

INPE-13009-PRE/8286

INTERAÇÃO DOS PARÂMETROS DE UM SATÉLITE RÍGIDO – FLEXÍVEL COM O SEU SISTEMA DE CONTROLE DE ATITUDE

Lucas Barboza Sarno da Silva*

*Bolsista UNITAU

Relatório Final de Projeto de Iniciação Científica (PIBIC/CNPq/INPE), orientado pelo Dr. Luiz Carlos Gadelha de Souza

INPE São José dos Campos 2005

"Interação dos Parâmetros de um Satélite Rígido-Flexível com o seu Sistema de Controle de Atitude".

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Lucas Barboza Sarno da Silva (UNITAU, Bolsista PIBIC/CNPq) E-mail: <u>lucasarno@aol.com</u>

Dr. Luiz Carlos Gadelha de Souza (DMC/INPE, Orientador) E-mail: gadelha@dem.inpe.br

Junho de 2005

ÍNDICE

RESUMO

CAPÍTULO 1 – INTRODUÇÃO

- 1.1 Introdução, 4
- 1.2 Motivações, 5
- 1.3 Organização, 5

CAPÍTULO 2 – REVISÃO DA LEITURA E FUNDAMENTAÇÃO TEÓRICA

- 2.1 Atitude, 6
- 2.2 Torques, 6
- 2.3 Sistema de Controle de Atitude (SCA), 7

CAPÍTULO 3 – SISTEMA DE CONTROLE DE ATITUDE

- 3.1 Descrição do Sistema, 8
- 3.2 Equações do Movimento, 8
- 3.3 Lei de Controle, 11
- 3.4 Função de Transferência, 11
- 3.4.1 Ângulo de Rotação, 11
- 3.4.2 Elasticidade dos Painéis, 13

CAPÍTULO 4 – IMPLEMENTAÇÃO NUMÉRICA

- 4.1 Integrador Numérico, 15
- 4.2 Diagrama de Bode, pólos e zeros, 20

CAPÍTULO 5 – CONCLUSÕES

5.1 - Sumário e Conclusões, 32

REFERÊNCIAS BIBLIOGRÁFICAS

RESUMO

Ultimamente tem-se observado um grande número de missões espaciais onde a demanda no consumo de potência é crescente, resultando na utilização de painéis solares, manipuladores e/ou antenas de dimensões cada vez maiores que as até então empregadas. Aliado a estes fatores, a limitação de peso por parte dos foguetes lançadores tem feito com que a variação de parâmetros do sistema, em particular a flexibilidade tenha um papel preponderante no projeto do Sistema de Controle de Atitude e Órbita (SCAO). Cabe ressaltar que o SCAO precisa ser capaz de realizar as mais diferentes manobras espaciais, tendo que em seguida manter a atitude e amortecer as possíveis vibrações residuais associado ao nível de apontamento da missão. Exemplos de projetos que envolvem grandes estruturas espaciais flexíveis são: o Hubble Space Telescope, a International Space Station (ISS) e o ROKVISS (Robotic Components Verification at the ISS), este último em desenvolvimento no German Space Center (DLR) em colaboração com a Divisão de Mecânica Espacial e Controle – DMC do INPE. Neste trabalho investiga-se a interação de parâmetro como o momento de inércia da roda de reação, o comprimento do painel e o coeficiente de dissipação do painel com o comportamento dinâmico de um satélite artificial rígido-flexível, em particular no seu grau de apontamento. Os resultados desta investigação poderão facilitar o projeto de SCAO que tenham a tarefa de realizar manobras de atitudes e ao mesmo tempo manter a estabilidade e a forma estática da estrutura flexível, a fim de assegurar o ambiente de micro gravidade e/ou o grau de apontamento da missão.

CAPÍTULO 1

Neste capítulo introduz-se o problema a ser abordada neste estudo, a teoria nele utilizada, as motivações e, por fim, a sua organização.

1.1 - Introdução

O estudo do sistema de controle de estruturas espaciais com antenas e/ou painéis e manipuladores robóticos flexíveis torna-se complexa à medida que as dimensões de tais estruturas crescem devido à necessidade de considerar um número cada vez maior de modos de vibração no seu modelo [1]. Neste sentido a investigação do comportamento dinâmico não linear, de técnicas de identificação de parâmetros e do desempenho do sistema de controle são tópicos importantes. Exemplos de projetos que envolvem grandes estruturas espaciais flexíveis são: o Huble Space Telescope, a International Space Station (ISS) e o ROKVISS (Robotic Components Verification at the ISS), este último em desenvolvimento no German Space Center (DLR) em colaboração com o divisão de mecânica espacial e controle (DMC) do INPE [2]. Um dos maiores problemas enfrentados por engenheiros espaciais é o de realizar manobras espaciais de satélites e/ou manipuladores robóticos flexíveis, tendo que em seguida controlar sua atitude e amortecer a possível vibração residual [3]. O sistema de controle empregado deve ser capaz de manter a estabilidade e a forma estática da estrutura, a fim de assegurar o ambiente de micro gravidade e/ou o grau de apontamento da missão [4]. O modelo matemático de estruturas espaciais flexíveis é uma aproximação do sistema real, só podendo ser complemente verificado quando a estrutura encontra-se em órbita. Assim, observa-se que o engenheiro espacial encontra-se diante do fato de não saber exatamente como se assegurar do modelo do sistema que pretende projetar [5]. A natureza incerta das estruturas espaciais flexíveis faz com que questões associadas à sensibilidade e a robustez sejam de grande importância no projeto do seu sistema de controle, principalmente, porque o desempenho nominal e a estabilidade robusta são objetivos conflitantes de se obter. Normalmente, a estrutura flexível é tratada como um sistema de parâmetros distribuídos, implicando, que esta possui um número infinito de graus de liberdade [6]. Este fato introduz um alto grau de incerteza nos modelos matemáticos devido ao procedimento inevitável de redução do modelo. Por um outro lado, devido a impossibilidade de realizar testes na Terra que simulem as condições do espaço é também esperado que os parâmetros estruturais de satélites e/ou manipuladores espaciais flexíveis contenha uma grande margem de erro. Assim, a fim de compensar os erros introduzidos por estas duas fontes de incerteza, o projeto do sistema de controle deve ser robusto com relação a dinâmicas não modeladas (incerteza não paramétrica) proveniente da redução do modelo e em relação aos erros introduzidos pela variação dos parâmetros estruturais (incerteza paramétrica). O objetivo deste trabalho é o modelamento de uma estrutura espacial flexível e o projeto um sistema de controle robusto com respeito a incertezas paramétricas e não paramétricas. O projeto do sistema de controle será baseado na versão modificada do método PRLQG (Parameter Robust Linear Quadratic Gaussian, usando o conceito de decomposição de entrada-saída, a fim de incorporar um modelo misto de incerteza na forma de representação de espaço de estados.

1.2 – Motivações

As principais motivações para este estudo são:

- 1) Familiarização do processo de modelagem de um satélite artificial rígido-flexivel;
- 2) O uso de técnicas de controle linear para avaliar a eficiência de leis de controle em efetuar manobras de atitude.
- 3) Investigar a influencia da variação de parâmetros do satélite no desempenho do sistema de controle de atitude SCA.

1.3 – Organização

No Capítulo 2 resume-se a teoria do Sistema de Controle de Atitude e apresentamse suas principais características. No Capítulo 3, apresenta-se à dinâmica do sistema e fazse o seu equacionamento. No Capítulo 4, faz-se a implementação numérica do problema e avalia-se a eficiência desta lei de controle considerando o tempo de estabilização, como critério de bom desempenho. No Capítulo 5, apresenta-se um sumário do trabalho e as conclusões.

CAPÍTULO 2

REVISÃO DA LEITURA E FUNDAMENTAÇÃO TEÓRICA

O bom desempenho do sistema de controle de atitude (SCA) de um satélite é fundamental para o sucesso da missão espacial. Este deve ser capaz de manter a estabilidade do sistema no que diz respeito ao movimento de rotação, e ainda, realizar manobras de atitude necessárias ao comprimento das tarefas da missão.

2.1 – Atitude

A atitude de uma espaçonave é sua orientação no espaço. O movimento de uma espaçonave rígida é especificado por sua posição, velocidade, atitude e movimento de atitude. Onde o movimento de translação do centro de massa é caracterizado pela posição e velocidade, cujo, seu estudo é chamado de mecânica celeste, determinação de órbita ou ainda navegação espacial; dependendo de qual aspecto o problema é analisado. O movimento de rotação em torno de seu centro de massa, por sua vez, é descrito pela atitude e movimento de atitude.

A análise da atitude pode ser dividida em:

- Determinação da atitude: é o processo de calcular a orientação da espaçonave em relação a um referencial inercial;
- Predição de atitude: é o processo de predizer a orientação futura pelo uso de modelos dinâmicos para extrapolar a história da atitude;
- > Controle de atitude: é o processo de orientar a espaçonave numa direção especificada.

2.2 – Torques

Torques podem ser utilizados para controlar a atitude e ainda podem ser torques de perturbação, que afetam a atitude de um satélite (torques ambientais). Os torques ambientais mais importantes são:

- Torque aerodinâmico: A interação entre a atmosfera superior com a superfície do satélite produz um torque em torno do seu centro de massa. Para espaçonaves abaixo de aproximadamente 400 km, o torque aerodinâmico é o torque ambiental dominante.
- Torque de gradiente de gravidade: qualquer objeto não simétrico de dimensões finitas em órbita é sujeito ao torque gravitacional por causa da variação da força gravitacional da Terra sobre o mesmo.

- Torque de perturbação magnética: resultam da interação entre o campo residual da espaçonave e o campo geomagnético, isto é, o campo magnético da Terra.
- Torque de radiação solar: a radiação incidente na superfície de uma espaçonave produz uma força que resulta num torque em torno do seu centro de massa.

2.3 – Sistema de controle de atitude (SCA)

O Sistema de Controle de Atitude é uma maneira de eliminar os torques externos de perturbação assim como os ambientais. Para tal feito são utilizados torques de controle que são intencionalmente gerados para efetuar o controle. Jatos de gás e roda de reação são exemplos de mecanismos responsáveis pelos torques controladores. Em geral consiste de três componentes:

- > Sensores de atitude: são responsáveis pela localização dos alvos de referências;
- O processo de controle: ou lei de controle, determina quando o controle é necessário e como gerá-lo;
- O equipamento de controle: ou atuador, é o mecanismo que fornece o torque de controle.

CAPÍTULO 3

Este capítulo trata de descrever o sistema adotado e o procedimento para obter as equações de movimento do satélite rígido-flexivel.

3.1 - Descrição do Sistema

Considera-se um satélite constituído de um corpo rígido, de forma cúbica e mais dois painéis flexíveis e uma roda de reação alinhada com o centro do corpo rígido. Desta forma o centro de massa do satélite esta no ponto O origem do sistema de coordenadas (X, Y, Z), que coincide com o seu eixo principal de inércia. Os apêndices elásticos com o formato de viga estão engastados no corpo central, sendo tratado como uma massa pontual em sua extremidade livre. A roda de reação que é a responsável pelo controle do movimento de rotação do satélite, e tem seu centro de massa coincidindo com a origem O, ver Figura 1.

O comprimento do painel é representado por *L*, m sua massa e u(t) o seu deslocamento elástico em relação ao eixo Z. Os momentos de inércia do corpo rígido do satélite e da roda de reação em relação ao centro de massa são, respectivamente, $J_0 e J_R$. O momento de inércia do painel em relação ao seu próprio centro de massa é dado por J_p . O ângulo de rotação do satélite em torno do eixo $Y \acute{e} \theta$, e a velocidade angular da roda de reação também em torno do eixo Y é $\Omega(\dot{\phi})$.

3.2 – Equações do Movimento

As equações de movimento são derivadas utilizando-se a formulação Lagrangiana, e somente o movimento de rotação do satélite e da roda em torno do Y é considerado, o movimento de translação do satélite é desconsiderando. Com isso, a expressão da energia cinética do satélite mais a roda pode ser colocada na seguinte forma:

$$T = \frac{1}{2} J_0 \dot{\theta}^2 + 2 \left(\frac{1}{2} m v^2 \right) + \frac{1}{2} J_{\rm f} f^2$$
(3.1)

Sendo a velocidade linear dos painéis dada por: $v = \dot{u} + L\dot{\theta}$, onde o \dot{u} (t) é a variação do deslocamento elástico no tempo e $L\dot{\theta}$ é a velocidade angular dos painéis. A velocidade angular da roda de reação é dada por $f = \dot{\theta} + \dot{\phi}$. Com isso a energia cinética total será:

$$T = \frac{1}{2}J_{0}\dot{\theta}^{2} + \dot{u}^{2}m + 2\dot{u}L\dot{\theta}m + L^{2}\dot{\theta}^{2}m + \frac{1}{2}J_{R}\dot{\theta}^{2} + J_{R}\dot{\theta}\dot{\phi} + \frac{1}{2}J_{R}\dot{\phi}^{2}$$
(3.2)

A energia potencial, que é devido à deformação do painel e é conservativo, tem a forma:

$$V = 2\left(\frac{1}{2}u^2K\right)$$

$$V = u^2K$$
(3.3)

onde K é constante elástica dos painéis.

A energia de dissipação associada à deformação do painel é dada na forma:

$$M = 2\left(\frac{1}{2}\dot{u}^{2}Kd\right)$$

$$M = \dot{u}^{2}Kd$$
(3.4)

onde *Kd* é a constante de dissipação.

Obtidas as expressões das energias cinéticas e potencial a Lagrangiana L é dado por L = T - V, que após substituição tem-se :

$$L = \frac{1}{2}J_{0}\dot{\theta}^{2} + \dot{u}^{2}m + 2\dot{u}L\dot{\theta}m + L^{2}\dot{\theta}^{2}m + \frac{1}{2}J_{R}\dot{\theta}^{2} + J_{R}\dot{\theta}\dot{\phi} + \frac{1}{2}J_{R}\dot{\phi}^{2} - u^{2}K$$
(3.5)

As equações de movimento são derivadas para três coordenadas generalizadas $xi_{(i=1,3)}$, isto é: a rotação angular do satélite $\theta(t)$, o deslocamento elástico do painel u(t) e a velocidade de rotação da roda de reação $\Omega(\dot{\phi})$.

Usando a Equação de Lagrange dada por:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}i}\right) - \frac{\partial L}{\partial xi} + \frac{\partial M}{\partial xi} = Fxi$$
(3.6)

onde Fx_i representa as forcas generalizadas do sistema.

..

...

A equação de movimento que descreve o movimento de rotação do satélite é obtida substituindo θ na equação de Lagrange, que após derivações obtém-se:

$$\theta(J_0 + 2J_{p+J_R}) + 2\ddot{u}Lm + J_R\ddot{\varphi} = \tau \tag{3.7}$$

onde J_0 é o momento de inércia do corpo rígido, mL^2 é o momento de inércia do painel, denominado $Jp \in J_R$ é o momento de inércia da roda de reação. A soma dos três representa o momento de inércia total do sistema J, tal que a eq.(3.7) resulta em:

$$J\theta + 2\ddot{u}Lm + J_R\ddot{\varphi} = \tau \tag{3.8}$$

onde τ representa os torques externos e de controle que atuam sobre o satélite.

As equações que descrevem a flexibilidade do painel são obtidas substituindo a coordenada generalizada das equações de Lagrange por *u*, resultando em:

$$\ddot{u}m + \dot{u}Kd + uK = -mL\hat{\theta} \tag{3.9}$$

Onde o termo a direita pode ser interpretado como um torque aplicado sobre o painel flexível devido à aceleração angular do satélite. Este torque é responsável pela deformação elástica do painel.

Por fim, para determinar a equação do movimento da roda de reação, faz-se a substituição das coordenadas generalizada na equação de Lagrange por $\varphi \in \dot{\varphi}$, resultando em:

$$J_R(\ddot{\varphi} + \ddot{\theta}) = \tau_1 \tag{3.10}$$

onde τ_1 representa o torque aplicado no eixo da roda, proveniente de um motor do tipo DC que aqui não é modelado.

As eqs. (3.8), (3.9) e (3.10), é um conjunto de equações diferenciais lineares e acoplado, que representam a dinâmica do movimento de rotação do satélite, do deslocamento elástico dos painéis e da rotação da roda de reação no plano XZ.

Agrupando as três ultima equações temos:

$$J\hat{\theta} + 2\ddot{u}Lm + J_R\hat{\Omega} = \tau \tag{3.8}$$

$$\ddot{u}m + \dot{u}Kd + uK = -mL\theta \tag{3.9}$$

$$um + uKa + uK = -mL\theta$$

$$J_R(\dot{\Omega} + \ddot{\theta}) = \tau_1$$
(3.10)

3.3 – Lei de Controle

Para o controle da velocidade angular do satélite, a deformação elástica do painel e conseqüentemente a rotação da roda, vamos substituir o torque aplicado na roda por uma lei de controle do tipo proporcional mais derivativa, onde os ganhos K_1 e K_2 serão determinados através de simulações. Em linguagem matemática esta lei de controle é dada por:

$$\tau_1 = -K_1 \theta - K_2 \dot{\theta} \tag{3.11}$$

3.4 - Função de transferência

No intuito de resolver as equações diferenciais acima será aplicada à técnica da Função de Transferência, através do estabelecimento de uma definição viável de uma função que relacione algebricamente a saída do sistema com sua entrada. Como neste caso são três equações diferenciais lineares invariantes no tempo deve-se relacioná-las entre si para que se resulte em apenas uma, com uma entrada de dados e uma resposta de saída.

Para esta fase serão feitas duas análises diferentes: a primeira relaciona o torque externo exercido sobre a roda de reação como uma variável entrada e como resposta ou saída um ângulo teta que indica a rotação do conjunto; a segunda relaciona o mesmo torque externo exercido sobre a roda de reação como uma variável de entrada e como resposta ou saída à elasticidade dos painéis.

3.4.1 – Ângulo de rotação

Uma observação importante que se deve fazer é acerca do torque externo exercido sobre a roda de reação que é no sentido contrário ao torque externo exercido sobre o sistema todo, por isso será atribuído ao $\Lambda_1(s)$ um sinal negativo devido a este fator e ainda será considerado o torque externo total exercido sobre o conjunto nulo, ou seja, não há torques ambientais (como torques aerodinâmicos, gradiente de gravidade, magnético e tão pouco radiação solar) atuando sobre o satélite. Com isso, as equações do sistema ficam na forma:

$$J\ddot{\theta} + 2\ddot{u}Lm - J_R\dot{\Omega} = \tau \qquad (3.12)$$

$$\ddot{u}m + \dot{u}Kd + uK = -mL\theta \tag{3.9}$$

$$J_R(\Omega + \theta) = \tau_1 \tag{3.10}$$

Mas para isso é necessário aplicar a Transformada de Laplace, admitindo-se as condições iniciais sejam nulas.

$$J\Theta(s)S^2 + 2LmU(s)S^2 - J_R\Omega(s)S = \Lambda(s) = 0$$
(3.13)

 $mU(s)S^{2} + KdU(s)S + KU(s) = -mL\Theta(s)S^{2}$ (3.14)

$$J_R\Theta(s)S^2 + J_R\Omega(s)S = \Lambda_1 \tag{3.15}$$

Fazendo algumas simplificações e substituindo as eqs.(3.14 e 3.15) n eq.(3.13) obtém-se:

$$\frac{\Lambda_1(s)}{\Theta(s)} = \frac{JmS^2S^2 + JKdS^2S + JKS^2 - 2mJpS^2S^2 + J_RmS^2S^2 + J_RKdS^2S + J_RKS^2}{mS^2 + KdS + K}$$
(3.16)

Esta é a relação entrada-saída, ou seja, aplica-se um torque externo aplicado a roda de reação $\Lambda_1(s)$ como um sinal de entrada e obtém-se como resposta uma rotação do conjunto com o ângulo $\Theta(s)$. Pela teoria da Função de Transferência:

$$\frac{L(saida)}{L(entrada)} = \frac{\Theta(s)}{\Lambda_1(s)}$$
(3.17)

Portanto

$$\frac{\Theta(s)}{\Lambda_{1}(s)} = \frac{1}{(J_{0+}+2J_{R})S^{2}} \left[\frac{S^{2} + \frac{Kd}{m}S + \frac{K}{m}}{S^{2} + \frac{(J+J_{R})}{(J_{0+}+2J_{R})}\frac{Kd}{m}S + \frac{(J+J_{R})}{(J_{0+}+2J_{R})}\frac{K}{m}} \right]$$
(3.18)

No intuito de tirar algumas conclusões perante esse resultado é conveniente escrever a eq.(3.18) de outra linguagem, números imaginários.

$$\frac{\Theta(s)}{\Lambda_{1}(s)} = \frac{1}{(J_{0+}+2J_{R})S^{2}} \left[\frac{S^{2}+2W\zeta_{1}S+W^{2}}{S^{2}+2\zeta WnS+Wn^{2}} \right]$$
(3.19)

onde

 \blacktriangleright *Wn* é a freqüência natural do sistema.

$$Wn = \sqrt{\frac{\left(J + J_R\right)}{\left(J_{0+} + 2J_R\right)}}W$$
(3.20)

 \succ W é a freqüência natural do painel.

$$W^2 = \frac{K}{m} \tag{3.21}$$

 \succ ζ é o coeficiente de amortecimento do sistema.

$$\zeta = \sqrt{\frac{\left(J + J_R\right)}{\left(J_{0+} + 2J_R\right)}} \zeta_1 \tag{3.22}$$

> ζ_1 é o coeficiente de amortecimento do painel.

$$\zeta_1 = \frac{Kd}{2mW} \tag{3.23}$$

3.4.2 – Elasticidade dos painéis

Substituindo as eqs. (3.14 e 3.15) na eq.(3.13):

$$\frac{\Lambda_{1}(s)}{U(s)} = -\left[\frac{(J_{0} + 2J_{R})mS^{2} + (J + J_{R})KdS + (J + J_{R})K}{mL}\right]$$
(3.24)

Com isso achou-se a relação entrada-saída, ou seja, aplica-se um torque externo aplicado a roda de reação $\Lambda_1(s)$ como um sinal de entrada e obtém-se como resposta uma rotação do conjunto com o ângulo U(s). Então, já se pode fazer uso da Função de Transferência.

$$\frac{U(s)}{\Lambda_{1}(s)} = -\frac{L}{(J_{0} + 2J_{R})} \left[\frac{1}{S^{2} + \frac{(J + J_{R})}{(J_{0} + 2J_{R})} \frac{Kd}{m}S + \frac{(J + J_{R})}{(J_{0} + 2J_{R})} \frac{K}{m}} \right]$$
(3.25)

Então a função de transferência pode ser escrita na seguinte forma:

$$\frac{U(s)}{\Lambda_{\rm I}(s)} = -\frac{L}{\left(J_0 + 2J_R\right)} \left[\frac{1}{S^2 + 2\zeta W n S + W n^2}\right]$$
(3.26)

onde

 \blacktriangleright Wn é a freqüência natural do sistema

$$Wn^{2} = \frac{(J+J_{R})}{(J_{0+}+2J_{R})}\frac{K}{m}$$
(3.27)

 $\succ \zeta$ é o coeficiente de amortecimento do sistema

$$\zeta = \frac{\sqrt{\frac{(J+J_R)}{(J_{0+}+2J_R)}} \frac{Kd}{m}}{2W}$$
(3.28)

Uma observação importante que se faz necessária neste ponto é o fato de não haver a freqüência natural do painel (W) e tão pouco o coeficiente de amortecimento do painel (ζ_1), isto ocorre justamente por se estar fazendo as considerações sobre o movimento dos painéis, mais especificamente sobre a elasticidade dos mesmos.

CAPÍTULO 4

IMPLEMENTAÇÃO NUMÉRICA

Neste capitulo será feita à implementação numérica, e ainda, a maneira como estas simulações foram feitas.

4.1 – Integrador Numérico

Nesta simulação foi utilizado o software MATLAB, que integra equações de 1º ordem, devido a este fato e como as equações de movimento são extremamente acopladas foram necessárias manipulações algébricas como mostrado a seguir:

Da eq.(3.8) se chega em $\ddot{\theta} + \frac{2mL}{J}\ddot{u} + \frac{J_R}{J}\dot{\Omega} = \tau$, mas como o torque externo sobre a parte rígida não será levado em consideração neste ponto , pode-se igualá-lo a zero e portanto: $\ddot{\theta} + \frac{2mL}{J}\ddot{u} + \frac{J_R}{J}\dot{\Omega} = 0$ ou ainda $\ddot{\theta} + a\ddot{u} + b\dot{\Omega} = 0$, onde $\frac{2mL}{J} = a; \frac{J_R}{J} = b$.

Da eq.(3.9) se chega em $\ddot{u} + \frac{Kd}{m}\dot{u} + \frac{K}{m}u + L\ddot{\theta} = 0$ ou ainda $\ddot{u} + c\dot{u} + du + L\ddot{\theta} = 0$, onde $\frac{Kd}{m} = c; \frac{K}{m} = d$.

Da eq.(3.10) se chega em $\ddot{\theta} + \ddot{\varphi} = \tau I_{J_R}$.

Estas equações são de segunda ordem precisamos transformá-las em equações de primeira ordem, para isso são faz-se uma mudança de variáveis como mostrado a seguir:

$\theta = Y1,$	$\dot{Y}1 = Y2 = \dot{\theta},$	$\dot{Y}2 = \ddot{Y}1 = \ddot{\theta}$	
u = Y3,	$\dot{Y}3 = Y4 = \dot{u},$	$\dot{Y}4 = \ddot{Y}3 = \ddot{u}$	(4.1)
$\dot{\phi} = \Omega = Y5,$	$\dot{Y}5 = \dot{\Omega}$		

Agora aplicando estas transformações às equações (3.8, 3.9 e 3.10) se tem:

$$\dot{Y}_{1} = Y_{2}$$

$$\dot{Y}_{2} + a * \dot{Y}_{4} + b * \dot{Y}_{5} = 0$$

$$\dot{Y}_{3} = Y_{4}$$

$$\dot{Y}_{4} + L * \dot{Y}_{2} = -c * Y_{4} - d * Y_{3}$$

$$\dot{Y}_{5} + \dot{Y}_{2} = \tau_{1}$$
(4.2)

Para colocar o conjunto de equações (4.2) na forma de variáveis de estados e matricial $\dot{X} = AX + BX$, que no nosso caso mais específico tem a forma: $\overline{A} \dot{Y} = Y + \overline{B} \tau_1$. Portando temos:

$$\overline{A} \qquad \dot{Y} \qquad Y \qquad \overline{B} \qquad \tau_{1} \\
\begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & a & b \\ 0 & 0 & 1 & 0 & 0 & * \\ 0 & L & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ \end{vmatrix} \qquad \begin{array}{c} \dot{Y}_{1} \\ \dot{Y}_{2} \\ \dot{Y}_{3} \\ -c^{*}Y4 - d^{*}Y3 \\ 0 \\ \end{array} \qquad + \begin{array}{c} 0 \\ 0 \\ 0 \\ \frac{1}{J_{R}} \\ \end{array} \qquad (4.3)$$

Com o intuito de se ter um \dot{Y} isolado multiplicamos \overline{A} pela sua inversa, pois $\overline{A} * \overline{A} - {}^{1}=1$.

Logo:

$$\dot{Y} = \overline{A} - {}^{1*}Y + \overline{A} - {}^{1*}\overline{B} * \tau_1$$
(4.4)

Onde a matrix inversa \overline{A}^{-1} tem a forma:

 \overline{A}^{-1}

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & \left(1 + \frac{a^{*}L}{1 - a^{*}L}\right) - \left(\frac{-1 - \frac{a^{*}L}{1 - a^{*}L}}{1 + b - \frac{a^{*}b^{*}L}{1 - a^{*}L}}\right) \left(b + \frac{a^{*}b^{*}L}{1 - a^{*}L}\right) & 0 & \left(-\frac{a}{1 - a^{*}L}\right) - \left(\frac{\frac{a}{1 - a^{*}L}}{1 + b - \frac{a^{*}b^{*}L}{1 - a^{*}L}}\right) \left(b + \frac{a^{*}b^{*}L}{1 - a^{*}L}\right) - \left(\frac{1}{1 + b - \frac{a^{*}b^{*}L}{1 - a^{*}L}}\right) \left(b + \frac{a^{*}b^{*}L}{1 - a^{*}L}\right) \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \left(-\frac{L}{1 - a^{*}L}\right) - \left(\frac{-1 - \frac{a^{*}L}{1 - a^{*}L}}{1 + b - \frac{a^{*}b^{*}L}{1 - a^{*}L}}\right) - \frac{b^{*}L}{1 - a^{*}L}\right) - \left(\frac{1}{1 - a^{*}L}\right) - \left(\frac{1}{1 - a^{*}L}\right) - \left(\frac{1}{1 - a^{*}L}\right) - \left(\frac{1}{1 - a^{*}L}\right) - \left(\frac{b^{*}L}{1 - a^{*}L}\right) - \left(\frac{b^{*}L}{1 - a^{*}L}\right) - \left(\frac{1}{1 - a^{*}L}\right) - \left(\frac{b^{*}L}{1 - a$$

Substituindo finalmente esta equação na eq.(4.4) obtém-se o sistema de equações de primeira ordem que será integrado.

Nas simulações investiga-se o comportamento dinâmico do sistema quando os parâmetros momento de inércia da roda de reação o satélite J_R e o comprimento dos painéis L. Cabe ressaltar que estas simulações com as variações destes parâmetros só são

implementadas após as simulações que determinam os valores dos ganhos K_1 e K_2 . Estes ganhos são determinados com os valores chamados de nominais que são mostrados na Tabela 1.

Parâmetros	Valores Nominais	
J_0	720 kg.m ²	
J_p	40 kg.m ²	
J _R	1 kg.m ²	
К	320 kg.rad ² /s ²	
K _d	0,48 kg.rad ² /s	
L	2 ^{1/2} m	
Μ	20 kg	
$K_1 e K_2$	10000	
Tabela 1		

A Figura 1 mostra o comportamento do sistema para os valores nominais, observase que o ângulo e a velocidade angular do satélite são controlados em menos de 5 segundos, o deslocamento elástico e sua variação também possuem um comportamento decrescente, enquanto que e a velocidade da roda tende para um valor constante em torno de 350 rad/s.

Figura 1 – Valores Nominais

Figura $2 - J_R = 1.5 \text{ kg.m}^2$

A Figura 2 mostra o comportamento do sistema para quando o momento de inércia da roda é elevado de 1 para 1.5 Kg.m². Observa-se que o ângulo e a velocidade angular continuam controlados em menos de 5 segundos, da mesma forma que o deslocamento elástico e sua variação apresentam o mesmo comportamento decrescente. A mudança ocorre na velocidade da roda que passa aproximadamente de 350 para 220 rad/s. Isto indica que no primeiro caso a roda tem mais chance de atingir a sua saturarão que no segundo. Para evidenciar este fato o momento de inércia é considerado ainda menor (0.25 Kg.m²) como mostrado na Figura 3, onde a velocidade de rotação atinge um valor altíssimo de aproximadamente 1300 rad/s.

A Figura 4 mostra o comportamento do sistema quando o comprimento do painel é diminuído de 1,41 para 1,0m. Observa-se o ângulo, a velocidade angular, e a velocidade da roda permanecem com o mesmo comportamento que no caso nominal.

Figura 4 - L = 1 m

A mudança agora fica por conta do deslocamento elástico e sua variação, isto é o painel passa a ter um nível de vibração mais acentuado de forma que o seu amortecimento só deve ocorrer num intervalo de tempo maior do que o caso nominal. Este comportamento poderia dependendo dos requisitos de apontamento solicitar uma estratégia de controle diferente da inicialmente empregada.

A Figura 5 mostra o comportamento do sistema quando o comprimento do painel é aumentado de 1,41 para 3,0m. Observa-se o ângulo e a velocidade angular permanecem com o mesmo comportamento que no caso nominal. A mudança agora é verifica no deslocamento elástico e sua variação, bem como na velocidade da roda. O painel passa a ter um nível de vibração menor, com o seu amortecimento ocorrendo num intervalo de tempo menor, enquanto que a roda executa sua tarefa de controle mais rapidamente a medida que ela atinge o valor constante num intervalo de tempo inferior.

Figura 5 - L = 3 m

4.2 – Diagrama de Bode, pólos e zeros

Esta fase é responsável por verificar a influência dos parâmetros do satélite no seu comportamento dinâmico, através dos conceitos de pólos e zeros da função e pelo diagrama de bode da função.

Pólos, zeros e resposta do sistema

A definição de pólos, zeros e resposta do sistema, baseados no (Ogata, 2000), é apresentada a seguir:

- A resposta de saída de um sistema é a soma de duas respostas: a resposta forçada e a resposta natural. Embora diversas técnicas, como a solução de equações diferenciais ou a aplicação da transformada de Laplace inversa, permitam calcular essa resposta, tais técnicas são trabalhosas e consomem muito tempo.
- Os pólos de uma função de transferência são: (1) os valores da variável, S, da transformada de Laplace que fazem com que a função de transferência se torne infinita ou (2) quaisquer raízes do denominador da função de transferência que sejam comuns às raízes do numerador.
- Os zeros de uma função de transferência são: (1) os valores da variável, S, da transformada de Laplace que fazem com que a função de transferência se torne igual a zero ou (2) quaisquer raízes do numerador da função de transferência que sejam comuns às raízes do denominador.

Diagrama de Bode

Uma função de transferência senoidal pode ser representada por meio de dois gráficos separados, um representando o valor do módulo (magnitude) versus o valor de freqüência; o outro, o valor do ângulo de fase (em graus) versus o valor da freqüência. Um diagrama de Bode consiste em dois gráficos: um é o gráfico do logaritmo do módulo da função de transferência senoidal; o outro é um gráfico do ângulo de fase; ambos são construídos em função da freqüência numa escala logarítmica (Ogata, 2000).

Malha Aberta

Num sistema de malha aberta o controle é gerado com base nos valores atuais do comportamento de referência que se deseja que o sistema tenha. Com isso, pretende-se analisar o sistema de maneira prática e objetiva. No Diagrama 1 tem-se o diagrama de bloco do sistema em malha aberta, onde o controlador é o ganho de proporcionalidade aplicado a planta, que é a função de transferência da razão do ângulo de rotação pelo torque atuante sobre a roda .

Diagrama 1

Nas simulações investiga-se o comportamento dinâmico do sistema quando os parâmetros ganho proporcional K_p e a constante de dissipação dos painéis K_d . Cabe ressaltar que estas simulações com as variações destes parâmetros são implementadas com os valores chamados de nominais que são mostrados na Tabela 2.

Parâmetros	Valores Nominais
J_0	720 kg.m ²
J _p	40 kg.m ²
J _R	1 kg.m ²
к	320 kg.rad ² /s ²
Κ _d	0,48 kg.rad ² /s
L	2 ^{1/2} m
m	20 kg
K _p	1

Tabela 2

As Figuras 6 e 7 mostram o comportamento do sistema em malha aberta para os valores nominais, observa-se que a banda passante é de 0,0409 no diagrama de Bode, os pólos estão plotados em $-0,0133 \pm 4,216i$ e na origem $0 \pm 0i$, e os zeros da função em $-0,0120 \pm 4i$.

Figura 6 – Valores Nominais

Figura 7 – Valores Nominais

As Figuras 8 e 9 mostram o comportamento do sistema com variação no ganho de proporcionalidade K_p agora com seu valor igual a 10, observa-se que a banda passante é de 0,1265 no diagrama de Bode, os pólos estão plotados em $-0,0133 \pm 4,216i$ e na origem $0 \pm 0i$, e os zeros da função em $-0,0120 \pm 4i$. Ou seja, a banda passante cresceu em relação aos valores nominais enquanto que os pólos e zeros não sofreram mudanças significativas.

Figura 8 – Ganho 10

As Figuras 10 e 11 mostram o comportamento do sistema com variação no ganho de proporcionalidade K_p agora com seu valor igual a 100, observa-se que a banda passante é de 0,3907 no diagrama de Bode, os pólos estão plotados em $-0,0133 \pm 4,216i$ e na origem $0 \pm 0i$, e os zeros da função em $-0,0120 \pm 4i$. Ou seja, a banda passante continua a crescer proporcionalmente em relação aos valores nominais enquanto que os pólos e zeros não sofrem mudanças significativas.

Figura 10 – Ganho 100

As Figuras 12 e 13 mostram o comportamento do sistema com variação na constante de dissipação dos painéis K_d , agora com seu valor igual a 0,05 kg.rad²/s, observase que a banda passante é de 0,0100 no diagrama de Bode, os pólos estão plotados em $-0,0133 \pm 4,216i$ e na origem $0 \pm 0i$, e os zeros da função em $-0,0120 \pm 4i$. Ou seja, a banda passante teve uma diminuição no seu valor em relação aos valores nominais enquanto que os pólos e zeros não sofrem mudanças significativas.

Figura $12 - K_d = 0.05 \text{ kg.rad}^2/\text{s}$

As Figuras 14 e 15 mostram o comportamento do sistema com variação na constante de dissipação dos painéis K_d , agora com seu valor igual a 2 kg.rad²/s, observa-se que a banda passante é de 0,0543 no diagrama de Bode, os pólos estão plotados em $-0,0133 \pm 4,216i$ e na origem $0 \pm 0i$, e os zeros da função em $-0,0120 \pm 4i$. Ou seja, a banda passante aumentou em relação aos valores nominais enquanto que os pólos e zeros não sofrem mudanças significativas.

Figura 14 - $K_d = 2 \text{ kg.rad}^2/\text{s}$

Malha Fechada

Num sistema de malha fechada, o controlador aproveita as informações anteriores para gerar uma nova informação. Com isso, pretende-se melhorar o desenvolvimento e a precisão das informações. No Diagrama 2 tem-se o diagrama de bloco do sistema em malha fechada, onde o controlador é o ganho de proporcionalidade aplicado a planta, que é a função de transferência da razão do ângulo de rotação pelo torque atuante sobre a roda.

Diagrama 2

As Figuras 16 e 17 mostram o comportamento do sistema em malha fechada para os valores nominais, observa-se que a banda passante é de 0,0543 no diagrama de Bode, os pólos estão variando na periferia de $-0,0133 \pm 4,216i$ e ao redor da origem $0 \pm 0i$, e os zeros da função unitário em $-0,0120 \pm 4i$. Ou seja, a banda passante cresceu em relação aos valores nominais enquanto que os pólos cresceram em quantidade, mas seus valores variam em torno dos mesmos valores que em malha aberta, e os zeros permanecem inalterados.

Figura 16 – Valores Nominais

Figura 17 – Valores Nominais

As Figuras 18 e 19 mostram o comportamento do sistema com variação no ganho de proporcionalidade K_p agora com seu valor igual a 10, observa-se que a banda passante é de 0,1677 no diagrama de Bode, os pólos estão variando na periferia de $-0,0133 \pm 4,216i$ e ao redor da origem $0 \pm 0i$, e os zeros da função unitário em $-0,0120 \pm 4i$. Ou seja, a banda passante cresceu em relação aos valores nominais enquanto que os pólos se distanciam da origem e crescem no eixo imaginário e os zeros permanecem inalterados.

As Figuras 20 e 21 mostram o comportamento do sistema com variação no ganho de proporcionalidade K_p agora com seu valor igual a 100, observa-se que a banda passante é de 0.5964 no diagrama de Bode, os pólos estão variando na periferia de $-0.0133 \pm 4.216i$ e ao redor da origem $0 \pm 0i$, e os zeros da função unitário em $-0.0120 \pm 4i$. Ou seja, a banda passante cresceu em relação aos valores nominais enquanto que os pólos se distanciam ainda mais da origem e crescem no eixo imaginário e os zeros permanecem inalterados.

As Figuras 22 e 23 mostram o comportamento do sistema com variação na constante de dissipação dos painéis K_d , agora com seu valor igual a 0,05 kg.rad²/s, observase que a banda passante é de 0,0543 no diagrama de Bode, , os pólos estão variando na periferia de $-0,0133 \pm 4,216i$ e ao redor da origem $0 \pm 0i$, e os zeros da função unitário em $-0,0125 \pm 4i$. Ou seja, a banda passante não sofreu alteração enquanto que os pólos permanecem inalterados em relação aos valores nominais e os zeros têm um pequeno crescimento no eixo real.

Figura 22 - $K_d = 0.05 \text{ kg.rad}^2/\text{s}$

As Figuras 24 e 25 mostram o comportamento do sistema com variação na constante de dissipação dos painéis K_d , agora com seu valor igual a 2 kg.rad²/s, observa-se que a banda passante é de 0,0543 no diagrama de Bode, , os pólos estão variando na periferia de $-0,0133 \pm 4,216i$ e ao redor da origem $0 \pm 0i$, e os zeros da função unitário em $-0,0555 \pm 4i$. Ou seja, a banda passante não sofreu alteração enquanto que os pólos permanecem inalterados em relação aos valores nominais e os zeros têm um crescimento significativo no eixo real.

Figura 24 - $K_d = 2 \text{ kg.rad}^2/\text{s}$

Figura 25 - $K_d = 2 \text{ kg.rad}^2/\text{s}$

CAPÍTULO 5

O Capítulo apresenta um sumário do trabalho seguido das conclusões obtidas a partir das simulações implementadas e dos resultados de cada caso demonstrado no Capítulo 4.

5.1 – Sumário e Conclusões

Neste trabalho a influência de parâmetro como o momento de inércia da roda de reação e o comprimento do painel no comportamento dinâmico de um satélite artificial Rígido-Flexível, em particular no seu grau de apontamento, é investigado. Basicamente, verificou-se que quando o valor do momento de inércia da roda é aumentado o seu nível de rotação diminui e vise versa, isto indica que no primeiro caso a roda tem mais chance de atingir a sua saturarão que no segundo. Quanto à variação do comprimento do painel, verificou-se que quando o painel é maior a estratégia de controle pode ser facilitada devido ao fato do nível de vibração ser menor. Em relação ao ganho, observou-se que há uma melhora significativa quando seu valor é aumentado, então a lei de controle para este caso esta sendo bem desenvolvida. No caso do coeficiente de dissipação dos painéis, pode-se chegar à conclusão que quanto menor seu valor maior são as vibrações dos painéis. Estes resultados são preliminares, entretanto, podem facilitar o projeto de SCA que tenham a tarefa de realizar manobras de atitudes e ao mesmo tempo manter a estabilidade e a forma estática da estrutura flexível, a fim de assegurar o ambiente de micro gravidade e/ou o grau de apontamento da missão.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] DE SOUZA, L.C.G.; SILVA, S. A., "Vibration Control of a Rigid-Flexible Satellite During Attitude Maneuver". Proceeding of the do 17th Biennial Conference on Mechanical Vibration and Noise - ASME, 12-16, September, Las Vegas, Nevada, USA, 1999.

[2] SILVA, A. R.; SCHÄFER, B.; DE SOUZA, L. C. G.; FONSECA, R. A., "Integrated Linear and Non-linear Parameters Identification for Space Robot Dynamics". *IAF* - 51st International Astronautical Congress. Out. 2000 - Rio de Janeiro, Brazil

[3] SILVA, A.R.; DE SOUZA, L.C.G. "Control System Flexible Satellite Interaction During Orbit Transfer Maneuver". Published by American Astronautical Society (AAS) in Advances in the Astronautical Sciences, Vol. 100 Part I, pp. 541-550, paper AAS 98-343, Ed. Thomas H. Stengle, USA, 1998. ISBN 0-87703-453-2

[4] SILVA, A R., SCHÄFER, B., DE SOUZA, L.C.G., "Identification and Sensor Failure Detection Algorithms Applied to Space Robotic Joint". XI CBDO, 04-08 november, Viçosa - MG, 2002, Brazil.

[5] FENILI. A; DE SOUZA, L.C.G.; GÓES, L.C.S.; BALTHAZAR, J.M., "Investigation of Resonances on a Harmonically Forced Non-Linear Slewing Beam", Proceeding of the 10th Australian International Aerospace Congress – AIAC 2003, Edited by David J Mee, August, Brisbane – Australia, 2003. ISBN 085-825-733-5.

[6] GÓES, L.C.S.; NEGRÃO, R.G.; FENILI, A; DESOUZA, L.C.G.; BALTHAZAR, J.M., "Non-linear dynamics Modelling, Identification and Control of a Slewing Flexible Structure", Proceeding of the 54th International Astronautical Congress – IAC, September 29 – octuber3, Bremen, Germany, 2003.

[7] SILVA, A.R.; DE SOUZA, L.C.G.; SCHÄFER, B., "Integrated Identification and Sensor Failure Detection for Space Robotic Joint", Proceedings of the X International Symposium on Dynamic Problems of Mechanics – DINAME 10-14th March 2003, Ubatuba – SP – Brazil. Edited by P.R.G. Kurka and A.T. Fleury.

[8] DA SILVA, L.B.S.; DE SOUZA, L.C.G., "Estudo da Influência dos Parâmetros de um Satélite Rígido-Flexível, no seu Comportamento Dinâmico", IV Congresso Temático de Dinâmica, Controle e Aplicações – DINCON'2005, 06 à 10 de junho de 2005, Unesp – Bauru – SP – Brasil.