPE)

E-mail: <u>marcelo@dem.inpe.br</u>

Julho de 2007

SUMÁRIO

CAPÍTULO 1 - Introdução CAPÍTULO 2 - Metodologia 2.1-Transferência Inversa de Hohmann 2.2-Transferência Inversa de Breakwell 2.4-Simulações Numéricas	página 04 05 05 12 16
2.3-Transferência Orbital com Força de Arrasto Atmosférico	18
Referências Bibliográficas	23 24
Apêndice A – Programas e simulações da órbita elíptica (Transferência de Hohmann) Desenvolvido por Flávio Francesco Soares Schmidt em Matlab	25
Apêndice B – Programas e simulações da órbita elíptica (Transferência de Breakwell) Desenvolvido por Flávio Francesco Soares Schmidt em Matlab	45
Apêndice C – Programas e simulações com força de arrasto atmosférico desenvolvido.Rolf Henry Vargas Valdivia em Matlab	55
Apêndice D – Estudo sobre a Integração Numérica de Equações Diferenciais Ordinárias	60
D.1-Introdução	60
D.2-1º Método de Euler	60
D.3-Métodos de Runge-Kutta	62
D.4-Conclusão	64
Apêndice E – Estudo sobre MATLAB	65
E.1-Introdução	65
E.2-Definição de Matrizes no MATLAB	65
E.3-Cálculos Fundamentais	65
E.4-Gráficos X-Y	66
E.5-Equações Diferenciais Ordinárias	68
E.6-Conclusão	71

LISTA DE FIGURAS E TABELAS

	Páginas
Figura 1- Uma Transferência Inversa de Hohmann	05
Figura 2- Trajetória Final em Espiral	06
Figura 3- Uma Transferência Inversa de Hohmann e Trajetória Final em Espiral	07
Figura 4- Duas Transferências Inversas de Hohmann e Trajetória Final em Espiral	08
Figura 5- Três Transferências Inversas de Hohmann e Trajetória Final em Espiral	09
Figura 6- Transferência Inversa de Hohmann	11
Figura 7- Três Transferências Inversas de Breakwell	12
Figura 8- Trajetória Final em Espiral	13
Figura 9- Duas Transferências Inversas de Breakwell e Trajetória Final em Espiral	14
Figura 10- Transferências Inversas de Breakwell	15
Tabela 1- Sequência Simplificada da Reentrada do CGRO	17
Figura 11- Decaimento com Força de Arrasto Atmosférico	18
Figura 12- Decaimento Orbital Ampliado	19
Tabela 2- Densidade Atmosférica em Função da Altitude	20
Figura 13- Transferência Orbital com Densidade Variando	20
Figura 14- Comparação com Densidade Constante e Variando	21
Tabela 3- Modelo Exponencial	22
Figura 15- Transferência Orbital Com Modelo Exponencial	22
Figura D.1 - 1º. Método de Euler	60
Tabela D.1 - 1°. Método de Euler	62
Tabela D.2 - 1°. Método de Euler calculado pelo Excel	62
Tabela D.3 - Método de Runge-Kutta calculado pelo Excel	64
Figura E.1- Gráfico X-Y	68
Figura E.2- Resolução da Equação Diferencial	70
Figura E.3 Equação Diferencial de Van Der Pol	71

CAPÍTULO 1 Introdução

BREVE HISTÓRICO: No período de Fevereiro de 2006 até Julho de 2006, foram realizados: 1) Nossa introdução ao tema: "Reentradas Atmosféricas Controladas", tratando do retorno controlado de um veículo espacial para dentro da atmosfera da Terra; 2) Uma análise de alguns casos recentes como o do "Compton Gama Ray Observatory-CGRO" para melhor entendimento do trabalho; 3) Um estudo sobre a transferência inversa de Hohmann e a transferência inversa de Breakwell, dentre diversas estratégias para realizar o decaimento orbital controlado envolvendo órbitas circulares e elípticas usando modelos já existentes como o do CGRO. Os resultados e conclusões estão no Relatório Final "Análise e Simulação de Reentradas Atmosféricas Controladas" e foram apresentados no Seminário de Iniciação Científica (SICINPE 2006), nos dias 11 e 12 de Julho de 2006.

OBJETIVOS E ESTRUTURA DESTE RELATÓRIO: O objetivo deste Relatório é descrever os trabalhos realizados no período de Agosto de 2006 até o início de Julho de 2007, dando continuidade aos resultados da pesquisa anterior incluindo: 1) programas do Matlab para simular o decaimento orbital controlado usando a transferência inversa de Hohmann e a transferência inversa de Breakwell; 2) o cálculo da reentrada simplificada do Observatório Compton de Raios Gama que foi um dos casos recentes apresentados no Relatório Final de Julho de 2006; 3) o estudo de transferência orbital com força de arrasto atmosférico, simulando programas no Matlab.

CAPÍTULO 2 - Metodologia

2.1 - Transferência Inversa de Hohmann

A Transferência Inversa de Hohmann com decaimento orbital controlado é a partir de uma órbita circular, que são aplicados dois impulsos necessários para desacelerar o movimento orbital do satélite e levá-lo a outra órbita circular menor. Para simular essa tranferência foi realizado alguns programas no Matlab como modelos para melhor compreensão, que são mostrado a seguir:

O programa "orb_hoh2_old" (vide Apêndice 1, Programa 1), simula a aplicação de dois impulsos. Numa órbita inicialmente circular, é aplicado ao satélite o impulso no ponto da órbita que representa o apogeu da órbita elíptica de transferência que começa a ser percorrida pelo satélite. Quando satélite atinge o perigeu dessa órbita elíptica de transferência outro impulso é aplicado de modo a torná-la circular novamente no raio final desejado, como mostrado na Figura 1 abaixo:

Figura 1- Uma Transferência Inversa de Hohmann.

O programa "espiral_elipsecte "(vide Apêndice 1, Programa 2), simula a parte final de uma reentrada com uma trajetória final em espiral até atingir uma região segura da Terra, como mostrado na Figura 2 abaixo:

Figura 2- Trajetória Final em Espiral

O programa "orb_hoh4 "(vide Apêndice 1, Programa 3), é formado pelos programas anteriores "orb_hoh2_old" e "espiral_elipsecte " que simula aplicação dos dois impulsos necessários para desacelerar o movimento orbital do satélite e levá-lo a outra órbita circular menor, finalizando a órbita final com espiral visando impactar uma região segura da superfície da Terra, como mostra a Figura 3 abaixo:

Figura 3 – Uma Transferência Inversa de Hohmann e Trajetória Final em Espiral.

O programa do Matlab "orb_hoh2"(vide Apêndice 1, Programa 4), simula duas transferências inversas de Hohmann levando o satélite para uma órbita circular menor e finalizando a órbita com o programa "espiral_elipsecte" com a órbita espiral, como mostra a Figura 4 abaixo:

Figura 4- Duas Transferências Inversas de Hohmann e Trajetória Final em Espiral.

O programa do Matlab "orb_hoh22 "(vide Apêndice 1, Programa 5), simula três transferências inversas de Hohmann levando o satélite para uma órbita circular menor e finalizando a órbita com o programa "espiral_elipsecte" com a órbita espiral, como mostra a Figura 5 abaixo:

Figura 5 - Três Transferências Inversas de Hohmann e Trajetória Final em Espiral.

Para determinar os impulsos utilizamos as seguintes equações:

A partir da órbita inicial, o primeiro impulso é aplicado quando o veículo está no apogeu da órbita elíptica de transferência, de acordo com as equações:

$$\frac{\Delta V_i}{Vc_i} = \sqrt{\frac{\frac{2r_f}{r_i}}{1 + \frac{r_f}{r_i}}} - 1$$

Portanto:

$$\frac{\Delta V_i}{Vc_i} = \sqrt{\frac{2 r_f}{r_i + r_f}} - 1$$

O segundo impulso é aplicado quando o veículo está no perigeu da órbita elíptica de transferência, e esse impulso circulariza a órbita no raio final desejado, de acordo com as equações:

$$\frac{\Delta V_f}{Vc_i} = \sqrt{\frac{1}{\frac{r_f}{r_i}}} - \sqrt{\frac{\frac{2r_f}{r_i}}{\frac{r_f}{r_i}}} \sqrt{\frac{\frac{r_f}{r_i}}{\frac{r_f}{r_i}}(1 + \frac{r_f}{r_i})}$$

Portanto:

$$\frac{\Delta V_f}{Vc_i} = \sqrt{\frac{r_i}{r_f}} - \sqrt{\frac{2r_i}{r_i + r_f}}$$

Onde: *Vc_i* é velocidade inicial na órbita circular.

 ΔV_i e ΔV_f são os impulsos nas órbitas inicial e final.

 r_i e r_f são raios da órbita inicial e da órbita final.

Utilizando as equações anteriores, temos a seguir a simulação de um modelo da Transferência Inversa de Hohmann. O programa do Matlab "orb_raio0 "(vide Apêndice 1, Programa 6), simula a aplicação de dois impulsos, onde temos o raio inicial, raio final das órbitas circulares e o delta velocidade que são os impulsos aplicados nas órbitas iniciais e finais, como mostra a Figura 6 abaixo:

Figura 6 – Transferência Inversa de Hohmann

2.2 - Transferência Inversa de Breakwell

A Transferência Inversa de Breakwell é uma órbita elíptica, onde é aplicado um impulso necessários para desacelerar o movimento orbital do satélite e levá-lo a outra órbita elíptica. A partir da órbita inicial, o impulso é aplicado quando o veículo está no apogeu da órbita elíptica inicial, reduzindo o perigeu e alterando a excentricidade. Para simular essa transferência foi realizado alguns programas no Matlab como modelos para melhor compreensão, que são mostrado a seguir:

O programa "orb_elip_ff" (vide Apêndice 2, Programa 1), simula repetidamente a aplicação de um impulso quando o veículo está no apogeu da órbita inicial=1 e reduzindo o perigeu da órbita final=2, como mostra a Figura 7 abaixo:

Figura 7- Três Transferências Inversas de Breakwell.

O programa "espiral_breakwell "(vide Apêndice 2, Programa 2), simula a parte final de uma reentrada com uma trajetória final em espiral até atingir uma região segura da Terra, como mostra a Figura 8 abaixo:

Figura 8- Trajetória Final em Espiral.

O programa "breakwell_auto1 "(vide Apêndice 2, Programa 3), é formado pelos programas anteriores "orb_elip_ff "e"espiral_breakwell " que simula repetidamente a aplicação de um impulso quando o veículo está no apogeu da órbita inicial=1 e reduzindo o perigeu da órbita final=2, finalizando a órbita com o programa "espiral_breakwell " com a órbita espiral até atingir uma região segura da superfície da Terra, como mostra a Figura 9 abaixo:

Figura 9- Duas Transferências Inversas de Breakwell e Trajetória Final em Espiral.

O programa "breakwell1"(vide Apêndice 2, Programa 4), simula repetidamente a aplicação de alguns impulsos que mostra os valores do semi eixo maior, semi eixo menor e também os valores da excentricidade que vai variando de acordo com cada impulso, como mostra a Figura 10 abaixo:

Figura 10- Transferências Inversas de Breakwell

2.3 - Simulações Numéricas

No Relatório Final de Julho de 2006 foi realizado uma pesquisa sobre o Observatório Compton de Raios Gama que foi lançado em abril de 1991 e teve sua reentrada na atmosfera da Terra de forma controlada em 4 de Junho de 2000, após encerrar suas operações devido a falhas de um giroscópio.

Seqüência Simplificada da Reentrada do CGRO

Em 28 de maio 2000

- As cargas desnecessárias da configuração/ verificação geral da nave espacial (instrumentos) foram desligadas.

- A engenharia testa a execução de comandos

- Vida de uma órbita: diversos anos

Em 30 de maio 2000 - Impulso número 1

- O impulso1 diminuiu o perigeu de 510 km para 350 km

-Vida de uma órbita: ~1 ano

Em 31 de maio 2000 - Impulso número 2

- O impulso 2 diminuiu o perigeu de 350 km para 250 km

-Vida de uma órbita: ~80 dias

Em 4 de junho 2000 - Impulso número 3

-O impulso 3 diminuiu o perigeu de 250 km de 150 km

-Vida de uma órbita: ~3 dias

Em 4 de junho 2000 - Impulso número 4

- A órbita seguinte, executa o impulso 4 para reentrar na atmosfera.

- A nave espacial reentra no alvo

De acordo com os dados obtidos da seqüência simplificada da reentrada do Observatório Compton de Raios Gama, e utilizando as equações abaixo:

$$a_{2} = \frac{a_{1}(1+e_{1})}{(1+e_{2})} \qquad V^{2} = \mu \left(\frac{1}{r} - \frac{1}{a}\right)$$

Obtivemos os seguintes valores:

Tabela 1- Sequência Simplificada da Reentrada do CGRO

Sequência Simplificada da Reentrada do CGRO							
Data	Altura do Perigeu (R _t =6378 km)	Exc. e Altura Finais	$\Delta V (km/s)$				
30 de Maio de 2000	510km para 350km	e = 0,186 $a = 430$ km	$\Delta V = -0.045$				
31 de Maio de 2000	350km para 250km	e= 0,168 a= 300 km	$\Delta V = -0,106$				
04 de Junho de 2000	250km para 150km	e= 0,25 a= 200 km	$\Delta V = -0,057$				
04 de Junho de 2000	150km para 84km	e= 0,282 a= 117 km	$\Delta V = -0,069$				

2.4 - Transferência Orbital com Força de Arrasto Atmosférico

Para demonstrar as transferências orbitais com arrasto atmosférico integraremos numericamente as equações obtidas a partir das Leis de Newton envolvendo as forças gravitacional e de arrasto atmosférico, a saber:

$$\begin{bmatrix} \bullet \bullet \\ x \\ \bullet \bullet \\ y \end{bmatrix} = -\frac{\mu}{\left| \vec{r} \right|^3} \begin{bmatrix} x \\ y \end{bmatrix} - \frac{Fa}{\left| \vec{v} \right|} \begin{bmatrix} \bullet \\ x \\ \bullet \\ y \end{bmatrix}$$

Onde: µ=398600 km é a constante gravitacional da Terra;

 $\begin{vmatrix} \vec{r} \end{vmatrix} = (x^2 + y^2)^{1/2} & \text{é o vetor posição ;} \\ \begin{vmatrix} \vec{v} \end{vmatrix} = (x^2 + y^2)^{1/2} & \text{é o vetor velocidade;} \end{vmatrix}$

$$Fa = \frac{1}{2}C_{\rho}A\rho v^2$$
 equação da força de arrasto atmosférico, onde $C\rho$ é o coeficiente de arrasto; A

é a área do satélite; ρ é a densidade atmosférica; v vetor velocidade.

O programa " transf_arrasto_modif2 " (vide Apêndice 3, Programa 1), simula as transferências orbitais com força de arrasto atmosférico. Para realizar o programa foi utilizado as equações anteriores, os comandos de ode com o método de Runge-Kutta 4 ou 5 no Matlab, densidade (constante) e a densidade variando em função da altitude. Desenvolvendo assim o decaimento da orbital, como mostra as Figuras 11 abaixo:

Figura 11- Decaimento com Força de Arrasto Atmosférico

A seguir temos o programa anterior que foi ampliado para melhor visualização do decaimento orbital, como mostra a Figura 12 abaixo:

Figura 12-Decaimento Orbital Ampliado

A densidade atmosférica em função da altitude como mostra a tabela 2 :

Altitude	Densidade	Altitude	Densidade	Altitude	Densidade
(Km)	(km/m^3)	(Km)	(km/m^3)	(Km)	(km/m^3)
0	1.225*10^0	80	1.905*10^-5	200	2.789*10^-10
25	3.899*10^-2	85	8.337*10^-6	250	7.248*10^-11
30	1.774*10^-2	90	3.396*10^-6	300	2.418*10^-11
35	8.279*10^-3	95	1.343*10^-6	350	9.158*10^-12
40	3.972*10^-3	100	5.597*10^-7	400	3.725*10^-12
45	1.995*10^-3	110	9.661*10^-8	450	1.585*10^-12
50	1.057*10^-3	120	2.438*10^-8	500	6.967*10^-13
55	5.821*10^-4	130	8.484*10^-9	600	1.454*10^-13
60	3.206*10^-4	140	3.845*10^-9	700	3.614*10^-14
65	1.718*10^-4	150	2.070*10^-9	800	1.170*10^-14
70	8.770*10^-5	160	1.244*10^-9	900	5.245*10^-15
75	4.178*10^-5	180	5.464*10^-10	1000	3.019*10^-15

Tabela 2 - Densidade Atmosférica em Função da Altitude

A seguir temos a Figura 13 que simula o decaimento orbital onde é usado os dados da tabela 2 que representa a densidade atmosférica variando em função da altitude.

Figura 13- Transferência Orbital com Densidade Variando

A seguir temos a Figura 14 que está comparando as duas orbitas anteriores para uma melhor compreensão do decaimento.

Figura 14- Comparação entre Densidade Constante e Variando

A seguir temos a Tabela 3 que representa o modelo exponencial da densidade:

$$\rho = e^{\frac{-h}{6.8}}$$
 com $0 \le h \prec 110$, onde *h* é altitude.

Altitude	Densidade da Tabela Densid	
(Km)	(km/m^3)	(km/m^3)
0	1.225*10^0	1
25	3.899*10^-2	2.53*10^-2
30	1.774*10^-2	1.21*10^-2
35	8.279*10^-3	5.816*10^-3
40	3.972*10^-3	2.788*10^-3
45	1.995*10^-3	1.336*10^-3
50	1.057*10^-3	6.407*10^-4
55	5.821*10^-4	3.071*10^-4
60	3.206*10^-4	1.472*10^-4
65	1.718*10^-4	7.057*10^-5
70	8.770*10^-5	3.383*10^-5
75	4.178*10^-5	1.621*10^-5
80	1.905*10^-5	7.774*10^-6
85	8.337*10^-6	3.726*10^-6
90	3.396*10^-6	1.786*10^-6
95	1.343*10^-6	8.563*10^-7
100	5.597*10^-7	4.105*10^-7
110	9.661*10^-8	9.432*10^-8

Tabela 3 – Modelo Exponencial

O programa "arrast" (vide apêndice 3, programa 2), simula o decaimento orbital com o modelo exponencial da densidade atmosférica utilizando os dados da tabela anterior, como mostra a Figura 15 abaixo:

Figura 15- Transferência Orbital com Modelo Exponencial

CAPÍTULO 3

Conclusões, Comentários e Sugestões para o Prosseguimento do Trabalho

O trabalho anterior realizou análise e simulação de reentradas atmosféricas controladas de um satélite em final de órbita e início, utilizando o estudo de manobras de atitude e de transferência orbital visando otimizar o decaimento orbital controlado de um satélite e também o estudo da sua reentrada inteira ou de seus fragmentos, visando impactar uma região segura da superfície da Terra. Para o decaimento orbital controlado usamos a transferência inversa de Hohmann e a transferência inversa de Breakwell; e também a transferência com força de arrasto atmosférico. No relatório foram listados os programas em Matlab das transferências orbitais para melhor compreensão do trabalho. Com base nestes programas e neste modelo, objetiva-se, posteriormente, estudar as propriedades básicas desse processo. Assim, será possível analisar os problemas de colisão e interferência dos detritos espaciais com outros objetos encontrados no espaço como satélites, ônibus espaciais, e estações espaciais.

REFERÊNCIAS BIBLIOGRÁFICAS

1) KUGA, RAO, Introdução à Mecânica Orbital, INPE, São José dos Campos - SP, 1995.

2) JOHNSON, N.L., & MCKINIGHT, D.S. *Artificial Space Debris (Updated Edition)*. Krieger Pub. Co., Malabar, FL, USA, 1991.

3)CHOBOTOV, V.A. (ed.) Orbital Mechanics (2 Ed.) Reston, VA, USA, AIAA, 1996.

4) SOUZA, M.L.O., NUNES, D., *Forecasting Space Debris Distribution: A Measure Theory Approach*, 51st. International Astronautical Congress – IAC. Rio de Janeiro - RJ, 2-6 Out.2000, Paper IAA-00-IAA.6.4.07.

5) ROSSER, J.B. (ED.) *Space Mathematics, Part I.* American Mathematical Society, New York, NY, USA, 1996.

6) CHANDRASEKHAR, S. *Principles of Stellar Dynamics*. Chicago Univ. Press, Chigaco, IL, USA, 1942; e Dover Pub., New York, NY, USA, 1960.

7) CARNAHAN, Brice; LUTHER, H. A.; WILKES, James O. *Applied Numerical Methods/*. New York : John Wiley, c1969 604 p. : ISBN 471.135070 (enc.)

8) (Apostila) Curso de MATLAB 5.1; *Introdução à Solução de Problemas de Engenharia*; 2^ª edição; Programa Prodenge / Sub-Programa Reenge; Universidade do Estado do Rio de Janeiro.

9) WERTZ, J.R. *Spacecraft Attitude Determination and Control*, Kluwer Academic Publishers, Dordrecht, Holland, 1978.

10) HANSELMAN, D., & LITTLEFIELD, B. MatLab 5: Guia do Usuário, Versão do Estudante, Makron Books, 1999.

Apêndice A - Programas e simulações da órbita elíptica (Transferência de Hohmann) desenvolvido por Flávio Francesco Soares Schmidt em Matlab:

Programa 1:

```
function orb hoh2 old(n,v,raio)
%valores recebidos
%n=8; n. de elipses em 1 volta
%v=2; n. de voltas
%raio inicial da orbita circular
a=raio; % -> semi-eixo horizontal
b=raio; % -> semi-eixo vertical
%armazena o valor de xo para manter fixo o perigeu
xp=a; %era xo;
%armazena o valor de yo para alterar a orbita
yp=b; %era yo;
%definicao das variaveis da elipse (foco, excentricidade e
distancia)
00
    a=xo;
%
    b=yo;
   c=sqrt(a.^2-b.^2);
   e=c/a;
   daf=a.*(1+e); %distancia do apoqeu ao foco
%inicia o laço de repetiçao para fazer o qiro completo na orbita
2*****************
%** laço retirado, primeiro farei manualmente. **
%for rf=a:-20:raio-20*(v-1)
%inicio da manobra de Hohmann (percorrer a orbita circular
inicial)
   rf=a;
%definicao da orbita eliptica
   e=(daf./rf)-1;
   b=sqrt(rf.^2-(e.*rf).^2);
2******
2**
                                           * *
       laço das elipses em orbita removido
%** por enquanto, as elipses serao desconsideradas **
for t=1:1:(n)
   w=2.*pi/(n);
   %raio=10;
   teta=w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
   r=(rf.*(1-e.^{2}))/(1+e.*cos(teta));
```

```
%define o centro de cada elipse na orbita eliptica
    xe=e.*rf+(r.*cos(teta));%-(xp-xo);
    ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x = (-ex) : 0.05 : (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
%elipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-qiro)+ysup.*sin(-qiro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1-(xp-rf), ysup1);
hold on;
plot(x2-(xp-rf), yinf1);
hold on;
end
%plotagem da orbita para referencia
ev=b;
ex=rf;
x = (-ex) : 0.5: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
plot(x-(xp-rf),ysup,'-k');
hold on;
plot(x-(xp-rf), yinf, '-k');
hold on;
%plotagem do foco de cada orbita
plot(e.*rf-(xp-a),0,'+g');
hold on;
%end %laco for
%segundo passo da manobra de Hohmann (10. tiro)
    rf=rf-20;
%definicao da orbita eliptica
    e=(daf./rf)-1;
    b=sqrt(rf.^2-(e.*rf).^2);
%plotagem das elipses na orbita eliptica de transiçao
    for t=1:1:(n/2)
    w=2.*pi/(n);
    %raio=10;
```

```
teta=pi+w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
    r=(rf.*(1-e.^{2}))/(1+e.*cos(teta));
% define o centro de cada elipse na orbita eliptica
    xe=e.*rf+(r.*cos(teta));%-(xp-xo);
    ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x = (-ex) : 0.05: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
vinf=-ey.*sqrt(1-((x)/ex).^2);
%elipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-giro)+ysup.*sin(-giro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinfl=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1-(xp-rf), ysup1);
hold on;
plot(x2-(xp-rf), yinf1);
hold on;
end
%plotagem da orbita para referencia
ey=b;
ex=rf;
x = (-ex) : 0.5: (ex);
vsup=ev.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2); %somente percorre 1/2 orbita
%plot(x-(xp-rf),ysup,'r'); %demonstraçao da continuidade da orbita
eliptica nao percorrida
hold on;
plot(x-(xp-rf),yinf,':r');
hold on;
%plotagem do foco de cada orbita
plot(e.*rf-(xp-rf),0,'+g');
hold on;
%terceiro passo da manobra de Hohmann (20. tiro)
%retorno a orbita circular, agora com raio final
   b=rf*(1-e);
    rf=b;
```

```
%plotagem das elipses na orbita circular final
        for t=1:1:(n)
    w=2.*pi/(n);
    %raio=10;
    teta=w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
    r=(rf.*(1-e.^2))/(1+e.*cos(teta));
%define o centro de cada elipse na orbita eliptica
  xe=e.*rf+(r.*cos(teta));%-(xp-xo);
  ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x = (-ex) : 0.05: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
Selipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-giro)+ysup.*sin(-giro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1, ysup1);
hold on;
plot(x2,yinf1);
hold on;
end
%plotagem da orbita para referencia
ev=b;
ex=rf;
x = (-ex) : 0.5: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
plot(x,ysup,'-k');
hold on;
plot(x,yinf,'-k');
hold on;
%plotagem dos eixos x e y para orientaçao, respectivamente
plot(-(xp+15):1:(xp+15),0,'k');
plot(0,-(xp+15):1:(xp+15),'k');
%iqualando a escala dos eixos x e y
axis equal
function end
```

Programa 2:

```
function espiral_elipsecte(v,n,raio,b)
%v=numero de voltas
%n=numero de elipses
%raio=raio inicial
%b=taxa de decaimenro do espiral
fi=0:pi/60:2*pi*v;
r=raio*exp(b*fi);
%polar(r,fi);
%hold on;
for(i=0:1:2*v*60)
    xs=r.*cos(fi);
    ys=r.*sin(fi);
end
%desenha espiral no fim
%inicia o laço de repetiçao para fazer o giro completo na orbita
for t=1:100:(100*n*v)
    w=2*pi/(100*n);
    %raio=10;
    teta=w.*t;
re=raio*exp(b*teta); %calculando espiral das elipses
%define o centro de cada elipse
    xe=re.*cos(teta);
    ye=re.*sin(teta);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao da elipse
ey=2;
ex=1;
%elipse base
x = (-ex) : 0.05 : (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
%elipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-giro)+ysup.*sin(-giro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1, ysup1);
hold on;
plot(x2,yinf1);
hold on;
%plotagem da orbita circular para referencia
```

```
ey=raio;
ex=raio;
x=(-ex):0.5:(ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
vinf=-ey.*sqrt(1-((x)/ex).^2);
plot(x,ysup,'-k');
hold on;
plot(x,yinf,'-k');
hold on;
%plotagem do centro da orbita (Centro de atração gravitacional)
plot(0,0,'+g');
hold on;
%plotagem das linhas de raio do centro da orbita ate o centro de
cada elipse
%plot(0:1:xe,0:ye/xe:ye,'r'); %lado direito, onde xe>0
hold on;
%plot(xe:1:0,ye:ye/xe:0,'r'); %lado esquerdo, onde xe<0</pre>
hold on;
%plotagem dos eixos x e y para orientaçao, respectivamente
plot(-(raio+15):1:(raio+15),0,'k');
plot (0, - (raio+15):1: (raio+15), 'k');
%desenhando o espiral
plot(xs,ys,'r');
%iqualando a escala dos eixos x e y
axis equal
```

Programa 3 :

end

```
function orb hoh4(n,v,raio)
%valores recebidos
%n=8; n. de elipses em 1 volta
%v=2; n. de voltas
%raio inicial da orbita circular
a=raio; % -> semi-eixo horizontal
b=raio; % -> semi-eixo vertical
%armazena o valor de xo para manter fixo o perigeu
xp=a; %era xo;
%armazena o valor de yo para alterar a orbita
yp=b; %era yo;
%definicao das variaveis da elipse (foco, excentricidade e
distancia)
0/0
    a=xo;
0/0
    b=yo;
    c=sqrt(a.^2-b.^2);
    e=c/a;
```

```
daf=a.*(1+e); %distancia do apoqeu ao foco
%inicia o laço de repetiçao para fazer o giro completo na orbita
%** laço retirado, primeiro farei manualmente. **
%for rf=a:-20:raio-20*(v-1)
%inicio da manobra de Hohmann (percorrer a orbita circular
inicial)
   rf=a;
%definicao da orbita eliptica
   e=(daf./rf)-1;
   b=sqrt(rf.^2-(e.*rf).^2);
<u>೪</u> * *
        laço das elipses em orbita removido
                                             * *
%** por enquanto, as elipses serao desconsideradas **
for t=1:1:(n)
   w=2.*pi/(n);
   %raio=10;
   teta=w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
   r=(rf.*(1-e.^{2}))/(1+e.*cos(teta));
%define o centro de cada elipse na orbita eliptica
   xe=e.*rf+(r.*cos(teta));%-(xp-xo);
   ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x = (-ex) : 0.05: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
%elipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-giro)+ysup.*sin(-giro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1-(xp-rf),ysup1);
hold on;
plot(x2-(xp-rf), yinf1);
hold on;
end
```

```
%plotagem da orbita para referencia
ey=b;
ex=rf;
x = (-ex) : 0.5: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
plot(x-(xp-rf),ysup,'-k');
hold on;
plot(x-(xp-rf), yinf, '-k');
hold on;
%plotagem do foco de cada orbita
plot(e.*rf-(xp-a),0,'+g');
hold on;
%end %laco for
%sequndo passo da manobra de Hohmann (10. tiro)
    rf=rf-20;
%definicao da orbita eliptica
    e=(daf./rf)-1;
    b=sqrt(rf.^2-(e.*rf).^2);
%plotagem das elipses na orbita eliptica de transiçao
    for t=1:1:(n/2)
    w=2.*pi/(n);
    %raio=10;
    teta=pi+w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
    r=(rf.*(1-e.^{2}))/(1+e.*cos(teta));
%define o centro de cada elipse na orbita eliptica
    xe=e.*rf+(r.*cos(teta));%-(xp-xo);
    ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x = (-ex) : 0.05: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
%elipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-giro)+ysup.*sin(-giro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
```

```
plot(x1-(xp-rf), ysup1);
hold on;
plot(x2-(xp-rf), yinf1);
hold on;
end
%plotagem da orbita para referencia
ey=b;
ex=rf;
x = (-ex) : 0.5: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2); %somente percorre 1/2 orbita
%plot(x-(xp-rf), ysup, 'r');%demonstraçao dacontinuidade da orbita
elipticanao
percorrida
hold on;
plot(x-(xp-rf), yinf, ':r');
hold on;
%plotagem do foco de cada orbita
plot(e.*rf-(xp-rf),0,'+g');
hold on;
%terceiro passo da manobra de Hohmann (20. tiro)
%retorno a orbita circular, agora com raio final
    b=rf*(1-e);
    rf=b;
%plotagem das elipses na orbita circular final
        for t=1:1:(n)
    w=2.*pi/(n);
    %raio=10;
    teta=w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
    r=(rf.*(1-e.^{2}))/(1+e.*cos(teta));
%define o centro de cada elipse na orbita eliptica
    xe=e.*rf+(r.*cos(teta));%-(xp-xo);
    ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x=(-ex):0.05:(ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
%elipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
```

```
x2=xe+x*cos(-qiro)+ysup.*sin(-qiro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1, ysup1);
hold on;
plot(x2,yinf1);
hold on;
end
%plotagem da orbita para referencia
ev=b;
ex=rf;
x = (-ex) : 0.5: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
plot(x,ysup,'-k');
hold on;
plot(x,yinf,'-k');
hold on;
%plotagem dos eixos x e y para orientação, respectivamente
plot (- (xp+15):1: (xp+15), 0, 'k');
plot(0,-(xp+15):1:(xp+15),'k');
%iqualando a escala dos eixos x e y
axis equal
espiral_elipsecte(6,10,60,-0.05)
```

function end

Programa 4 :

```
function orb hoh2(n,v,raio)
%valores recebidos
%n=8; n. de elipses em 1 volta
%v=2; n. de voltas
%raio inicial da orbita circular
a=raio; % -> semi-eixo horizontal
b=raio; % -> semi-eixo vertical
%armazena o valor de xo para manter fixo o perigeu
xp=a; %era xo;
%armazena o valor de yo para alterar a orbita
yp=b; %era yo;
%definicao das variaveis da elipse (foco, excentricidade e
distancia)
00
    a=xo;
00
     b=yo;
```

```
c=sqrt(a.^2-b.^2);
   e=c/a;
   daf=a.*(1+e); %distancia do apogeu ao foco
%inicia o laço de repetiçao para fazer o giro completo na orbita
%** laço retirado, primeiro farei manualmente. **
%for rf=a:-20:raio-20*(v-1)
%inicio da manobra de Hohmann (percorrer a orbita circular
inicial)
   rf=a;
%definicao da orbita eliptica
   e=(daf./rf)-1;
   b=sqrt(rf.^2-(e.*rf).^2);
2**
                                             * *
            laço das elipses em orbita
for t=1:1:(n)
   w=2.*pi/(n);
   %raio=10;
   teta=w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
   r=(rf.*(1-e.^{2}))/(1+e.*cos(teta));
%define o centro de cada elipse na orbita eliptica
   xe=e.*rf+(r.*cos(teta));%-(xp-xo);
   ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x = (-ex) : 0.05: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^{2});
%elipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-qiro)+ysup.*sin(-qiro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1-(raio-rf), ysup1);
hold on;
plot(x2-(raio-rf), yinf1);
```

```
hold on;
end
%plotagem da orbita para referencia
ev=b;
ex=rf;
x = (-ex) : 0.5: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
plot(x,ysup,'-k');
hold on;
plot(x,yinf,'-k');
hold on;
%plotagem do foco de cada orbita
plot(e.*rf,0,'+g');
hold on;
%end %laco for
while rf > 100 % reduz orbita ate atingir 100km de distancia
%segundo passo da manobra de Hohmann (10. tiro)
    rf=rf-20; %diminuiçao do raio da orbita. Dobro do valor
indicado, devido ao deslocamento
    daf=rf.*(1+e); %distancia do apogeu ao foco
%definicao da orbita eliptica
    e=(daf./rf)-1;
    b=sqrt(rf.^2-(e.*rf).^2);
%plotagem das elipses na orbita eliptica de transiçao
    for t=1:1:(n/2)
    w=2.*pi/(n);
    %raio=10;
    teta=pi+w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
    r=(rf.*(1-e.^{2}))/(1+e.*cos(teta));
%define o centro de cada elipse na orbita eliptica
    xe=e.*rf+(r.*cos(teta));
    ye=r.*sin(teta);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x=(-ex):0.05:(ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
%elipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
```

```
x2=xe+x*cos(-qiro)+ysup.*sin(-qiro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1-(raio-rf),ysup1);
hold on;
plot(x2-(raio-rf), yinf1);
hold on;
end
%plotagem da orbita para referencia
ev=b;
ex=rf;
x = (-ex) : 0.5: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2); %somente percorre 1/2 orbita
%plot(x-(raio-rf),ysup,'r'); %demonstraçao da continuidade da
orbita eliptica nao percorrida
%hold on;
plot(x-(raio-rf), yinf, ':r');
hold on;
%plotagem do foco de cada orbita
plot (e.*raio-(raio-rf), 0, '+g');
hold on;
%terceiro passo da manobra de Hohmann (20. tiro)
%retorno a orbita circular, agora com raio final
    b=(rf-20)*(1-e);
    rf=b;
%plotagem das elipses na orbita circular final
        for t=1:1:(n)
    w=2.*pi/(n);
    teta=w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
    r=(rf.*(1-e.^2))/(1+e.*cos(teta));
%define o centro de cada elipse na orbita eliptica
    xe=e.*rf+(r.*cos(teta));%-(xp-xo);
    ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x = (-ex) : 0.05: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^{2});
```

```
%elipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-qiro)+ysup.*sin(-qiro);
ysup1=ye-x.*sin(qiro)+ysup.*cos(qiro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1, ysup1);
hold on;
plot(x2,yinf1);
hold on;
end
%plotagem da orbita para referencia
ey=b;
ex=rf;
x = (-ex) : 0.5: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
plot(x,ysup,'-k');
hold on;
plot(x,yinf,'-k');
hold on;
%define nova orbita inicial para proxima reduçao
raio=rf;
end %fim do while
%plotagem dos eixos x e y para orientaçao, respectivamente
plot (- (xp+15):1: (xp+15), 0, 'k');
plot(0,-(xp+15):1:(xp+15),'k');
%iqualando a escala dos eixos x e y
axis equal
espiral_elipsecte(5,10,rf,-0.05)
function end
```

Programa 5 :

function orb_hoh22(n,raio,rfmax,redo,rede)

%valores recebidos %n= numero de elipses em 1 volta %raio= raio inicial da orbita circular %rfmax= raio final maximo permitido, abaixo desse valor, inicia o espiral %redo= reduçao da orbita por impulso %rede= taxa de decaimento do espiral a=raio; % -> semi-eixo horizontal b=raio; % -> semi-eixo vertical

%armazena o valor de xo para manter fixo o perigeu xp=a; %era xo; %armazena o valor de yo para alterar a orbita yp=b; %era yo; %definicao das variaveis da elipse (foco, excentricidade e distancia) 0/2 a=xo; % b=yo; c=sqrt(a.^2-b.^2); e=c/a;daf=a.*(1+e); %distancia do apogeu ao foco %inicia o laço de repetiçao para fazer o giro completo na orbita %** laço retirado, primeiro farei manualmente. ** %for rf=a:-20:raio-20*(v-1) %inicio da manobra de Hohmann (percorrer a orbita circular inicial) rf=a; %definicao da orbita eliptica e=(daf./rf)-1;b=sqrt(rf.^2-(e.*rf).^2); 2******************* 2** laço das elipses em orbita * * for t=1:1:(n) w=2.*pi/(n); %raio=10; teta=w.*t; %definicao da distancia do foco ao centro da elipse em orbita $r=(rf.*(1-e.^{2}))/(1+e.*cos(teta));$ %define o centro de cada elipse na orbita eliptica xe=e.*rf+(r.*cos(teta));%-(xp-xo); ye=r.*sin(teta);%-(yp-yo); %giro equivalente ao angulo percorrido da orbita giro=-teta; %definiçao do crescimento da elipse ey=2;%+0.02*t*(red+1); ex=1;%+0.01*t*(red+1); %elipse base x=(-ex):0.05:(ex); $ysup=ey.*sqrt(1-((x)/ex).^2);$ yinf=-ey.*sqrt(1-((x)/ex).^2); %elipse rotacionada e reposicionada de acordo com o centro (ex,ey)

```
x1=xe+x*cos(qiro)+ysup.*sin(qiro);
x2=xe+x*cos(-qiro)+ysup.*sin(-qiro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinfl=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1-(raio-rf), ysup1);
hold on;
plot(x2-(raio-rf), yinf1);
hold on;
end
%plotagem da orbita para referencia
ev=b;
ex=rf;
x=(-ex):0.5:(ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
plot(x,ysup,'-k');
hold on;
plot(x, yinf, '-k');
hold on;
%plotagem do foco de cada orbita
plot(e.*rf,0,'+g');
hold on;
%end %laco for
while rf > rfmax %reduz orbita ate atingir rfmax de distancia
%sequndo passo da manobra de Hohmann (10. tiro)
    rf=rf-redo/2; %diminuiçao do raio da orbita. Dobro do valor
indicado, devido ao deslocamento
    daf=rf.*(1+e); %distancia do apogeu ao foco
%definicao da orbita eliptica
    e=(daf./rf)-1;
    b=sqrt(rf.^2-(e.*rf).^2);
%plotagem das elipses na orbita eliptica de transiçao
    for t=1:1:(n/2)
    w=2.*pi/(n);
    %raio=10;
    teta=pi+w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
    r=(rf.*(1-e.^{2}))/(1+e.*cos(teta));
%define o centro de cada elipse na orbita eliptica
    xe=e.*rf+(r.*cos(teta));
    ye=r.*sin(teta);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
```

```
ex=1;%+0.01*t*(red+1);
%elipse base
x=(-ex):0.05:(ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
%elipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-giro)+ysup.*sin(-giro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1-(raio-rf), ysup1);
hold on;
plot(x2-(raio-rf), yinf1);
hold on;
end
%plotagem da orbita para referencia
ev=b;
ex=rf;
x=(-ex):0.5:(ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2); %somente percorre 1/2 orbita
%plot(x-(raio-rf),ysup,'r'); %demonstraçao da continuidade da
orbita eliptica nao percorrida
%hold on;
plot(x-(raio-rf), yinf, ':r');
hold on;
%plotagem do foco de cada orbita
plot(e.*rf,0,'+q');
hold on;
%terceiro passo da manobra de Hohmann (20. tiro)
%retorno a orbita circular, agora com raio final
    b = (rf - redo/2) * (1 - e);
    rf=b;
%plotagem das elipses na orbita circular final
        for t=1:1:(n)
    w=2.*pi/(n);
    teta=w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
    r=(rf.*(1-e.^2))/(1+e.*cos(teta));
%define o centro de cada elipse na orbita eliptica
    xe=e.*rf+(r.*cos(teta));%-(xp-xo);
    ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
```

```
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x = (-ex) : 0.05: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
%elipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-qiro)+ysup.*sin(-qiro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1, ysup1);
hold on;
plot(x2,yinf1);
hold on;
end
%plotagem da orbita para referencia
ev=b;
ex=rf;
x=(-ex):0.5:(ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
plot(x,ysup,'-k');
hold on;
plot(x,yinf,'-k');
hold on;
%define nova orbita inicial para proxima reduçao
raio=rf;
end %fim do while
%plotagem dos eixos x e y para orientaçao, respectivamente
plot(-(xp+15):1:(xp+15),0,'k');
plot(0,-(xp+15):1:(xp+15),'k');
%iqualando a escala dos eixos x e y
axis equal
espiral_elipsecte(6,10,rf,rede)
function end
```

Programa 6 :

function orb_raio0(ri,rf)
%valores recebidos
%ri=100 - raio inicial
%rf=70 - raio final

```
a=ri; % -> semi-eixo horizontal
b=ri; % -> semi-eixo vertical
%armazena o valor de xo para manter fixo o perigeu
xp=a; %era xo;
%armazena o valor de yo para alterar a orbita
yp=b; %era yo;
%definicao das variaveis da elipse (foco, excentricidade e
distancia)
    c=sqrt(a.^2-b.^2);
    e=0;
    daf=a.*(1+e); %distancia do apogeu ao foco
    w=a;
   %inicio da manobra de Hohmann (percorrer a orbita circular
inicial)
      e=0;
     b=sqrt(w.^2-(e.*w).^2);
%plotagem da orbita para referencia
ey=b;
ex=w;
x=(-ex):0.5:(ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
plot(x-(xp-w),ysup,'-k');
hold on;
plot (x-(xp-w), yinf, '-k');
hold on;
axis equal
%segundo passo da manobra de Hohmann (10. tiro)
   w = w - 20;
   p=sqrt(((2.*rf)./(ri))/(1+(rf./ri)))-1;
   u=(p+w);
%definicao da orbita eliptica
    e=(daf./w)-1;
    b=sqrt(w.^2-(e.*w).^2);
%plotagem da orbita para referencia
ey=rf;
ex=u;
x = (-ex) : 0.5: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2); %somente percorre 1/2 orbita
%plot(x-(xp-w),ysup,'-r'); %demonstraçao da continuidade da orbita
eliptica nao percorrida
hold on;
plot(x-(xp-w), yinf, ':r');
hold on;
%terceiro passo da manobra de Hohmann (20. tiro)
%retorno a orbita circular, agora com raio final
    ri=w*(1-e);
    rf=ri+0.3;
    q=sqrt(ri./rf)-sqrt((2.*ri)/(ri+rf));
    s=rf+q;
```

```
%plotagem da orbita para referencia
ey=ri;
ex=s;
x=(-ex):0.5:(ex);
ysup=ey.*sqrt(1-((x)/ex).^{2});
yinf=-ey.*sqrt(1-((x)/ex).^2);
plot(x,ysup,'-k');
hold on;
plot(x,yinf,'-k');
hold on;
xlabel('Distancia (Km)')
ylabel('Raio (Km)')
title('Transferencia Inversa de Hohmann')
text(-100,5,'deltaV= -0.0925km/s')
text(50,3,'deltaV= -0.0012km/s')
text(-100,90,'R.Inicial=100km')
text(50,-40, 'R.Final=70km')
%gtext('r=100')
%plotagem dos eixos x e y para orientaçao, respectivamente
plot (-(xp+15):1:(xp+15),0,'k');
plot(0,-(xp+15):1:(xp+15),'k');
%igualando a escala dos eixos x e y
axis equal
```

Apêndice B - Programas e simulações da órbita elíptica (Transferência de Breakwell) desenvolvido por Flávio Francesco Soares Schmidt em Matlab:

Programa 1:

```
function orb_elip_ff(n,v,a,b)
%valores recebidos
%n=8; n. de elipses em 1 volta
%v=2; n. de voltas
%a -> semi-eixo horizontal
%b -> semi-eixo vertical
%armazena o valor de xo para manter fixo o perigeu
xp=a; %era xo;
%armazena o valor de yo para alterar a orbita
yp=b; %era yo;
%definicao das variaveis da elipse (foco, excentricidade e
distancia)
00
    a=xo;
00
    b=yo;
   c=sqrt(a.^2-b.^2);
    e=c/a;
   daf=a.*(1+e); %distancia do apoqeu ao foco
   el=e;
%inicia o laco de repetição para fazer o giro completo na orbita
for e2=e:0.06:e+6*(v-1)/100
%definicao da orbita eliptica
    a=a.*(1+e1)/(1+e2);
    b=sqrt(a.^2-(e2.*a).^2);
for t=1:1:(n)
    w=2.*pi/(n);
    %raio=10;
    teta=w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
    r=(a.*(1-e2.^{2}))/(1+e2.*cos(teta));
%define o centro de cada elipse na orbita eliptica
xe=e2.*a+(r.*cos(teta));%-(xp-xo);
    ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
```

```
ex=1;%+0.01*t*(red+1);
%elipse base
x = (-ex) : 0.05 : (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf = -ey. * sqrt (1 - ((x) / ex) .^2);
%elipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-qiro)+ysup.*sin(-qiro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem dafigura de cada elipse modificada
plot(x1-(xp-a), ysup1);
hold on;
plot(x2-(xp-a), yinf1);
hold on;
end
%plotagem da orbita para referencia
ev=b;
ex=a;
x=(-ex):0.5:(ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
plot (x-(xp-a), ysup, '-k');
hold on;
plot (x-(xp-a), yinf, '-k');
hold on;
%plotagem do foco de cada orbita
%plot(e2*a-(xp-a),0,'+g'); retirado para teste
plot (e2.*a-(xp-a),0,'+q');
hold on;
%plotagem do centro da orbita (Centro de atração gravitacional)
%plot(0,0,'+g');
%hold on;
%plotagem das linhas de raio do centro da orbita ate o centro de
cada elipse
%plot(0:1:xe,0:ye/xe:ye,'r'); %lado direito, onde xe>0
%hold on;
%plot(xe:1:0,ye:ye/xe:0,'r'); %lado esquerdo, onde xe<0</pre>
%hold on;
%define valor de e com ultimo valor calculado
e1=e2;
end %laco for
%plotagem dos eixos x e y para orientaçao, respectivamente
plot(-(xp+15):1:(xp+15),0,'k');
plot(0,-(xp+15):1:(xp+15),'k');
%iqualando a escala dos eixos x e y
axis equal
function end
```

Programa 2:

```
function espiral breakwell(v,n,raio,b,df)
%v=numero de voltas
%n=numero de elipses
%raio=raio inicial
%b=taxa de decaimenro do espiral
%df=distancia do foco
fi=0:pi/60:2*pi*v;
r=raio*exp(b*fi);
%polar(r,fi);
%hold on;
for(i=0:1:2*v*60)
    xs=r.*cos(fi);
    ys=r.*sin(fi);
end
%desenha espiral no fim
%inicia o laço de repetiçao para fazer o giro completo na orbita
for t=1:100:(100*n*v)
    w=2*pi/(100*n);
    %raio=10;
    teta=w.*t;
re=raio*exp(b*teta); %calculando espiral das elipses
%define o centro de cada elipse
    xe=re.*cos(teta);
    ye=re.*sin(teta);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao da elipse
ey=2;
ex=1;
%elipse base
x = (-ex) : 0.05: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
%elipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-giro)+ysup.*sin(-giro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1+df, ysup1);
hold on;
plot(x2+df, yinf1);
hold on;
```

```
%plotagem da orbita circular para referencia
%ey=raio;
%ex=raio;
%x=(-ex):0.5:(ex);
%ysup=ey.*sqrt(1-((x)/ex).^2);
%yinf=-ey.*sqrt(1-((x)/ex).^2);
%plot(x+df,ysup,'-k');
%hold on;
%plot(x+df,yinf,'-k');
%hold on;
%plotagem do centro da orbita (Centro de atração gravitacional)
plot(df,0,'+q');
hold on;
%plotagem dos eixos x e y para orientação, respectivamente
%plot(-(raio+15):1:(raio+15),0,'k');
%plot(0,-(raio+15):1:(raio+15),'k');
%desenhando o espiral
plot(xs+df, ys, 'r');
%iqualando a escala dos eixos x e y
axis equal
end
```

Programa 3 :

```
function breakwell_auto1(n,a,b,af)
%valores recebidos
%n=8; n. de elipses em 1 volta
%a -> semi-eixo horizontal
%b -> semi-eixo vertical
%af -> semi-eixo horizontal maximo para entrar em espiral
%armazena o valor de xo para manter fixo o perigeu
xp=a; %era xo;
%armazena o valor de yo para alterar a orbita
yp=b; %era yo;
%definicao das variaveis da elipse (foco, excentricidade e
distancia)
00
    a=xo;
00
    b=yo;
    c=sqrt(a.^2-b.^2);
    e=c/a;
    daf=a.*(1+e); %distancia do apogeu ao foco
    dpf=a.*(1-e); %distancia do perigeu ao foco
    el=e;
%inicia o laço de repetiçao para fazer o giro completo na orbita
%for e2=e:0.06:e+6*(v-1)/100
    e2=e; %condiçao inicial
```

```
%define cor da órbita inicial
    cor='-k';
while dpf > af %executa a manobra ate que alcance o limite do a
definido (a final)
%definicao da orbita eliptica
    a=a.*(1+e1)/(1+e2);
    b=sqrt(a.^2-(e2.*a).^2);
for t=1:1:(n)
    w=2.*pi/(n);
    %raio=10;
    teta=w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
    r=(a.*(1-e2.^{2}))/(1+e2.*cos(teta));
%define o centro de cada elipse na orbita eliptica
xe=e2.*a+(r.*cos(teta));%-(xp-xo);
    ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ev=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x = (-ex) : 0.05: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^{2});
Selipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-giro)+ysup.*sin(-giro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1-(xp-a),ysup1);
hold on;
plot(x2-(xp-a), yinf1);
hold on;
end
%plotagem da orbita para referencia
ey=b;
ex=a;
x=(-ex):0.5:(ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
plot(x-(xp-a), ysup, cor);
hold on;
```

```
plot(x-(xp-a), yinf, cor);
hold on;
%define cor das órbitas de transferência
cor='-r';
%plotagem do foco de cada orbita
plot (e2.*a-(xp-a),0,'+g');
hold on;
%define valor de e com ultimo valor calculado
e1=e2:
e2=e2+0.06; %reduz excentricidade para reduzir a orbita
dpf=a.*(1-e2); %nova distancia do perigeu ao foco
end %laco while
%definiçao e plotagem da ultima orbita antes de entrar em espiral
%definicao da orbita eliptica
    a=a.*(1+e1)/(1+e2);
    b=sqrt(a.^{2}-(e2.*a).^{2});
for t=1:1:(n/2)
    w=2.*pi/(n);
    %raio=10;
    teta=pi+(w.*t);
%definicao da distancia do foco ao centro da elipse em orbita
    r=(a.*(1-e2.^{2}))/(1+e2.*cos(teta));
%define o centro de cada elipse na orbita eliptica
xe=e2.*a+(r.*cos(teta));%-(xp-xo);
    ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x = (-ex) : 0.05: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
%elipse rotacionada e reposicionada de acordo com o centro (ex,ev)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-qiro)+ysup.*sin(-qiro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinfl=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1-(xp-a),ysup1);
hold on;
plot(x2-(xp-a), yinf1);
hold on;
end
%plotagem da orbita para referencia
ey=b;
ex=a;
x = (-ex) : 0.5: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
```

```
%plot(x-(xp-a),ysup,'-k');
%hold on;
plot(x-(xp-a),yinf,'-r');
hold on;
%plotagem do foco de cada orbita
plot (e2.*a-(xp-a),0,'+g');
hold on;
%fim da ultima orbita
%plotagem dos eixos x e y para orientaçao, respectivamente
plot(-(xp+15):1:(xp+15),0,'k');
plot(0,-(xp+15):1:(xp+15),'k');
%iqualando a escala dos eixos x e y
axis equal
%dpf=a.*(1-e1); retirado pois alterou o ultimo para orbita < af</pre>
c=sqrt(xp.^2-yp.^2); %foco inicial - ultimo termo da funçao
espiral, substituido para teste
espiral_breakwell(6,10,dpf,-0.05,e2.*a-(xp-a))
axis([-200 200 -150 150])
```

```
function end
```

Programa 4 :

```
function breakwell1(n,a,b,af)
%valores recebidos
%n=8; n. de elipses em 1 volta
%a -> semi-eixo horizontal
   -> semi-eixo vertical
%b
%af -> semi-eixo horizontal maximo para entrar em espiral
%armazena o valor de xo para manter fixo o periqu
xp=a; %era xo;
%armazena o valor de yo para alterar a orbita
yp=b; %era yo;
%definicao das variaveis da elipse (foco, excentricidade e
distancia)
    c=sqrt(a.^2-b.^2);
    e=c/a;
    daf=a.*(1+e); %distancia do apoqeu ao foco
    dpf=a.*(1-e); %distancia do perigeu ao foco
    el=e;
%inicia o laço de repetiçao para fazer o giro completo na orbita
    e2=e; %condiçao inicial
          %define cor da órbita inicial
    cor='-k';
while dpf > af %executa a manobra ate que alcance o limite do a
definido (a final)
%definicao da orbita eliptica
    a=a.*(1+e1)/(1+e2);
    b=sqrt(a.^2-(e2.*a).^2);
for t=1:1:(n)
```

```
w=2.*pi/(n);
    teta=w.*t;
%definicao da distancia do foco ao centro da elipse em orbita
    r=(a.*(1-e2.^{2}))/(1+e2.*cos(teta));
%define o centro de cada elipse na orbita eliptica
xe=e2.*a+(r.*cos(teta));%-(xp-xo);
    ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x = (-ex) : 0.05 : (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
Selipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-qiro)+ysup.*sin(-qiro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1-(xp-a),ysup1);
hold on;
plot(x2-(xp-a), yinf1);
hold on;
end
%plotagem da orbita para referencia
ev=b;
ex=a;
x = (-ex) : 0.5 : (ex);
ysup=ey.*sqrt (1-((x)/ex).^{2});
yinf=-ey.*sqrt(1-((x)/ex).^2);
plot(x-(xp-a),ysup,cor);
hold on;
plot(x-(xp-a),yinf,cor);
hold on;
%define cor das órbitas de transferência
cor='-r';
%plotagem do foco de cada orbita
plot (e2.*a-(xp-a),0,'+q');
hold on;
%define valor de e com ultimo valor calculado
e1=e2;
e2=e2+0.06; %reduz excentricidade para reduzir a orbita
dpf=a.*(1-e2); %nova distancia do perigeu ao foco
end %laco while
%definiçao e plotagem da ultima orbita antes de entrar em espiral
%definicao da orbita eliptica
    a=a.*(1+e1)/(1+e2);
    b=sqrt(a.^2-(e2.*a).^2);
for t=1:1:(n/2)
```

```
w=2.*pi/(n);
    teta=pi+(w.*t);
%definicao da distancia do foco ao centro da elipse em orbita
    r=(a.*(1-e2.^{2}))/(1+e2.*cos(teta));
%define o centro de cada elipse na orbita eliptica
xe=e2.*a+(r.*cos(teta));%-(xp-xo);
    ye=r.*sin(teta);%-(yp-yo);
%giro equivalente ao angulo percorrido da orbita
giro=-teta;
%definiçao do crescimento da elipse
ey=2;%+0.02*t*(red+1);
ex=1;%+0.01*t*(red+1);
%elipse base
x = (-ex) : 0.05 : (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
Selipse rotacionada e reposicionada de acordo com o centro (ex,ey)
x1=xe+x*cos(giro)+ysup.*sin(giro);
x2=xe+x*cos(-qiro)+ysup.*sin(-qiro);
ysup1=ye-x.*sin(giro)+ysup.*cos(giro);
yinf1=ye-x.*sin(giro)-ysup.*cos(giro);
%plotagem da figura de cada elipse modificada
plot(x1-(xp-a),ysup1);
hold on;
plot(x2-(xp-a), yinf1);
hold on;
end
%plotagem da orbita para referencia
ev=b;
ex=a;
x = (-ex) : 0.5: (ex);
ysup=ey.*sqrt(1-((x)/ex).^2);
yinf=-ey.*sqrt(1-((x)/ex).^2);
%plot(x-(xp-a),ysup,'-k');
%hold on;
plot(x-(xp-a),yinf,'-r');
hold on;
%plotagem do foco de cada orbita
plot (e2.*a-(xp-a),0,'+g');
hold on;
%fim da ultima orbita
%plotagem dos eixos x e y para orientaçao, respectivamente
plot(-(xp+15):1:(xp+15),0,'k');
plot(0,-(xp+15):1:(xp+15),'k');
%igualando a escala dos eixos x e y
axis equal
c=sqrt(xp.^2-yp.^2); %foco inicial -ultimo termo da funçao
espiral, substituindo para teste
espiral_breakwell(6,10,dpf,-0.05,e2.*a-(xp-a))
axis equal
xlabel('Distancia (Km)')
ylabel('Raio (Km)')
```

```
title('Transferencia Inversa de Breakwell')
text(2,103,'b=100km')
text(-145,-5,'a=150km')
text(-48,-92,'e1=0.7454')
text(-99,-70,'e2=0.8054')
text(2,-60,'e3=0.8654')
function end
```

Apêndice C – Programas e simulações com força de arrasto atmosférico desenvolvido por Rolf Henry Vargas Valdivia em Matlab:

Programa 1:

```
%transferencia com arrasto atmosferico
clear all
close all
opt = odeset('AbsTol', 0.00001, 'RelTol', 0.0000001);
x0 = [6378; 12756; 0.5; 1.5];
                                  % espaço xo inicial
mu = 398600;
                                  % a unidade de espaço e o km
r = [x0(1); x0(2)];
                                    %x(1) = x = posiçao, x(4) = y =
posicao
                                  % modulo do vetor posiçao
mr = sqrt(x0(1)^2 + x0(2)^2);
v = [x0(3); x0(4)];
                                    %x(3) = xponto=velocidade
                                                                ,
x(4)=yponto=velocidade
mv = sqrt(x0(3)^2+x0(4)^2); % modulo do vetor v
a = mr*mu/(2*mu-mr*mv^2); % semi-eixo maior 'a'
                                 % modulo do vetor velocidade
periodo = 2*pi*sqrt((a^3)/398600);
tspan = [0:0.5:2.*periodo];
 [t,x] = ode45('arrasto1',tspan,x0,opt);
 [t2,x2] = ode23s('arrasto2',tspan,x0);
 figure(1)
 plot(x(:,1),x(:,2));
 title('Grafico da orbita com densidade cte (h=700 Km)')
 zoom on
 figure(2)
 plot(x2(:,1),x2(:,2));
 title('Grafico da orbita com densidade variavel')
 zoom on
 figure(3)
 plot(x(:,1),x(:,2),'b',x2(:,1),x2(:,2),'r--');
 title('Comparacao das duas Orbitas');
 legend('Densi Cte', 'Densi Vari')
 zoom on
```

Programa 1.1:

%arrasto1
function dx = f(t,x);

```
mu = 398600; % a unidade de espaço e o km(parametro gravt da
terra)
    = sqrt(x(1)^2 + x(2)^2); % modulo do vetor posiçao
r
v = [x(3); x(4)];
                       %x(3) = xponto=velocidade ,
x(4)=yponto=velocidade
mv = sqrt(x(3)^{2}+x(4)^{2}); % modulo do vetor velocidade
%rt
    = 6378;
                             % raio da terra
raio = 2;
                             % raio do satelite
   = 700;
h
                            % altura %h= ra-rt; ra= h+rt;
                            % coeficiente de arrasto
cd
    = 0.5;
area = (pi.*(raio^2));
                           % area do satelite
                           % densidade correspondente a altura
densi =3.614*10^-14;
700
```

f = 0.5.*cd.*area.*densi.*mv^2; % equaçao da força de arrasto
atmosférico

Programa 1.2 :

```
%Arrasto2
function dx = f(t, x);
mu
    = 398600; % a unidade de espaço e o km(parametro gravt da
terra)
     = sqrt(x(1)^2 + x(2)^2); % modulo do vetor posição
r
                              %x(3) = xponto=velocidade ,
     = [x(3); x(4)];
γ%
x(4)=yponto=velocidade
mv = sqrt(x(3)^{2}+x(4)^{2}); % modulo do vetor velocidade
%rt = 6378;
                               % raio da terra
raio = 2;
                               % raio do satelite
cd = 0.5;
                              % coeficiente de arrasto
area = (pi.*(raio^2));
                              % area do satelite
h = r - 6378;
if h > 1000
   densi = 3.019*10^-15;
end
if h >900
    if h<=1000
       densi = 5.245 \times 10^{-15};
    end
end
if h >800
    if h<=900
        densi = 1.17 \times 10^{-14};
```

```
end
end
if h >700
   if h<=800
       densi = 3.614*10^-14;
    end
end
if h >600
   if h<=700
       densi = 1.454*10^-13;
   end
end
if h >500
   if h<=600
       densi = 6.967 \times 10^{-13};
   end
end
if h >400
   if h<=500
      densi = 3.725*10^-12;
    end
end
if h >300
   if h<=400
    densi = 2.418*10^-11;
   end
end
if h >200
    if h<=300
    densi = 2.789*10^-10;
   end
end
if h >180
   if h<=200
      densi = 5.464*10^-10;
   end
end
if h >160
   if h<=180
       densi = 1.244 \times 10^{-9};
   end
end
if h >150
    if h<=160
       densi = 2.070 \times 10^{-9};
   end
end
if h >140
    if h<=150
       densi = 3.845*10^-9;
   end
end
if h >130
```

```
if h<=140
        densi = 8.484 \times 10^{-9};
    end
end
if h >120
    if h<=130
       densi = 2.438 \times 10^{-8};
    end
end
if h >110
    if h<=120
       densi = 9.661*10^-8;
    end
end
if h >100
    if h<=110
        densi = 5.297 \times 10^{-7};
    end
end
if h<=100
    densi = 1.343 \times 10^{-6};
end
f = 0.5.*cd.*area.*densi.*mv^2; % equaçao da força de arrasto
atmosférico
      = [x(3);
dx
        x(4);
        ((-mu/r^3).*x(1))-(f.*x(3)/mv);
         ((-mu/r^3).*x(2))-(f.*x(4)/mv)]; % vetor coluna
Programa 2 :
%arrast
opt = odeset('AbsTol', 0.00001, 'RelTol', 0.0000001);
x = [6378;12756 ; 0.5; 1.5]; % espaço xo inicial
mu = 398600;
                                   % a unidade de espaço e o km
r = [x(1); x(2)];
                                   %x(1) = x = posiçao, x(4) = y =
posicao
mr = sqrt(x(1)^2 + x(2)^2); % modulo do vetor posição
v = [x(3); x(4)];
                                  %x(3) = xponto = velocidade,
x(4)=yponto=velocidade
mv = sqrt(x(3)^2+x(4)^2);
a = mr*mu/(2*mu-mr*mv^2);
                                 % modulo do vetor velocidade
                                  % semi-eixo maior 'a'
periodo = 2*pi*sqrt((a^3)/398600);
tspan = [0:3.*periodo];
 [t,x] = ode45('forma',tspan,x,opt);
```

```
plot(x(:,1),x(:,2))
zoom on
```

```
Programa 2.1 :
%forma
function dx = f(t, x);
    = 398600;
mu
                               % a unidade de espaço e o
km(parametro gravt da terra)
r
  = sqrt(x(1)^2 + x(2)^2); % modulo do vetor posiçao
     = [x(3); x(4)];
                               %x(3) = xponto=velocidade ,
V
x(4)=yponto=velocidade
                               % modulo do vetor velocidade
    = sqrt(x(3)^2+x(4)^2);
mv
     = 6378;
                               % raio da terra
rt
raio = 2;
                               % raio do satelite
                               % altura %h= ra-rt; ra= h+rt;
8h
    = 700;
                               % coeficiente de arrasto
    = 0.5;
cd
area = (pi.*(raio^2));
                               % area do satelite
%h=[0;
25; 30; 35; 40; 45; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 100; 110; 120; 130; 140;
00
150;160;180;200;250;300;350;400;450;500;600;700;800;900;1000];%
altura
%D=[8.44;6.49;6.75;7.07;7.47;7.83;7.95;7.73;7.29;6.81;6.33;6.00;5.
70;5.41;5.38;5.74;6.15;
00
8.06;11.6;16.1;20.6;24.6;26.3;33.2;38.5;46.9;52.5;56.4;59.4;62.2;6
5.8;79;109;164;225;
 % 268]; % escala de altitude
densi =exp(-100/6.15);
f = 0.5.*cd.*area.*densi.*mv^2; % equaçao da força de arrasto
atmosférico
dx =
        [x(3);
        x(4);
        ((-mu/r^3).*x(1)) - (f.*x(3)/mv);
        ((-mu/r^3).*x(2))-(f.*x(4)/mv)]; % vetor coluna
```

Apêndice D - Estudo sobre a Integração Numérica de Equações Diferenciais Ordinárias

D.1-Introdução

Este estudo foi baseado no capítulo 6 do livro Applied Numerical Methods pelos autores Carnaham B., Luther H. A. e Wilkes J. O, 1969. Para um melhor entendimento dos métodos de integração numérica para a solução de equações diferenciais ordinárias, estudamos o 1º método de Euler e os métodos de Runge-Kutta de terceira e quarta ordem.

D.2- 1° Método de Euler

Este é um método simples, responsável pela análise da propagação de erro, o passo para o método de Euler pode ser discutido em alguns detalhes, mesmo que precisão limitada impede seu uso para problemas práticos.

$$y_{1} = y(x_{0}) + hf(x_{0}, y(x_{0}))$$
$$y_{i+1} = y_{i} + hf(x_{i}, y_{i}) = y_{i} + hf_{i} \qquad i \ge 1$$

A solução através do intervalo [x0, x1] é assumido seguindo a linha tangente de y(x) em x0. Quando o 1º método de Euler é aplicado repetidamente através de vários intervalo em seqüência, a solução numérica desenha sobre a curva, um segmento com declive fi, i=0,1,2,...,n-1. A figura C.1 mostra os conceitos apresentados pelo método:

Figura D.1 – 1° Método de Euler

Temos como exemplo, a equação diferencial :

$$\frac{dy}{dx} = f(x, y) = x + y \tag{1}$$

Para a condição inicial x0=0, y(x0) = y0 = 0. Temos:

$$\mathbf{v} = e^x - x - 1 \tag{2}$$

A solução pelo 1° Método de Euler é mostrada na Tabela D.1, usando o passo de h=0.1 e o limite de integração x10= 1.0 .Utilizando a seguintes equações:

$$y_{1} = y(x_{0}) + hf(x_{0}, y(x_{0}))$$

$$y_{i+1} = y_{i} + hf(x_{i}, y_{i}) = y_{i} + hf_{i}$$

$$i \ge 1$$
(3)

De acordo com a tabela :

- A coluna 1 mostra o valor de i .

- A coluna 2 mostra o valor de xi .

- A coluna 3 mostra o valor de yi calculado pelas equações (3).

- A coluna 4 mostra o cálculo com equação (1) da derivada f(xi,yi)

- A coluna 5 mostra a verdadeira solução analítica arredondada de y(xi) para quatro algarismos, usando a equação y =ex - x - 1.

- A coluna 6 mostra o erro global calculado por Ei = yi - y(xi).

- A coluna 7 mostra o truncamento de yi para quatro algarismos.

- A coluna 8 mostra o arredondamento de yi para quatro algarismos.

- A coluna 9 mostra o valor calculado pela equação (3) usando y(xi -1), com o valor verdadeiro y(xi).

- A coluna 10 mostra o erro de truncamento calculado por Ei = y(xi - 1) - y(xi), com o valor verdadeiro y(xi).

- A coluna 11 mostra o valor do erro de truncamento local calculado por:

$$|e_t|_{\max} = \frac{h^2}{2!} e^{x_i + 1}$$
 Sendo $x = x_{i+1}$ (4)

	y(0)=0 h=0.1									
i	X_i	y_i	$f(x_i, y_i)$	$y(x_i)$	$E_i = y_i - y(x_i)$	y_i	y_i	$y(x_i - 1)$	$y(x_i - 1)$	e^{x}_{max}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-	-
1	0.1	0.0000	0.1000	0.0052	-0.0052	0.0000	0.0000	0.0000	-0.0052	0.0055
2	0.2	0.0100	0.2100	0.0214	-0.0114	0.0100	0.0100	0.0157	-0.0057	0.0061
3	0.3	0.0310	0.3310	0.0499	-0.0189	0.0310	0.0310	0.0435	-0.0064	0.0067
4	0.4	0.0641	0.4641	0.0918	-0.0277	0.0641	0.0641	0.0849	-0.0069	0.0075
5	0.5	0.11051	0.61051	0.1487	-0.0382	0.1105	0.1105	0.1410	-0.0077	0.0082
6	0.6	0.171561	0.771561	0.2221	-0.0505	0.1715	0.1715	0.2136	-0.0085	0.0091
7	0.7	0.2487171	0.9487171	0.3138	-0.0651	0.2486	0.2488	0.3043	-0.0095	0.0101
8	0.8	0.34358881	1.14358881	0.4255	-0.0819	0.3434	0.3437	0.4152	-0.0103	0.0111
9	0.9	0.457947691	1.357947691	0.5596	-0.1017	0.4577	0.4581	0.5480	-0.0116	0.0123
10	1.0	0.5937424601	1.5937424601	0.7183	-0.1246	0.5934	0.5939	0.7056	-0.0127	0.0136

Tabela D.1 – 10 Método de Euler

Na Tabela D.2 foram realizados os mesmos cálculos da tabela anterior, desenvolvidos para um melhor entendimento e acompanhamento do 1º Método de Euler usando o Microsoft Excel versão 97.

y(0)=0 $h=0.1$										
i	X_i	y_i	$f(x_i, y_i)$	$y(x_i)$	$E_i = y_i - y(x_i)$	<i>y_i</i>	<i>y_i</i>	$y(x_i - 1)$	$y(x_i - 1)$	e^{x}_{max}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
0	0	0	0	0	0	0	0	0	-	0.005
1	0.1	0	0.1	0.0052	-0.0052	0	0	0	-0.0052	0.0055
2	0.2	0.01	0.21	0.0214	-0.0114	0.01	0.01	0.0157	-0.0057	0.0061
3	0.3	0.031	0.331	0.0499	-0.0189	0.031	0.031	0.0435	-0.0064	0.0067
4	0.4	0.0641	0.4641	0.0918	-0.0277	0.0641	0.0641	0.0849	-0.0069	0.0075
5	0.5	0.11051	0.61051	0.1487	-0.0382	0.1105	0.1105	0.141	-0.0077	0.0082
6	0.6	0.171561	0.771561	0.2221	-0.0505	0.1715	0.1715	0.2136	-0.0084	0.0091
7	0.7	0.2487171	0.9487171	0.3138	-0.0651	0.2486	0.2488	0.3043	-0.0095	0.0101
8	0.8	0.34358881	1.14358881	0.4255	-0.0819	0.3434	0.3437	0.4152	-0.0103	0.0111
9	0.9	0.457947691	1.357947691	0.5596	-0.1017	0.4577	0.4581	0.5481	-0.0115	0.0123
10	1.0	0.59374246	1.59374246	0.7183	-0.1246	0.5934	0.5939	0.7056	-0.0127	0.0136

Tabela D.2 - 1º Método de Euler calculado pelo Excel

D.3 - Método de Runge-Kutta

É possível desenvolver um procedimento de um passo que envolve somente cálculos da derivada de primeira-ordem. Estes algoritmos são chamado de Runge-Kutta. As aproximações de segunda, terceira e quarta ordens (isso é, a aproximação com precisão equivalente à Expansão de Taylor de y(x) mantendo o termo em h2, h3 e h4, respectivamente), requer a estimação de f(x,y) em dois, três e quatro valores, respectivamente, de x no intervalo xi $\leq x \leq xi+1$.

Todo Método de Runge-Kutta tem algoritmo de forma:

$$y_{i+1} = y_i + h\phi(x_i, y_i, h)$$
 (5)

sendo \emptyset o incremento da função para aproximação de f(x,y) sobre intervalo xi \le x \le xi+1.

Runge-Kutta de 3^a ordem:

Sendo K1, K2 e K3 aproximações da derivada em diversos pontos sobre o intervalo de integração [xi, xi+1].

$$y_{i+1} = y_i + \frac{h}{6} (k_1 + 4k_2 + k_3)$$

$$k_1 = f(x_1, y_i)$$

$$k_2 = f \left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}hk_1 \right)$$

$$k_3 = f \left(x_i + h, y_i + 2hk_2 - hk_1 \right)$$
(6)

Runge-Kutta de 4^a ordem:

Sendo K1, K2 ,K3 e K4 aproximações da derivada em diversos pontos sobre o intervalo de integração

[xi, xi+1].

$$y_{i+1} = y_i + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = f(x_1, y_i)$$

$$k_2 = f \left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}hk_1 \right)$$

$$k_3 = f \left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}hk_2 \right)$$

$$k_4 = f \left(x_i + h, y_i + hk_3 \right)$$
(7)

Runge-Kutta de 4a ordem:

Sendo K1, K2 ,K3 e K4 aproximações da derivada em diversos pontos sobre o intervalo de integração [xi, xi+1]. $h(t \rightarrow 2t \rightarrow 2t \rightarrow t)$

$$y_{i+1} = y_i + \frac{\pi}{8}(k_1 + 3k_2 + 3k_3 + k_4)$$

$$k_1 = f(x_1, y_i)$$

$$k_2 = f\left(x_i + \frac{1}{3}h, y_i + \frac{1}{3}hk_1\right)$$

$$k_3 = f\left(x_i + \frac{2}{3}h, y_i - \frac{1}{3}hk_1 + hk_2\right)$$

$$k_4 = f\left(x_i + h, y_i + hk_1 - hk_2 + hk_3\right)$$
(8)

63

Para um melhor desenvolvimento e entendimento do Método, na Tabela D.3 estão contidos todos os cálculos utilizando o Método Runge-Kutta usando o Microsoft Excel versão 97, considerando a equação diferencial:

$$\frac{dy}{dx} = f(x, y) = x + y$$

De acordo com a Tabela D.3:

- A coluna 1 mostra o valor de i .

- A coluna 2 mostra o valor de xi .

- A coluna 3 mostra o valor de yi calculado pelas equações(6) do Runge-Kutta de 3ª ordem .

- A coluna 4 mostra o yi de 3ª ordem arredondado para quatro algarismo, com equação(6).

- A coluna 5 mostra o valor de yi calculado pelas equações(7) do Runge-Kutta de 4ª ordem .

- A coluna 6 mostra o yi de 4ª ordem arredondado para quatro algarismo, com equação(7).

- A coluna 7 mostra o valor de yi calculado pelo Runge-Kutta de 4ª ordem, com a equação (8).

- A coluna 8 mostra o yi de 4ª ordem arredondado para quatro algarismos, com a equação (8).

- A coluna 9 mostra o yi analítico.

- A coluna 10 mostra o yi analítico arredondado.

Tabela D.3 - Método de Runge-Kutta calculado pelo Excel

	y(0)=0 h=0.1								
i	X_i	$y_i 3^{a}$ ordem	y_i arred	$y_i 4^{a}$ ordem	y_i arred	$y_i 4^{a}$ ordem	y_i arred	y _i Analítico	y_i
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8	(9)	Analítico
									arred
									(10)
0	0	0	0	0	0	0	0	0	0
1	0.1	0,005166667	0,0052	0,005170833	0,0052	0,005170833	0,0052	0,005170918	0,0052
2	0.2	0,021393361	0,0214	0,021402571	0,0214	0,021402571	0,0214	0,021402758	0,0214
3	0.3	0,04984323	0,0498	0,049858497	0,0499	0,049858497	0,0499	0,049858808	0,0499
4	0.4	0,091801743	0,0918	0,09182424	0,0918	0,09182424	0,0918	0,091824698	0,0918
5	0.5	0,148689559	0,1487	0,148720639	0,1487	0,148720639	0,1487	0,148721271	0,1487
6	0.6	0,222076744	0,2221	0,222117962	0,2221	0,222117962	0,2221	0,2221188	0,2221
7	0.7	0,313698482	0,3137	0,313751627	0,3138	0,313751627	0,3138	0,313752707	0,3138
8	0.8	0,425472439	0,4255	0,425539563	0,4255	0,425539563	0,4255	0,425540928	0,4255
9	0.9	0,559517957	0,5595	0,559601414	0,5596	0,559601414	0,5596	0,559603111	0,5596
10	1.0	0,718177262	0,7182	0,718279744	0,7183	0,718279744	0,7183	0,718281828	0,7183

D.4-Conclusão

No Método de Runge-Kutta o erro está a partir da quarta casa decimal, no Método de Euler o erro está na primeira casa decimal, para o mesmo número de iterações. Conclui-se então que o método de Runge-Kutta tem uma melhor precisão em seus resultados.

Apêndice E - Estudo sobre MATLAB

E.1 - Introdução

Trabalhamos com o programa Matlab usando a apostila da versão 5.1 do MATLAB Introdução à Solução de Problemas de Engenharia, para simular e entender melhor os programas de transferência inversa de Hohmann e transferência inversa de Breakwell. Foi realizado um estudo na definição de matrizes, cálculos fundamentais e gráficos.

E.2 - Definição de Matrizes no MATLAB: Quando definimos uma matriz, os valores das linhas podem estar separados por vírgulas ou por espaços. Assim, as matrizes A, B, C e D usando o MATLAB serão representadas por:

A = [2, 6, 8, 1];

B = [8, 10, 1, 3];

C=[1,2,2;4,1,2;5,6,8];

D=[3,0,0;2,4,5;6,2,1];

E.3 - Cálculos Fundamentais: As operações de adição, subtração, multiplicação e divisão são a maioria das operações fundamentais. Estas operações podem ser executadas sobre um valor simples (um escalar), aplicadas a uma lista de valores (vetor), ou aplicadas a um grupo de valores armazenados em uma matriz.

```
Adição e Subtração de Matrizes:
» A=[2,6,8,1];
» B=[8,10,1,3];
A+B
ans =
     16 9 4
  10
» A-B
ans =
  -6 -4 7 -2
Multiplicação de Matrizes:
» A=[2,6,8,1];
» B=[8,10,1,3];
» A.*B
ans =
  16 60 8 3
```

```
Divisão de Matrizes: O MATLAB tem dois operadores de divisão, o comando para divisão direita:
» A=[2,6,8,1];
» B=[8,10,1,3];
» A./B
ans =
0.2500 0.6000 8.0000 0.3333
O comando para divisão esquerda:
A.\B
ans =
  4.0000 1.6667 0.1250 3.0000
Determinante de Matrizes:
» C=[1,2,2;4,1,2;5,6,8];
» D=[3,0,0;2,4,5;6,2,1];
» det(C)
ans =
 -10
  det(C+D)
ans =
 -12
» det(C.*D)
ans =
 -264
```

E.4 - Gráficos X-Y :Usando o MATLAB para plotar gráficos, gerando um simples gráfico x-y de dados armazenados em dois vetores.Suponha que queira plotar os dados de temperatura a seguir coletados em uma experiência de física:

Tempo, s	Temperatura, °C
0	54.2
1	58.5
2	63.8
3	64.2
4	67.3
5	71.5
6	88.5
7	90.1
8	90.6
9	89.5
10	90.4

Para plotar estes pontos, simplesmente usamos o comando plot, onde x e y são vetores-linha ou vetores-coluna.

plot (x, y)

A =

0 54.2000
1.0000 58.5000
2.0000 63.8000
3.0000 64.2000
4.0000 67.3000
5.0000 /1.5000
7 0000 90 1000
8 0000 90 6000
9.0000 89.5000
10.0000 90.4000
» x=A(:,1)
x =
0
1
2
3
4
5
6 7
8
9
10
» y=A(:,2)
y =
54 2000
58 5000
63.8000
64.2000
67.3000
71.5000
88.5000
90.1000
90.6000
89.3000 90.4000
20.4000
plot(x,y)

» title('Laboratório de Física-Experiência1')

» xlabel('Tempo,s')

» ylabel('Temperatura, graus Celsius')

» grid

Figura E.1 – Gráfico X-Y

E.5 - Equações Diferenciais Ordinárias

A equação diferencial (ODE) é uma equação que pode ser escrita na seguinte forma:

$$y' = \frac{dy}{dx} = f(x, y)$$

onde x é a variável independente.

A equação diferencial descreve como a taxa de variação das variáveis de um sistema são influenciadas por variáveis do sistema e por estímulos, ou seja, por entradas.

As técnicas numéricas mais comuns para resolver equações diferenciais ordinárias, são o método de Euler e o método de Runge-Kutta. Tanto o método de Euler quanto o método de Runge-Kutta aproximam a função utilizando-se da expansão em série de Taylor.

E.5.1 - Método de Runge - Kutta

Os métodos mais populares para a integração da equação diferencial de primeira ordem são os métodos de Runge - Kutta. Esses métodos de aproximação de uma função se usam da expansão por série de Taylor.

- Comando ode

O Matlab contém dois comandos para calcular soluções numéricas para equações diferenciais ordinárias: ode23 e ode45; o comando ode23 usa o método de Runge - Kutta para equações diferenciais de segunda e terceira ordem; o comando ode45 usa o método de Runge - Kutta para equações diferenciais de quarta e quinta ordem. Os comandos ode23 e ode45 possuem os mesmos tipos de argumentos.

A função ode45 é sempre a primeira candidata a ser usada na solução de um problema. Isso requer que escrevamos um arquivo M de função que retorna as derivadas, dados o tempo atual e os valores atuais do $y_1 e y_2$.

Exemplo 1: Considerando a seguinte equação diferencial:

$$\frac{dy}{dx} = x + y$$

seja:

$$y_1 = x \qquad \qquad y_2 = y$$

então:

$$\frac{dy_1}{dx} = 1 \qquad \qquad \frac{dy_2}{dx} = x + y$$

O arquivo M de função é mostrado a seguir:

```
function yponto=kutta(t,y)
%equação dy/dx=x+y
% ('= d/dx, ''=d^2/dx^2)
% façamos y(1)=x e y(2)=y
%
% então y(1)'=1
% y(2)'= y(1)+y(2)
```

yponto=[1;y(1)+y(2)]; % vetor columa

Depois na tela do Matlab é dado o tempo e condições iniciais, a solução é calculada:

Figura E.2 – Resolução da Equação Diferencial

Exemplo 2: Vamos considerar a clássica equação diferencial de Van der Pol, que descreve um oscilador:

$$\frac{d^2x}{dt^2} - \mu \left(1 - x^2\right) \frac{dx}{dt} + x = 0$$

Para a resolução de equações diferenciais de ordem superior devem ser reescritas em termos de um conjunto equivalente de equações diferenciais de primeira ordem. Isso é obtido pela definição de duas novas variáveis:

$$y_1 = x \qquad \qquad y_2 = \frac{dx}{dt}$$

então:

$$\frac{dy_1}{dt} = y_2 \qquad \qquad \frac{dy_2}{dt} = \mu (1 - y_1^2) - y_1$$

Dessa forma, y₁ e y₂ são escritos como um vetor coluna y. Logo o arquivo M de função resultante é:

```
function yponto=vonder(t,y)
%equação van der Pol
% ('= d/dx, ''=d^2/dx^2)
% façamos y(1)=x e y(2)=x'
%
% então y(1)'=y(2)
% y(2)'=mu*(1-y(1)^2)*y(2)-y(1)
mu=2;
yponto=[y(2);mu*(1-(y(1)).^2)*y(2)-y(1)]; % vetor coluna
```

Depois na tela do Matlab é dado o tempo e condições iniciais, a solução é calculada:

tspan=[0 20]; y0=[2;0]; [t,y]=ode45('vonder',tspan,y0); plot(t,y)

Figura E.3 – Equação Diferencial de Van Der Pol

E.6 - Conclusão

O estudo do Matlab foi realizado para uma maior compreensão dos programas que foram executados no trabalho, tendo como objetivo de aprender a desenvolver programas no Matlab.