

INPE-13001-PRE/8278

CONTROLE NÃO LINEAR DE UMA ESTRUTURA FLEXÍVEL (CURVATURA LINEAR) CONSIDERANDO FONTE DE POTÊNCIA IDEAL E NÃO IDEAL

José Eduardo S. Ribeiro*

*Bolsista UNITAU

Relatório Final de Projeto de Iniciação Científica (PIBIC/CNPq/INPE), orientado pelo Dr. André Fenili

INPE São José dos Campos 2005

CONTROLE NÃO LINEAR DE UMA ESTRUTURA FLEXÍVEL (CURVATURA LINEAR) CONSIDERANDO FONTE DE POTÊNCIA IDEAL E NÃO IDEAL

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

José Eduardo S. Ribeiro (UNITAU, Bolsista PIBIC/CNPq) E-mail: j.e.s.ribeiro@uol.com.br

> Dr. André Fenili (DMC/INPE, Orientador) E-mail: fenili@dem.inpe.br

> > Junho de 2005

ÍNDICE

Capítulo 1 – Introdução	4
1.1 – O problema investigado	4
1.2 – Modelo matemático	5
Capítulo 2 – Controle: considerações teóricas	7
Capítulo 3 – Simulações Numéricas: sem perfil de excitação	8
3.1 – Introdução	8
3.2 – Modelo Ideal e Linear	9
3.3 – Modelo Não Ideal e Não Linear	14
3.4 – Análise da faixa de ganhos do controlador	18
3.4.1 – Controlador PD: kp = 1, kd variável	19
3.4.2 – Controlador PD: kd = 1, kp variável	22
3.4.3 – Controlador PD + nl : kp = 1, kd = 1 e knl variável	26
3.4.4 – Simulações com os melhores ganhos	29
3.5 – Controle para grandes deslocamentos angulares: PD +	
saturação	33
Capítulo 4 – Simulações Numéricas: com perfil de excitação	38
4.1 – Introdução	38
4.2 – Resposta do sistema em malha aberta	
4.3 – Resposta do sistema em malha fechada: PD	42
4.4 – Resposta do sistema em malha fechada: PD + nl	45
4.5 – Resposta do sistema em malha fechada variando a tensão elétri	ca no
motor: PD	49
4.6 – Resposta do sistema em malha fechada: PD + saturação	52
4.7 – Resposta do sistema em malha fechada: PD + nl + saturação	56
Capítulo 5 – Conclusões	61
Referencias	62

Trabalhos Publicados	63
Apêndice A: Resumo SICINPE 2005	64
Apêndice B: Artigo Jornada 2005, Unesp - Guaratinguetá	65

Capítulo 1

Introdução

1.1 O problema investigado

Vibrações mecânicas decorrentes de esforços externos são comuns em todos os sistemas físicos e não podem ser negligenciadas. Em estruturas para aplicações espaciais, por exemplo, as vibrações são um fator diretamente ligado à precisão e a segurança das operações realizadas. Em vista disso, é necessário algum tipo de controle para essas estruturas.

Este trabalho utiliza o modelo matemático proposto em [1] e [2]. Nestas referências, as equações governantes do movimento são obtidas utilizando-se o formalismo lagrangeano [3]. Utiliza-se a hipótese de curvatura linear para a viga com duas abordagens distintas quanto a fonte de potência: ideal e não ideal. Na primeira abordagem a dinâmica da viga não influencia o comportamento do motor; geralmente esta hipótese é válida quando a inércia da viga é desprezível quando comparada com a do motor. Na segunda abordagem, a dinâmica da viga pode influenciar o comportamento do motor. Neste caso a excitação sobre a viga é desconhecida. O motor utilizado neste trabalho é um motor de corrente contínua. O sistema estudado neste trabalho pode ser visto na Figura 1.1.

Simulações numéricas são realizadas para determinadas faixas de ganhos do controlador. A lei de controle utilizada neste trabalho é baseada no controlador do tipo proporcional-derivativo (PD) e proporcional-derivativo adicionado de um termo não linear (PD+nl).

Figura 1.1 – Sistema dinâmico composto por uma estrutura flexível do tipo viga acionada por um motor de corrente contínua

Finalmente, utilizando os mesmos controladores, implementa-se um algoritmo de saturação de tensão comparando com as simulações anteriores.

1.2 Modelo Matemático

A abordagem utilizada para a obtenção das equações governantes consiste na aplicação das equações de Lagrange [3]. Adota-se neste trabalho o modelo de viga de Euler-Bernoulli [4].

A estrutura flexível está sujeita a deflexões suficientemente pequenas (pois considera-se a hipótese de curvatura linear) e conduzida por um torque externo aplicado ao eixo de rastreamento (*slewing*) por um motor de corrente contínua. O modelo geométrico dessa figura pode ser visto na Figura 1.2 [1].

Figura 1.2 – Estrutura flexível de rastreamento (planar) curvatura linear [1].

As equações governantes são dadas então por:

$$L_{m}\dot{i}_{a} + R_{a}\dot{i}_{a} + K_{b}N_{g}\dot{\theta} = U$$
(1.1)

$$(I_{eixo} + I_{motor}N_g^2)\ddot{\theta} + (c_m N_g^2)\dot{\theta} - (N_g K_t)i_a - \beta \left(EI\sum_{i=1}^n q_i(t)\phi_j''(0)\right) = 0$$
(1.2)

$$\ddot{q}_{j} + \mu \dot{q}_{j} + w_{j}^{2} q_{j} + \alpha_{j} \ddot{\theta} - \dot{\theta}^{2} q_{j} = 0$$
(1.3)

mais as condições de contorno $\phi''(L,t)=0$, $\phi'''(L,t)=0$.

As equações 1.1 e 1.2 são referentes ao motor e a equação 1.3 é referente a viga.

Na equação 1.2, fazendo $\beta=0$ tem-se o sistema ideal e fazendo $\beta=1$ tem-se o sistema *não ideal*. Também foi adicionado à equação 1.3 o termo $\mu \dot{q}_j$ associado ao amortecimento estrutural da viga.

O termo $\dot{\theta}^2 q_j$ na equação 1.3 é denominado rigidez centrípeta e aparece somente quando a estrutura se encontra em movimento. É um termo não linear cuja importância aumenta quando o sistemas desenvolve grande velocidade de rastreamento, podendo tornar o sistema instável.

Capítulo 2

Controle: considerações teóricas

A lei de controle não linear utilizada neste trabalho é baseada na referência [5] e é dada por:

$$U = -kp(\theta_{ref} - \theta) - kd\dot{\theta} - \gamma knl|\theta|\dot{\theta}$$
(2.1)

onde kp e kd são, respectivamente, os ganhos proporcional e derivativo e knl é o ganho associado ao termo não linear. Quando $\gamma = 0$ tem-se um controlador PD clássico. Quando $\gamma = 1$, adiciona-se um termo não linear definido como *amortecimento variável no tempo* [5].

As equações em malha fechada são dadas por:

$$L_{m}\dot{i}_{a} + R_{a}i_{a} + K_{b}N_{g}\dot{\theta} = -kp(\theta_{ref} - \theta) - kd\dot{\theta} - \gamma knl|\theta|\dot{\theta}$$
(2.2)

$$(I_{eixo} + I_{motor}N_g^2)\ddot{\theta} + (c_m N_g^2)\dot{\theta} - (N_g K_t)i_a - \beta \left(EI\sum_{i=1}^n q_i(t)\phi_i''(0)\right) = 0$$
(2.3)

$$\ddot{q}_{j} + \mu \dot{q}_{j} + w_{j}^{2} q_{j} + \alpha_{j} \ddot{\theta} - \xi \dot{\theta}^{2} q_{j} = 0$$
(2.4)

O efeito de saturação foi incluído visando limitar as amplitudes da tensão de controle. Essas amplitudes estão associadas aos ganhos do controlador PD e PD+nl.

Para a saturação, considera-se:

$$se \begin{cases} U > 0.1V & U = 0.1V \\ -0.1 < U < 0.1 & U = -kp(\theta_{ref} - \theta) - kd\dot{\theta} - \gamma knl|\theta|\dot{\theta} V \\ U < -0.1V & U = -0.1V \end{cases}$$
(2.5)

Os limites da saturação são valores arbitrários escolhidos para este trabalho. Estes valores foram escolhidos tendo em vista aplicações reais.

Capítulo 3

Simulações Numéricas: sem perfil de excitação

3.1 Introdução

Dois tipos de simulação numérica são considerados: no primeiro (Capítulo 3) adota-se uma condição inicial qualquer e o controle é ativado desde o início da simulação, com o objetivo de levar o eixo de rastreamento para a posição $\theta = 0^{\circ}$; no segundo (Capítulo 4) aplica-se um perfil de excitação aos terminais do motor e o controle só é acionado quando a tensão no motor vai para zero e a viga atinge a posição angular desejada.

Para as simulações numéricas utilizou-se o integrador Runge-Kutta de 4ª ordem. Os valores dos parâmetros utilizados constam na tabela 1

Motor DC			Viga (seção reta 0.0150m x 0.0005m)		
Cm	$4.629 * 10^{-3}$	$\frac{\text{Nms}}{\text{rad}}$	L	1.2000	m
Kt	5.281*10 ⁻²	$\frac{\text{Nm}}{\text{A}}$	μ	0.100	$\frac{\text{kg}}{\text{ms}}$
Kb	5.281*10 ⁻²	$\frac{Vs}{rad}$	Е	0.7000*10 ¹¹	$\frac{N}{m^2}$
Lm	3.100 * 10 ⁻³	Н	Ι	1.562 *10 ⁻¹³	m^4
Ra	1.9149520	Ω	ρ	$2.700*10^3$	$\frac{\mathrm{kg}}{\mathrm{m}^3}$
I _{motor}	6.540 * 10 ⁻⁵	kg m ²	w_1	11.3097	rad/s
			φ″(0)	4.8984	
			$\alpha_1 = \int_0^L \mathbf{x} \phi_1 d\mathbf{x}$	0.8210	

Tabela 1 - Valores dos parâmetros do sistema

Dois casos foram estudados neste capítulo: ideal e linear (seção 3.2) e não ideal e não linear (seção 3.3) ambos com controlador PD e PD+nl.

3.2 Modelo Ideal e Linear ($\beta = 0, \xi = 0$)

Para as simulações a seguir foram considerados os seguintes valores: kp = 1, kd = 1 e knl = 1.

Dois tipos de simulação são realizados: (1) com o termo não linear do controlador desativado e (2) com o termo não linear do controlador ativado. Os resultados para cada um desses casos são comparados nas figuras 3.1 a 3.9.

Figura 3.1 – Deslocamento Angular. Ideal e linear.

Figura 3.2 – Velocidade Angular. Ideal e linear.

Figura 3.3 – Velocidade Angular (zoom). Ideal e linear.

Figura 3.4 – Deflexão da viga. Ideal e linear.

Figura 3.5 – Velocidade de deflexão da viga. Ideal e linear.

Figura 3.6 – Tensão elétrica no motor. Ideal e linear.

Figura 3.7 – Tensão elétrica no motor (zoom). Ideal e linear.

Figura 3.8 – Corrente de armadura no motor. Ideal e linear.

Figura 3.9 – Corrente de armadura no motor (zoom). Ideal e linear.

De acordo com a figura 3.4, utilizando o controle linear, a deflexão da viga atinge valores que vão contra o princípio da curvatura linear. Ao utilizar o controlador não linear, as amplitudes de oscilação da viga apresentam valores aceitáveis devido ao novo termo de amortecimento (coeficiente variável) considerado no controlador.

As figuras 3.7 e 3.9 mostram um zoom das figuras 3.6 e 3.8, respectivamente, dos primeiros instantes da ativação do controlador. Pode-se perceber um pico de tensão e corrente, os quais adicionam instabilidade ao sistema. Percebe-se nessas figuras que o esforço de controle é menor para o controlador não linear.

De acordo com a figura 3.4 nota-se que o amortecimento estrutural da viga é pequeno. Como o objetivo do controle é eliminar as vibrações na viga, deve-se aumentar de alguma forma esse amortecimento. Isto pode ser conseguido mudando as características da viga (não tratado neste trabalho) ou permitindo maior interação entre a viga e o motor (modelo não ideal).

É notável o fato que, grandes tensões no motor irão gerar grandes excitações na viga. Então, dependendo da faixa de ganhos escolhida, o comportamento do motor pode levar a viga ao colapso devido a grandes amplitudes de movimento.

3.3 Modelo Não Ideal e Não Linear ($\beta = 1, \xi = 1$)

Os ganhos considerados são os mesmos do seção 3.2.

A diferença principal entre esta simulação e a anterior é o fato que o modelo é agora não ideal, ou seja, o comportamento da viga influencia o comportamento do motor. No modelo não ideal, ao controlar o deslocamento angular do motor atua-se diretamente sobre a viga uma vez que existe uma troca de energia mútua entre as partes que compõe o sistema.

Vale notar também que a simulação do modelo não ideal e linear e não linear e ideal vão ser negligenciadas, pois seu comportamento em pouco difere das simulações aqui realizadas para o conjunto de parâmetros escolhidos.

Figura 3.10 – Deslocamento angular. Não ideal e não linear.

Figura 3.11 – Velocidade Angular. Não ideal e não linear.

Figura 3.12 – Deflexão da viga. Não ideal e não linear.

Figura 3.13 - Velocidade de deflexão da viga. Não ideal e não linear.

Figura 3.14 – Corrente de armadura no motor. Não ideal e não linear.

Figura 3.15 – Tensão elétrica no motor. Não ideal e não linear.

Fica claro as vantagens da aplicação do controle não linear neste caso. O *overshoot* no deslocamento angular foi minimizado, a tensão elétrica requisitada foi menor.

Usando o controlador linear, a viga apresenta uma deflexão da ordem de 63 cm; uma deflexão dessa ordem não está de acordo o tipo de modelagem adotado para a viga. Ao se utilizar o modelo de curvatura linear, supõe-se uma deflexão máxima da ordem de 25% do comprimento total da viga. Pode-se dizer que nesta situação a viga entrou em colapso. Entretanto, ao implementar o controlador não linear, a amplitude de oscilação da viga diminui para um valor em torno de 30 cm, estando na faixa na qual o modelo é válido.

Verifica-se novamente que ao ativar o controle existe um grande pico de tensão. Este pico de tensão pode não ser danoso para o motor, entretanto quando o comportamento da viga é analisado pode-se ver que nos instantes iniciais da simulação é que temos a maior excitação. Após esse momento o controle atua de maneira a eliminar também a vibração da viga. Tem-se então, indiretamente, o controle não somente da posição do motor, mas também da deflexão da viga.

A simulação do modelo não ideal e não linear é facilmente reconhecida como o modelo mais próximo da realidade possível. É neste modelo em que se pode notar a influência da vibração da viga na dinâmica do motor.

A partir desse ponto, todas as simulações são realizadas considerando o modelo não ideal e não linear.

3.4 Análise da faixa de ganhos do controlador

A obtenção analítica dessa faixa de ganho não é um problema simples e não foi abordada neste trabalho.

A solução para este problema foi utilizar um método empírico, fixando um dos ganhos (por exemplo, o derivativo) e variando o outro (no caso, o proporcional), até que o resultado obtido esteja satisfatório. Depois se repete o mesmo procedimento, mudando os parâmetros que são fixos e que variam.

As próximas três seções apresentam o resultado deste estudo.

3.4.1 Controlador PD: kp = 1, kd variável

Nesta seção será feita a análise da resposta do sistema quando somente o ganho derivativo é variado. O ganho *proporcional* é mantido fixo e igual a 1.

Seguem os resultados das simulações.

Figura 3.16 – Deslocamento angular. Não ideal e não linear.

Figura 3.17 – Velocidade Angular. Não ideal e não linear.

Figura 3.18 – Deflexão da viga. Não ideal e não linear.

Figura 3.19 - Velocidade de deflexão da viga. Não ideal e não linear.

Figura 3.20 - Corrente de armadura no motor. Não ideal e não linear.

Figura 3.21 – Tensão elétrica no motor. Não ideal e não linear.

Quanto maior o ganho derivativo mais satisfatório é o resultado: menores amplitudes de deflexão da viga e menor tensão requisitada pelo controlador. Desta forma kd = 5 é o melhor ganho destas simulações.

O único fator que pode ser tomando como não satisfatório é o tempo necessário para que o sistema vá para a posição desejada (origem do sistema de coordenadas) pois tem-se uma baixa velocidade de translação.

3.4.2 Controlador PD: kd = 1, kp variável

O mesmo processo visto na seção anterior será repetido, variando-se o ganho proporcional e mantendo o ganho derivativo igual a 1.

Os resultados das simulações são apresentados a seguir

Figura 3.22 – Deslocamento angular. Não ideal e não linear.

Figura 3.23 – Velocidade angular. Não ideal e não linear.

Figura 3.24 – Deflexão da viga. Não ideal e não linear.

Figura 3.25 - Velocidade de deflexão da viga. Não ideal e não linear.

Figura 3.26 - Corrente de Armadura no motor. Não ideal e não linear.

Figura 3.27 – Tensão elétrica no motor. Não ideal e não linear.

Pode-se concluir que kp = 0.25 apresenta os melhores resultados. No entanto, o mesmo problema relacionado ao tempo de acomodação da resposta verificado na seção anterior é observado aqui para o deslocamento angular do motor.

3.4.3 Controlador PD + nl : kp = 1, kd = 1 e knl variável

No caso que segue, os ganhos derivativo e proporcional estão fixos em 1, e será feita a variação do ganho do controlador não linear.

Os resultados obtidos aqui são plotados contra os resultados obtidos para controlador PD linear (com kp = 1 e kd = 1).

Figura 3.28 – Deslocamento angular. Não ideal e não linear.

Figura 3.29 - Velocidade angular. Não ideal e não linear.

Figura 3.30 – Deflexão da viga. Não ideal e não linear.

Figura 3.31 – Velocidade de deflexão da viga. Não ideal e não linear.

Figura 3.32 – Corrente de armadura no motor. Não ideal e não linear.

Figura 3.33 – Tensão elétrica no motor. Não ideal e não linear.

Observa-se que um aumento do ganho não linear fornece melhores resultados: diminui-se a deflexão da viga e elimina-se o *overshoot* no deslocamento angular do motor. No entanto, o pico de tensão no início da simulação aumenta considerávelmente.

É possível variar knl até o valor 17, embora o pico de tensão seja sempre um limitante. Mas, ao ultrapassar o valor 17, o sistema é levado ao colapso, pois o termo não linear se torna mais significativo.

3.4.4 Simulações com os melhores ganhos

As simulações a seguir são feitas com os valores dos ganhos obtidos pelas análises realizadas nas seções 3.4.1, 3.4.2 e 3.4.3, ou seja:

$$kp = 0.25$$

 $kd = 5.00$
 $knl = 2.00$

e serão contrastadas com uma simulação supondo ganhos proporcional, derivativo e não linear iguais a 1.

Figura 3.34 – Deslocamento angular. Não ideal e não linear.

Figura 3.35 – Velocidade angular. Não ideal e não linear.

Figura 3.36 – Deflexão da viga. Não ideal e não linear.

Figura 3.37 - Velocidade de deflexão da viga. Não ideal e não linear.

Figura 3.38 – Corrente de armadura no motor. Não ideal e não linear.

Figura 3.39 – Tensão elétrica no motor. Não ideal e não linear.

Tomando os ganhos unitários como referência, constata-se que os ganhos encontrados apresentam um bom resultado com pequenas deflexões na viga e menor esforço de controle. Entretanto vale notar que o tempo de estabilização do sistema é muito maior para o deslocamento angular conforme observado na figura 3.34. Por essa razão, a partir desse ponto, as simulações utilizam todos os ganhos iguais a 1.

3.5 Controle para grandes deslocamentos angulares: PD + saturação

Até agora a condição inicial do sistema era 3 rad e o objetivo do controlador era levar o eixo do motor para a origem do sistema de coordenadas. Neste caso pequenos deslocamentos angulares estão envolvidos. Devido a estas condições espera-se que a não linearidade (referente ao termo de rigidez centrípeta) não tenha tempo de se manifestar de maneira influente. A partir de agora grandes deslocamentos angulares são considerados.

As primeiras simulações com estas novas condições nos mostram que a tendência do controlador é aumentar muito a velocidade angular para atingir o objetivo mais rapidamente aumentando a importância do termo não linear.

A solução encontrada para limitar a tensão elétrica no motor foi a implementação da saturação desta tensão, conforme as expressões em 2.5.

Este método consiste em definir uma faixa na qual o controle pode ser aplicado. Se o valor de tensão exceder o limite máximo ou mínimo dessa faixa, a tensão de saída será fixada no valor máximo ou mínimo, respectivamente.

A limitação da tensão de controle implica na limitação da velocidade angular do motor e, conseqüentemente, na limitação da influência do termo não linear.

Os parâmetros da simulação são kp = 1 e kd = 1. O controlador não linear não é utilizado nestas simulações.

O motor irá partir sempre da origem do sistema e deverá atingir 180°.

Figura 3.40 – Deslocamento Angular. Não ideal e não linear.

Figura 3.41 – Velocidade angular. Não ideal e não linear.

Figura 3.42 – Deflexão da viga. Não ideal e não linear.

Figura 3.43 – Velocidade de deflexão da viga. Não ideal e não linear.

Figura 3.44 - Corrente de armadura no motor. Não ideal e não linear.

Figura 3.45 - Tensão elétrica no motor. Não ideal e não linear.

Nota-se que esta nova abordagem (PD + saturação) bastante eficiente. O sistema consegue manter a velocidade angular suficientemente baixa. A viga apresenta uma pequena deflexão (da ordem de aproximadamente 8cm).

Devido ao fato da velocidade angular ter sido indiretamente controlada o termo não linear teve influencia desprezível no comportamento do sistema. Foram realizadas simulações (aqui não demonstradas) as quais se comparam o comportamento do sistema linear e não linear. As respostas são praticamente as mesmas, apresentando pouca variação.

Pode-se afirmar que a estratégia de saturação da tensão pode diminuir ou eliminar a influencia do termo não linear, desde que as tensões limites sejam pequenas o suficiente.

Capítulo 4

Simulações Numéricas: com perfil de excitação

4.1 Introdução

Nas simulações do capítulo anterior, supõe-se uma condição inicial para a posição do motor e o controle atua de maneira a levar o motor para uma posição prédeterminada. O controle é acionado desde o início da simulação.

Um perfil de excitação é agora aplicado no motor e, após 5 segundos, o controlador é acionado. A função do controlador é, neste caso, manter a posição do eixo do motor em torno da posição na qual ele se encontra ao final da excitação e, indiretamente, eliminar a vibração na viga.

A idéia por trás dessas simulações é que já se tenha um conhecimento prévio do perfil de tensão necessário para se atingir uma determinada posição angular, ou seja, supõe-se que um estudo de cinemática inversa tenha sido desenvolvido anteriormente. Este estudo não é apresentado aqui. Deve-se então implementar um controlador, de maneira que o sistema se mantenha na posição desejada.

Todas as simulações apresentadas aqui são para a hipótese não ideal e não linear ($\beta = 1, \xi = 1$).

Utiliza-se neste capítulo os controladores PD, PD+nl e PD+saturação e PD+nl+saturação.

4.2 Resposta do sistema em malha aberta

Nas simulações a seguir será feita a análise do comportamento do sistema em malha aberta. O perfil de excitação é apresentado na figura 4.6.

Os resultados são apresentados a seguir.

Figura 4.1 – Deslocamento angular. Não ideal e não linear.

Figura 4.2 – Velocidade angular. Não ideal e não linear.

Figura 4.3 – Deflexão da viga. Não ideal e não linear.

Figura 4.4 – Velocidade de deflexão da viga. Não ideal e não linear.

Figura 4.5 - Corrente de armadura no motor. Não ideal e não linear.

Figura 4.6 – Tensão elétrica no motor. Não ideal e não linear.

O sistema apresenta pequena deflexão na viga, baixa velocidade angular.

Este sistema em malha aberta não tem aplicação prática, pois assim que o motor é desligado a inércia do sistema (principalmente da viga) faz com que este se mova por mais algum tempo.

4.3 Resposta do sistema em malha fechada : PD

Nestas simulações implementou-se um controlador PD com ganhos proporcional e derivativo iguais a 1.

Os resultados das simulações nestas condições podem ser vistos a seguir.

Figura 4.7 - Deslocamento angular. Não ideal e não linear.

Figura 4.8 – Velocidade Angular. Não ideal e não linear.

Figura 4.9 – Deflexão da viga. Não ideal e não linear.

Figura 4.10 – Velocidade de deflexão da viga. Não ideal e não linear.

Figura 4.11 - Corrente de armadura no motor. Não ideal e não linear.

Figura 4.12 – Tensão elétrica no motor. Não ideal e não linear.

Como visto nas simulações anteriores (Capítulo 3), existe um pico de tensão no instante em que o controlador é acionado o que provoca vibrações indesejáveis na viga; Essas vibrações apresentam amplitudes coerentes com a teoria de viga aplicada.

4.4 Resposta do sistema em malha fechada: PD + nl

Para estas simulações utilizou-se kp = kd = knl = 1. Os resultados desta simulação são comparados com os resultados utilizando um controlador PD (kp=1 e kd = 1).

Figura 4.13 – Deslocamento angular. Não ideal e não linear.

Figura 4.14 – Velocidade angular. Não ideal e não linear.

Figura 4.15 – Deflexão da viga. Não ideal e não linear.

Figura 4.16 – Velocidade de deflexão da viga. Não ideal e não linear.

Figura 4.17 – Corrente de armadura no motor. Não ideal e não linear.

Figura 4.18 – Tensão elétrica no motor. Não ideal e não linear.

Ao contrário dos resultados apresentados no capítulo 3, ao ser adicionado o termo não linear obteve-se resultados piores para a viga, corrente e tensão elétrica do que os resultados com o controlador PD. Os únicos estados que obtiveram uma melhora no comportamento foram o deslocamento e velocidade angular, o qual obteve menor amplitude de movimento antes de se estabilizar.

Isso se deve provavelmente às condições iniciais no momento em que o controle é ativado. Esses estados provocam um pico de tensão, o qual é aumentado quando se ativa o controlador não linear.

4.5 Resposta do sistema em malha fechada variando a tensão elétrica no motor: PD

O controlador utilizado nesta situação será o PD com kp e kd iguais a 1. Duas condições são estudadas: na *condição 1* tem-se tensão máxima de 0.3 V enquanto na *condição 2* considera-se tensão máxima de 0.5 V. Dessa maneira aumenta-se a velocidade angular do eixo do motor, aumentando a influência do termo não linear.

Figura 4.19 – Deslocamento angular. Não ideal e não linear.

Figura 4.20 – Velocidade angular. Não ideal e não linear.

Figura 4.21 – Deflexão da viga. Não ideal e não linear.

Figura 4.22 - Velocidade de deflexão da viga. Não ideal e não linear.

Figura 4.23 - Corrente de armadura no motor. Não ideal e não linear.

Figura 4.24 – Tensão elétrica no motor. Não ideal e não linear.

Verifica-se que nestas condições o controle atua de maneira satisfatória a eliminar as vibrações do sistema.

Nas condições analisadas verificou-se que o controlador funciona para tensão máxima de até 0.9V. Após este valor o sistema se torna instável (as amplitudes da resposta crescem indefinidamente).

4.6 Resposta do sistema em malha fechada: PD + saturação

Conforme observado nas seções 4.1 a 4.5, ao ativar o controle verifica-se um pico de tensão elétrica no motor. Análogo à seção 3.5, a solução escolhida para solucionar este problema é a utilização de um algoritmo saturação da tensão elétrica.

O funcionamento do algoritmo de saturação utilizado aqui é ligeiramente diferente daquele apresentado anteriormente. O valor da tensão elétrica fornecida pelo controlador é comparado com os valores limite de ± 0.1 V. Caso o valor da tensão exceda qualquer um desses limites, seu valor será igual ao deste limite. Caso a tensão se encontre entre os valores limite, o valor calculado é mantido. Considera-se também que

o valor de saturação é mantido por 0.01s. Caso esse tempo seja superado, a tensão terá seu sinal invertido (por exemplo, caso o sinal de saturação seja de 0.1V por mais de 0.01s, no próximo passo de integração o valor de saturação muda para -0.1V).

Com a utilização deste método elimina-se o pico de tensão. Os resultados são apresentados a seguir. O controlador possui ganhos proporcional e derivativo iguais a 1.

Figura 4.25 – Deslocamento angular. Não ideal e não linear.

Figura 4.26 – Velocidade angular. Não ideal e não linear.

Figura 4.27 – Deflexão da viga. Não ideal e não linear.

Figura 4.28 – Velocidade de deflexão da viga. Não ideal e não linear.

Figura 4.29 - Corrente de armadura no motor. Não ideal e não linear.

Figura 4.30 – Tensão elétrica no motor. Não ideal e não linear.

O tempo para o motor se atinja o valor desejado é praticamente o mesmo, entretanto o overshoot é maior, devido ao fato do controlador não poder solicitar uma maior tensão. Consegue-se então uma grande melhora em relação ao controlador PD sem saturação, pois o motor não é solicitado em excesso e obtivemos uma melhora no comportamento da viga.

4.7 Resposta do sistema em malha fechada: PD + nl + saturação

Na seção 4.4 foi constatado que a adição do termo não linear ao controle não apresenta melhores resultados. Uma das razões para isso é o pico de tensão apresentado na ativação do controle.

Conforme visto na seção 4.5 um algoritmo de saturação de tensão pode ser aplicado, de maneira que a tensão solicitada pelo controlador sempre se restrinja a uma faixa limitante.

Utiliza-se agora um controlador PD + nl + saturação o qual será comparado com um controlador PD + saturação. Utiliza-se os ganhos kp = kd = knl = 1.

Figura 4.31 – Deslocamento angular. Não ideal e não linear.

Figura 4.32 – Velocidade angular. Não ideal e não linear.

Figura 4.33 – Deflexão da viga. Não ideal e não linear.

Figura 4.34 – Velocidade de deflexão da viga. Não ideal e não linear.

Figura 4.35 – Corrente de armadura no motor. Não ideal e não linear.

Figura 4.36 – Tensão elétrica no motor. Não ideal e não linear.

Obteve-se com a implementação do controlador PD + nl + saturação uma melhor resposta do sistema em relação ao controlador PD + saturação.

Vale lembrar que esses resultados podem variar ao mudar os limites de saturação. Os estudo da variação desses limites não foi realizado nesse trabalho.

Capítulo 5

Conclusões

Neste trabalho são investigados controladores não lineares do tipo PD + nl, PD + saturação e PD + nl + saturação. Os resultados da aplicação destes foram comparados com aqueles obtidos com um controlador PD. Nos controladores não lineares, nl representa o termo $\text{knl}|\theta|\dot{\theta}$. Este termo pode ser compreendido como um amortecimento variável no tempo. O objetivo principal é eliminar as vibrações da viga atuando somente na dinâmica do motor.

As vantagens da implementação de um controlador não linear para o sistema investigado são evidentes, conforme mostram as simulações numéricas apresentadas.

Conforme visto no capítulo 4, a implementação do controlador não linear (sem saturação) pode ocasionar instabilidade no sistema. A razão principal para este problema é o pico de tensão elétrica no motor no instante em que é ativado o controle.

O controlador PD, quando utilizado o modelo não ideal, conseguiu atuar satisfatoriamente sobre a viga, atenuando a oscilação desta. Isto não ocorre para o modelo ideal. Para o caso não ideal, devido a troca mútua de energia entre a viga e o motor é possível atuar mais diretamente sobre a viga.

Picos de tensão elétrica excitam a viga, aumentando a amplitude da deflexão de maneira a invalidar o modelo de curvatura linear adotado. A implementação do controle não linear possibilita a diminuição dessa amplitude.

Um algoritmo de saturação de tensão foi proposto com o intuito de eliminar os picos de tensão elétrica anteriormente citados. Eliminados os picos, tem-se menores excitações sobre a viga e menor velocidade angular. Com esta menor velocidade angular a influencia do termo não linear (associado à rigidez centrípeta) diminui. Este efeito de saturação de tensão elétrica é um tema a ser aprofundado.

Referencias

- [1] Fenili, A., "Modelagem matemática e análise dos comportamentos ideal e não ideal de estruturas flexíveis de rastreamento", Tese de Doutorado financiada pela Fapesp e defendida em dezembro de 2000 pela Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas (UNICAMP).
- [2] Rezende, C. P., Fenili, A., Souza, L. C. G., Balthazar, J. M., "Modelagem e Controle de Estruturas Flexíveis de Rastreamento Ideal e Não Ideal: Caso Linear", DINCON 2004 - III Congresso Temático de Dinâmica, Controle e Aplicações - 31 de maio a 03 de junho de 2003, Ilha Solteira, SP, Brasil.
- [3] Craig, Jr., R. R., "Structural dynamics An introduction to computer methods", John Wiley and Sons, 1981.
- [4] Popov, E. P., "Introdução à mecânica dos sólidos", Editora Edgar Blücher Ltda, 1978.
- [5] Inman, D. J., Rietz, R. W. "Comparison of Linear and Nonlinear Control of a Slewing Beam", Journal of Vibration and Control, 6: 309-322, 2000. Sage Publications.

Trabalhos Publicados

Ribeiro, J. E. S., Fenili, A., "Controle não linear de estruturas flexíveis. (Abordagem Ideal e Não Linear)". SICINPE: Seminário de Iniciação Científica do INPE. 03-04 de agosto, 2004. Categoria: Pôster

Resumos enviados:

Ribeiro, J. E. S., Fenili, A., "Controle não linear de uma estrutura flexível (curvatura linear) considerando fonte de potência ideal e não ideal". SICINPE: Seminário de Iniciação Científica do INPE. 03-04 de agosto, 2005.

Ribeiro, J. E. S., Fenili, A., "Controle não linear com saturação de tensão de uma estrutura flexível considerando uma fonte de potência não ideal". Jornada 2005: Jornada de Iniciação Científica e Pós-Graduação, Unesp Guaratinguetá. De 22 a 26 de agosto, 2005.

Apêndice A

Resumo

Resumo enviado para SICINPE: Seminário de Iniciação Científica do INPE. 03-04 de agosto, 2005

Controle não linear de uma estrutura flexível (curvatura linear) considerando fonte de potência ideal e não ideal

Aluno: José Eduardo Silva Ribeiro Unitau / Departamento de Engenharia Mecânica

> Orientador: Dr. André Fenili INPE / DMC

O objetivo deste trabalho é utilizar uma técnica de controle não linear com o intuito de controlar a posição angular e a vibração de uma estrutura flexível (curvatura linear). A lei de controle em questão é dada por um controlador do tipo PD adicionado de um termo não linear. Este termo não linear representa um amortecimento variável no tempo e, com sua adição ao controlador, obtém-se uma melhora no desempenho do sistema. As abordagens de sistema ideal e sistema não-ideal são utilizadas para a investigação da interação atuador-estrutura. Na abordagem ideal existe uma troca de energia entre o motor e a viga, mas o comportamento da viga não influencia a dinâmica do motor. Na abordagem não ideal existe uma troca mútua de energia entre o motor e a viga. Um motor de corrente contínua atua sobre a estrutura flexível e, supondo a abordagem não ideal, é possível indiretamente eliminar as vibrações desta. Este tipo de sistema é denominado sub-atuado, uma vez que não se atua diretamente sobre os estados da estrutura a ser controlada. Uma vez que as tensões de controle mostraram-se muito altas para aplicações reais (picos de tensão são gerados quando o controlador é acionado), um algoritmo de saturação de tensão foi implementado na malha de maneira a limitar os valores de tensão elétrica que podem ser solicitadas pelo controlador. Simulações numéricas são realizadas e os resultados obtidos nas diferentes estratégias de controle são comparados.

Apêndice B

Artigo enviado para Jornada 2005: Jornada de Iniciação Científica e Pós-Graduação, Unesp Guaratinguetá. De 22 a 26 de agosto, 2005.

CONTROLE NÃO LINEAR COM SATURAÇÃO DE UMA ESTRUTURA FLEXÍVEL CONSIDERANDO FONTE DE POTENCIA NÃO IDEAL

Autor: José Eduardo Silva Ribeiro

UNITAU - Universidade de Taubaté (Departamento de Engenharia Mecânica) Rua Daniel Danelli, s/n (Campus da Juta) – CEP: 12060-440 Taubaté, SP – Brasil. e-mail: <u>j.e.s.ribeiro@uol.com.br</u>

Orientador: Prof. Dr. André Fenili

INPE – Instituto Nacional de Pesquisas Espaciais (Divisão Mec. Espacial e Controle) Av. dos Astronautas, 1758 – CEP: 12227-010 São José dos Campos, SP
e Prof. Visitante na UNITAU - Universidade de Taubaté (Departamento de Engenharia Mecânica) Rua Daniel Danelli, s/n (Campus da Juta) – CEP: 12060-440 Taubaté, SP – Brasil. e-mail: <u>fenili@dem.inpe.br</u>

RESUMO

Neste trabalho investiga-se o comportamento de uma estrutura flexível do tipo viga acoplada a um motor DC e que realiza movimento de rastreamento (*slewing*). A estrutura flexível é modelada considerando a hipótese de curvatura linear. Para a obtenção das equações governantes do movimento utiliza-se o formalismo lagrangeano. Um termo não linear é obtido nas equações do movimento. Considera-se a hipótese de sistema não ideal, aonde existe uma troca mútua de energia entre o motor e a viga (a dinâmica de um influencia a dinâmica do outro e vice-versa). O objetivo desse trabalho é a implementação de uma estratégia de controle não linear. Esta estratégia consiste na adição de um termo não linear (representado por um amortecimento variável no tempo) a um controlador PD clássico. Utiliza-se também um algoritmo de saturação com o intuito de se evitar picos indesejáveis de tensão elétrica no motor. Com o uso desses dois procedimentos busca-se não somente o controle da posição angular do eixo do motor como também o controle indireto da deflexão da viga, uma vez que não se atua diretamente sobre esta.

INTRODUÇÃO

Neste trabalho, estuda-se o comportamento dinâmico de uma viga flexível em movimento de rastreamento (*slewing*). Este tipo de movimento é o mesmo realizado por uma porta em torno das dobradiças. Considera-se a hipótese de curvatura linear, onde se permitem apenas pequenas deflexões da viga (da ordem de, no máximo, 20% do comprimento total da viga).

A viga em questão está acoplada a um motor DC. Considera-se a hipótese de sistema não ideal [1]. Nesta hipótese, o motor atua sobre a viga e a viga atua sobre o motor. Portanto, caso a posição angular do eixo do motor seja controla, indiretamente pode-se controlar a deflexão da viga.

Em [2] e [3], utiliza-se as Equações de Lagrange [4] para a obtenção das equações governantes do movimento. A viga é modelada utilizando o modelo de Euler-Bernoulli [5]. Um termo não linear aparece nas equações governantes e é devido à rigidez centrípeta. Esta não linearidade será tão forte quanto maior for a velocidade angular do motor.

Para a lei de controle será utilizado o controlador Proporcional Derivativo (PD) adicionado de um termo não linear. Este termo consiste em um amortecimento variável no tempo. O controlador não linear será referenciado PD+nl.

Em adição ao controlador não linear citado, utiliza-se também um algoritmo de saturação de tensão. Este algoritmo tem como objetivo eliminar eventuais picos de tensão gerados pelo controlador. Ao se limitar a tensão, limita-se também a velocidade angular, minimizando a influência do termo não linear.

MODELO MATEMÁTICO

O modelo matemático utilizado neste trabalho é obtido em [2] e [3]. A estrutura flexível é conduzida por um torque externo aplicado ao eixo de rastreamento pelo motor de corrente contínua. Um esquema do sistema investigado é apresentado na Figura 1.1

Figura 1.1 – Estrutura flexível em movimento de rastreamento

As equações governantes do movimento (em malha aberta) são [2]:

$$L_{m}\dot{i}_{a} + R_{a}\dot{i}_{a} + K_{b}N_{g}\dot{\theta} = U$$
(1.1)

$$(I_{eixo} + I_{motor} N_g^2) \ddot{\theta} + (c_m N_g^2) \dot{\theta} - (N_g K_t) i_a - \beta \left(EI \sum_{i=1}^n q_j(t) \varphi_j''(0) \right) = 0$$
(1.2)

$$\ddot{q}_{j} + \mu \dot{q}_{j} + w_{j}^{2} q_{j} + \alpha_{j} \ddot{\theta} - \xi \dot{\theta}^{2} q_{j} = 0$$

$$(1.3)$$

As equações 1.1 e 1.2 referem-se ao motor e a equação 1.3 refere-se à viga.

Nessas equações, L_m representa a indutância do motor, R_a representa a resistência de armadura do motor, K_b representa a constante de força contra-eletromotriz do motor, U representa a tensão elétrica nos terminais do motor, I_{eixo} representa a inércia associada ao eixo do motor, I_{motor} representa a inércia das partes internas do motor, C_m representa o atrito interno do motor, K_t representa a constante de torque do motor, E representa o módulo de Young da viga, I representa a inércia da seção transversal da viga, q_j representa cada um dos modos de vibração da viga, μ representa o amortecimento estrutural da viga, w_j representa cada uma das freqüências naturais da viga, ϕ_j representa cada uma das formas de vibrar da viga (modos assumidos), N_g representa a relação de transmissão entre a viga e o motor.

O termo não linear $\dot{\theta}^2 q_j \dot{e}$ denominado rigidez centrípeta. A importância deste termo aumenta com o

aumento da velocidade angular do motor.

O termo $\mu \dot{q}_j$ foi adicionado posteriormente às equações governantes com o intuito de representar o amortecimento estrutural da viga.

Na equação 1.2, fazendo $\beta = 0$ tem-se o modelo ideal, comumente encontrado na literatura, onde existe uma influencia do motor na viga, mas o comportamento desta não influencia o motor. Fazendo $\beta = 1$ o modelo torna-se não ideal e existe uma troca mútua de energia entre a viga e o motor.

Na equação 1.3, fazendo $\xi = 0$ tem-se um modelo matemático linear; fazendo $\xi = 1$ tem-se o modelo não linear.

O modelo matemático não linear e não ideal é mais completo e é o que mais se aproxima da realidade. O termo não linear pode ser pouco ou bastante excitado mas estará sempre lá. Independente das dimensões da viga e das dimensões do motor, sempre haverá alguma reação da primeira sobre o segundo caso a viga apresente alguma deflexão.

Nas simulações aqui realizadas faz-se $\beta = 1$ e $\xi = 1$.

CONTROLE NÃO LINEAR

Conforme mencionado anteriormente, a lei de controle adotada é a lei linear PD adicionada de um termo não linear, PD+nl. A equação 1.4 apresenta esta lei de controle não linear, baseada em [6].

$$\mathbf{U} = -\mathbf{k}\mathbf{p}(\boldsymbol{\theta}_{\text{ref}} - \boldsymbol{\theta}) - \mathbf{k}d\boldsymbol{\theta} - \boldsymbol{\psi}\mathbf{k}\mathbf{n}|\boldsymbol{\theta}|\boldsymbol{\theta}$$
(1.4)

onde kp e kd são, respectivamente, os ganhos proporcional e derivativo e knl é o ganho não linear. Fazendo $\psi = 0$ tem-se o controlador PD clássico e fazendo $\psi = 1$ tem-se o controlador PD + nl. As equações do sistema em malha fechada são obtidas substituindo (1.4) em (1.1).

O procedimento de saturação da tensão elétrica no motor foi implementado visando a eliminação de picos de tensão ou de valores muito altos associados a determinados valores de ganho do controlador.

A saturação é representada por:

$$\begin{cases} U > 0.1V & U = 0.1V \\ -0.1 < U < 0.1 & U = -kp(\theta_{ref} - \theta) - kd\dot{\theta} - \psi kn ||\theta| \dot{\theta} V \\ U < -0.1V & U = -0.1V \end{cases}$$
(1.5)

Sempre que a tensão elétrica exceder os limites de ± 0.1 V o valor da tensão é chaveado para um dos valores limitantes. A partir do momento em que o valor calculado de tensão estiver dentro dos limites de saturação, o valor calculado é mantido.

Duas diferentes abordagens podem ser consideradas. Na primeira, a tensão elétrica se mantém saturada por um tempo ilimitado, até o valor calculado estar dentro da faixa de saturação. Na segunda, o valor de saturação não pode se manter por mais de um determinado tempo (0.1s, por exemplo). Após este tempo, no próximo passo de integração o valor da tensão elétrica terá seu sinal trocado. Ou seja, caso permaneça em +0.1V por 0.1s, no próximo passo a tensão elétrica terá seu valor chaveado para -0.1V e vice-versa. Isso ocorrerá até o valor da tensão cair dentro da faixa de saturação. Estes limites de tensão são arbitrários para esta investigação, embora escolhido visando aplicações reais.

CONSTANTES DO SISTEMA

Os valores considerados nas simulações numéricas são apresentados na Tabela 1.1 [3].

Motor DC			Viga (seção reta 0.0150m x 0.0005m)		
Cm	4.629*10 ⁻³	$\frac{\text{Nms}}{\text{rad}}$	L	1.2000	m
Kt	5.281*10 ⁻²	$\frac{Nm}{A}$	μ	0.100	$\frac{\text{kg}}{\text{ms}}$
Kb	5.281*10 ⁻²	$\frac{Vs}{rad}$	Е	0.7000*10 ¹¹	$\frac{N}{m^2}$
Lm	$3.100*10^{-3}$	Н	Ι	1.5625*10 ⁻¹³	m ⁴
Ra	1.9149520	Ω	ρ	2.700*10 ³	$\frac{kg}{m^3}$
I_{motor}	6.540*10 ⁻⁵	kg m ²	w_1	11.3097	rad/s
			φ"(0)	4.8984	
			$\alpha_1 = \int_0^L x \phi_1 \boldsymbol{d} x$	0.8210	

Tabela 1.1 - Constantes do sistema

SIMULAÇÕES NUMÉRICAS: SEM PERFIL DE EXCITAÇÃO

Nas simulações a seguir, a viga encontra-se na origem do sistema de coordenadas e deverá deslocar-se até a posição de 180°.

Utiliza-se o controlador PD e o controlador PD+nl e os resultados são comparados. Em ambos os casos é incluída a saturação de tensão.

Os ganhos utilizados para estas simulações são kp = kd = knl = 1.

Figura 1.2 - Tensão elétrica no motor

Figura 1.3 - Corrente elétrica no motor

Figura 1.4 – Deslocamento angular

Figura 1.5 – Velocidade angular

Figura 1.6 – Deflexão da viga

Figura 1.7 - Velocidade de deflexão da viga

Conforme observado nas figuras 1.2 a 1.7, o controle PD+nl apresenta melhores resultados quando comparado ao controlador PD.

Nota-se que com a adição do termo não linear ao controle as amplitudes de deflexão da viga sofrem uma considerável diminuição; a freqüência de vibração da viga aumenta. Nota-se também um aumento do tempo de descaimento da amplitude da vibração da viga.

Com a adição do termo não linear ao controlador elimina-se o *overshoot* no deslocamento angular do motor, diminui-se o tempo de saturação (conforme pode ser visto na figura 1.2) e a amplitude da tensão elétrica solicitada. Enquanto o sistema se encontra saturado, como pode ser visto nas figuras 1.2 a 1.7, o comportamento para ambos os casos é idêntico.

SIMULAÇÕES NUMÉRICAS: COM PEFIL DE EXCITAÇÃO

Nas simulações a seguir, o sistema é submetido a um perfil de tensão e o controle atua no sentido de eliminar as vibrações na viga (indiretamente através do motor) a partir do instante em que o motor pára.

O perfil de tensão prescrito tem por objetivo conduzir o eixo do motor para $\theta = 80^{\circ}$ (supõe-se que este perfil e valor tenham sido previamente obtidos por meio da cinemática inversa).

Figura 1.8 - Tensão elétrica no motor

Figura 1.9 - Corrente elétrica no motor

Figura 1.10 - Deslocamento angular

Figura 1.11 - Velocidade angular

Figura 1.12 – Deflexão da viga

Figura 1.13 - Velocidade de deflexão da viga

O controle começa a atuar no sentido de controlar a posição angular do motor a partir de t=5s. Parte da vibração que o controle busca eliminar no eixo do motor advém da vibração da própria viga. Desta forma, pode-se também atuar sobre a estrutura flexível. Em malha aberta, o sistema continua a se deslocar por ação da inércia mesmo após o motor ser desligado (ver figura 1.10).

Nota-se que com a utilização do controlador PD+nl diminui-se o tempo de saturação.

Com a adição do termo não linear ao controlador PD, aumenta-se a freqüência de vibração da viga embora, ao mesmo tempo, diminui-se a amplitude de movimento da mesma, o que é o objetivo primordial.

CONCLUSÕES

Pode-se concluir que a lei de controle não linear obtida por meio da adição de um termo não linear (representando um amortecimento variável no tempo) à lei de controle PD clássica apresenta melhores resultados quando comparada à lei de controle linear (PD). Vale ressaltar que o sistema sob investigação é sub-atuado, uma vez que não se está atuando diretamente sobre a viga (ou, de outra forma, uma vez que não se está realimentando os estados da viga).

Conforme foi verificado, é possível controlar satisfatoriamente a vibração da viga de maneira indireta e sem o conhecimento dos estados desta. Isso é válido para o caso não ideal.

A saturação possibilita a limitação da velocidade de deslocamento do eixo do motor e, conseqüentemente, faz com que a viga apresente pequenas deflexões, o que, em última análise, mantém o termo não linear associado à rigidez centrípeta sob controle (ou negligenciável).

REFERÊNCIAS

[1] Kononenko, V. O., "Vibrating systems with a limited power supply", Iliffe Books Ltd., 1969.

[2] Fenili, A., "Modelagem matemática e análise dos comportamentos ideal e não ideal de estruturas flexíveis de rastreamento", Tese de Doutorado financiada pela Fapesp e defendida em dezembro de 2000 pela Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas (UNICAMP).

[3] Rezende, C. P., Fenili, A., Souza, L. C. G., Balthazar, J. M. "Modelagem e Controle de Estruturas Flexíveis de Rastreamento Ideal e Não Ideal: Caso Linear", DINCON 2004, III Congresso Temático de Dinâmica, Controle e Aplicações 31 de maio a 03 de junho de 2003, Ilha Solteira, SP, Brasil.

[4] Craig, Jr., R. R., "Structural dynamics - An introduction to computer methods", John Wiley and Sons, 1981.

[5] Popov, E. P., "Introdução à mecânica dos sólidos", Editora Edgar Blücher Ltda, 1978.

[6] Inman, D. J., Rietz, R. W., "Comparison of Linear and Nonlinear Control of a Slewing Beam", Journal of Vibration and Control, 6: 309-322, 2000. Sage Publications.