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ABSTRACT: This research explores the benefits of radar data assimilation for short-range weather forecasts in south-

eastern Brazil using theWeatherResearch and Forecasting (WRF)Model’s three-dimensional variational data assimilation

(3DVAR) system. Different data assimilation options are explored, including the cycling frequency, the number of outer

loops, and the use of null-echo assimilation. Initially, four microphysics parameterizations are evaluated (Thompson,

Morrison, WSM6, and WDM6). The Thompson parameterization produces the best results, while the other parameteri-

zations generally overestimate the precipitation forecast, especiallyWDSM6. Additionally, the Thompson scheme tends to

overestimate snow, while the Morrison scheme overestimates graupel. Regarding the data assimilation options, the results

deteriorate andmore spurious convection occurs when using a higher cycling frequency (i.e., 30min instead of 60min). The

use of two outer loops produces worse precipitation forecasts than the use of one outer loop, and the null-echo assimilation

is shown to be an effective way to suppress spurious convection. However, in some cases, the null-echo assimilation also

removes convective clouds that are not observed by the radar and/or are still not producing rain, but have the potential to

grow into an intense convective cloud with heavy rainfall. Finally, a cloud convective mask was implemented using ancillary

satellite data to prevent null-echo assimilation from removing potential convective clouds. The mask was demonstrated to

be beneficial in some circumstances, but it needs to be carefully evaluated in more cases to have a more robust conclusion

regarding its use.
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1. Introduction
Accurate short-term high-resolution precipitation forecast

has been a challenge over the last few decades. Computing

power has increased, allowing an increase in model grid reso-

lution, but the accuracy in predicting the time and position of a

particular convective cell is still a challenge, especially in the

first forecast hours. One of the reasons for this low accuracy at

the very beginning of the forecast is the well-known spinup

problem (Illari 1987). This problem becomes more relevant

when performing short-term weather forecasts (1–6 h). For

precipitation predictions of up to 2–3 h, Lagrangian advection

of radar echoes usually performs better than numerical

weather prediction (NWP) (Lin et al. 2005; Sun et al. 2014). Of

course, the prediction performance depends on the precipita-

tion system type (i.e., less organized convection has a forecast

range much shorter than those of well-organized systems)

(Zipser 1990). In the range between approximately 3 and 6 h,

there is a gap in performance between extrapolation methods

and dynamic numerical models. To bridge this gap, many

studies have been performed to reduce the spinup of numerical

models (Sun et al. 2014). One of the best ways to improve the

model accuracy at the very beginning of a precipitation fore-

cast is to better represent the model’s initial conditions

(Stensrud et al. 2013), which can be accomplished by per-

forming convective-scale data assimilation (DA) (Sun et al.

2014). Data assimilation is a technique for generating accurate

images of the true state of the atmosphere at a given time in

which the observed information is accumulated into the model

state by taking advantage of consistency constraints with laws

of time evolution and physical properties. A crucial advantage

of NWP models with DA compared to nowcasting tools (e.g.,

extrapolation of radar echoes) is that DA not only adds the

current data into the NWP model but also initializes

convective-scale events (Sokol 2011). A logical approach used

for nowcasting is to blend radar echo extrapolation with a

numerical model to generate a seamless 0–6-h forecast (Sun

et al. 2014). However, extrapolation accuracy is strongly re-

duced with time, and a blended forecast relies entirely on nu-

merical models after 3–4 h.

Initial conditions play a crucial role in numerical weather

prediction (NWP). For high-resolution forecasts, the model

needs to be initialized with observations that describe not only

the large-scale features, but also the convective-scale phe-

nomena. Understanding how to assimilate observations at the

convective scale, resolving the dynamic process relevant to

predicting convection evolution and dealing with rapid error

growth is a huge challenge. Doppler radar observations have

been used in complex DA systems to improve the initial con-

dition of high-resolution models since these observations are

almost the only source of three-dimensional data at this scale
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(Aksoy et al. 2009). Reflectivity and radial velocities from

Doppler radar have been successfully used in complex DA

to improve the initial conditions for convection-permitting

models (e.g., Gao et al. 2004; Kong et al. 2018; Ming et al. 2009;

Tong et al. 2016; Vendrasco et al. 2016; Wang et al. 2013; Xiao

et al. 2007). More recently, polarimetric variables have also

been used in DA systems (e.g., Carlin et al. 2017; Kawabata

et al. 2018; Li et al. 2017; Wolfensberger and Berne 2018).

Although many studies have shown improvements in precipi-

tation forecasts due to radar DA, it is still a challenge to extract

as much information as possible from observations while

maintaining the large-scale background balance. Vendrasco

et al. (2016) have shown that constraining the cost function

with a large-scale analysis can alleviate this problem. Also, the

choice of the cycling frequency can play an important role in

the analysis and forecast quality, and the best analysis will not

automatically produce the best forecast. Pan and Wang (2019)

studied the assimilation frequency of radar data and they

concluded that a higher DA frequency can produce a more

intense cold pool and rear inflow jets but does not necessarily

lead to a better forecast. Besides, Tong et al. (2016) studied the

best cycling strategy to assimilate radar data and found that

performing three 1-h cycles before the analysis time results in

better accuracy than performing just one 3-h cycle.

Another important aspect that directly affects precipitation

in high-resolution forecasts is the microphysical parameteri-

zation. Many approaches are considered to parameterize the

in-cloud process, and these approaches can be categorized into

two schemes: bulk and bin parameterizations. Bin schemes aim

to calculate microphysics as accurately and generally as pos-

sible, and divide microphysical particles with different sizes

into bins to compute the evolution of each bin separately. Thus,

the particle size distribution (PSD) is an output instead of the

moments provided by bulk schemes. Although bin schemes are

much more detailed and precise, these methods are very ex-

pensive computationally and are not feasible in operational

NWPmodels. Bulk schemes can be classified by the number of

moments (predicted variables) that are included in the pa-

rameterization. The most common bulk parameterizations are

those with single moments [e.g., Ferrier (Ferrier et al. 2002);

WSM6 (Hong and Lim 2006); Thompson (Thompson et al.

2008)], which predict only the mass of the particles, and the

double moment bulk schemes, which also predict the total

number concentration [e.g., WDM6 (Lim and Hong 2010);

Morrison (Morrison et al. 2009)]. Although uncommon in

operational NWP models, there are also developments in bulk

schemes regarding the third moment, which also provides a

prediction for the reflectivity (e.g., (Milbrandt and Yau 2005).

Many works have shown the impact of microphysical param-

eterization on high-resolution precipitation forecasting (Fovell

et al. 2009; Morrison et al. 2009; Cheng et al. 2011; Wu et al.

2013; Grabowski 2014; Mohan et al. 2019); however, only a few

have discussed the impact of microphysical parameterization

on radar DA (Yussouf et al. 2013; Putnam et al. 2017).

Although all the bulk microphysics parameterizations solve

similar processes, the production of rain and its timing can also

be distinct. The question that arises is: does radar DA have any

impact on this behavior?

The goal of this paper is to evaluate the performance of the

cloud-resolving model for nowcasting applications on intense

thunderstorms and provide some evaluations regarding the

impact of different radar DA procedures and microphysics

parameterization.

The paper is organized as follows: section 2 presents the

SOS-CHUVA project and the radar data used in this work and

outlines the experimental setup. Additionally, this section

briefly describes the Weather Research and Forecasting

(WRF) Model three-dimensional variational (3DVAR) DA

system employed in this study and the methods for precipita-

tion verification. Section 3 presents the evaluation of the DA

procedure based on increments, innovations and residuals and

the short-range precipitation forecast for 5 convective cases to

show how radar DA and different microphysics impact the

precipitation forecast in the first 6 h of leading time. The main

results obtained from this study are summarized in section 4.

2. Data and methodology

a. The SOS-CHUVA campaign
The SOS-CHUVA campaign occurred in southeastern

Brazil between 2016 and 2019. The campaign was a collabo-

rative effort of several Brazilian institutions to better un-

derstand severe thunderstorms in the region and improve

nowcasting tools and methodologies. SOS-CHUVA is an ex-

tension of the CHUVA project (Machado et al. 2014), partic-

ularly dedicated to nowcasting. During the experiment, several

instruments were installed and operated over a 2-yr period

(2016–18) in Campinas, São Paulo, Brazil (Fig. 1), in particular,
an X-band polarimetric radar and two other operational

S-band radars.

b. Selection of the cases
Five cases of intense storms were selected within the radar

coverage area during the SOS-CHUVA campaign (Fig. 2). The

five cases were chosen based on their intensity and the avail-

ability of data, particularly radar data. Additionally, there was

an attempt to include cases of convective systems with different

morphologies, from organized mesoscale convective systems,

such as quasilinear convective systems (QLCS) and storm

clusters, to isolated storms. For all the cases, intense weather

was reported, including hail, strong winds and/or flooding (see

Fig. 2). A synthesis of these cases, as well as the radar data used

in the DA system, is shown in Table 1. A more detailed dis-

cussion of the events and the synoptic-scale environment is

presented in section 3a.

c. Radar data
The three radars employed in this study were located in São

Roque (23.6028S, 47.0948W, 1147-m altitude; SR), Salesópolis
(23.6008S, 45.9728W, 916-m altitude; SL) and Campinas

(22.8138S, 47.0568W, 680-m altitude; CP), Brazil; see Fig. 1 and

Table 2 for a detailed description of all the radars. Volumetric

data are available every 5, 10, and 15min for the CP, SR, and

SL radars, respectively. However, in this study, only the volu-

metric data from every 30min were used in the DA cycling

process and the forecast evaluation. Each radar has its own
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automatic quality control procedure, which includes ground

clutter removal. For radars SR and SL, the dealiasing proce-

dure (James and Houze 2001) from Py-ART (Helmus and

Collis 2016) was also applied, while the CP radar run in dual-

pulse repetition frequency (PRF) mode and the dealiasing

procedure was not necessary. Due to the strong attenuation

observed on X-band radars, the data from CP radar was cor-

rected by applying the methodology described in (Schneebeli

et al. 2012). The ZPHI algorithm (Testud et al. 2000) is also

employed in the X-band radars for attenuation correction. After

the data were preprocessed, each elevation of the volumetric

radar datawas interpolated horizontally to a regular grid of 1-km

resolution. Finally, the interpolated reflectivity andDopplerwind

fields were used to produce profiles to be assimilated.

d. WRF and WRFDA
The model used in the study was the WRF Model with the

AdvancedResearch versionofWRFdynamical core (WRF-ARW;

Skamarock et al. 2008), version 3.9.1.1, and its 3DVAR DA

system (WRFDA-3DVAR), version 3.9.1 (Barker et al. 2004).

This system iteratively minimizes the cost function defined by

J5 J
b
1 J

o
5
1

2
vTv1

1

2
(d2H0Uv)TR21(d2H0Uv) , (1)

where Jb and Jo represent the background (i.e., the previous

model forecast) and observation terms, respectively. The term

v is the control variable (CV) defined by v 5 U21(x 2 xb),

where U is the decomposition of the background error co-

variance B via B5 UUT, xb is the background variable, x is the

model state and the analysis x 5 xa represents the a posteriori

maximum likelihood or minimum variance estimate of the true

state of the atmosphere. The innovation vectors that measure

the departure of the observation y0 from its counterpart com-

puted from the background xb are given by d5 y02H(xb). The

term H0 is the linearization of the nonlinear observation op-

erator H, and R is the observation error covariance matrix.

The operator H0 is obtained by considering the first-order

Taylor series expansion of H and the inner loop procedure

solves a minimization algorithm for a quadratic problem

(Courtier et al. 1998). The nonlinear aspects of the assimilation

problem are solved by the outer loop procedure. The incre-

ment is computed and added back to the control variables after

the inner loop minimization algorithm to create the updated

first guess. Then, the control variable can bemodifiedwith each

outer loop. Moreover, because of the analysis from the previ-

ous outer loop is closer to the observations, some of the re-

jected observations by the previous outer loop can now pass

the quality control in the current outer loop and modify the

final analysis. The positive impact of performing outer loops

in a 3DVAR framework should be more evident when using

nonlinear operators since the outer loops are able to update the

linearization around a better state and thus improve the quality

of the analysis (Hsiao et al. 2012). Trémolet (2008) has shown

that the outer loop iterations seem to have more impact in

4DVAR than in 3DVAR. Furthermore, Trèmolet’s work also

shows that the number of outer loops does not change much the

humidity variables; however, the highest impact occurs when

highly nonlinear observational operators are used.

Such as in Sun et al. (2016), the CVs used in this study were

the velocity components u and y, temperature T, surface

pressure Ps, and pseudorelative humidity RHs (where the

humidity is divided by the background humidity). The re-

trieved rainwater mixing ratio obtained fromMarshall–Palmer

relationship (Marshall and Palmer 1948), instead of the re-

flectivity itself, is assimilated following the formulation pro-

posed by Wang et al. (2013) to avoid the nonlinearity issues

caused by the linearization of the observation operator re-

quired by the incremental formulation (Courtier et al. 1994). In

addition, ice-phase hydrometeors such as snow and graupel

obtained from reflectivity observations are assimilated fol-

lowing the formulation of Gao and Stensrud (2012).

WRFDA also has the capability of assimilating null-echo

reflectivity (a region with no precipitating echo within the

FIG. 1. Map showing the location of the radars used in this study

and theWRF domains. (a) Topography (m) from the d01 domain is

shaded, and theWRF domains (d01, d02, and d03) are shown along

with the radar location (colored dots) and coverage (colored cir-

cles). (b) Topography (m) from the d03WRF domain is shaded, SR

is the nonpolarimetric S-band radar located in São Roque (red dot

and circle with 250-km radius), SL is the polarimetric S-band radar

of Salesopolis (orange dot and circle with 250-km radius), and CP

represents the X-band polarimetric radar in Campinas (yellow dot

and circle with 100-km radius).
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radar observation range), the Kyungpook National University

(KNU) null-echo scheme (Min et al. 2017). The null-echo in-

formation is used to suppress spurious model precipitation.

When the null-echo assimilation is employed, excessive hu-

midity and hydrometeor contents, such as wet and dry snow,

graupel, and rainwater, are removed based on radar reflectivity

by the 3DVAR DA technique. The null-echo assimilation

works as follow: it receives from the user all the locations

where no precipitation is observed in the radar and it

is considered, at these locations, a reflectivity value of

215 dBZ, and if the background has a reflectivity value

higher than 215 dBZ, the innovation is calculated and

FIG. 2. Composite reflectivity (dBZ) at (a) 1900UTC 3Dec 2016, (b) 1930UTC 22 Feb 2017, (c) 1900UTC 6Mar

2017, (d) 2100UTC5May 2017, and (e) 1900UTC27Oct 2017. The reflectivity fields are generated by interpolating

the reflectivity from the closest radar to theWRF d03 domain (Fig. 1). The arrows indicate the systems that caused

severe weather, which occurred at approximately the times shown in the figures.
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considered in the minimization, otherwise, this no precipi-

tation observation is ignored.

The National Meteorological Center (NMC) method

(Parrish and Derber 1992) was used in this work to generate

background error statistics. A dataset containing 3 months of

cold-start 24-h forecasts over the inner domain covering the

Southern Hemisphere summer was produced every day start-

ing at 0000 and 1200UTC. The differences between the 24- and

12-h forecasts valid at the same time were used to calculate the

domain-averaged background error statistics. For the radar

DA, the error statistics were tuned by halving the length scale

and doubling the variance, following Tong et al. (2016). It is

assumed that the observation errors are statistically indepen-

dent of each other, so R is a diagonal matrix; its diagonal

contains the variances of the errors of each observation. The

variances for radar data are estimated by applying the standard

deviation over the eight neighboring points of each grid point.

No special consideration was made regarding the different

wavelengths of each radar.

e. Model configuration

The WRF model was configured with three one-way nested

domains d01, d02, and d03 with 16-, 4-, and 1-km horizontal

grid spacing, respectively (see Fig. 1), and 55 layers up to

25 hPa. The purpose of domains d01 and d02 is to provide

boundary condition to domain d03 since the data assimilation

and all the analysis are performed only for the higher resolu-

tion domain, with 1 km grid spacing. For all domains, the

physics used were set as follow: for the longwave and short-

wave radiation, the rapid radiative transfer model for GCMs

(RRTMG; Iacono et al. 2008) was selected, and the employed

surface layer schemewas the revisedMonin–Obukhov scheme;

the surface parameterization scheme was the Noah scheme

(Tewari et al. 2004), and the YSU scheme was used to pa-

rameterize the planetary boundary layer (Hong et al. 2006).

Additionally, only for domain d01, the Kain–Fritsch Cumulus

Potential Scheme (Berg et al. 2013) was selected. The Global

Forecast System (GFS) forecasts from theNational Centers for

Environmental Prediction (NCEP) were used as the initial and

boundary conditions (IC/BC) for the outermost WRF domain

(d01). The GFS is a T1534 global model with 64 vertical levels.

The model output is interpolated to a 0.258 resolution grid,

which was used in this study. Both the IC/BC and the synoptic-

scale analysis of each case used the 1200 UTC GFS runs. All

simulations employed the same setup.

Four microphysics schemes were employed: Thompson

(Thompson et al. 2008), Morrison (Morrison et al. 2009), WRF

double-moment 6-class (WDM6; Lim and Hong 2010), and

WRF single-moment 6-class (WSM6; Hong and Lim 2006).

The four microphysics schemes combined with two DA

methodologies and the schemes withoutDA resulted in 12 runs

for each case. These runs were used to evaluate the impact of

microphysics schemes and data assimilation (section 3c).

Further DA analysis (sections 3d and 3e) only included the

microphysics scheme that provided the best precipitation

forecast. Another fourteen experiments exploring different

DA options for each case, using only the most appropriate

microphysics scheme, were performed. See Tables 3 and 4 for

the description of the different configurations.

The cycling methodology is described in Fig. 3. It shows that

the d02 domain forecasts (4-km grid spacing) are interpolated

to 1 km using the utility NDOWN (Nest-Down) available

along with the WRF package to provide initial and boundary

condition for one-way nesting simulations. The output of

NDOWN is then used as background in WRFDA. For all five

cases, four continuously cycled analyses were performed at

1500, 1600, 1700, and 1800 UTC, and then a 6-h forecast en-

sued. At 1500 UTC the initial conditions for the outermost

domain come from the GFS forecasts. The experiments were

performed with and without cycles/DA: with cycles and DA

TABLE 1. Characteristics and data availability for each studied case.

Cases Dates

Approximate time of severe

weather reports Convective mode Available radar data

1 3 Dec 2016 1900 UTC QLCS SR, SL, and CP

2 22 Feb 2017 1930 UTC Isolated storm SR, SL, and CP

3 6 Mar 2017 1900 UTC Storm cluster SR and SL

4 5 May 2017 2100 UTC QLCS SR, SL, and CP

5 27 Oct 2017 1900 UTC Storm cluster SR and CP

TABLE 2. Radars characteristics.

São Roque (SR) Salesópolis (SL) Campinas (CP)

Wavelength 10.9 cm (S-band) 10.638 cm (S-band) 3.202 cm (X-band)

Beamwidth 2.08 0.9688 1.38
Polarimetric No Yes Yes

Doppler Yes Yes Yes

Elevations 15 8 17

Radial resolution 500m 250m 200m

Azimuthal resolution 18 18 18
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(yCYyDA), without cycles but with DA (nCYyDA), with

cycles but with no DA (yCYnDA) and without either

(nCYnDA). For the nCYyDA experiments, cycling was not

performed. Instead, one-time DA was run at 1800 UTC, and

then a 6-h forecast took place. The experiment yCYnDA is

similar to the situationwhere themodel is run for 3 h before the

time of the forecast initialization (1800 UTC) with an hourly

BC update.

f. Statistical verification
Several statistical indices were calculated using the

composite reflectivity field generated by the simulations

and the composite reflectivity field observed by the radar.

For the sake of comparison, the radar composite reflec-

tivity was interpolated into the model grid at 1 km hori-

zontal grid spacing. The contingency table was used to

evaluate the simulation reflectivity field with respect to the

observed reflectivity field. The total numbers of hits, mis-

ses, false alarms and correct negatives in the domain were

used to calculate the false alarm ratio [FAR; Eq. (2)] and

the probability of detection [POD; Eq. (3)]. The threshold

of 0.1 dBZ was used to obtain the hits, misses, false alarms,

and correct negatives:

FAR5
false alarms

false alarms1hits
, (2)

POD5
hits

hits1misses
. (3)

The other indices used to evaluate the simulations were the

root-mean-square error [RMSE; Eq. (4)] and the fractional

skill score [FSS; Eq. (5); Roberts and Lean (2008); Skok and

Roberts (2016)]:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

k51

(F
k
2O

k
)
2

s
, (4)

where F andO represent the forecast and observed reflectivity

fields, respectively, the k subscript represents the kth grid

point, and N is the total number of grid points, and

FSS5 12
FBS

FBS
w

5 12

1

N
�
N

k51

P
F(k)

2P
O(k)

� �2

1

N

"
�
N

k51

P2
F(k) 1P2

O(k)

� �# , (5)

where FBS and FBSw are the fractional Brier score and the

worst possible FBS that can be obtained from observation and

forecast fractions, respectively. The terms PF(k) and PO(k) are

the fractional coverages of reflectivity for the kth grid point

that exceeds a given threshold for the forecast and observation,

respectively. The term N is the total number of grid points in

the domain. The PF(k) and PO(k) terms are calculated over a

square of 25 grid points (i.e., considering a radius of influence

of 2 grid points). The more grid points are considered, the

higher should be the FSS; however, the evaluation of localized

convection is compromised.

RMSE was calculated only for grid points where both ob-

servations and forecasts were above 0.1 dBZ and the FSS

threshold was 10 dBZ. All the statistical indices considered

only grid points within the 1-km domain area.

TABLE 3. Experiments.

Expt Microphysics With cycle With DA

nCYnDA Morrison/Thompson/WSM6/WDM6 No No

nCYyDA Morrison/Thompson/WSM6/WDM6 No Yes

yCYyDA Morrison/Thompson/WSM6/WDM6 Yes Yes

TABLE 4. Experiments part 2. All experiments were performed using the Thompson microphysics.

Expt With cycle With DA Cycle period Outer loop Null-echo

nCYnDA No No — — —

yCYnDA60M Yes No 60 — —

nCYyDA1OLnNE No Yes — 1 No

nCYyDA2OLnNE No Yes — 2 No

nCYyDA1OLyNE No Yes — 1 Yes

nCYyDA2OLyNE No Yes — 2 Yes

yCYyDA60M1OLnNE Yes Yes 60 1 No

yCYyDA60M2OLnNE Yes Yes 60 2 No

yCYyDA60M1OLyNE Yes Yes 60 1 Yes

yCYyDA60M2OLyNE Yes Yes 60 2 Yes

yCYyDA30M1OLnNE Yes Yes 30 1 No

yCYyDA30M2OLnNE Yes Yes 30 2 No

yCYyDA30M1OLyNE Yes Yes 30 1 Yes

yCYyDA30M2OLyNE Yes Yes 30 2 Yes
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3. Results

a. Case description and synoptic-scale environment
Figure 2 shows the composite radar reflectivity of the five

cases used in this study for the domain d03 (Fig. 1). The times

shown in Fig. 2 are approximately when severe weather was

reported at the surface, as indicated in the figure. The cases

vary from mature quasilinear convective systems (QLCS)

(Figs. 2a,d) to isolated thunderstorms (Fig. 2b). This variation

is an important characteristic of the cases selected because

it shows that the results of this research evaluate intense

events with different types of convective organization. The

3 December 2016 case (Fig. 2a) is characterized by a large

number of storms over domain d03, including a QLCS in the

northern part of the area that was attributed to several reports

of severe winds in the Campinas region. Isolated storms

formed over the São Paulo metropolitan region in the after-

noon of 22 February 2017 (Fig. 2b) and caused hail and flash

flooding in the area. On 6 March 2017 (Fig. 2c), a large area of

precipitation covered most of the study region, with embedded

severe storms in the northern sector causing hail and strong

winds. The second QLCS among the studied cases occurred on

5 May 2017 (Fig. 2d) and was responsible for multiple severe

wind reports and flooding. Finally, on 27 October 2017

(Fig. 2e), severe storms formed north of Campinas, presenting

Doppler velocity couplets indicating rotation during several

radar scans (not shown), that were responsible for strong winds

and hail. This event was classified as a supercell.

The synoptic-scale 500-hPa configuration (vorticity and

winds at 500 hPa) at 1800 UTC for each case is shown in Fig. 4.

At 1800 UTC 3 December 2016 (Fig. 4a), a cyclonic vorticity

maximumwas located upstream of the study region that caused

lifting due to cyclonic vorticity advection (not shown). This

trough was associated with cold air advection at 500 hPa, which

contributed to the increase of instability with time. The rela-

tively strong 500-hPa flow (15–20m s21) contributed to high

wind shear and convective organization (Fig. 2a). Weak mid-

level flow predominated in the study region during the isolated

storms on 22 February 2017 (Fig. 4b). The absence of a source

of synoptic-scale lifting suggests that these storms formed due

to radiative surface heating and the increase in thermodynamic

instability during the afternoon associated with the penetration

of the sea breeze. The case of 6 March 2017 (Fig. 4c) also

occurred under weak midlevel flow, which contributed to

the slow storm movement and the occurrence of flooding.

Similar to the 3 December 2016 case, on 5 May 2017

(Fig. 4d), a synoptic-scale trough upstream of the study re-

gion caused ascent and midlevel cold advection and con-

tributed to intensify the wind shear and organize the QLCS.

The storms that occurred on 27 October 2017 formed

downstream of a midlevel vorticity maximum embedded

in a strong zonal flow (Fig. 4e).

b. Increments and OMB/OMA profiles
This section shows the impact of radar DA on the analysis

(i.e., the output from the DA system) with each microphysics

scheme. Thus, only experiments with DA are considered (i.e.,

nCYyDA and yCYyDA from Table 3). The first question ad-

dressed regards the DA behavior for each microphysics

parameterization.

FIG. 3. Schematic diagram of the 60-min cycling strategy. For the 30-min cycle, data assimilation is also performed at 1530, 1630, and

1730 UTC.
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FIG. 4. GFS analysis of 500-hPa relative vertical vorticity (1025 s21; shaded), geopotential height (dam; black

contours every 3 dam), temperature (8C; gray dashed contours every 28C), and winds (m s21; pennant is 25m s21,

full barb is 5m s21, and half barb is 2.5m s21) at 1800UTC (a) 3Dec 2016, (b) 22 Feb 2017, (c) 6Mar 2017, (d) 5May

2017, and (e) 27 Oct 2017. The d03 domain is shown in orange.
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Figure 5 shows the averaged vertical profiles of observation,

innovation [observation minus background (OMB)] and resid-

ual [observation minus analysis (OMA)] for radial velocity and

rainwater, snow, and graupel mixing ratios. The first remarkable

feature is that the residual is always close to zero over the entire

profile. Thismeans that theDA is capable of removing almost all

the innovation and, thus, brings the background closer to the

observations. Another interesting finding is that while almost no

difference is observed among the microphysics in the radial

velocity profile and just a small difference exists in the rainwater

mixing ratio, the snow and graupel profiles present the greatest

differences. It is important to state that the microphysics ob-

servations are estimated using the relationships of Gao and

Stensrud (2012) employed in the WRFDA. Figure 5 clearly

shows that after four cycles the Thompson microphysics pa-

rameterization predicts much more snow than the other pa-

rameterizations. On the other hand, Morrison microphysics

produces much more graupel than it was estimated from radar,

followed by WSM6 and WDM6. The overestimation of snow

and graupel by Thompson and Morrison, respectively, agrees

with the results of Bao et al. (2019). Although Thompson also

overestimates graupel, the results are much closer to observa-

tions than the other microphysics parameterization. Regarding

rainwater, except for that of WDM6, the profiles are similar,

showing small overestimation below 3km and underestimation

above that level.WDM6 overestimates almost the entire profile.

From the DA point of view, the overestimation of snow and

graupel by the Thompson and Morrison microphysics parame-

terizations, respectively, triggers a balance problem between

dynamical and microphysical fields in the analysis. The greater

the innovation of the microphysics variables is, the greater is the

negative impact on the analysis balance when applying the

3DVAR DA. The results shown in Fig. 5 for the residual are

quite good; however, the average considers only points where

radar data are available, which means that in areas not covered

by radar the residuals remain large and affect the forecast started

from that analysis. Therefore, because of this heterogeneous

reduction in the residuals, the balance of the analysis is affected.

Figures 6 and 7 show the innovations, increments, and residuals

of snow and graupel for each microphysical parameterization

FIG. 5. Averaged vertical profiles of observation (OBS), innovation [observation minus background (OMB)], and residual [observation

minus analysis (OMA)]. The average is performed over the entire grid where radar data are available and for all five cases. The freezing

level is also shown by the dashed line.
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for the case of 3 December 2016, respectively. Graupel and

snow are overestimated by Morrison and Thompson micro-

physics, respectively. The residuals are very small, which im-

plies that the DA process helps to reduce the misfit between

the model and the observations. However, there is a large

area with no radar data, where the DA could not correct the

aforementioned overestimation. Therefore, although the

ability of the DA to correct the microphysics concentrations

clearly does not depend on the microphysics scheme, it is still

important to choose a proper parameterization to obtain an

accurate forecast.

c. Sensitivity to microphysics parameterization
In this section, the forecast skills of the four microphysics

schemes are evaluated for the five cases. Figure 8 shows the

FSS, RMSE, FAR, and POD of the average among all five

FIG. 6. (left) Increments, (center) innovations, and (right) residuals of snow at the 8-km level for the case of 3 Dec 2016. From the top are

the results for Morrinson, Thompson, WSM6, and WDM6.
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cases and all DA methods (including no DA) for each mi-

crophysics parameterization employed. The FSS clearly

highlights the better performance of the Thompson pa-

rameterization during the entire forecast. Additionally,

simulations using the Thompson microphysics present the

lowest RMSE for all forecast times, followed by simulations

using the Morrison scheme. WDM6 has the highest over-

estimation among all the microphysics. The Thompson

scheme has the lowest FAR and similar POD relative to

the others, presenting a higher POD between 1 and 3 h of

leading time.

Figure 9 shows the 90-min forecasts of composite reflectivity

for the case of 27 October 2017. Simulations using the

Thompson scheme better depict the convective areas, while the

other microphysics tend to overestimate the reflectivity values.

Additionally, the shapes of areas with reflectivity higher than

35 dBZ (indicated by yellow areas in Fig. 9) fit better with radar

reflectivity than the other microphysics, which have much

FIG. 7. As in Fig. 6, but for graupel.
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broader 35-dBZ areas than the observation. Figure 10 high-

lights the better performance of Thompson for higher re-

flectivity threshold. For thresholds above 40 dBZ, the skill

decreases abruptly in all experiments, except the one with

Thompson. The higher forecast skill using Thompson is prob-

ably related to the smaller bias in graupel concentrations (see

Fig. 5), since graupel and rainwater play a more important role

in short-term intense precipitation forecast due to their larger

fall speed. A negative characteristic of the Thompson micro-

physics is that the size of the stratiform area is overestimated.

Due to the overall better performance of the Thompson pa-

rameterization, in this study, we used this parameterization in

the sensitivity experiments of the different DA methods.

d. Sensitivity to radar DA options
This section presents the statistical verifications for the dif-

ferent DA options, as shown in Table 4. Figure 11 shows the

statistics for the 14 experiments from Table 4.

The first result from Fig. 11 is that the null-echo assimilation

has a notable impact only if DA cycles are performed. Note that

the experiments nCYyDA1OLyNE and nCYyDA2OLyNE

(dark green and red dotted lines with markers) are very similar

to nCYyDA1OLnNE and nCYyDA2OLnNE (dark green and

red solid lines), respectively. Additionally, experiments

nCYnDA and yCYnDA60M have considerable differences,

mainly at the beginning, which means that only by applying

cycles the forecast of the reflectivity field is improved.

However, up to 2 h of leading time, the FSS shows that ex-

periment yCYnDA60M is still worse than all other experi-

ments with DA. The better performance of the yCYnDA60M

experiment is due to the production of hydrometeor species

during the cycles; then, at the analysis time, themicrophysics of

the atmosphere is more realistic than that from experiment

nCYnDA.

All experiments without cycles (nCY) tend to have low POD

during the entire forecast and relatively high FSS at the be-

ginning, even though the FSS decreases during the forecast.

Without cycles, the background comes from GFS, and the

hydrometeors are all set to zero. Then, the analysis tends to be

closer to observation than those that come from the cycles.

However, because the hydrometeors have no dynamic support,

the accuracy drops quickly during the forecast in comparison to

the simulations with cycles.

Another remarkable result from Fig. 11 is that the experi-

ment yCYyDA60M1OLyNE (light blue dotted line) has the

best result regarding FAR, FSS, andRMSE.However, its POD

is much lower than those without null-echo assimilation. The

null-echo assimilation reduces reflectivity in general by re-

moving spurious convection. This leads to less frequent re-

flectivity values over the selected threshold and then reduces

FIG. 8. Temporal evolution of mean (a) FSS, (b) RMS, (c) FAR, and (d) POD over the five cases and the three types of experiments

described in Table 3 for each microphysics parameterization.
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hits that occur by chance (i.e., cells that are misplaced in the

analysis but can lead to a correct detection in the forecast).

Therefore, it is expected that even if only spurious echoes are

removed, POD decreases and it is not necessarily due to deg-

radation of the forecast. Nevertheless, the null-echo assimila-

tion may also remove part of the real convection, mainly the

growing cells, still not visible by the radar due to its initial stage.

Figure 11 gives an overview of the averaged results over

the five cases and indicates that the worst and the best ex-

periments are nCYnDA and yCYyDA60M1OLyNE, re-

spectively. To perform a deeper analysis in the individual

contribution of each case to the average, Fig. 12 shows the

statistical indices for the five cases and experiments nCYnDA

and yCYyDA60M1OLyNE. FSS (Fig. 12a) indicates that all

FIG. 9. Composite reflectivity of experiment yCYyDA for the case of 27 Oct for each microphysics parameteri-

zation: (b) Thompson, (c) Morrison, (d) WSM6, and (e) WDM6. (a) The radar observation is also shown.
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cases have improved after performing DA, however, different

behaviors are observed. For cases 1 (3 December 2016—black

lines) and 3 (6 March 2017—red lines), the initial improve-

ments are larger and they last for approximately 4 and 3 h,

respectively. For case 5 (27 October 2017—blue lines), the

improvement also lasts for approximately 3 h, but the magnitude

is smaller at the beginning compared to the aforementioned

cases. For cases 2 (2 February 2017—cyan lines) and 4 (5 May

2017—orange lines), the improvements last for the entire

forecast. The local isolated character of the storms in case 2

(under weak synoptic forcing) may explain its longer lasting

positive impact of DA. The case 4 is a peculiar one because the

QLCS formed in the west part of the domain d03 at 2100 UTC

(Fig. 2). During the cycle between 1500 and 1800 UTC the

system was almost entirely outside of the domain and only

isolated storms were present, which may be the reason for

similarities with case 2. The other indices also show that the

experiment with radar DA improved the forecast in all five

cases. Case 1 has the best forecasts among all five cases, with

the highest FSS and POD and the lowest FAR and RMSE (up

to 2 h). Conversely, cases 2 and 4 share the worst performances.

The analysis is now divided into the three main features of

the experiments described in Table 4: (i) the benefits of doing a

DA cycle before producing the final analysis; (ii) the benefit

of doing two outer loops in the minimization instead of only

one; and (iii) the impact of applying the null-echo capability

of WRFDA.

Figure 13 shows the average statistics obtained by grouping

the eight experiments (only with cycles and DA—yCYyDA)

from Table 4 into three classes: (i) cycles of 30 and 60min; (ii) 1

and 2 outer loops; and (iii) with and without null-echo assim-

ilation. The three features impact the forecasts. The increase in

FIG. 10. Fractional skill score for different thresholds from exper-

iment yCYyDA for the case of 27 Oct 2017.

FIG. 11. Temporal evolution of the mean (a) FSS, (b) RMS, (c) FAR, and (d) POD over the five cases for each experiment in Table 4.
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the frequency of assimilation during the cycle shows the

smallest impact. The overall result indicates that increasing the

frequency from 60 to 30min increases the POD aswell as FAR.

The FSS and RMSE are worse when the 30-min cycle is ap-

plied. The results deteriorate despite the assimilation of more

radar data, which is probably because more noise is being in-

troduced in the system in each cycle and the already known

noise/unbalance introduced by the 3DVAR radar DA

(Vendrasco et al. 2016) is greater when a 30-min cycle is used.

The use of two outer loops results in a similar behavior to the

30-min cycle. The use of two outer loops increases the POD,

but the areas of spurious convection also become larger, which

results in a higher FAR, higher RMSE and lower FSS. Finally,

to alleviate this spurious convection, the null-echo assimilation

seems to be very useful, since it has a relatively large positive

impact by increasing FSS and reducing RMSE and FAR.

However, null-echo assimilation also reduces the POD, which

may be due to the reduction of hits that occur by chance, as

explained before, and/or by removing real convection at the

early stage.

Figure 14 shows the observed and simulated composite

reflectivity for the 6 March 2017 case as an example of the

role of DA cycles and null-echo assimilation in improving

the representation of convective and stratiform areas. The fields

inside the purple rectangle in Fig. 14 are those from experiments

nCYnDA, nCYyDA1OLnNE, and nCYyDA2OLyNE. In

general, the forecast without any DA predicts precipitation

in some areas but does not capture the pattern observed by

radar. The experiments with DA (nCYyDA1OLnNE and

nCYyDA2OLyNE) improve the precipitation field in the

center of the domain relative to observations, despite the lower

intensity. When comparing these experiments and others

without cycles, for all the cases (not shown), the use of null-

echo assimilation and the extra outer loop has a very small

impact when not cycling the DA. This result is expected and

can be explained by two reasons: first, since the DA is not cy-

cled, the backgrounds of the hydrometeors are all zero, and

after the DA process with one outer loop, the analysis is al-

ready very similar to observations (not shown). Therefore, it is

not expected that a second outer loop would have a high im-

pact. It is known that the outer loop improves the linearization

ofH near theminimum of the cost function, thus improving the

computation of the gradient and producing a solution that is

closer to the actual minimum. However, due to the use of the

indirect assimilation of reflectivity and the absence of the cy-

cles, the cumulative impact of the outer loop is minimized.

FIG. 12. Temporal evolution of (a) FSS, (b) RMS, (c) FAR, and (d) POD for the five cases (indicated by different colors) for the

experiments nCYnDA (dotted lines) and yCYyDA60M1OLnNE (solid lines).
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Second, the objective of the null-echo assimilation is the re-

moval of spurious convection, and since there is no convection

at the analysis time when not cycling, the null-echo assimilation

should not have effect. In this case, the small differences between

the experiments nCYyDA1OLnNE and nCYyDA2OLyNE rely

only on the number of outer loops.

The most evident difference observed in Fig. 14 is the

overestimation in simulations inside the red square (i.e., in the

experiments with cycles and the null-echo assimilation turned

off). Additionally, it is clear that the null-echo assimilation

reduces spurious convection and improves the forecast (black

square in Fig. 14). The null echo also eliminates real precipi-

tation in some areas, such as the easternmost region of the

domain over the continent. The null-echo assimilation option

of WRFDA uses the radar reflectivity to decide whether the

precipitation from WRF is spurious, but the problem is that

radar observes precipitation (rain drops) but not clouds drop-

lets. If themodel produces precipitation a fewminutes before it

truly occurs, the null-echo tool would remove this feature, and

the model would not be able to predict it; an example of this

behavior can be seen in Fig. 15.

The purple circles and arrow in Fig. 15a show regions where

the NE reduced the reflectivity factor (negative values), and

Fig. 15b shows that no reflectivity is observed in those regions

at analysis time (1800 UTC); however, after 30min (Fig. 15c)

intense convection is observed in the southmost purple circle

region and, also, developing convection is shown in the

northmost purple circle region. Intense convection is observed

in that area in later times (not shown). These two regions are

examples of the negative effect of NE mentioned above, while

the purple arrow points to an area where NE really removed

spurious convection.

e. Masked null-echo assimilation
Because the null-echo assimilation can remove potential

convective clouds before the rain droplets are large enough to

be detected by the radar, as explained in the previous section, a

newmethodology was implemented employing satellite data to

create a convective cloud mask (CCM) to be employed during

the assimilation process. According to Machado and Rossow

(1993), convective clouds in the tropics can be identified by

selecting satellite image pixels containing infrared brightness

temperature (BTIR) lower than 245K. However, since we are

looking for convective clouds in the early development stage, a

warmer threshold of 253Kwas employed. Therefore, amask of

BTIR was created using data from the GOES-13 satellite, and

the null-echo assimilation was applied only when BTIR .
253K. The new experiment was performed for all case studies

FIG. 13. Temporal evolution of mean (a) FSS, (b) RMS, (c) FAR, and (d) POD over the five cases for all experiments with cycles and

data assimilation (yCyDA) in Table 4. The experiments were also averaged considering those with cycles of 30 and 60min, with 1 and 2

outer loops, and with and without null-echo assimilation.
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using the same configuration of experiment yCYyDA60MOL1yNE,

which produced the best result among all the experiments lis-

ted in Table 4.

The benefits of applying the CCM vary according to the

different cases. For cases 1, 2, and 3 the implementation of the

CCM improved the forecasts, but the same was not observed

for cases 4 and 5 (Fig. 16). The average of cases 1, 2, and 3

shows higher FSS and POD and lower RMSE when using the

CCM. The FAR is slightly higher up to a 2-h forecast and then

nearly the same. Conversely, the average of cases 4 and 5 shows

slightly lower FSS and higher RMSE and FAR when using the

CCM. The POD is also higher for experiments employing

the CCM. It occurs because the CCM reduces the area where

the null-echo assimilation is applied and, for these cases, it

is producing overestimation of stratiform precipitation, and

more hits are being counted, which increases the POD index.

The different forecasting skills when using the CCM among

the cases might be related to the cloud types present over the

domain. For cases 4 and 5, it was observed in the east side of the

convective cells a band of thick cirrus clouds, while in case 1,

despite the similar pattern of cloudiness, there were no thick

cirrus clouds. Case 2 was characterized by convective cells

surrounded by clear sky mixed with scattered lower level cloud

tops and few cirrus. In case 3, the convective clouds were sur-

rounded by low, medium, and high clouds, but they were not

enough to compromise the CCM. These evidences suggest that

the high clouds associated with the eastern cloud band in cases

4 and 5 compromised the convective cloud mask, preventing

null-echo observations from being assimilated.

The performance of experiments with the CCM for the av-

erage of cases 4 and 5 is mainly due to the errors in case 5. The

larger error in case 5 is mostly due to the overestimation of

stratiform precipitation; however, intense convective storms

were better depicted (not shown). Figure 17 shows higher FSS

for higher thresholds when applying the CCM for case 5, in

particular for thresholds greater than 20 dBZ. The FSS of the

FIG. 14. Composite reflectivity (dBZ) at 1930UTC 6Mar 2017 from radar (shown at the top-left corner) and different experiments with

WRF. The results from WRF are grouped as follows: without cycles (inside purple rectangle), with cycles and without null-echo (red

square), and with cycles and with null-echo (black square). Inside the purple rectangle from left to right are the experiments nCYnDA,

nCYyDA1OLnNE, and nCYyDA2OLyNE. Inside the red and black squares, in the left column are the 1 outer loop experiments, 2 outer

loops are on the right side, 60min are on the top, and 30min are on the bottom.
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experiment without CCM decreases more rapidly for thresh-

olds above 20 dBZ.

Overall, the use of the CCM improved the quality of the

short-term forecast of intense storms since it allowed some

convective systems to develop to their mature stage instead of

suppressing them at their initial stage. However, in some cases

the negative feedback is the overestimation of the stratiform

precipitation, which led to the lower skill observed in the sta-

tistical indices. Therefore, we believe that the use of the mask

when applying the null-echo assimilation should be considered;

FIG. 15. (a) Difference of composite reflectivity from experiments yCYyDA60M1OLyNE and yCYyDA60M1OLnNE for the case of

1800 UTC 6 Mar 2017 and the radar reflectivity composite at (b) 1800 UTC and (c) 1830 UTC. Purple circles and arrow show areas with

great impact of null-echo assimilation.

FIG. 16. Temporal evolution of mean (a) FSS, (b) RMS, (c) FAR, and (d) POD over cases 1, 2, and 3 (dotted and solid lines) and cases 4

and 5 (dotted and solid lines with markers). Dotted (solid) lines are for experiments without (with) convective cloud mask.
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however, more cases have to be evaluated. The use of more

complex convective cloud mask employing normalized area

expansion (Machado and Laurent 2004), Lagrangian bright-

ness temperature time derivation, cloud classifications or other

products derived from satellites, could positively impact the

forecast and should be evaluated in the future with the new

GOES-16/Advanced Baseline Imager (ABI) imagery and de-

rived products.

4. Conclusions
This study evaluates the potential benefits of radar reflec-

tivity and radial velocity DA for short-term convective

storms forecasting using the WRF’s 3DVAR system. Five

cases with convective storms in southeastern Brazil were

selected and statistical indices were calculated to assess the

accuracy of the model in predicting reflectivity for up to 6 h.

The framework tested here is able to forecast heavy pre-

cipitation with acceptable accuracy and can be used for

operational purposes.

Initially, experiments were conducted to verify the micro-

physics parameterizations that better reproduce the reflectivity

field observed by radar. The Thompson microphysics param-

eterization produced the reflectivity fields that best corre-

sponded to observations. The areas of convective precipitation

were better depicted by Thompson microphysics, while the

stratiform area coverage was overestimated. The overestima-

tion is related to the overproduction of snow by this scheme, as

shown in section 3b. This kind of information is very relevant

when running a nowcasting framework to forecast severe

convective systems. In this case, it is more important to better

predict the areas with intense precipitation and keep larger

errors in the stratiform regions. However, these errors cannot

be too large because the overprediction of stratiform areas can

lead to an increase in the atmosphere stabilization and then to

affect the development of convection.

It should be advised that the observational operator can

take full advantage of double moment microphysics (e.g.,

Morrison and WDM6 schemes) only if changes in the total

number concentrations are considered. Otherwise, the impact

of using a double moment scheme on the analysis will rely only

on the model integration between cycles. Moreover, although

the advantages of assimilating retrievals regarding the afore-

mentioned nonlinearities issues, it does not take into account

changes in the particle size distribution, which may affect the

results.

In the second part of the paper, the impact of increasing the

frequency of the assimilation cycles from 60- to 30-min inter-

vals was analyzed. According to the schematic diagram of the

cycling strategy shown in Fig. 3, the 60-min cycle represents

four DA cycles, while the 30-min cycle represents seven. In the

latter option, much more data are assimilated, which results in

lower accuracy in the precipitation forecast. This result is likely

because the model does not have enough time (only 30min) to

balance the analysis before the next assimilation, and the noise

in the final analysis is greater than that when a 60-min cycle is

employed. There are some options that could alleviate this

noise problem, such as digital filters (Lynch 1993) and the

large-scale analysis constraint (LSAC; Vendrasco et al. 2016),

but this study intended to evaluate 30- and 60-min cycles

without any of these artifacts. Another DA option tested was

the use of more outer loops, and the results indicated better

accuracy when only one outer loop was applied. The benefits of

the additional outer loop are very small if no relevant amount

of data are added in the loop, and the noise in the analysis can

increase. Because the amount of rejected radar data was small

in the first loop, the second loop should be avoided.

The null-echo assimilation was the most effective strategy in

improving the precipitation forecast. Radar DA tends to cause

an overestimation of precipitation, and the null-echo assimila-

tion alleviates this problem by removing spurious convection.

The best result was achievedwhen radarDAemployed a 60-min

cycle and the null-echoes were assimilated. Despite the good

performance of the null-echo assimilation, this technique also

removed some real convection before its development (i.e.,

when no precipitation had been observed yet by the radar).

A convective cloud mask was implemented using the satel-

lite infrared brightness temperature to mitigate the afore-

mentioned problemwith null-echo assimilation, and the results

were positive in most of the cases. The experiment using this

mask was able to improve the forecast, but not in the entire

domain and in all cases, and further investigationmust be done.

For intense convection, however, the skill was better in all

cases. New techniques to design the convective cloud mask

should be studied. The 16 channels and the high temporal and

spatial resolutions ofGOES-16 allow the development of more

complex and effective CCMs.
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