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ABSTRACT

Landslides are a natural, gravity driven phenomena which
can cause great economic and human losses. To prevent them,
Land Use and Land Cover (LULC) maps are essential to iden-
tify areas of high susceptibility and to detect landslide scars.
This paper presents results of a classification of a landslide
susceptible area, using Random Forest algorithm and time
series. The time series dataset is composed by the Normal-
ized Difference Vegetation Index (NDVI) values and 16 met-
rics derived from the time series. The best performance was
achieved using 14 metrics plus the NDVI values, with overall
accuracy of 93.23% and kappa equals to 0.8937. The metrics
revealed a great capability for landslides detection.

Index Terms— landslide, time series, Random Forest,
land cover, disasters

1. INTRODUCTION

Landslides are a type of mass movement, which is a
widespread natural phenomenon that can be triggered by ex-
treme precipitation events, earthquakes, snow melting or an-
thropic activities. This phenomenon can be considered a haz-
ardous event when it occurs in a populated area. In Brazil,
the landslides events were responsible for the second highest
number of deaths between 1991 and 2012 [1].

In order to reduce the landslide susceptibility, inventory
and LULC maps are crucial information. The inventory can
help to understand the pattern of the events, while the LULC
maps can assist with the areas that have experienced anthro-
pogenic interventions that may induce landslides. Land use
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maps present a dynamic characteristic having the necessity to
be constantly updated. Time series have been widely used
to LULC mapping and to identify the nature of land cover
changes [2]. Medium spatial resolution time series data have
demonstrated high capacity for characterizing environmen-
tal phenomena, describing trends as well as discrete change
events [3].

In this context, the aim of this research was to realize the
LULC classification for an area with high concentration of
landslides at the Rolante River Catchment using a Random
Forest (RF) classification algorithm. We evaluated the perfor-
mance of the NDVI and time series metrics for the classifica-
tion and the landslides detection.

2. STUDY AREA

The study area has approximately 6 km2 and is located at the
Rolante River Catchment in the South of Brazil (Figure 1).
The studied basin is placed between the latitudes of 29o20’-
29o43’S and the longitudes 50o18-50o43’W and its drainage
area is 828 km2. The altitudes vary from 19 to 997m. The
lithology is predominantly composed of basaltic rocks and
sandstone and the climate is very humid subtropical. Numer-
ous landslides occurred in this region on January 5th, 2017,
caused by a torrential rain event [4].

3. METHODOLOGY

Sentinel 2A imagery was chosen, especially because it pro-
vides free orthorectified reflectance products with 10m of spa-
tial resolution and a 5-day temporal resolution. Level 2A
(Bottom-of-Atmosphere) product was not available for the
day of the event, so Level 1C was used. The European Space
Agency (ESA) provides an orthoimage product in Top-Of-
Atmosphere (TOA) reflectance. In order to realize the atmo-
spheric correction, the AtmosPy system [5] was used. It is a
semi-automatic system of atmospheric correction which ap-
plies the 6SV (Second Simulation of a Satellite Signal in the



Fig. 1. Study area at Rolante River Catchment (RS/Brazil).

Solar Spectrum Vector version) model.
The time interval covered was from November of 2015 to

September of 2019, with approximately one image per month.
Images with cloud coverage above 60% have been removed.
In total, the dataset was composed of 26 dates, which have
been smoothed with an outlier removal filter. From each date
of the Sentinel’s image, the NDVI was extracted. This index
presents a drastic reduction in its value when the landslide
occurs. Besides that, once it is a composition of bands, it
allows the use of the red and near-infrared bands in one sin-
gle feature. This reduction of attributes is specifically ben-
eficial when dealing with dense time series. The literature
shows many successful researches using the NDVI to land
cover mapping[6, 7].

The tsmetrics1, package available in python, was used to
extract features from the NDVI time series. The package cur-
rently possess two modules to feature extraction. The first
module computes basic metrics, that are derived from the time
series using common statistical approaches. Currently, 7 met-
rics are available: mean, maximum, minimum, standard devi-
ation, sum, amplitude and first slope.

The second module implements the metrics proposed by
[8]. Currently, 9 metrics are available: area, area of the quad-
rant (AQ) 1, AQ 2, AQ 3, AQ 4, circle, gyration, polar balance
and angle. These metrics are derived from a time wheel leg-
end proposed by [9]. To compute these features each time
series has its values projected to angles in the interval [0, 2π].
A time series is a function f(x, y, T ) where (x, y) is the spa-
tial position of a point, and T is a time interval t1; . . . ; tN ,
and N is the number of observations. The time series can be
visualized by a set of values vi ∈ V , where vi is a possible
value of f(x, y) in time ti. Therefore, its polar representa-
tion is defined by a function g(V ){A,O} (A corresponds to
the abscissa axis in the Cartesian coordinates, and O to the
ordinate axis) where:

ai = vicos
(2πi
N

)
∈ A, i = 1, ..., N. (1)

1github.com/andersonreisoares/tsmetrics

and
oi = visin

(2πi
N

)
∈ O, i = 1, ..., N. (2)

In both equations, 2πi
N is an arbitrary angle that depends

on the acquisition date and vi is the corresponding time series
value. Considering that an+1 = a1 and on+1 = o1, a closed
shape is obtained.

Figures 2 and 3 illustrate an example of a linear and a
polar projection of the NDVI for classes Forest and Land-
slide along the time series. For most of the classes consid-
ered in the classification, their main characteristic is a sta-
ble response along the period, except for Landslide, where an
abrupt change occurs in the NDVI values.

Fig. 2. Linear projection of NDVI values in the time series
for the classes Forest and Landslide. The blue line is the raw
data, while the black dashed line, the filtered data. The time
axis corresponds to the 26 dates used.

Fig. 3. Polar projection of NDVI values in the filtered time
series for the classes Forest and Landslide. Starting from the
green box lower right position, the time wheel goes anticlock-
wise.

A stratified proportional sampling was realized, being the
proportion for each class based on previous classification
works of the area [10]. As suggested by [11], high resolu-
tion imagery from Google Earth, was used as ground-truth
for sampling. The samples are pixel based and were divided
respecting the proportion 20/80; 133 testing and 532 train-
ing samples. The classes are: Agriculture, Landslide, Forest,
Pasture and Bare soil.

The classification was performed by a RF algorithm in
python environment. The RF consists of a combination of de-
cision tree classifiers where each classifier is generated using
a random vector sampled independently from the input vec-
tor, and each tree casts a unit vote for the most popular class



to classify an input vector [12]. Many studies have proved the
effectiveness of this classifier for LULC mapping [13, 14].
Four different groups of attributes were used in the classifica-
tions experiments: one single NDVI image, corresponding to
the most recent date; the NDVI time series; the NDVI time
series with the metrics and only the metrics.

4. RESULTS AND DISCUSSION

The first attempt to realize the LULC mapping via RF took
into account a single NDVI image from September, 2019. The
unsatisfactory results (overall accuracy of 66.92% and kappa
index equals to 0.4731) showed that one single NDVI image
was not enough to perform a good classification. Considering
that, the NDVI time series composed of 26 images was used.
The result showed an overall accuracy of 92.48% and a kappa
index of 0.8827.

The metrics derived from the time series revealed a great
potential to rapidly identify some important elements by vi-
sual interpretation. The features mean and amplitude assist
the detection of the landslide scars, which is illustrated by
Figure 4. Once the landslide scars correspond to not vege-
tated areas, hence presenting low NDVI values, they are iden-
tified in the mean attribute by their low values. Regarding the
amplitude, which corresponds to the difference of the highest
and the lowest values in the time series, the landslide scars
present high values, once there is a significant change of the
NDVI after the forest removal by the landslide. Polar metrics,
also presented relevant material to the classification. As Fig-
ure 3 exemplifies, for Landslide class, AQ1 values are high,
being remarkably reduced from AQ2 on. Whereas for Forest
these metrics remain high and stable along the time series.

(a) Mean (b) Amplitude

Fig. 4. Examples of basic features extracted. The red arrow
points to one of the landslide scars.

The classification resulted from the use only of the metrics
showed an satisfactory product with overall accuracy above
90%. Once the RF algorithm ranks the feature importance to
the classification, the least important attributes were removed
one at a time, then performing new classifications. The best
result was achieved by removing the features minimum and
maximum, keeping the following metrics: mean, standard de-
viation, sum, amplitude, first slope, area, AQ 1, AQ 2, AQ 3,
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Fig. 5. Classification products. a) NDVI with metrics. b)
Metrics. c) NDVI. d) RGB composition. The blue rectangle
highlights the difference among the classification products.

AQ 4, circle, gyration, polar balance and angle. The prod-
uct presented an overall accuracy of 92.48% and a kappa in-
dex equals to 0.8819. Comparing to the NDVI classification,
the results for only the metrics showed more noise, producing
small scattered polygons.

The last experiment united the NDVI with the above se-
lected basic and polar metrics, using a total of 40 attributes.
The result was superior from the other classifications, pre-
senting an overall accuracy of 93.23% and a kappa index of
0.8937. Figure 5 illustrates the last three cited classifications.
Special attention is given to the detached area in the blue rect-
angle. According to the ground truth reference, this area used
to be forested, however an anthropic driven devastation trans-
formed it, mainly, in bare soil and pasture. The product from
the NDVI time series could correctly classify the area as bare
soil. However, it’s interesting to notice that the metrics prod-
uct classified it, mainly, as landslide. That occurred, because
the radical change in the NDVI value due to the devastation is
similar to the landslide phenomenon, once it also presents an
abrupt reduction in the vegetation index.

Table 1 illustrates the confusion matrix regarding the clas-
sification using the NDVI with the metrics. Bare soil class
presented the highest comission and omission errors, being
mistaken for Landslide and Forest. Once the sampling was
proportional and stratified, this class had one of the lowest
number of samples, which provoked the increased values of
error percentage. One reason for mistaking this class with
landslide is the extremely low NDVI values. In this case, a
digital elevation model could help to distinguish both classes.
Landslide class showed the second highest error values, with
comission error equals to 25%. Forest presented low error
values, however only Pasture and Agriculture showed 0% of
comission and omission errors.



Table 1. Confusion matrix from the classification of the
NDVI with the metrics.

5. CONCLUSIONS

The RF classifier presented a good performance for LULC
mapping and identifying landslides. Except for the classifi-
cation with only one single image as input, all other three
experiments showed very satisfactory results, with overall ac-
curacy above 90% and kappa index above 0.88. Even though
the best classification result derives from the use of the NDVI
time series with the metric features, no affirmation regarding
this superiority can be done without the realization of statis-
tical tests. These tests could prove if this improvement in the
result is in fact significant or not. Furthermore, the metrics
have shown a great potential to classification and, specially,
to the visual detection of landslide scars.

Moreover, the NDVI as the unique feature for classifi-
cation showed a great potential for characterizing landslides
scars if more than one date is considered. This is due to the
radical change in its values when the landslide event happens.
For future studies, it is recommended to realize the above
cited statistic tests, as well as trying experiments including
a DEM, other sensor bands and vegetation indices.
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