

ESTUDO DA TEORIA DE TRANSIÇÃO VARIACIONAL PARA SISTEMAS DE INTERESSE AMBIENTAL

Henrique de Oliveira Euclides

Bolsista PIBIC/CNPq Instituto Nacional de Pesquisas Espaciais (INPE/MCT), Laboratório Associado de Plasma (LAP), São José dos Campos, SP, CEP 12247-970, CP515, Brasil.

2015

ESTUDO DA TEORIA DE TRANSIÇÃO VARIACIONAL PARA SISTEMAS DE INTERESSE AMBIENTAL

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Henrique de Oliveira Euclides (UNIFESP, Bolsista PIBIC/CNPq) E-mail: henriqueuclides@gmail.com

> Dra Patrícia R. P. Barreto (LAP/INPE, Orientadora) E-mail: patricia@plasma.inpe.br

> > Julho de 2015

Agradecimentos

Agradeço a minha família pelo apoio e motivação.

Agradeço a minha orientadora Dra Patrícia R. P. Barreto pela atenção, disponibilidade a sanar minhas diversas dúvidas no decorrer desse trabalho, e principalmente pela amizade.

Agradeço ao CNPq pelo apoio financeiro.

Resumo

Até o momento, trabalhamos para desenvolver e aprimorar o cálculo da taxa de reação para espécies em geral, tendo como dados de entrada, as saídas já prontas de programas de cálculo de estrutura eletrônica, como o GAUSSIAN 09 e o MOLPRO. Neste trabalho atual, estamos estudando esses programas de cálculo de estrutura eletrônica, em especial o GAUSSIAN 09, que consiste na resolução da Equação de Schrodinger, onde são utilizadas as aproximações de Born-Oppenheimer e Hartree-Fock, e gerando nossas próprias saídas, que posteriormente serão utilizadas para o cálculo da taxa, ao qual já temos implementado. Trabalhamos com sistemas triatômicos, como HXY, com X,Y=H, F, Cl ou Br e $X \neq Y$ (num total de 18 reações) e para estudar estas reações precisamos conhecer a geometria, frequência e energia dos reagentes, produtos e a estrutura de transição (TS).

Lista de figuras

Figura 1- Um sistema de coordenadas molecular: $i,j = elétrons; A,B = núcleos9$
Figura 2 - Diferentes caminhos de reação para sistemas triatômicos do tipo XHY17
Figura 3 - Taxa de reação em função da temperatura reciproca (K ⁻¹) para as reações HX+H=H+HX, com X=F, Cl e Br, considerando TST e tunelamento de Eckart27
Figura 4- Taxa de reação em função da temperatura reciproca (K^{-1}) para as reações $HX+H=H_2+X$, com X=F, Cl e Br, considerando TST e tunelamento de Eckart e comparando com dados experimentais
Figura 5- Taxa de reação em função da a temperatura reciproca (K ⁻¹) para as reações $HX+Y=HY+X$, com X,Y=F, Cl e Br, X \neq Y, considerando TST e tunelamento de Eckart28
Figura 6- Taxa de reação em função da temperatura reciproca (K ⁻¹) para as reações HF+Y=H+FY, com Y=Cl ou Br, com niveis rovibracionais incluso, considerando TST e tunelamento de Eckart e comparando com dados experimentais
Figura 7- Taxa de reação em função da temperatura reciproca (K^{-1}) para as reações HX+Y=H+XY, com X,Y=F, Cl e Br, X≠Y, considerando TST e tunelamento de Eckart e comparando com dados experimentais

Lista de tabelas

Tabela 1: Energias, em Hartree, CCSD(T) para os sistemas atômicos
Tabela 2: Dados de saída para a molécula H_2 , tais como base, geometria, distância em Å, energia CCSD(T) em Hartree e frequência em cm ⁻¹ e calor de formação em kcal mol ⁻¹ 14
Tabela 3: Dados de saída para a molécula HF, tais como base, geometria, distância em Å, energia $CCSD(T)$ em Hartree e frequência em cm ⁻¹ e calor de formação em kcal mol ⁻¹ 14
Tabela 4: Dados de saída para a molécula HCl, tais como base, geometria, distância em Å, energia $CCSD(T)$ em Hartree e frequência em cm ⁻¹ e calor de formação em kcal mol ⁻¹ 15
Tabela 5: Dados de saída para a molécula HBr, tais como base, geometria, distância em Å, energia $CCSD(T)$ em Hartree e frequência em cm ⁻¹ e calor de formação em kcal mol ⁻¹ 15
Tabela 6: Dados de saída para a molécula FCl, tais como base, geometria, distância em Å, energia $CCSD(T)$ em Hartree e frequência em cm ⁻¹ e calor de formação em kcal mol ⁻¹ 16
Tabela 7: Dados de saída para a molécula FBr, tais como base, geometria, distância em Å, energia $CCSD(T)$ em Hartree e frequência em cm ⁻¹ e calor de formação em kcal mol ⁻¹ 16
Tabela 8: Dados de saída para a molécula ClBr, tais como base, geometria, distância em Å, energia $CCSD(T)$ em Hartree e frequência em cm ⁻¹ e calor de formação em kcal mol ⁻¹ 17
Tabela 9: Comparação das TS em diversas bases
Tabela 10 : Comparação das barreiras no sentido direto, reverso e a entalpia de reação em diversas bases

Sumário

1.	INTRODUÇÃO	8
2.	CÁLCULOS DE ESTRUTURA ELETRÔNICA	9
3.	APROXIMAÇÃO DE BORN-OPPENHEIMER	10
4.	MÉTODOS COMPUTACIONAIS	11
5.	GAUSSIAN	11
6.	RESULTADOS OBTIDOS	13
7.	CONCLUSÃO	30
REF	FERÊNCIAS	31

1. Introdução

O conhecimento das propriedades termodinâmicas de espécies químicas é de fundamental importância para estudos como os de processos de combustão, estudo de reações que ocorrem na atmosfera como o efeito estufa; saber a rapidez com que um medicamento atua no organismo; descoberta de catalisadores para acelerar a síntese de algum produto; processo de dessorção de água de farelo de soja, estudo de crescimento de filmes finos em processos CVD (deposição química a partir da fase vapor) como do tipo diamante, nitreto de boro, carbeto de boro, nitreto de carbono, entre outros.

O projeto inicial dessa iniciação cientifica, tratou de desenvolver códigos em linguagem C para a obtenção e correção da taxa de reação para espécies atômicas em geral, para esses cálculos eram necessários conhecer as geometrias, energias, frequências e massas para os reagentes e produtos, que são obtidos previamente, via cálculos de estrutura eletrônica. Nosso objetivo agora é obter esses dados iniciais, onde usamos o programa GAUSSIAN09 e calculamos otimização de geometria, frequência, energia, momento de dipolo, polarizabilidade e determinação de superfície de energia potencial (SEP). Depois de calculado esses dados, analisamos para quais energias é melhor calcularmos a taxa, feito isso, podemos executar o programa da taxa onde está incluso, a correção de tunelamento de pequena curvatura, correção usando coeficiente de transmissão de Wigner e Eckart, representando a taxa na forma de Arrhenius, a obtenção dos espectros rovibracionais, pelo método de Dunham, para ajustar reações onde temos reagentes, e/ou produtos em estado rovibracional excitado.

2. Cálculos de Estrutura Eletrônica

A resolução da Equação de Schrodinger para a função de onda que representa um sistema molecular nos fornece a energia desse sistema, permitindo, a partir disso, obter diversas propriedades importantes, bem como propor mecanismos de reação e estruturas de intermediários. Para descrever quanticamente uma molécula poliatômica qualquer, é necessário resolver a equação de Schrodinger independente do tempo não relativística(6).

$$\hat{H}\psi(\vec{r},\vec{R}) = E\psi(\vec{r},\vec{R}) \tag{1}$$

onde \hat{H} é o operador hamiltoniano total não relativístico para um sistema de núcleos e elétrons descritos por **vetores** de posição $R_A e r_i$, respectivamente, $\psi(\vec{r}, \vec{R})$ é a função de estado do sistema, E é a energia total do sistema.

Um sistema de coordenadas molecular é mostrado na figura 1. A distância entre o iésimo elétron e A-ésimo núcleo é $r_{iA} = |r_i - R_A|$; a distância entre o i-ésimo e j-ésimo elétron é $r_{ij} = |r_i - r_j|$, e a distância entre o A-ésimo e B-ésimo núcleo é $r_{AB} = |R_A - R_B|$.

Figura 1- Um sistema de coordenadas molecular: i,j = elétrons; A,B = núcleos

O operador hamiltoniano da equação 1 de um sistema constituído por N elétrons e M núcleos, em unidades atômicas, é dado por:

$$\hat{H} = -\sum_{i=1}^{N} \frac{1}{2} \nabla_{i}^{2} - \sum_{A=1}^{M} \frac{\nabla_{A}^{2}}{2M_{A}} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{R_{AB}}$$
(2)

onde M_A é a razão da massa dos núcleos A para a massa de um elétron, e Z_A é o número atômico do núcleo A. Os operadores laplacianos $\nabla_i^2 e \nabla_A^2 envolvem$ diferenciação com relação às coordenadas dos i-ésimo elétrons e aos A-ésimo núcleos.

O primeiro somatório da equação 2 é o operador de energia cinética dos elétrons, o segundo somatório é o operador de energia cinética dos núcleos, o terceiro somatório representa a atração coulombiana entre os elétrons e os núcleos, o quarto e o quinto somatório representam a repulsão entre elétrons e entre núcleos, respectivamente.

A interação elétron-núcleo é forte o suficiente e não pode ser desprezada, sendo assim não há possibilidade de se resolver esta equação sem que haja aproximações. A separação dos movimentos nuclear e eletrônico é quase invariavelmente o primeiro passo em qualquer aplicação de mecânica quântica a moléculas e cristais. Fisicamente essa separação considera a magnitude das massas dos elétrons e dos núcleos e que, portanto, se pode imaginar que os núcleos se movem bem mais lentamente que os elétrons. De qualquer forma, considera-se como uma boa aproximação que os elétrons movem-se em um campo de núcleos fixos.

3. Aproximação de Born-Oppenheimer

A solução da equação 2 permanece complicada devido aos inúmeros acoplamentos elétrons-núcleos existentes no sistema. O fato dos núcleos possuírem uma massa mil vezes maior do que os elétrons faz com que os mesmos se movam muito mais rápido do que os núcleos. Essa é uma condição que facilita a resolução do problema, pois a dependência da função de onda que descreve a interação elétron-núcleo torna-se paramétrica em relação às coordenadas nucleares (\vec{R}). Assim, a função de onda poderá ser expressa em termos de uma expansão adiabática dada pela expressão:

$$\psi(\vec{r},\vec{R}) = \psi_{ele}(\vec{r},\vec{R})\psi_N(\vec{R}) \tag{3}$$

onde $\psi_{ele}(\vec{r}, \vec{R})$ representa a função de onde eletrônica, que depende parametricamente das coordenadas nucleares, e $\psi_N(\vec{R})$ é a função de onda nuclear. Substituindo a equação 3 pela 1, pode-se reescrever o hamiltoniano descrito na equação 2 como uma soma das contribuições eletrônica e nuclear. Esta separação é conhecida como a aproximação de Born_Oppenheimer (ou aproximação adiabática), que permite resolver a equação de Schrodinger, para o movimento eletrônico em relação aos núcleos de uma molécula, considerando estes últimos fixos. Por outro lado, ela permite que a equação de Schrodinger para o movimento nuclear seja resolvida considerando-se a influência eletrônica como um potencial dependente das posições nucleares. Esta aproximação produz uma imensa simplificação matemática no estudo mecânico-quântico das moléculas, ao preço de introduzir nos resultados um erro geralmente desprezível quando comparado com outros, criados por outras aproximações frequentemente usadas.

Desta forma, a equação que descreve a parte nuclear será dada pela seguinte expressão:

$$\hat{H}_N \psi_N = E_N(\hat{R}) \psi_N \tag{4}$$

onde o hamiltoniano passa a ser

$$\hat{H}_{N} = -\sum_{A=1}^{M} \frac{\nabla_{A}^{2}}{2M_{A}} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{R_{AB}}$$
(5)

já a equação que descreve a parte eletrônica será dada pela expressão:

$$\hat{H}_{ele}\psi_{ele} = E_{ele}(\hat{R})\psi_{ele} \tag{6}$$

enquanto que o hamiltoniano será

$$\hat{H}_{ele} = -\sum_{i=1}^{N} \frac{1}{2} \nabla_i^2 - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_A}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}}$$
(7)

A equação 7 é conhecida como a equação de Schrodinger eletrônica independente do tempo que deve ser resolvida para cada configuração nuclear (\vec{R}) . Assim, teremos um conjunto de funções de onda eletrônica e suas respectivas energias, onde estas podem ser ajustadas para uma função $V(\vec{R})$. Esta função que fornece a energia eletrônica para cada configuração nuclear é conhecida como a Superfície de Energia Potencial (SEP).

4. Métodos Computacionais

Para a solução da equação de Schrodinger eletrônica, eq. 3, é necessário o uso de códigos de estrutura eletrônica. Usando os métodos de correlação de elétrons locais, que reduzem significativamente o aumento do custo computacional com o tamanho molecular, cálculos *ab initio* podem ser realizados em moléculas muito maiores em relação à maioria dos outros programas. Estes métodos tem sido recentemente aumentados por termos explicitamente correlacionados, o que reduz tanto os erros de truncamento do conjunto de bases quanto os erros das aproximações locais.

A base do programa consiste na multiconfiguration SCF, multireference CI e rotinas *coupled Cluster*, e estes são acompanhados por um conjunto completo de recursos de apoio. Dentre muitos outros recursos, o pacote inclui:

- Muitas propriedades para um elétron.
- Algumas propriedades para dois elétrons.
- Camada fechada (*Closed-shell*) e Camada aberta(*Open-shell*), (spin restrito e irrestrito),
- campo auto consistente.
- Teoria da Densidade funcional com vários gradientes corrigidos de potenciais de troca e correlação.
- Multiconfiguração SCF, procedimento quadraticamente convergente. O programa pode otimizar a energia média ponderada de vários estados.
- Teoria de perturbação Møller-Plesset (MPPT)(7,8), *Coupled Cluster* (CCSD)(9-12), a interação de configuração quadrática (QCISD), e Brueckner *Coupled Cluster* (BCCD) para sistemas de camada fechada.
- Teorias coupled cluster camada aberta Open-Shell.
- Gradientes de energia analíticos para métodos SCF, DFT, MP2 e QCISD(T).
- Otimização de geometria automática.
- Cálculos automáticos da frequência vibracional, intensidade e propriedades termodinâmicas.
- Execução paralela em máquinas de memória distribuída.

5. GAUSSIAN

O GAUSSIAN(5) é um código computacional para química, lançado inicialmente em 1970 por John Pople e seu grupo de pesquisa na Universidade Carnegie-Mellon University como GAUSSIAN70. Atualmente a versão mais atual é GAUSSIAN09, oferece recursos de *state-of-the-art* para a modelagem de estrutura eletrônica.

Os métodos *coupled cluster* explicitamente correlacionados desenvolvidos recentemente fornecem resultados CCSD(T) com conjunto de base próximo ao limite de precisão já com conjuntos de base dupla- ζ ou tripla- ζ , reduzindo assim o esforço computacional para cálculos desta qualidade por duas ordens de magnitude.

O programa é escrito principalmente em padrão Fortran-90. Essas partes dependentes da máquina são mantidas através do uso de um pré-processador fornecido, o

que permite uma fácil interconversão entre versões de máquinas diferentes. Cada versão do programa é transferido e testado em um número de sistemas. Uma grande biblioteca de conjuntos de bases orbitais comumente utilizados está disponível, que pode ser estendido, conforme necessário. Há um manual compreensível para usuários, que inclui instruções de instalação.

A execução do GAUSSIAN é controlada por dados preparado pelo usuário. Se o arquivo de dados não é dado na linha de comando, os dados serão lidos do arquivo de entrada padrão e os resultados do programa vão para um arquivo de saída padrão. Caso contrário, os dados são tomados a partir de arquivo de dados, o que chamamos de *input*, e o resultado é gravado em um arquivo de saída, *output*, cujo nome é gerado a partir do nome do arquivo de entrada, removendo qualquer sufixo posterior, e anexando a extensão .log.

Através do GAUSSIAN podemos realizar cálculos de otimização de geometria, frequência, energia em HF (Hartree-Fock), MP2 (Møller Plesset), DFT (teoria do funcional da densidade), CCSD (*Couple-Cluster*) e outros, além disso podemos calcular propriedades eletrônicas, tais como, momento de dipolo e polarizabilidade, determinação de superfície de energia potencial (SEP).

6. Resultados Obtidos

Começamos a estudar sistemas triatômicos, envolvendo átomos de hidrogênio e halogênios, visando testes mais extensos nos programas desenvolvidos e apresentados nos relatórios anteriores. Fizemos cálculos de estrutura eletrônica para os átomos H, F, Cl, Br e para as moléculas H₂, HF, HCl, HBr, FCl, FBr, ClBr. Para os átomos foram calculadas as energias em *couple cluster* e diferentes bases, para os sistemas diatômicos foram feitas otimizações de geometria, cálculos de frequência e energias em *couple cluster* e diversas bases. Os dados, quando possível são comparados com as referências a fim de escolher o melhor conjunto de base para cálculos posteriores, os dados dos sistemas atômicos são apresentados na tabela 1 e para os sistemas diatômicas nas tabelas 2 à 8.

		Н		F		Cl	Br	
	base	energia	base	energia	base	energia	base	energia
6-31g(d)	2	-0.49823291	15	-99.49888642	19	-459.57048421	30	-2569.97056130
6-31+g(d)	2	-0.49823291	19	-99.51103839	23	-459.57233016	34	-2569.98459840
6-31+g(d,p)	5	-0.49823291	19	-99.51103839	23	-459.57233016	34	-2569.98459840
6-31+g(2d,2p)	8	-0.49823291	25	-99.54514394	29	-459.59261755	40	-2570.16564720
6-31+g(3d,3p)	11	-0.49823291	31	-99.55368616	35	-459.59722469	46	-2570.04565230
6-31++g(d,p)	6	-0.49880110	19	-99.51103839	23	-459.57233016	34	-2569.98459840
6-31++g(2d,2p)	9	-0.49880110	25	-99.54514394	29	-459.59261755	40	-2570.16564720
6-31++g(3d,3p)	12	-0.49880110	31	-99.55368616	35	-459.59722469	46	-2570.04565230
6-311++g(d,p)	7	-0.49981792	23	-99.57158114	31	-459.60442650	51	-2572.46907220
6-311++g(2d,2p)	10	-0.49981792	29	-99.59197107	37	-459.62591799	57	-2572.47077530
6-311++g(3d,3p)	13	-0.49981792	35	-99.59527162	43	-459.62881481	63	-2572.48228730
6-311++g(2df,2pd)	16	-0.49981792	39	-99.61381607	47	-459.65873054	67	-2572.50408010
cc-pVDZ	5	-0.49927840	15	-99.52757409	19	-459.59889275	29	-2572.48718130
aug-cc-pVDZ	9	-0.49933432	25	-99.55006944	29	-459.61222146	39	-2572.50016640
cc-pVTZ	15	-0.49980981	35	-99.62036067	39	-459.67180833	49	-2572.66118620
aug-cc-pVTZ	25	-0.49982118	55	-99.62782700	59	-459.67621570	69	-2572.66845840
cc-pVQZ	35	-0.49994557	70	-99.65025815	74	-459.69330893	84	-2572.73333670
aug-cc-pVQZ	55	-0.49994832	105	-99.65290804	109	-459.69474311	119	-2572.73706120

Tabela 1: Energias, em Hartree, CCSD(T) para os sistemas atômicos

Na tabela 1, é possível observar a grande diferença de energias quando se vai do Hidrogênio, cerca de -0,5 Hartree, para o Brômo, cerca de -2572,7 Hartree, isso é devido ao número de elétrons dos átomos. No caso do hidrogênio, as diferenças nas energias só aparecem com o aumento do tamanho da função de base, alterações nas funções de difusão (+) ou (++) de polarização (d,p) não apresentam alterações na energia. Já no caso do bromo, tanto as alterações em difusão quanto em polarização oferecem diferenças na energia final. A menor base 6-31g(d) utiliza 30 funções de base diferentes para o calculo de sistema, ao passo que a maior base, aug-cc-pVQZ, utiliza 119 funções de base, e a diferença na energia final é de 2.76649990h.

Na tabela 2 são apresentados os dados geométricos, frequências e energias do H_2 calculados em *couple-cluster* e diversas bases, e comparados com referências. A geometria quando comparada com a referência, apresenta menor erro para a base 6-311++G(3d,3p) com erro de 0,00010297Å, e para a frequência um erro de 0.777200 cm⁻¹ na base aug-cc-pVTZ e 0.3822955 kcal mol⁻¹ para o calor de formação em 6-31+g(d).

	base	R	ω	E	$\Delta \mathrm{H_{f}}$
cc-pVDZ	10	0.7609554	4382.3868	-1.1636730	-6.6072529
aug-cc-pVDZ	18	0.7617536	4344.2203	-1.1648995	-7.2521669
cc-pVTZ	30	0.7427189	4409.0207	-1.1723367	-11.4149571
aug-cc-pVTZ	50	0.7430764	4400.4358	-1.1726356	-11.5759809
cc-pVQZ	70	0.7419573	4402.8414	-1.1737965	-12.1517754
aug-cc-pVQZ	110	0.7420912	4399.2938	-1.1738674	-12.1877843
6-31g(d)	4	0.7462906	4366.6062	-1.1516978	-0.3822955
6-31+g(d)	4	0.7462906	4366.6062	-1.1516978	-0.3822955
6-31+g(d,p)	10	0.7385399	4503.5845	-1.1651574	-9.0241010
6-31+g(2d,2p)	16	0.7403028	4480.4407	-1.1692291	-11.5460467
6-31+g(3d,3p)	22	0.7412403	4450.9751	-1.1697670	-11.8414907
6-31++g(d,p)	12	0.7390591	4488.7841	-1.1652828	-8.3685417
6-31++g(2d,2p)	18	0.7408019	4464.9837	-1.1693323	-10.8756138
6-31++g(3d,3p)	24	0.7419285	4433.8220	-1.1699300	-11.2061189
6-311++g(d,p)	14	0.7435499	4419.8376	-1.1683761	-8.9349206
6-311++g(2d,2p)	20	0.7421981	4410.9933	-1.1708646	-10.4838485
6-311++g(3d,3p)	26	0.7415030	4407.7339	-1.1710498	-10.5953940
6-311++g(2df,2pd)	32	0.7427203	4404.9309	-1.1723489	-11.4066080
referência		0.7414	4401.213		0.0000000

Tabela 2: Dados de saída para a molécula H_2 , tais como base, geometria, distância em Å, energia CCSD(T) em Hartree e frequência em cm⁻¹ e calor de formação em kcal mol⁻¹.

	base	R	ω	Е	$\Delta H_{ m f}$
cc-pVDZ	20	0.9198804	4150.9979	-100.2281562	-62.1513421
aug-cc-pVDZ	34	0.9241152	4081.2449	-100.2636411	-70.1676010
cc-pVTZ	50	0.9170000	4181.9237	-100.3383562	-72.7891597
aug-cc-pVTZ	80	0.9209622	4125.4670	-100.3495766	-75.0570521
cc-pVQZ	105	0.9162205	4163.1850	-100.3731802	-75.7686182
aug-cc-pVQZ	160	0.9176855	4142.6583	-100.3773840	-76.7126493
6-31g(d)	17	0.9353563	4001.6831	-100.1883266	-55.6022425
6-31+g(d)	21	0.9411724	3925.3740	-100.2083889	-60.4569412
6-31+g(d,p)	24	0.9253698	4123.8477	-100.2215768	-69.0162289
6-31+g(2d,2p)	33	0.9186663	4114.8084	-100.2607352	-72.1739967
6-31+g(3d,3p)	42	0.9196551	4098.6806	-100.2711612	-73.3330340
6-31++g(d,p)	25	0.9253650	4123.7968	-100.2216896	-68.7304051
6-31++g(2d,2p)	34	0.9186524	4114.8797	-100.2607903	-71.8521215
6-31++g(3d,3p)	43	0.9196627	4098.0753	-100.2711903	-72.9939014
6-311++g(d,p)	30	0.9161529	4192.2618	-100.2850674	-69.9692238
6-311++g(2d,2p)	39	0.9170000	4166.0113	-100.3096187	-72.5430196
6-311++g(3d,3p)	48	0.9170000	4141.0205	-100.3142730	-73.3567684
6-311++g(2df,2pd)	55	0.9166381	4184.5785	-100.3358326	-75.3110442
referência		0.9168	4138.385		-65.308317

Tabela 3: Dados de saída para a molécula HF, tais como base, geometria, distância em Å, energia CCSD(T) em Hartree e frequência em cm⁻¹ e calor de formação em kcal mol⁻¹.

	base	R	ω	E	$\Delta \mathrm{H_{f}}$
cc-pVDZ	24	1.2899059	3018.1583	-460.2546363	-22.2709551
aug-cc-pVDZ	38	1.2922661	2971.4380	-460.2723021	-24.8906141
cc-pVTZ	54	1.2771999	3001.4904	-460.3372158	-27.9778529
aug-cc-pVTZ	84	1.2786799	2992.7392	-460.3432411	-28.9734775
cc-pVQZ	109	1.2768676	2996.5010	-460.3621346	-30.0304591
aug-cc-pVQZ	164	1.2774185	2991.5322	-460.3641667	-30.3968603
6-31g(d)	21	1.2869539	2966.2559	-460.2115897	-13.6672871
6-31+g(d)	25	1.2880750	2951.7935	-460.2138385	-13.8994170
6-31+g(d,p)	28	1.2742669	3048.1821	-460.2269090	-22.2390418
6-31+g(2d,2p)	37	1.2790606	2960.7928	-460.2528133	-25.6387842
6-31+g(3d,3p)	46	1.2750000	3002.6433	-460.2597714	-27.1738806
6-31++g(d,p)	29	1.2742907	3048.1627	-460.2270579	-21.9759287
6-31++g(2d,2p)	38	1.2790517	2961.0813	-460.2529218	-25.3507222
6-31++g(3d,3p)	47	1.2750000	3001.7152	-460.2598208	-26.8469747
6-311++g(d,p)	38	1.2777078	3025.4693	-460.2644051	-24.6003540
6-311++g(2d,2p)	47	1.2736230	2947.0595	-460.2886471	-26.2142902
6-311++g(3d,3p)	56	1.2750000	2994.8237	-460.2937740	-27.6819244
6-311++g(2df, 2pd)	63	1.2750000	2999.1509	-460.3255199	-28.8365908
referência		1.2746	2990.925		-22.01959847

Tabela 4: Dados de saída para a molécula HCl, tais como base, geometria, distância em Å, energia CCSD(T) em Hartree e frequência em cm⁻¹ e calor de formação em kcal mol⁻¹.

	base	R	ω	Е	$\Delta \mathrm{H_{f}}$
cc-pVDZ	34	1.4240441	2690.1549	-2573.1254749	-11.2583486
aug-cc-pVDZ	48	1.4263807	2666.4576	-2573.1425471	-13.7540807
cc-pVTZ	64	1.4130128	2695.8414	-2573.3083499	-16.4990864
aug-cc-pVTZ	94	1.4132849	2696.1481	-2573.3176060	-17.7373094
cc-pVQZ	119	1.4110230	2680.6730	-2573.3835995	-18.3369279
aug-cc-pVQZ	174	1.4107163	2681.0242	-2573.3886301	-19.1552927
6-31g(d)	32	1.4449814	2593.0389	-2570.5976015	-4.7139576
6-31+g(d)	36	1.4442436	2592.6701	-2570.6106641	-4.1019224
6-31+g(d,p)	39	1.4130704	2667.1557	-2570.6218301	-11.2151751
6-31+g(2d,2p)	48	1.4154524	2694.4494	-2570.8089917	-15.0900332
6-31+g(3d,3p)	57	1.4140000	2674.1026	-2570.6901449	-15.7813899
6-31++g(d,p)	40	1.4130684	2673.5736	-2570.6237009	-12.0417480
6-31++g(2d,2p)	49	1.4155955	2692.2470	-2570.8093821	-14.9753178
6-31++g(3d,3p)	58	1.4140000	2671.9478	-2570.6902159	-15.4663160
6-311++g(d,p)	58	1.4181187	2671.2555	-2573.1085431	-11.6315487
6-311++g(2d,2p)	67	1.4177689	2649.7994	-2573.1138368	-13.8540115
6-311++g(3d,3p)	76	1.4181798	2650.2105	-2573.1258123	-14.1454499
6-311++g(2df, 2pd)	83	1.4181817	2677.7445	-2573.1501107	-15.7570992
referência		1.4144	2649		-6.7973231

Tabela 5: Dados de saída para a molécula HBr, tais como base, geometria, distância em Å, energia CCSD(T) em Hartree e frequência em cm⁻¹ e calor de formação em kcal mol⁻¹.

Na tabela 3 são apresentados os dados geométricos, frequências e energias do HF calculados em *couple-cluster* e diversas bases, e comparados com referências. Os menores erros são 0.0001619Å em 6-311++g(2df,2pd), 2.6355cm⁻¹ em 6-311++G(3d,3p) e

3.1569753 kcal mol⁻¹ em cc-pVDZ. Na tabela 4 são apresentados os resultados para o HCl, enquanto que na tabela 5 estão os resultados para o HBr.

	base	R	ω	Е	$\Delta \mathrm{H_{f}}$
cc-pVDZ	34	1.6954447	707.1603	-559.1952693	2.8750909
aug-cc-pVDZ	54	1.6856050	752.7216	-559.2454693	-6.2110373
cc-pVTZ	74	1.6446594	772.1802	-559.3798224	-9.0469746
aug-cc-pVTZ	114	1.6463618	772.3755	-559.3966967	-12.1851954
cc-pVQZ	144	1.6360874	783.7750	-559.4378787	-13.2416564
aug-cc-pVQZ	214	1.6365928	783.3624	-559.4442513	-14.6771252
6-31g(d)	34	1.6728608	761.1543	-559.1499889	-4.6166191
6-31+g(d)	42	1.6790922	748.7597	-559.1661516	-5.9573379
6-31+g(d,p)	42	1.6790922	748.7597	-559.1661516	-5.9573379
6-31+g(2d,2p)	54	1.6903381	730.5664	-559.2209208	-6.1673835
6-31+g(3d,3p)	66	1.6651515	752.5479	-559.2375033	-8.3531949
6-31++g(d,p)	42	1.6790922	748.7597	-559.1661516	-5.9573379
6-31++g(2d,2p)	54	1.6903381	730.5664	-559.2209208	-6.1673835
6-31++g(3d,3p)	66	1.6651515	752.5479	-559.2375033	-8.3531949
6-311++g(d,p)	54	1.6863580	694.7744	-559.2500477	-0.3938113
6-311++g(2d,2p)	66	1.6750390	717.0691	-559.2992586	-5.0250119
6-311++g(3d,3p)	78	1.6679310	738.7306	-559.3110464	-8.5640225
6-311++g(2df, 2pd)	86	1.6470390	764.2444	-559.3623053	-10.3567476
referência		1.6283	783.4534		-11.9980879

Tabela 6: Dados de saída para a molécula FCl, tais como base, geometria, distância em Å, energia CCSD(T) em Hartree e frequência em cm⁻¹ e calor de formação em kcal mol⁻¹.

	base	R	ω	Е	$\Delta H_{ m f}$
cc-pVDZ	44	1.8176414	623.8142	-2672.0869513	0.4585199
aug-cc-pVDZ	64	1.7992425	662.6519	-2672.1403905	-10.8662878
cc-pVTZ	84	1.7655911	667.4630	-2672.3723465	-11.2778866
aug-cc-pVTZ	124	1.7645969	672.7945	-2672.3942295	-15.7687361
cc-pVQZ	154	1.7590000	678.8739	-2672.4817058	-15.8821257
aug-cc-pVQZ	224	1.7565909	678.8258	-2672.4913154	-17.9121788
6-31g(d)	45	1.7964737	654.0221	-2669.5551739	-8.0750390
6-31+g(d)	53	1.8026363	641.9995	-2669.5846283	-10.1068763
6-31+g(d,p)	53	1.8026363	641.9995	-2669.5846283	-10.1068763
6-31+g(2d,2p)	65	1.7846480	672.1367	-2669.8060405	-14.0768171
6-31+g(3d,3p)	77	1.7859600	655.3723	-2669.6935516	-13.4026166
6-31++g(d,p)	53	1.8026363	641.9995	-2669.5846283	-10.1068763
6-31++g(2d,2p)	65	1.7846480	672.1367	-2669.8060405	-14.0768171
6-31++g(3d,3p)	77	1.7859600	655.3723	-2669.6935516	-13.4026166
6-311++g(d,p)	74	1.8179773	610.1874	-2672.1184807	-3.0557907
6-311++g(2d,2p)	86	1.7930781	626.5236	-2672.1477843	-7.6038436
6-311++g(3d,3p)	98	1.7941353	644.3286	-2672.1685670	-11.3756190
6-311++g(2df,2pd)	106	1.7717867	658.0590	-2672.2097653	-11.9355676
referência		1.7589	669.679		-12.2370937

Tabela 7: Dados de saída para a molécula FBr, tais como base, geometria, distância em Å, energia CCSD(T) em Hartree e frequência em cm⁻¹ e calor de formação em kcal mol⁻¹.

Nas tabelas 6, 7 e 8 são apresentados os estudos de bases dos diatomos FCl, FBr e ClBr, respectivamente.

	base	R	ω	Е	$\Delta \mathrm{H_{f}}$
cc-pVDZ	48	2.1987300	405.2726	-3032.1507433	15.6182724
aug-cc-pVDZ	68	2.2037743	403.5956	-3032.1817983	12.6455281
cc-pVTZ	88	2.1585315	437.7019	-3032.4131689	5.8423027
aug-cc-pVTZ	128	2.1609137	434.4541	-3032.4276157	4.1104825
cc-pVQZ	158	2.1436508	447.7862	-3032.5129714	1.9678247
aug-cc-pVQZ	228	2.1416526	448.3740	-3032.5197023	0.9804014
6-31g(d)	49	2.1884676	426.9229	-3029.6115990	11.8949055
6-31+g(d)	57	2.1880357	423.5175	-3029.6265618	12.4772394
6-31+g(d,p)	57	2.1880357	423.5175	-3029.6265618	12.4772394
6-31+g(2d,2p)	69	2.1923454	407.4724	-3029.8296755	11.3847724
6-31+g(3d,3p)	81	2.1876976	410.8806	-3029.7162196	10.1676397
6-31++g(d,p)	57	2.1880357	423.5175	-3029.6265618	12.4772394
6-31++g(2d,2p)	69	2.1923454	407.4724	-3029.8296755	11.3847724
6-31++g(3d,3p)	81	2.1876976	410.8806	-3029.7162196	10.1676397
6-311++g(d,p)	82	2.1891853	414.9330	-3032.1402525	14.2963874
6-311++g(2d,2p)	94	2.1970894	413.6759	-3032.1676099	11.6859817
6-311++g(3d,3p)	106	2.1889502	413.8603	-3032.1829054	11.1293179
6-311++g(2df,2pd)	114	2.1608109	435.7049	-3032.2429517	5.8660599
referencia		2.136	444.322		5.3130975

Tabela 8: Dados de saída para a molécula ClBr, tais como base, geometria, distância em Å, energia CCSD(T) em Hartree e frequência em cm⁻¹ e calor de formação em kcal mol⁻¹.

Comparando as tabelas 2 à 8, observamos que o número de funções de base (gaussianas), aumentam consideravelmente com o aumento do tamanho da base, por exemplo, no caso do H₂ temos 4 funções para a base 6-31G(d), e 32 para a base 6-311++G(2df,2pd), no caso do ClBr, na base 6-31G(d), temos 49 funções contra 114 para a base 6-311++G(2df,2pd). O número de funções também se altera de acordo com o número de elétrons, conforme mencionado anteriormente.

A figura 2 exemplifica um caminho de reação de um sistema a 3 corpos, como os estudos neste trabalho, indicando os três possíveis caminhos de reação.

Figura 2 - Diferentes caminhos de reação para sistemas triatômicos do tipo XHY

Na figura 2 é possível verificar os três possíveis caminhos de reação considerados, sendo: $HX+Y\leftrightarrow H+XY$, $HX+Y\leftrightarrow X+HY$, usando a reação formada HY+X encontramos um novo caminho $HY+X \leftrightarrow H+XY$. Para o sistema HXY, com X,Y=H,F,Cl e Br, com $X\neq Y$, estudamos 18 diferentes reações.

A tabela 9 compara as geometrias, frequências e energias (em MP2), para as diversas TS calculadas nesse trabalho em 3 conjuntos de bases diferentes, 6-31g(d), 6-311++g(d,p) e para *aug-cc-pVTZ*. Podemos observar que, em geral, a frequência negativa das TS e a energia de ponto zero diminuem quando vamos da base 6-31g(d) para *aug-cc-pVTZ*. O angulo de ligação, em geral, aumentam indo da base , 6-31g(d) para *aug-cc-pVTZ*, e em relação as distancias interatômicas não existe um padrão bem definido. O tempo computacional aumenta consideravelmente indo da base 6-31g(d) para *aug-cc-pVTZ*.

Usando as TS otimizadas em MP2 e apresentadas na tabela 9, foram calculadas energias em CCSD(T) e diferentes bases. A geometria otimizada em 6-31g(d) foi utilizada para calcular as energias em 6-31g(d), 6-31+g(d), 6-31+g(d,p), 6-31+g(2d,2p), 6-31+g(3d,3p), 6-31++g(d,p), 6-31++g(2d,2p) e 6-31++g(3d,3p), com a geometria em 6-311++g(d,p) foram calculadas as energias em 6-311++g(d,p), 6-311++g(2d,2p), 6-311++g(2d,2p), 6-311++g(3d,3p) e 6-311++g(2df,2dp), e finalmente, com a geometria em aug-cc-pVTZ, calculamos as energias em cc-pVDZ, aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ e aug-cc-pVQZ, fazendo um total de 18 conjunto de bases diferentes.

Na tabela 10 comparamos as barreiras no sentido direto, reverso e a entalpia de reação em diferentes bases e comparamos com a entalpia de reação de referência obtida a partir do calor de formação dos reagentes.

Base	TS	R1 [Å]	R2 [Å]	A [°]	ω1 [cm ⁻¹]	ω2 [cm ⁻¹]	ω3 [cm ⁻¹]	ω4 [cm ⁻¹]	E [Hartree]
6-31g(d)	HBrCl	1,984720	2,192852	154,328740	-1126,9493	281,4086	510,8834		-3030,0696830
6-311++g(d,p)	HBrCl	2,041775	2,178367	157,492430	-923,8752	233,5080	511,9994		-3032,6011590
aug-cc-pVTZ	HBrCl	2,056169	2,151648	162,969291	-765,1982	213,0826	520,3654		-3032,8811650
6-31g(d)	HBrF	1,967597	1,774488	152,477180	-1051,9877	411,8291	924,5573		-2670,0255930
6-311++g(d,p)	HBrF	2,073826	1,782672	154,328740	-849,7689	333,2494	932,1156		-2672,5912940
aug-cc-pVTZ	HBrF	2,109364	1,757471	163,038706	-561,7377	294,6984	831,1899		-2672,8664370
6-31g(d)	ClHBr	1,574380	1,586816	125,548150	-1965,9043	102,5795	902,0935		-3030,1146150
6-311++g(d,p)	ClHBr	1,526746	1,616061	147,716980	-1502,3172	151,6925	1048,7406		-3032,6635060
aug-cc-pVTZ	ClHBr	1,512380	1,640228	132,399733	-1187,3757	148,9841	1426,6945		-3032,9363440
6-31g(d)	FHBr	1,494180	1,405436	105,452000	-1544,3472	177,2353	1814,4068		-2670,0581560
6-311++g(d,p)	FHBr	1,468316	1,404322	136,55352	-1499,965	152,4482	1658,183		-2672,638386
aug-cc-pVTZ	FHBr	1,453829	1,438590	126,862643	-1252,0479	127,9853	1955,5687		-2672,8999700
6-31g(d)	HClBr	1,823038	2,216966	154,328740	-1366,4300	155,6400	486,7831		-3030,0637780
6-311++g(d,p)	HClBr	1,885990	2,190601	167,915170	-1192,9642	143,2809	497,5394		-3032,5977840
aug-cc-pVTZ	HClBr	1,871574	2,162709	174,204085	-1094,2483	73,2560	513,6033		-3032,8770400
6-31g(d)	HClF	1,727723	1,657836	156,337340	-1471,1834	545,2133	1043,5854		-559,6061280
6-311++g(d,p)	HClF	1,848277	1,650361	152,477180	-1157,6917	403,1465	1077,8723		-559,7153410
aug-cc-pVTZ	HClF	1,875329	1,635461	152,477180	-895,3950	357,9252	1044,3863		-559,8577360
6-31g(d)	FHC1	1,365276	1,299349	115,452000	-2314,7697	207,5955	1634,1810		-559,6611370
6-311++g(d,p)	FHC1	1,347025	1,306214	131,477330	-2128,3496	207,4045	1526,4202		-559,7872320
aug-cc-pVTZ	FHC1	1,345278	1,329733	129,922580	-1879,7236	203,5950	1779,8706		-559,9137880
6-31g(d)	HFBr	1,433928	1,829448	177,031300	-2233,4990	241,3579	832,1437		-2670,0082880
6-311++g(d,p)	HFBr	1,459740	1,824115	176,525020	-2150,3306	190,6105	832,7030		-2672,5764970
aug-cc-pVTZ	HFBr	1,414340	1,799493	177,112305	-2300,0121	220,7415	861,9038		-2672,8455120
6-31g(d)	HFCl	1,419914	1,713851	175,915170	-2288,1203	255,0674	977,5395		-559,5957760

6-311++g(d,p)	HFC1	1,441831	1,702494	175,958140	-2216,9198	230,3885	969,1609		-559,7024310
aug-cc-pVTZ	HFC1	1,400678	1,685091	175,958140	-2400,9929	235,1507	1012,6399		-559,8371430
6-31g(d)	HBrH	1,638900	1,638900	175,452000	-1764,9966	232,6955	1763,9619		-2571,0432960
6-311++g(d,p)	HBrH	1,603382	1,603382	155,944550	-1597,4994	372,7626	1860,6315		-2573,5578580
aug-cc-pVTZ	HBrH	1,591846	1,591846	169,156297	-1514,3792	266,0206	1895,1702		-2573,7682660
6-31g(d)	HClH	1,497650	1,497650	174,944500	-2239,9063	393,1050	1835,4562		-460,6409330
6-311++g(d,p)	HClH	1,470621	1,470621	174,971950	-1993,2822	163,0274	1996,0645		-460,7023820
aug-cc-pVTZ	HClH	1,465842	1,465842	174,971950	-1888,7085	284,7456	2006,7820		-460,7778470
6-31g(d)	HFH	1,165696	1,165696	174,944500	-4006,0785	369,8378	369,8378		-100,5999100
6-311++g(d,p)	HFH	1,060768	1,060768	170,472140	-2621,7666	527,5035	2378,5390		-100,7048580
aug-cc-pVTZ	HFH	1,070585	1,070585	106,512289	-2522,3504	497,7633	2367,5821		-100,7698869
6-31g(d)	BrHH	1,095876	1,533261	174,944500	-1728,2634	609,3810	1411,1985		-2571,0662470
6-311++g(d,p)	BrHH	1,125773	1,494862	177,915880	-1360,7716	516,7865	1548,5878		-2573,5812010
aug-cc-pVTZ	BrHH	1,138435	1,475210	150,502994	-1123,2473	474,8030	1786,9796		-2573,7874630
6-31g(d) 6-311++g(d,p) aug-cc-pVTZ	СІНН СІНН СІНН	0,953508 0,911044 0,876092	1,460151 1,469099 1,507669	174,477180 180,000000 180,000000	-2137,2184 -1674,2615 -1425,6292	808,3002 556,7330 468,4611	808,3002 556,7330 468,4611	1491,4881 1668,7267	-460,6699930 -460,7284210 -460,7999720
6-31g(d)	FHH	0,791454	1,327107	174,944550	-1663,8709	219,7708	2840,3873		-100,6159430
6-311++g(d,p)	FHH	0,773834	1,398060	175,206080	-1226,6543	129,5087	3359,2307		-100,7092940
aug-cc-pVTZ	FHH	0,774858	1,422335	132,914138	-1242,2348	261,3393	3565,3241		-100,7696290

Tabela 9: Comparação das TS em diversas bases

					E_r	
Reagente	TS	Produto		E_{f}	[kcal mol ⁻	$\Delta \mathrm{H_{f}}$
-				[kcal mol ⁻¹]	1]	[kcal mol ⁻¹]
HBr+Cl	HBrCl	H+ClBR	cc-pVDZ	49,34261	2,689822	46,65279
			aug-cc-pVDZ	46,57819	0,370931	46,20725
			cc-pVTZ	41,65234	-0,50344	42,15579
			aug-cc-pVTZ	40,10532	-1,55178	41,65711
			cc-pVQZ	38,89475	-1,2605	40,15525
			aug-cc-pVQZ	38,24025	-1,74628	39,98653
			6-31g(d)	38,51616	1,961349	36,55481
			6-31+g(d)	38,66391	2,143139	36,52077
			6-31+g(d,p)	43,50264	-0,02491	43,52754
			6-31+g(2d,2p)	43,92727	-2,32071	46,24798
			6-31+g(3d,3p)	42,49575	-3,26041	45,75616
			6-31++g(d,p)	43,45513	-0,88981	44,34494
			6-31++g(2d,2p)	43,78777	-2,34864	46,13641
			6-31++g(3d,3p)	42,33091	-3,11326	45,44417
			6-311++g(d,p)	46,55744	0,812509	45,74493
			6-311++g(2d,2p)	43,86661	-1,51925	45,38586
			6-311++g(3d,3p)	43,66563	-1,45468	45,12031
			6-311++g(2df,2pd)	39,79454	-1,66603	41,46057
			Referência			35,15296
HBr+F	HBrF	H+FBr	cc-pVDZ	44,79702	2,867281	41,92974
			aug-cc-pVDZ	32,65643	-0,53362	33,19006
			cc-pVTZ	34,31823	-1,17011	35,48834
			aug-cc-pVTZ	29,85483	-2,38807	32,24289
			cc-pVQZ	30,71386	-2,04608	32,75994
			aug-cc-pVQZ	28,93167	-2,61601	31,54768
			6-31g(d)	28,16621	1,132409	27,0338
			6-31+g(d)	24,98748	0,614212	24,37327
			6-31+g(d,p)	29,57389	-1,80615	31,38004
			6-31+g(2d,2p)	27,28677	-4,00225	31,28902
			6-31+g(3d,3p)	27,63976	-5,01994	32,6597
			6-31++g(d,p)	29,69845	-2,49899	32,19744
			6-31++g(2d,2p)	27,1747	-4,00276	31,17746
			6-31++g(3d,3p)	27,49851	-4,8492	32,34771
			6-311++g(d,p)	38,83037	0,034209	38,79616
			6-311++g(2d,2p)	34,01915	-2,50545	36,5246
			6-311++g(3d,3p)	30,59242	-2,47671	33,06913
			6-311++g(2df,2pd)	31,2706	-2,8305	34,1011
			Referência			27,72706
HCl+Br	ClHBr	HBr+Cl	cc-pVDZ	18,41302	7,463002	10,95002
			aug-cc-pVDZ	16,06736	4,9605	11,10686
			cc-pVTZ	16,23461	4,786473	11,44813
			aug-cc-pVTZ	14,44765	3,229164	11,21848
			cc-pVQZ	15,11667	3,468327	11,64835
			aug-cc-pVQZ	13,73587	2,531882	11,20399
			6-31g(d)	20,52665	11,70055	8,826103
			6-31+g(d)	20,91133	11,22091	9,690416
			6-31+g(d,p)	20,03391	9,148436	10,88548

			6-31+g(2d,2p)	16,40309	5,828779	10,57431
			6-31+g(3d,3p)	15,74202	4,412892	11,32913
			6-31++g(d,p)	19,0067	9,201711	9,804993
			6-31++g(2d,2p)	16,23088	5,833485	10,3974
			6-31++g(3d,3p)	15,66286	4,34/31/	11,31555
			6-311++g(d,p)	19,36/86	6,499116	12,868/5
			6-311++g(2d,2p)	16,86541	4,523772	12,34164
			6-311++g(3d,3p)	17,3439	3,893765	13,45014
			6-311++g(2df,2pd)	16,83728	3,810953	13,02633
			Referencia			15,62859
HF+Br	FHBr	HBr+F	cc-pVDZ	43,06845	3,981792	39,08666
			aug-cc-pVDZ	43,57302	-1,1	44,67302
			cc-pVTZ	45,29591	0,848251	44,44766
			aug-cc-pVTZ	43,87631	-1,68217	45,55847
			cc-pVQZ	45,05525	-0,53913	45,59438
			aug-cc-pVQZ	43,92487	-1,82502	45,74989
			6-31g(d)	41,19712	2,040545	39,15657
			6-31+g(d)	43,39796	-1,3339	44,73187
			6-31+g(d,p)	44,16976	-1,83089	46,00065
			6-31+g(2d,2p)	42,00759	-3,32791	45,3355
			6-31+g(3d,3p)	42,26475	-3,5324	45,79715
			6-31++g(d,p)	43,55444	-1,34307	44,8975
			6-31++g(2d,2p)	41,86213	-3,26296	45,12509
			6-31++g(3d,3p)	42,1751	-3,59578	45,77088
			6-311++g(d,p)	47,68989	1,244562	46,44533
			6-311++g(2d,2p)	46,60615	-0,19737	46,80352
			6-311++g(3d,3p)	46,16136	-1,20079	47,36214
			6-311++g(2df,2pd)	46,90467	-0,77719	47,68186
			Referência			48,79302
HCl+Br	HClBr	H+ClBr	cc-pVDZ	62,09295	4,490146	57,6028
			aug-cc-pVDZ	59,74258	2,428471	57,31411
			cc-pVTZ	55,11886	1,514941	53,60392
			aug-cc-pVTZ	53,31477	0,439179	52,87559
			cc-pVQZ	52,40824	0,604648	51,8036
			aug-cc-pVQZ	51,17183	-0,01869	51,19052
			6-31g(d)	50,37772	4,996801	45,38092
			6-31+g(d)	50,36292	4,151734	46,21119
			6-31+g(d,p)	56,34487	1,931857	54,41302
			6-31+g(2d,2p)	55,77397	-1,04831	56,82228
			6-31+g(3d,3p)	54,88048	-2,20481	57,08529
			6-31++g(d,p)	56,00705	1,857116	54,14993
			6-31++g(2d,2p)	55,56218	-0,97163	56,53381
			6-31++g(3d,3p)	54,67325	-2,08647	56,75971
			6-311++g(d,p)	61,34655	2,732876	58,61368
			6-311++g(2d,2p)	58,18917	0,461669	57,7275
			6-311++g(3d,3p)	58,66384	0,093383	58,57045
			6-311++g(2df,2pd)	54,81284	0,325938	54,4869
			Referência			50,78155
HCl+F	HClF	H+FC1	cc-pVDZ	60,13868	5,129516	55,00916

			aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ cc-pVQZ aug-cc-pVQZ 6-31g(d) 6-31+g(d) 6-31+g(d,p) 6-31+g(2d,2p) 6-31+g(3d,3p) 6-31++g(2d,2p) 6-31++g(3d,3p) 6-31++g(3d,3p) 6-311++g(d,p) 6-311++g(2d,2p) 6-311++g(2df,2pd) Referência	50,27497 49,28762 45,95118 45,95706 44,37196 45,38529 42,37671 47,51497 45,91537 44,48091 47,40888 45,86205 44,39538 56,08144 50,30737 47,90539 46,88708	$\begin{array}{c} 1,600353\\ 0,376852\\ -0,82978\\ -0,83534\\ -1,35789\\ 6,320118\\ 4,417177\\ 1,3536\\ -3,53462\\ -4,28996\\ 1,510599\\ -3,29946\\ -4,04991\\ 2,039937\\ -0,86083\\ -1,15412\\ -1,56466\end{array}$	$\begin{array}{r} 48,67461\\ 48,91077\\ 46,78096\\ 46,7924\\ 45,72985\\ 39,06517\\ 37,95954\\ 46,16137\\ 49,44998\\ 48,77087\\ 45,89828\\ 49,16151\\ 48,44529\\ 54,0415\\ 51,1682\\ 49,05951\\ 48,45174\\ 43,18834 \end{array}$
HF+CI	FHC1	HCl+F	cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ cc-pVQZ aug-cc-pVQZ 6-31g(d) 6-31+g(d) 6-31+g(d,p) 6-31+g(2d,2p) 6-31+g(2d,2p) 6-31+g(2d,2p) 6-31++g(3d,3p) 6-31++g(3d,3p) 6-311++g(d,p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2df,2pd) Referência	34,95243 36,10042 36,95787 36,36829 36,78865 36,45262 37,52805 39,06811 37,87071 36,69129 36,42716 37,81171 36,64216 36,39194 37,85016 37,88496 36,24558 37,101	6,815788 2,534252 3,958351 2,028296 2,842617 1,906721 7,197582 4,026664 2,755537 1,930095 1,959139 2,719198 1,91447 1,936612 4,273569 3,423076 2,333572 2,445467	28,13664 33,56617 32,99952 34,33999 33,94603 34,5459 30,33047 35,04145 35,11518 34,76119 34,46802 35,09251 34,72769 34,45533 33,57659 34,46188 33,912 34,65553 33,16444
HF+Br	HFBr	H+FBr	cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ cc-pVQZ aug-cc-pVQZ 6-31g(d) 6-31+g(d) 6-31+g(d,p) 6-31+g(2d,2p) 6-31+g(3d,3p) 6-31++g(d,p) 6-31++g(d,p)	89,6188 85,87338 87,77008 84,72648 85,51098 84,07173 75,88289 77,228 83,88553 83,03498 84,087 83,31927 82,45967	8,602404 8,010294 7,834087 6,925117 7,156663 6,774167 9,692518 8,122865 6,504832 6,410455 5,630147 6,224331 6,157125	81,01639 77,86308 79,93599 77,80137 78,35431 77,29757 66,19037 69,10514 77,38069 76,62453 78,45685 77,09494 76,30255

			6-31++g(3d,3p) 6-311++g(d,p) 6-311++g(2d,2p) 6-311++g(3d,3p) 6-311++g(2df,2pd) Referência	83,60566 91,78235 90,16415 87,47972 88,43068	5,48707 6,540855 6,836036 7,048448 6,64772	78,11859 85,2415 83,32812 80,43127 81,78296 76,52008
HF+CI	HFC1	H+FC1	cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ cc-pVQZ aug-cc-pVQZ 6-31g(d) 6-31+g(d) 6-31+g(d,p) 6-31+g(2d,2p) 6-31+g(2d,2p) 6-31+g(2d,2p) 6-31++g(2d,2p) 6-31++g(3d,3p) 6-31++g(3d,3p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2df,2pd) Referência	93,42688 91,40114 91,26466 89,45752 89,50605 88,56934 80,50965 83,13072 89,75967 91,51696 90,50084 89,21297 90,94542 90,04288 95,27171 93,77689 90,96479 90,98976	10,28107 9,160356 9,354367 8,336568 8,767612 8,293587 11,11401 10,12973 8,483131 7,305779 7,261954 8,222177 7,05622 7,142264 7,653624 8,146809 7,993282 7,882489	83,1458 82,24078 81,9103 81,12095 80,73844 80,27575 69,39564 73,00099 81,27654 84,21118 83,23888 80,99079 83,8892 82,90062 87,61809 85,63008 82,97151 83,10727 76,35277
HBr+H	HBrH	H+HBr	cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ cc-pVQZ aug-cc-pVQZ 6-31g(d) 6-31+g(d) 6-31+g(d,p) 6-31+g(2d,2p) 6-31+g(3d,3p) 6-31++g(2d,2p) 6-31++g(2d,2p) 6-31++g(3d,3p) 6-311++g(d,p) 6-311++g(d,p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p) 6-311++g(2d,2p)	16,1322 14,17219 13,17689 12,35439 12,31887 11,80824 18,48575 19,45801 17,38886 15,41766 14,73744 16,68868 15,22897 14,66697 15,96686 14,5421 14,45137 13,15211	16,1322 14,17219 13,17689 12,35439 12,31887 11,80824 18,48575 19,45801 17,38886 15,41766 14,73744 16,68868 15,22897 14,66697 15,96686 14,5421 14,45137 13,15211	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HCl+H	HCIH	H+HCl	cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ cc-pVQZ	23,62206 21,23033 20,04675 19,03079 18,76278	23,62206 21,23033 20,04675 19,03079 18,76278	0 0 0 0 0

			aug-cc-pVQZ	18,37657	18,37657	0
			6-31g(d)	27,00563	27,00563	0
			6-31+g(d)	26,90765	26,90765	0
			6-31+g(d,p)	24,81273	24,81273	0
			6-31+g(2d,2p)	20,83175	20,83175	0
			6-31+g(3d,3p)	21,16591	21,16591	0
			6-31++g(d,p)	24,60646	24,60646	0
			6-31++g(2d,2p)	20,73594	20,73594	0
			6-31++g(3d,3p)	21.12785	21.12785	0
			6-311++g(d,p)	22,37931	22,37931	0
			6-311++g(2d,2p)	20,86682	20,86682	0
			6-311++g(3d,3p)	20.64785	20.64785	0
			6-311++g(2df,2pd)	19.22086	19.22086	0
			Referência	17,22000	17,22000	0
HF+H	HFH	H+HF	cc-pVDZ	50,13826	50,13826	0
			aug-cc-pVDZ	44,84713	44,84713	0
			cc-pVTZ	46,06656	46,06656	0
			aug-cc-pVTZ	42,40044	42,40044	0
			cc-pVQZ	45,05152	45,05152	0
			aug-cc-pVQZ	42,63626	42,63626	0
			6-31g(d)	46,07536	46,07536	0
			6-31+g(d)	47,14962	47,14962	0
			6-31+g(d,p)	46,94818	46,94818	0
			6-31+g(2d,2p)	47,51065	47,51065	0
			6-31+g(3d,3p)	44,30025	44,30025	0
			6-31++g(d,p)	43,21018	43,21018	0
			6-31++g(2d,2p)	44,17353	44,17353	0
			6-31++g(3d,3p)	43,33272	43,33272	0
			6-311++g(d,p)	47,01653	47,01653	0
			6-311++g(2d,2p)	46,82601	46,82601	0
			6-311++g(3d,3p)	46,49432	46,49432	0
			6-311++g(2df, 2pd)	44,82759	44,82759	0
			Referência	,		0
HBr+H	BrHH	H2+Br	cc-pVDZ	16,1322	32,51081	-16,3786
			aug-cc-pVDZ	14,17219	28,72066	-14,5485
			cc-pVTZ	13,17689	29,09252	-15,9156
			aug-cc-pVTZ	12,35439	27,20553	-14,8511
			cc-pVQZ	12,31887	27,12063	-14,8018
			aug-cc-pVQZ	11,80824	25,83321	-14,025
			6-31g(d)	5,962225	22,54399	-16,5818
			6-31+g(d)	5,342371	22,53565	-17,1933
			6-31+g(d,p)	3,723522	22,35602	-18,6325
			6-31+g(2d,2p)	1,305226	18,65691	-17,3517
			6-31+g(3d,3p)	0,483188	17,452	-16,9688
			6-31++g(d,p)	4,071346	21,25204	-17,1807
			6-31++g(2d,2p)	1,485819	18,30073	-16,8149
			6-31++g(3d,3p)	0,302147	16,9721	-16,67
			6-311++g(d,p)	3,26946	21,52198	-18,2525
			6-311++g(2d,2p)	1,89785	19,45881	-17,561
			6-311++g(3d,3p)	1,856057	19,24237	-17,3863

			6-311++g(2df,2pd) Referência	1,733819	18,36306	-16,6292 -16,6515
HC1+H	CIHH	H2+Cl	cc-pVDZ	5,984454	11.41305	-5.42859
			aug-cc-pVDZ	4.81319	8.254811	-3.44162
			cc-pVTZ	5.00255	9,470049	-4,4675
			aug-cc-pVTZ	4,445325	8.077985	-3.63266
			cc-pVOZ	4,912125	8,065536	-3,15341
			aug-cc-pVQZ	4,690402	7,51139	-2,82099
			6-31g(d)	9,610558	17,36623	-7,75567
			6-31+g(d)	9,312052	16,81491	-7,50286
			6-31+g(d,p)	7,309086	15,0561	-7,74702
			6-31+g(2d,2p)	5,226614	12,00399	-6,77738
			6-31+g(3d,3p)	5,061893	10,70157	-5,63968
			6-31++g(d,p)	7,446324	14,82203	-7,3757
			6-31++g(2d,2p)	5,44012	11,85764	-6,41752
			6-31++g(3d,3p)	5,258017	10,61242	-5,3544
			6-311++g(d,p)	6,216	11,59978	-5,38378
			6-311++g(2d,2p)	4,788077	10,0074	-5,21932
			6-311++g(3d,3p)	5,408401	9,344574	-3,93617
			6-311++g(2df,2pd)	5,171667	8,77458	-3,60291
			Referência			-1,02294
HF+H	FHH	H2+F	cc-pVDZ	29,26588	6,557837	22,70805
			aug-cc-pVDZ	32,04968	1,925134	30,12455
			cc-pVTZ	32,01674	3,484715	28,53203
			aug-cc-pVTZ	32,21486	1,507531	30,70733
			cc-pVQZ	32,87575	2,083129	30,79262
			aug-cc-pVQZ	32,90556	1,180643	31,72491
			6-31g(d)	30,41095	7,836154	22,5748
			6-31+g(d)	31,22599	3,687402	27,53859
			6-31+g(d,p)	30,5284	3,160241	27,36816
			6-31+g(2d,2p)	30,0156	2,031781	27,98382
			6-31+g(3d,3p)	30,1326	1,304261	28,82834
			6-31++g(d,p)	30,72948	3,012672	27,71681
			6-31++g(2d,2p)	30,24866	1,938481	28,31018
			6-31++g(3d,3p)	30,40264	1,301716	29,10093
			6-311++g(d,p)	32,15061	3,957799	28,19281
			6-311++g(2d,2p)	32,035	2,792436	29,24256
			6-311++g(3d,3p)	32,04372	2,067888	29,97583
			6-311++g(2df,2pd)	32,78901	1,736395	31,05262
			Referência		32,1414	.9

Tabela 10 : Comparação das barreiras	no sentido dir	eto, reverso e	a entalpia de rea	ação em (diversas
	bases.				

Para as reações citadas acima, calculamos a taxa de reação. Da figura 3 à 7 comparamos a taxa em função da temperatura reciproca para uma função de base que apresentou o melhor erro, em relação a entalpia de reação, em cada caso. Na figura 6 é apresentado a taxa da reação para as reações HF+Y=H+FY, com Y=Cl ou Br, com niveis rovibracionais incluso.

Figura 3 - Taxa de reação em função da temperatura reciproca (K⁻¹) para as reações HX+H=H+HX, com X=F, Cl e Br, considerando TST e tunelamento de Eckart.

Figura 4- Taxa de reação em função da temperatura reciproca (K⁻¹) para as reações HX+H=H₂+X, com X=F, Cl e Br, considerando TST e tunelamento de Eckart e comparando com dados experimentais.

Figura 5- Taxa de reação em função da a temperatura reciproca (K⁻¹) para as reações HX+Y=HY+X, com X,Y=F, Cl e Br, X \neq Y, considerando TST e tunelamento de Eckart.

Figura 6- Taxa de reação em função da temperatura reciproca (K⁻¹) para as reações HF+Y=H+FY, com Y=Cl ou Br, com niveis rovibracionais incluso, considerando TST e tunelamento de Eckart e comparando com dados experimentais.

Figura 7- Taxa de reação em função da temperatura reciproca (K⁻¹) para as reações HX+Y=H+XY, com X,Y=F, Cl e Br, X≠Y, considerando TST e tunelamento de Eckart e comparando com dados experimentais.

7. Conclusão

Nosso objetivo foi desenvolver um código para determinar a velocidade de reação para sistemas em geral. Dessa forma podemos simplificar os arquivos de entradas e escrever arquivos de saída que pode ser usado diretamente por algum software gráfico. Nosso código nos permite determinar várias taxas de reação de uma só vez, desde que temos um arquivo de entrada para todos os reagentes, um arquivo de entrada para o estado de transição, e um arquivo de entrada que descreve quais e quantos reações que desejamos analisar.

Na nova etapa desse trabalho, conseguimos gerar nossos próprios input para o cálculo da taxa, onde usamos o programa de cálculo de estrutura eletrônica GAUSSIAN09 para realizar cálculos de otimização de geometria, frequência, energia em HF (Hartree-Fock), MP2 (Møller Plesset), DFT (teoria do funcional da densidade), CCSD (*Couple-Cluster*) e calcular propriedades eletrônicas, tais como, momento de dipolo e polarizabilidade, determinação de superfície de energia potencial (SEP).

Em outubro de 2014 participei de um Workshop internacional de espectroscopia-SpecBio em Rio de Janeiro-RJ de 29 a 31 de outubro com a apresentação do pôster: The Code To Determine The Rate Constant Using The Rovibrational Level Of Reactants And Products. Também estou com um trabalho aceito para apresentação no **CHITEL 2015** -Congresso de Químicos Teóricos de Expressão Latina, a ser realizado nos dias 26-31 de julho de 2015 em Turim, IT, com o título: The Code to determine the rate constant using the rovibrational level of reagent and products. Além de um trabalho submetido para apresentação no XVIII – Simpósio Brasileiro de Química Teórica, que aconterá em Pirenópolis (GO) de 22 à 25 de Novembro 2015, com o título Reaction rate of HX+Y systems, with X,Y = H, F, Cl or Br and X \neq Y.

Referências

[1] HUBER, K. P.; HERZBERG, G. Molecular spectra and molecular structure. IV. constants of diatomic molecules. New York: Van Nostrand Reinold Company Regional Offices, 1979. Vol. 4. 59, 60

[2] IRIKURA, K. K. Experimental vibrational zero-point energies: Diatomic molecules. J. Phys. Chem., v. 389, n. 36, p. 2, 2007. 59, 60

[3] NIST. NIST Chemistry Webbook. Disponível em: http://webbook.nist.gov/chemistry>. 60

[4] NIST Diatomic Spectral Database. Disponível em: <www.physics.nist.gov/PhysRefData/MolSpec/Diatomic/index.html>. 59, 60

[5] FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; SCALMANI, G.; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, X.; HRATCHIAN, H. P.; IZMAYLOV, A. F.; BLOINO, J.; ZHENG, G.; SONNENBERG, J. L.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; VREVEN, T.; JR., J. A. M.; PERALTA, J. E.; OGLIARO, F.; BEARPARK, M.; HEYD, J. J.; BROTHERS, E.; KUDIN, K. N.; STAROVEROV, V. N.; KOBAYASHI, R.; NORMAND, J.; RAGHAVACHARI, K.; RENDELL, A.; BURANT, J. C.; IYENGAR, S. S.; TOMASI, J.; COSSI, M.; REGA, N.; MILLAM, N. J.; KLENE, M.; KNOX, J. E.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; MARTIN, R. L.; MOROKUMA, K.; ZAKRZEWSKI, V. G.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; DAPPRICH, S.; DANIELS, A. D.; FARKAS, .; FORESMAN, J. B.; ORTIZ, J. V.; CIOSLOWSKI, J.; FOX, D. J. Gaussian 09, Revision D.01. 2009. Dispon ivel em: <http://www.gaussian.com/>. 39, 117

[6] SZABO, A.; OSTLUND, N. S. Modern quantum chemistry: introduction to advanced eletronic structure theory. New York: Macmillian publishing co., 1982. Inc. 16, 17, 20, 21, 24, 27, 36

[7] MøLLER, C.; PLESSET, M. S. Note on an approximation treatment for many-electron systems. Phys. Rev., n. 46, p. 618, 1934. 16, 28

[8] MøLLER, C.; PLESSET, M. S.. Note on an approximation treatment for many-electron systems. Phys. Rev., v. 46, n. 7, p. 618–622, Oct 1934. 20

[9] POPLE, J. A.; KRISHNAN, R.; SCHLEGEL, H. B.; BINKLEY, J. S. Derivative studies in hartree-fock and møller-plesset theories. Int. J. Quant. Chem., p. 545, 1978. 16, 28

[10] POPLE, J. A.; KRISHNAN, R.; SCHLEGEL, H. B.; BINKLEY, J. S. . Quantum mechanics. J. Chem. Phys., n. 98, p. 1358, 1993. 20

[11] BARTLETT, R. J.; PURVIS, G. D. Many body perturbation-theory, coupled-pair many-electron theory, and importance of quadruple excitations for correlation problem. Int. J. Quant. Chem., n. 14, p. 516–581, 1978. 16.

[12] BARTLETT, R. J.; PURVIS, G. D. Quantum mechanics. Int. J. Quantum. Chem., n. 14, p. 561, 1978. 20