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Abstract: Quantifying forest fires remain a challenging task for the implementation of public policies
aimed to mitigate climate change. In this paper, we propose a new method to provide an annual
burned area map of Mato Grosso State located in the Brazilian Amazon region, taking advantage of
the high spatial and temporal resolution sensors. The method consists of generating the vegetation,
soil, and shade fraction images by applying the Linear Spectral Mixing Model (LSMM) to the
Landsat-8 OLI (Operational Land Imager), PROBA-V (Project for On-Board Autonomy–Vegetation),
and Suomi NPP-VIIRS (National Polar-Orbiting Partnership-Visible Infrared Imaging Radiometer
Suite) datasets. The shade fraction images highlight the burned areas, in which values are represented
by low reflectance of ground targets, and the mapping was performed using an unsupervised classifier.
Burned areas were evaluated in terms of land use and land cover classes over the Amazon, Cerrado
and Pantanal biomes in the Mato Grosso State. Our results showed that most of the burned areas
occurred in non-forested areas (66.57%) and old deforestation (21.54%). However, burned areas
over forestlands (11.03%), causing forest degradation, reached more than double compared with
burned areas identified in consolidated croplands (5.32%). The results obtained were validated
using the Sentinel-2 data and compared with active fire data and existing global burned areas
products, such as the MODIS (Moderate Resolution Imaging Spectroradiometer product) MCD64A1
and MCD45A1, and Fire CCI (ESA Climate Change Initiative) products. Although there is a good
visual agreement among the analyzed products, the areas estimated were quite different. Our results
presented correlation of 51% with Sentinel-2 and agreement of r2 = 0.31, r2 = 0.29, and r2 = 0.43 with
MCD64A1, MCD45A1, and Fire CCI products, respectively. However, considering the active fire
data, it was achieved the better performance between active fire presence and burn mapping (92%).
The proposed method provided a general perspective about the patterns of fire in various biomes of
Mato Grosso State, Brazil, that are important for the environmental studies, specially related to fire
severity, regeneration, and greenhouse gas emissions.

Keywords: burned areas detection; shade fraction image; linear spectral mixing model; VIIRS;
PROBA-V; Landsat-8 OLI
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1. Introduction

In Brazil, burning of vegetation biomass is a management practice used to create and to maintain
cattle pasture and to expand agricultural frontier [1]. The burning practice is widely used in the
production process in the Brazilian Amazon (rainforest) and Cerrado (savanna) biomes and is a factor
that drives the agricultural expansion in these regions. Farmers burn their land to convert forests
to cropland or pasture, to control the spread of weeds, pests, or diseases, and to stimulate pasture
regrowth, as well [2–6].

Burns occur every year, and especially during the dry season, with most of the fires occurring
towards the end of the dry season. During this time, risk of fire is highest due to factors, such as
dry weather, the predominance of grass and other flammable materials, and increased exposure to
ignition sources, such as flames, heated surfaces, sparks, lightning, and human action [7], facilitate the
occurrence of the burning process [2,8–10]. Occasionally, non-anthropogenic factors, such as lightning,
are also responsible for burning.

In the Legal Amazon, for example, it is estimated that at least 9% (1.99 million hectares) of the
degraded primary forest areas were caused by fire during 2000–2013 time period [11]. In addition,
prospects of forest degradation resulting from fires escaping from nearby agricultural areas into forests
may be a growing risk in many regions in Brazil [12]. In this context, the intensity, duration, extent,
and period of the year when fires occur will determine how a particular ecosystem will be resistant to
this event and how it will recover to the previous state (resilient). In some cases, this phenomenon
can be beneficial for vegetation, as is the case with pastures of the Brazilian savanna (Cerrado
biome), where the low-intensity burning event accelerates the availability of nutrients for plants by
mineralization [7]. However, successive burnings alter the rates of infiltration and evapotranspiration
of water in the soil, increasing the soil’s susceptibility to wind and water erosion. Moreover, unlike the
Brazilian Cerrado, the Amazon rainforest is not adapted to fire; therefore, vegetation in most cases is
almost entirely consumed by burning, leading to a gradual increase of tree mortality [7,13].

Forest burning brings numerous environmental impacts, such as soil depletion and loss of
biodiversity of flora and fauna [7], as well as causing significant damage to private properties and
society as a whole [14]. In addition, trace gases and aerosols released by burning biomass cause changes
in the energy balance of the atmosphere, leading to local, regional, and global climate changes [9,15].
Biomass burning in tropical regions contributes to ~32% of global CO emissions to the atmosphere.
In this context, Cerrado is one of the most critical sources of trace gases due to the frequency and extent
of burning [16,17], where the interaction of human activities mold temporal and spatial patterns of
fires emissions [18].

Analysis of the timing and distribution of forest fires is a crucial tool for efficient fire management
across regions experiencing various fire events. It provides information for fire prevention planning
and is also critical for assessing economic losses and ecological effects, monitoring changes in land
use and land cover, and developing atmospheric and climate impact models due to vegetation
biomass burning [19].

Remote sensing represents a particularly useful tool for mapping and quantifying burned areas
in large and difficult to reach areas. These data allow for active fire detection, which registers the
instantaneous temperature of objects in combustion using spectral bands between 4 and 11 µm [20,21];
burned area estimation, which uses the spectral bands in the visible, near-infrared, and mid-infrared
regions of the electromagnetic spectrum to detect changes in the spectral characteristics of land
cover before and after the occurrence of fires [22,23]; fire patterns and severity [24,25]; and studies of
vegetation regeneration and risk analysis [26,27]. Moreover, data derived from remote sensing are the
most efficient source of information to understand the fire dynamics as they allow the observation of
large areas of the surface at high temporal resolutions [28,29].

Several studies using burned areas (BA) detection algorithms have been conducted. Reference [30]
used an algorithm based on Normalized Burned Ratio differencing (dNBR) to map the BA from MODIS
(Moderate Resolution Imaging Spectroradiometer) data in three different ecosystems, such as boreal
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forest of Central Siberia, Mediterranean-type ecosystem of California, and sagebrush steppe of the
Great Basin. The results showed that in each ecosystem, the BA estimates were within 15% compared
to the high-resolution base, presenting a strong potential for regional and ecosystem-specific burned
area mapping applications. Reference [31] developed a multitemporal two-phase burned area (BA)
algorithm using Sentinel-2 MSI (MultiSpectral Instrument) reflectance images and active fires from
MODIS sensors in the whole Sub-Saharan Africa. The algorithm used the spectral indices NBR2
(Normalized Burn Ratio 2), MIRBI (Mid Infrared Burn Index), and the NIR (near infrared) spectral
region. The validation was based on a two-stage stratified random sampling of Landsat images and
also compared to MCD64A1. The results showed an omission error of 26.5% and commission error
of 19.3%, and, when compared to MCD64A1, the product presented an 80% larger area than NASA
(National Aeronautics and Space Administration) BA product. The limitations found relies on the
lower temporal resolution, impacting in the mapping due to cloud/cloud shadows.

In this context, some limitations increase errors in burned area products. Significant source of
errors include the presence of clouds, which significantly reduces the ability to detect a fire hotspot
due to the attenuation of the spectral radiance emitted by the flaming and smoldering phases in
the biomass burning process [32], the lack of data on the moment of fire occurrence and, especially,
the incompatibility of the temporal and spatial resolutions of some sensors, making these sensors
unsuitable for the identification of burns. One way to reduce the uncertainty in the detection of
burned surfaces is by using sensors data that have geometric, radiometric, and temporal resolutions
appropriate to map the location and the discrimination of burned areas.

There are several global burned areas maps available, such as MODIS MCD45A1, MODIS
MCD64A1, and Fire CCI (ESA Climate Change Initiative). However, in general, they present
different results due to data characteristics, image dates, and applied methods for mapping [33,34].
These differences in the estimates occur because burning events are dynamics and affect different sizes
on the ground, requiring sensors data with different spatial and temporal resolutions. For example,
Landsat sensors [35,36] with a medium spatial resolution (30 m) are adequate to estimate the burned
areas, but their limited temporal resolution (16 days) reduce their utility in the savanna and pastureland
areas which regenerate rapidly following fires. In addition, product derived from Sentinel-2 imagery
would greatly contribute to better understanding the impacts of small fires in global fire events.
In contrast, the MODIS sensor with daily acquisition and moderate spatial resolution (250 m) provides
useful information for the global mapping of burned areas but underestimates small fire scars [37,38].
Other sensors with similar high temporal resolution as MODIS for burned areas assessment include
NPP-VIIRS (National Polar-Orbiting Partnership-Visible Infrared Imaging Radiometer Suite) and
PROBA-V (Project for On-Board Autonomy–Vegetation) (at each 2 days) [39–41].

Combining information from different sensors can fill the gap between high temporal resolution
and medium spatial resolution in an operational and accurate burned area product. However, this high
volume of data requires approaches that highlight specific information to facilitate further classification
tasks. An alternative approach to reduce the dimensionality of image data and enhance specific
information for digital interpretation is the use of fraction images [42,43]. These images constitute
synthetic bands with information on endmember proportions and they are generated by Linear
Spectral Mixing Model (LSMM). For example, vegetation fraction images highlight the vegetation cover,
especially cropland areas; soil fraction images highlight the contrast between forest and non-forested
areas, and shade fraction images highlight water bodies and burned areas. In this manner, many efforts
have been reported using LSMM to map burned areas, especially in the Brazilian Amazon [44–46].

The main objective of this work was to propose a new method to map burned areas using
multisensor fraction images by taking advantage of the high temporal resolution of Suomi NPP-VIIRS
and PROBA-V, and the medium spatial resolution of Landsat-8 OLI (Operational Land Imager) images
for the year 2015. In order to evaluate the method, we use as reference the burned area map obtained
using Sentinel-2 data, and compare our results with active fire data and the available monthly burned
area products of MODIS MCD64A1, MODIS MCD45A1, and Fire CCI.
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2. Materials and Methods

2.1. Study Area

The study area is Mato Grosso State (Figure 1), the third largest state in Brazil located in the
central-west region and covering an area approximately 904,984 km2. Mato Grosso State consists of
three biomes: Amazon (54%), Cerrado (40%), and Pantanal (6%), according to the official Brazilian
national classification system [47]. Mato Grosso State presents complex biodiversity, which, due to
variable climate and terrain relief, resulted in different vegetation types. The Amazon biome consists
of closed vegetation, high canopy, and a continuous layer of crowns; the Cerrado biome, a savanna
formation, is characterized by tree species with tortuous trunks and typical openness canopy; and the
Pantanal biome, a seasonal wetland, is composed by savannas and marshes [48].
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Figure 1. Location of the Mato Grosso State in the South American continent (inset figure). Mato Grosso
State corresponds to the selected study area of this work, encompassing three biomes: Amazon, Cerrado,
and Pantanal [47].

Mato Grosso Sate stands out as a center of Brazilian agribusiness tied to illegal deforestation.
The state falls partly within the ‘arc of deforestation’ in the southern part of the Brazilian Legal
Amazon, an area with one of the highest annual deforestation rates. According to the Monitoring
Deforestation of the Brazilian Amazon Forest by Satellite (PRODES) data [49,50], the Mato Grosso State
has an accumulated deforestation (1988–2019) corresponding to 146,140 km2 area, which represents
approximately 16% of its territory. In terms of total degraded area, the state is the second in the
ranking among the states of the Legal Amazon. Deforestation activities cause, among others, habitat
fragmentation, which leaves the remaining forest more vulnerable to edge effects and fire [51,52].

Mato Grosso State is among the states that lead in the number of active fires detected [53].
For example, in the 1988–2020 period, 40,000 fires were detected in the state, accounting for
approximately 27% of the total active fires observed in the Legal Amazon [53]. Most of the active
fires occurred between June and November, a period with the least precipitation received. In the dry
season, it is expected the increasing risk of the fire spreading and escaping, affecting nearby forest
areas and causing forest degradation, that is an important source for the REDD+ program (Reduction
of Emissions from Deforestation and Forest Degradation) since these areas remain as forest areas but
with high ecosystem loss.
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2.2. Remote Sensing Datasets

2.2.1. PROBA-V

We acquired data from PROBA-V, a mini-satellite designed as a continuity to the 15 years of the
SPOT-VEGETATION (Satellite Pour l’Observation de la Terre–Vegetation) mission, and for the Sentinel-3
mission of the European Space Agency (ESA). To meet the user’s community, the spectral channels of
the PROBA-V are similar to the SPOT VEGETATION instrument with four bands: blue (438–486 nm),
red (615–696 nm), near-infrared (NIR) (772–914 nm), and medium infrared (MIR) (1564–1634 nm). The
PROBA-V has a spatial resolution of 100 m at nadir and 300 m at the edge of scan.

In this study, we used 5-day Top-Of-Canopy PROBA-V image composite acquired at a spatial
resolution of 100 m for the period between May and October 2015. The images were downloaded from
the Vito Earth Observation portal (http://www.vito-eodata.be/PDF/portal/Application.html#Home),
and all images had their clouds and respective shadows removed using the information from the Status
Map layer in a program developed in the Interactive Data Language (IDL).

2.2.2. Suomi NPP-VIIRS

We downloaded 153 VIIRS daily reflectance (VNP09GA) images acquired between May and
October 2015 from the U.S. Geological survey (USGS) at https://e4ftl01.cr.usgs.gov/VIIRS/VNP09GA.001/.
The downloaded images consisted of three spectral bands, I1 (red, 600–680 nm), I2 (NIR, 846–885 nm),
and I3 (MIR, 1580–1640 nm), and had a spatial resolution of 500 m. The 153 daily reflectance images
were later composited into a cloud-free monthly VIIRS surface reflectance images using a script in
Google Earth Engine and image quality flags 1 (QF1) layer.

2.2.3. Landsat-8 OLI

The Operational Land Imager (OLI) on Landsat-8 satellite has 11 spectral bands (panchromatic,
500–680 nm; multispectral, 430–450 nm; visible, 450–690 nm; NIR, 850–880 nm; MIR, 1570–2290 nm;
cirrus, 1360–1380 nm; and thermal infrared, 10600–12510 nm). The sensor has a temporal resolution
of 16 days and spatial resolution of 30 m except for the panchromatic band (15 m). The Landsat-8
OLI images were acquired during the dry season, from August to November, most acquired in
October (41 images) and September (7 images), with August and November having only one image,
due to the persistency of clouds (Appendix A). The images were downloaded from USGS archive:
https://earthexplorer.usgs.gov/.

2.2.4. Sentinel-2 MSI

The Multispectral Instrument (MSI) on Sentinel-2A Level-1C dataset was used in this study as a
reference to evaluate the burned areas classification by the proposed method. The Sentinel-2A MSI has
13 spectral bands from visible to SWIR (Short-wave Infrared) (B1, 432.2–453.2; B2, 459.4–525.4;
B3, 541.8–577.8; B4, 649.1–680.1; B5, 696.6–711.6; B6, 733–748; B7772.8–792.8; B8, 779.8–885.8;
B8A, 854.2–875.2; B9, 935.1–955.1; B10, 1358–1389; B11, 1568.2–1659.2; B12, 2114.9–2289.9). Each single
satellite (2A and 2B) has a temporal resolution of 10 days and the combined constellation revisit is
5 days, with spatial resolution varying from 10 to 60 m. In this case, only bands with 10 m were used
in this study. Due to the Sentinel-2A launch date (June 2015), only a segment of Mato Grosso State
was available in 2015 in the period from August to November to compare the same period between
the datasets used in this work. The images were downloaded from Joint Research Center website
(https://jeodpp.jrc.ec.europa.eu/forobs/sentinel.py).

2.3. Global Burned Area Products

Burned area is considered as a non-permanent land cover change, and, in this manner, a variety of
algorithms have been applied to detect and to map burned areas, leading to different results spatially

http://www.vito-eodata.be/PDF/portal/Application.html#Home
https://e4ftl01.cr.usgs.gov/VIIRS/VNP09GA.001/
https://earthexplorer.usgs.gov/
https://jeodpp.jrc.ec.europa.eu/forobs/sentinel.py
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and temporally [34]. In this work, the identified burned areas based on the proposed approach were
spatially compared with three available global burned area products for an agreement analysis (Table 1).

Table 1. Overview of burned area products selected for agreement analysis.

Producer Product Collection Sensor Spatial Resolution Period

European Space Agency Fire CCI 5.1 MODIS 250 m Monthly
NASA MODIS Land Science Team MCD45A1 5.1 MODIS 500 m Monthly
NASA MODIS Land Science Team MCD64A1 6.0 MODIS 500 m Monthly

The Fire CCI v5.1 products (https://geogra.uhttps://geogra.uah.es/fire_cci/ah.es/fire_cci/), managed
by the European Space Agency, were obtained combining spectral information in the red and NIR
bands from MODIS at 250 m resolution and thermal information from the MODIS active fire products.
The daily-identified areas are aggregated in monthly compositions [54].

The National Aeronautics and Space Administration (NASA) produces two products of burned
areas from the MODIS sensor onboard the Terra and Aqua Satellites, the MCD45A1 and the MCD64A1.
The MCD45A1 product, monthly and global, uses a bidirectional reflectance distribution function
(BRDF) model and analyzes the daily surface reflectance dynamics to locate rapid changes to identify
burned areas [55]. The product MCD64A1 (https://e4ftl01.cr.usgs.gov/MOTA/MCD64A1.006/) is
also monthly and global and uses images of surface reflectance, coupled with 1 km MODIS active
fire data [56].

The monthly results provided by each product of MODIS MCD45A1, MODIS MCD64A1, and ESA
Fire CCI are summed, individually, to have an annual product for 2015 to be compared with the results
obtained by the proposed approach.

2.4. Fire Hotspots Products

Completing the agreement analysis, we performed a comparison with our results, global products
and active fires detected by the MODIS Aqua and Terra Satellites from January to December 2015.
Comparison with active fire observations indicates which products most reasonably capture the
burning event by relating fire scars to thermal emissions [34,55,57]. The dataset was downloaded
from the Queimadas Program managed by the Brazilian National Institute for Space Research (INPE)
provided at the analyzed year for South America.

2.5. Land Cover Maps

2.5.1. Forest and Non-Forest Map

A thematic annual forest cover map available by the PRODES to 2015 year [50] was used as
auxiliary data to estimate forest degradation by fire and burned areas in non-forested areas (Figure 2a).
The PRODES forest definition cover areas under vegetation dominated or with the predominance of
forest physiognomy, classified as Dense Ombrophilous Forest, Open Ombrophilous Forest, Seasonal
Deciduous Forest, Pioneer Formation of Fluvial Influence Areas (Alluvial Vegetation), Wetland Woody
Vegetation with Sandy accumulations (Campinarana), and ecotones (Forest and savanna contact).

2.5.2. Mato Grosso Cropland Map

We used the thematic 2015 annual croplands extension map from Arai et al. [58] as an auxiliary
data to quantify the extension of burned areas in lands destined to agriculture (Figure 2b). The data
were based on PROBA-V time series available at a 100 m spatial resolution. The annual cropland area
estimation for the Mato Grosso State was 5.3 million hectares.

https://geogra.uhttps://geogra.uah.es/fire_cci/ah.es/fire_cci/
https://e4ftl01.cr.usgs.gov/MOTA/MCD64A1.006/
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Figure 2. (a) PRODES 2015 showing the forest (in green) and non-forest (in magenta), deforestation
(in yellow), and water (in blue) classes [47]; and (b) agriculture areas in 2015 (in light green) obtained
from PROBA-V images [58].

2.6. Methodological Overview

The Linear Spectral Mixing Model (LSMM) was applied to those remote sensors datasets to
generate the vegetation, soil, and shade fraction images based on the three pure pixels adopted
by Arai et al. [58]. The LSMM assumes that pixel values are linear combinations of reflectance from
different components, called endmembers (Equation (1)). The resulting images are the proportion or
fraction of each endmember in each pixel [59] (Figure 3).

ri =
∑m

j=1
x jai, j + ei, (1)

where: ri = the spectral reflectance in the ith spectral band; ai,j = the spectral reflectance of the jth
component (endmember) in the ith spectral band; xj = the proportion of the jth component within the
pixel; i = 1, . . . , n (number of spectral bands used); j = 1, . . . , m = 3 (number of considered components);
and ei = the residue for the ith spectral band.

The generation of these synthetic images is an alternative approach to reduce the dimensionality
of image data and to enhance specific information (in this case, burned areas) for digital interpretation.
Using the fraction images derived from the LSMM, a single image is composed containing the maximum
proportion values of the shade fraction time series, comprising the burned areas information for
PROBA-V and VIIRS datasets. This step was not applied to OLI images due to single images mosaic
analyzed for the period.

Burned areas were obtained through digital classification of the shade fraction images using
SPRING software [60] following a procedure based on image segmentation, unsupervised classification
and assigning the corresponding classes to burned areas [61] for all sensor data (OLI, PROBA-V,
and VIIRS) (Figure 4).

Image segmentation is a technique for grouping spatial information, whereby the algorithm
assembles regions with and similar spectral characteristics. We used a region growing algorithm to
perform the image segmentation. In such technique, two threshold parameters have to be set by the
analyst to define segments (regions) at the subsequent classification procedure: (1) similarity threshold
(the Euclidean distance between two regions with a different mean digital number of spectral clusters);
and (2) an area threshold (the minimum area to be considered as a region, set by the number of
pixels) [62]. In this work, the similarity and area thresholds were defined according to the sensors’
characteristics, as (8, 100), (8, 10), and (8, 4) for Landsat-8 OLI, PROBA-V, and VIIRS, respectively.
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Segmented images were classified using ISOSEG [62], a region classifier algorithm based on clustering
techniques. This unsupervised algorithm uses the covariance matrix and the mean of the spectral
values to estimate the centers of the classes in each region. The analyst defines an acceptance threshold,
and the maximum allowed Mahalanobis distance that a mean digital number may be from the center of
a class, considered as belonging to that class. The algorithm classifies the segments and separates them
by classes based on the mentioned parameters. After the classification process and based on visual
inspection, the labeling process is carried out only once, where all obtained classes from unsupervised
classification were visually defined into classes with a real legend. This method was applied to the
single shade fraction mosaic to obtain a final burned area classification for each sensor (PROBA-V,
VIIRS, and OLI).Remote Sens. 2019, 10, x FOR PEER REVIEW 8 of 24 
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Figure 3. Example of burned areas showed in the sensors images analyzed in this work in purple in
the left panel and in bright spots in the right panel: (a) R(6) G(5) B(4) OLI image and the corresponding
(b) shade fraction image; (c) R(SWIR) G(NIR) B(RED) PROBA-V image and the corresponding (d) shade
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These images show the characteristics of the spatial and temporal resolutions of those sensors.
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The final result is the mosaic of the burned area obtained from the three individual sensors.
To show the visual consistency, a composite image was made highlighting the burned areas in the
images of the three sensors; that is, the mapped burning pixels correspond to the original images of
the sensors in which these areas were mapped. The burned areas were then calculated for the four
results, including OLI, PROBA-V, NPP-VIIRS, and the final composite between the three products
(OLI+PROBA-V+VIIRS). In addition, the burned area map obtained by the proposed method was
superimposed on a PRODES and cropland datasets in order to analyze the spatial distribution and
estimates of burned areas in the land use and land cover classes of the study area.

2.7. Evaluation and Agreement Analysis

In order to delineate burned areas in this study, 381 randomly distributed points in Sentinel-2
granules that included images from the period analyzed were used to estimate ground truth burned
area, according to Equation (2):

Sample Size =
Nz2p(1− p)

(N − 1)e2 + z2p(1− p)
, (2)

where: N is the population size, z is the confidence level (95%) from Z-score, e is the margin of error
(5%), and p is the sample proportion (50%). Afterward, we used the Goodness of Variance Fit (GVF) to
cluster the Sentinel-2 MSI granules statistics (Equation (3)) [63]:

GVF =

(∑O
i=1(xi − µ)

2
)
−

(∑S
c=1

∑O
i=1(xi −ϕc)

2
)

∑O
i=1(xi − µ)

2 , (3)

where: O is the Sentinel-2 MSI granules, xi is the sum of points inside the Sentinel-2 MSI granules, µ is
the observations average, ϕc is the average of points over all granules, and S is the delimited classes in
the optimization process. The clustering process separated the Sentinel-2 MSI granules in 2 groups,
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according to the density of random points (high and low), thus, burned areas were manually estimated
in high density sampled granules (21LTC, 21LTE, 21LTG, 21LUC, 21LUD, and 21LUG).

Therefore, the burned areas derived from S2 MSI (considered the reference), Landsat-8 OLI,
PROBA-V, Suomi NPP-VIIRS, and OLI+PROBA-V+VIIRS and the MCD45A1, MCD64A1, and Fire
CCI global products were separated in several hexagonal grid cells with 10 km. This approach avoids
the misregistration on the calculation of proportional errors for burned areas block sizes, and the
bias in burned area estimation present in coarse and medium resolution burned area maps [34,64].
Then, a convolution mask was performed to estimate the agreement between products (Equation (4)).

BA(x,y.BAS,BAPi) =
∑
∝

a=−α

∑β

b=−β
C(a, b).BAS(x + a, y + b) ∩ C(a, b).BAPi(x + a, y + b), (4)

where C(a,b) represents the convolution mask of M × N size (rows × columns); BAS is the burned
areas estimated from Sentinel-2 data; BAPi is the burned areas estimated from burned areas products;
and BA is the resulting grid defined for all points which the mask of M x N size completely overlaps
the grid (x ε (α, M −α), y ε (β, N −β)).

The agreement analysis considered the same hexagonal grid cell of the evaluation analysis.
We computed the proportion of burned areas of the auxiliary global burned area data products
(MCD45A1, MCD64A1, and Fire CCI) and counted active fire observations by the presence or absence
in each cell compared with the four results (OLI, PROBA-V, NPP-VIIRS, and OLI+PROBA-V+VIIRS).
Based on these data, it was calculated the determination coefficient (r2), root-mean-square error (RMSE),
and bias.

3. Results

3.1. Burned Area Spatial Distribution and Estimates by Land Cover

The total burned area mapped from each sensor and by the final composite is showed in
Figure 5b,d,f. It is important to highlight that burned areas results were obtained during the dry
season and appear in dark color from the RGB mosaic in Figure 5a,c,e. A total of 55,694.32 km2 of the
burned area mapped by OLI sensor represents 6.15% of the study area, followed by VIIRS sensor with
29,768.72 km2 of the burned area (3.28% of the study area); the PROBA-V sensor with 28,443.52 km2

(3.14%); and then 93,027.92 km2 (10.27%) mapped by the final composite (Figure 5h).
The estimates of burned areas superimposed on the PRODES and cropland datasets are shown

in Table 2. The results pointed out that the most burned area estimate is located in non-Forest,
reaching 66.57% (~61 thousand km2) of the total area mapped by the final composite. Deforested areas,
characterized by old (before 2015) and recent clear-cuts (2015 year), presented 21.54% (~19 thousand
km2) and 0.86% (~786 km2), respectively. The results also showed less burn in croplands (5.32%,
representing ~4 thousand km2) than in forested areas (11.03%, ~10 thousand km2).

Table 2. Estimated burned areas in deforested areas, forest, non-forest, and cropland areas using the
final composite mapping.

Classes of Land Cover Burned Area (km2) Total Burned Area (%)

2015 Deforestation 786.15 0.86%
Old Deforestation 19,745.43 21.54%
Non-Forest 61,009.31 66.57%
Forest 10,111.04 11.03%
Cropland 4873.32 5.32%
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21LTG, 21LUC, 21LUD, and 21LUG) of S2 MSI reference data. It is noticed that the correlations vary 
according to the products and with burned areas size and location. The lower values ranged 
between 0.32 and 0.63 and the highest values ranged between 0.66 and 0.81 (all linear regressions 
were significant at p < 0.05, Student t-test). In the Sentinel-2 MSI burned areas, approximately 84% 
of grid cells had values lower than 5 km2, with 41 hexagonal grid cells greater than 30 km2. This 
indicates that burned area patterns correspond to small scars (as shown in density scatter plot of 
Figure 6a–g). 

In analyzed products, we found several commission areas related mainly to dark red latosol, 
relief shading and water bodies that were not mapped in reference data. In these areas, where no 

Figure 5. (a) Landsat OLI mosaic (August and November 2015); (b) burned areas over the mosaic
showed in (a), showing the correspondence with dark areas; (c) PROBA-V mosaic composed of the pixel
with high shade fraction value; (d) burned areas over the image in (c), showing the correspondence
with dark areas; (e) VIIRS mosaic composed of the pixel with high shade fraction value; (f) burned
areas over the image in (e), showing the correspondence with dark areas; (g) RGB Landsat OLI mosaic
composite with the burned areas observed in the OLI, PROBA-V, and VIIRS images analyzed; and (h)
burned areas over the mosaic showed in (g), showing the correspondence with dark areas.

3.2. Evaluation and Agreement Analysis

Figure 6 shows the evaluation graphics of burned areas maps for 6 granules (21LTC, 21LTE, 21LTG,
21LUC, 21LUD, and 21LUG) of S2 MSI reference data. It is noticed that the correlations vary according
to the products and with burned areas size and location. The lower values ranged between 0.32 and
0.63 and the highest values ranged between 0.66 and 0.81 (all linear regressions were significant at
p < 0.05, Student t-test). In the Sentinel-2 MSI burned areas, approximately 84% of grid cells had values
lower than 5 km2, with 41 hexagonal grid cells greater than 30 km2. This indicates that burned area
patterns correspond to small scars (as shown in density scatter plot of Figure 6a–g).

In analyzed products, we found several commission areas related mainly to dark red latosol,
relief shading and water bodies that were not mapped in reference data. In these areas, where
no burned scars occur, Fire CCI, MCD45A1, MCD64A1, Landsat-8 OLI, PROBA-V, NPP-VIIRS,
and OLI+PROBA-V+VIIRS presented an inclusion of 150 km2, 108 km2, 488 km2, 282 km2, 930 km2,
484 km2, and 1712 km2, respectively. Otherwise, we can find several hexagonal grid cells where
burned areas were presented and fire products were unable to estimate (464 km2, 550 km2, 386 km2,
547 km2, 437 km2, 1240 km2, and 126 km2 to Fire CCI, MCD45A1, MCD64A1, Landsat-8 OLI, PROBA-V,
NPP-VIIRS, and OLI+PROBA-V+VIIRS, respectively).

Figure 7 compares only grid cells containing burned area between the results obtained by the
proposed method (OLI+PROBA-V+VIIRS, OLI, PROBA-V, and NPP-VIIRS) with the available global
datasets (MCD64A1, MCD45A1, and Fire CCI). There is a good visual agreement among the results
from the four datasets, highlighted in a majority on the eastern Mato Grosso State, encompassing the
Cerrado biome, and west, encompassing the Amazon biome. In the middle of the state, most cells in
the grid contain only one or two global products with an agreement with the results of our method.
The analysis based on active fire observation showed that most cells with the total agreement of burned
detected by our method and global products present the highest number of active fire observations
(from 51 to 133), being decreased when less agreement occurs.
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Figure 7. Comparison of results by the proposed approach in the Mato Grosso State with the three
global burned area products in terms of an agreement in presence of burned area and final mapped
composite (a); Landsat-8 OLI (b); PROBA-V (c); and NPP-VIIRS (d). In detail, specific areas are showing
active fire spots classified by the number of observations in the cell (e,f,g). Blank areas inside the study
area represents non-burned area by the classification results.
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The analysis with active fire observations showed an agreement of 92.08% compared with the final
composite burned area classification obtained using the proposed method in terms of the presence of
active fire and burned area detection (Table 3). Compared with OLI, PROBA-V, and VIIRS, the agreement
percentage decreases when lower the spatial resolution, with OLI sensor presenting the best result
(71.97%) and VIIRS the lowest comparison (34.17%). Related to commission errors, where there is a
burned area detected but no active fire observed, PROBA-V produced the highest commission error
(51.27%), while the Fire CCI data had the lowest (8.79%).The omission errors (active fire detected and
no burned area mapped) resulted in the best results for OLI sensor (28.03%) and the highest omission
for VIIRS sensor (65.83%). Overall, the final composite classification (OLI+PROBA-V+VIIRS) results
showed lower omission error (7.92%) but a higher commission error (72.73%) than all analyzed datasets.

Table 3. Percentages of grid cells compared by burned area detection and active fire observations.

Product Active Fire and
Mapped (%)

Non-Active Fire and
Mapped (%)

Non-Active Fire and
Non-Mapped (%)

Active Fire and
Non-Mapped (%)

OLI+PROBA-V+VIIRS 92.08 72.73 27.27 7.92
OLI 71.97 44.44 55.56 28.03

PROBA-V 68.08 51.27 48.73 31.92
NPP-VIIRS 34.17 24.89 75.11 65.83
MCD64A1 64.57 16.43 83.57 35.43
MCD45A1 41.47 14.92 85.08 58.53
Fire CCI 51.89 8.79 91.21 48.11

There were substantial differences in mapped areal extent of burned areas across the various
datasets (Table 4). Our results are overestimated compared with MCD64A1, MCD45A1, and Fire
CCI datasets, respectively. However, these overestimates decrease when compared with individual
sensor datasets.

Table 4. Burned area estimated by the proposed method and by the global burned area products.

Product Area (km2)

OLI+PROBA-V+VIIRS 96,461.24
OLI 55,694.32

PROBA-V 28,443.52
NPP-VIIRS 29,768.72

MODIS MCD64A1 40,364.75
MODIS MCD45A1 31,555.25

Fire CCI 34,991.13

Figure 8 shows the regression analysis of burned areas maps for each sensor and final composite
compared with the global burned areas products by cell grid. Compared with the final composite,
it was obtained that r2 = 0.30 for MCD45A1, r2 = 0.32 for MCD64A1, and r2 = 0.43 for Fire CCI
(Figure 8d,e,m, respectively). The RMSE varies from 16.94 to 14.94, and the bias between 7.78% to
5.84%. RMSE measures indicate a generally better spatial agreement between the products when the
results are lower, being used as an indicator of the dispersion or tendency of classifiers to identify
the same amount of burned areas across cells. However, the lack of bias in the regression model not
necessarily has the same indicative [34]. In this case, the bias showed to be positive, and, as mentioned
before, the final composite has a trend to overestimate the results compared with the global burned
area products.

The regression results between the global burned area products and the burned areas mapped
by each sensor showed Landsat-8 OLI with the best results (from r2 = 0.55 to r2 = 0.36), followed
by PROBA-V (from r2 = 0.21 to r2 = 0.12) and NPP-VIIRS (from r2 = 0.18 to r2 = 0.13). The RMSE
values were around 12.63, as observed with MCD45A1 and Landsat-8 OLI (Figure 8a), and 8.83 in
MCD45A1 and PROBA-V (Figure 8b). The bias also showed to be positive for the most analysis, around
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3.60% in MCD45A1 and Landsat-8 OLI (Figure 8a) and 0.74% in MCD45A1 and PROBA-V (Figure 8b),
representing an overestimation. On the other hand, as observed previously, the mapped burned areas
of PROBA-V and NPP-VIIRS sensors were underestimated when compared with MCD64A1 and Fire
CCI products, representing a negative bias around to 1.20% in MCD64A1 and PROBA-V (Figure 8f) to
0.52% in Fire CCI and NPP-VIIRS (Figure 8l).Remote Sens. 2019, 10, x FOR PEER REVIEW 16 of 24 
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Figure 8. Scatter plots of regression by grid cells in comparison with MCD45A1 (a–d); MCD64A1 (e–h);
and Fire CCI (i–m) with the results, considering grid cells with side dimensions of 10 km, to obtain the
r2, root-mean-square error (RMSE), and bias, based on the maximum number of cells.

4. Discussion

4.1. Burned Area by Land Cover

Historically, fire has been the main tool in the land use and land cover changes, and the impacts
of fires on the environment, especially on the climate, require the analysis and monitoring of large
territorial extensions in the long term. In a total of approximately of 96,461.24 km2 of the burned areas
identified in the Mato Grosso State, our results indicate that 66% of the total burned area occurs in
non-forested areas, including savanna formations and grasslands, mainly founded in the Cerrado and
Pantanal biomes. Twenty-one percent and 0.86% of burned areas were identified in older deforestation
(before the 2015 year) and in deforested areas identified in the same year by the PRODES dataset,
respectively. Critically, forested areas experienced 11% of the total burned area, and the occurrence
of fires in forest formations can have negative social, economic, and environmental consequences,
also favoring the conversion to deforestation. Additionally, the most effective policy instruments in
reducing deforestation are not the most effective in reducing forest fires and vice-versa, suggesting that
both objectives cannot be achieved with a single measure of political intervention [65]. In this manner,



Remote Sens. 2020, 12, 3827 16 of 23

Brazilian government policies still need to be rethought to contemplate the reduction of forest fires and
the mitigation of their negative effects.

4.2. Overall Accuracy and Agreement Analysis

Although using the same MODIS sensor datasets, the existing global burned areas (Fire CCI,
MCD45A1, and MCD64A1) products present different results. These differences are due to the
methodologies and image dates used to generate such products. Our proposed method used image
datasets from OLI, PROBA-V, and VIIRS sensors with different temporal and spatial resolutions.
Then, we generated different results using these sensors datasets individually. We also generated a
composite result by adding those individual results taking the advantages of higher temporal resolution
of PROBA-V and VIIRS sensors and the medium spatial resolution of Landsat-8 OLI sensor. The results
showed a good visual agreement among all burned areas maps produced by different sensors datasets
and methodologies. However, the areal extents of burned areas were very different.

The proposed method used to generate the burned areas maps in this study showed different
results according to the sensor analyzed. When evaluated with the reference data (Sentinel-2 MSI),
the OLI sensor presented the best correlation (r = 0.63), followed by VIIRS (r = 0.46) and PROBA-V
(0.32). In this context, the spatial resolution of OLI sensor (30 m) could explain the highest correlation.
This analysis is corroborated by Reference [64], where the authors cite that a key determinant on the
accuracy of burned area detection is the spatial mapping scale of dataset, with evidence that burned
area maps produced from higher resolution observations presented reduced omission errors.

Although PROBA-V has better spatial resolution than VIIRS (100 m and 500 m, respectively),
both presented similar results. The clouds and shadows were removed in the two products before
the mapping, and the temporal analysis was the same (from May to October months). Therefore,
the number of images utilized may explain the difference in results since VIIRS sensor is a daily
product, compared to the composite of 5-days for PROBA-V, totalizing 153 and 36 images, respectively.
Thus, some fires could be missed in PROBA-V, impacting in the evaluation process.

In relation to the evaluation using Sentinel-2 MSI data to delimited the burned area by visual
interpretation, it is important to notice that the period analyzed (August to November) not coincide
with PROBA-V and VIIRS dataset used in this study (May to November). Moreover, only a segment of
Mato Grosso State was observed. Both limitations are related to the number of available images in 2015,
due to the launch date (June 2015) of Sentinel-2A, which may cause uncertainties in the evaluation.

When comparing the reference data with the global burned area products, the Fire CCI, MCD45A1,
and MCD64A1 presented a better correlation than OLI sensor, with a better agreement to Fire CCI
(0.81), followed by MCD45A1 (0.75) and MCD64A1 (0.66). The number of scenes used to map the
burned areas in OLI sensor may explain these results. Due to the persistency of clouds, some scenes
could not be used and, in general, only one date was mapped for each of the 47 path/rows that comprise
the state of Mato Grosso, most of them in October, missing some burned areas. In addition, the slightly
better correlation of MCD45A1 compared to the MODIS improved product MCD64A1 may be related
to the lower commission error presented by MCD45A1 (108 km2) compared to MCD64A1 (488 km2).
Still, the final product OLI+PROBA-V+VIIRS not presented a good correlation (0.51), even when
compared to OLI.

4.3. Specific Product of Burned Area by Each Dataset

The OLI sensor presented the highest values of the total burned area, with 55,694 km2, followed
by VIIRS and PROBA-V (29,768 km2 and 28,443 km2, respectively). As mentioned before, the better
spatial resolution of OLI sensor could be a factor in detecting more burned areas, as well as the largest
number of scenes used of VIIRS sensor. The OLI sensor resulted in the most total burned areas mapped
comparing these results with global burned areas products, followed by Fire CCI product (34,991 km2)
and MCD64A1 (31,555 km2). The better spatial resolution of Fire CCI (250 m) could be related to
more burned areas detected and, according to Reference [34], Fire CCI and MCD64A1 are efficient in
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identifying burned area in cloudy regions due to their reliance on active fire detections as training data
samples. PROBA-V presented the lowest burned area mapped, which may be linked to the number of
scenes used when compared to the OLI+PROBA-V+VIIRS final product.

The spatial resolution of OLI could also explain the best results of this sensor related to commission
errors (282 km2), followed by VIIRS and PROBA-V (484 km2 and 930 km2, respectively). In Mato
Grosso State, some elements may be confused with burned areas, like the presence of dark red
latosol, especially in agricultural areas where they are most exposed. Cloud shadows, topographic
shadowing, and water bodies have similar spectral characteristics as burned areas. According to
Reference [66], other features that can be confused with the burned areas include clear cuts, land
conversion, and non-fire forests mortality. Compared with the global burned area products, PROBA-V
presented the highest commission error value, followed by MCD64A1 (488), VIIRS (484), OLI (282),
Fire CCI (150), and MCD45A1 (108). The lowest commission error of burned areas by MCD45A1 could
be explained by high omission error from this product, as will be mentioned later.

Related to omission errors, OLI and PROBA-V presented similar results, with 547 km2 and
437 km2, respectively. The number of scenes used to map the burned areas may explain the slight
increase in the omission error of OLI sensor. The VIIRS sensor presented the highest omission error of
burned area (1240 km2), and, when compared to OLI and PROBA-V, the 500 m spatial resolution of the
product may explain the differences, since approximately 84% of the burned areas found in reference
data is composed by scars with less than 5 km2. According to Reference [64], sensors with moderate
and coarse spatial resolution presents a low degree of fidelity in the detection of small or highly
fragmented fires. Besides, omissions can also occur when fires leave little residual heat and spread
rapidly between satellite overpasses and when the differences in the spectral characteristics between
pre- and post-fire are minimal [67]; and, to Reference [68], fires obscured by clouds, with short-lived
thermal signatures and small fires also may not be identified.

Compared with the global burned area products, the VIIRS sensor resulted in higher omission
error of burned area, followed by OLI (547 km2), MCD45A1 (550 km2), Fire CCI (464 km2), PROBA-V
(437 km2), MCD64A1 (386 km2), and OLI+PROBA-V+VIIRS final product (126 km2). The OLI product
showed a high rate of fires omission (ranking second). Thus, the temporal resolution is also crucial in
the analysis and identification of burned areas, avoiding non-identification throughout the season.
Related to global burned area products, the MCD64A1 presented the best performance, mostly due to
the improvement in the algorithm, that integrates reflectance changes with active fire observations.
Several validation studies for global products have identified the good performance of MCD64A1 in the
identification of burned areas with low errors of omission [34,69,70]. Finally, the combined results of
the proposed method presented the lowest omission of burned areas, indicating that the combination of
higher temporal and medium spatial resolution could be a better approach to identifying burned areas.

4.4. Comparison with Active Fires

When comparing the final classification of burned areas with the active fire observations, it is
noticed that related to omissions (active fires detected but not-mapped), the final composite product
(OLI+PROBA-V+VIIRS) presented the best performance (7.92%), followed by OLI (28.03%), PROBA-V
(31.92%), MCD64A1 (35.43%), Fire CCI (48.11%), MCD45A1 (58.53%), and VIIRS (65.83%). Therefore,
sensors that present better spatial resolution and products with algorithms that use active fires present
the best results. In this context, MCD45A1, that uses only reflectance images, and VIIRS, both with
500 m of spatial resolution, did not detect more than half of the burned areas even with active
fires occurring.

Related to commission (burned area mapped with no active fire detected), Fire CCI presented
the best performance (8.79%), indicating that the 250 m spatial resolution with the use of active fire
product is efficient in not including burns that do not exist, or that may exist but are characterized
by small scars where active fires are absent. The next following products presented the best results:
MCD45A1 (14.92%), MCD64A1 (16.43%), VIIRS (24.89%), OLI (44.44%), PROBA-V (51.27%), and OLI
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+ PROBA-V + VIIRS (72.73%). In this context, MCD45A1 and VIIRS that presented high values of
omission errors related to active fires also presented low values of commission errors, the same pattern
demonstrated by OLI + PROBA-V + VIIRS, that presented the best performance related to omission
error and lowest performance related to commission errors.

The last analysis is related to the burned areas mapped that presented active fires.
The OLI+PROBA-V+VIIRS product presented the best performance (92.08%), followed by OLI
(71.97%), PROBA-V (68.08%), and MCD64A1 (64.57%). Besides, Fire CCI presents better spatial
distribution compared to MCD64A1, and this product presented 51.89% of burned areas mapped in
areas with active fires, followed by MCD45A1 (45.47%) that do not use active fires in the algorithm to
map the burned areas. The sensor with the worst performance was VIIRS, with 34.17% of burned areas
mapped, indicating that the 500 m spatial resolution does not perform well in areas with small burn
scars, even with active fires.

In this context, the algorithm accuracies can be influenced by fire patch characteristics, since small
and irregular burned area patches may lead to high omission errors because the spatial resolution of
the pixels is too coarse to detect the smaller fires [71]. On the other hand, small and irregular unburned
areas within large burned patches may lead to an increase in commission errors, particularly for high
sensitivity algorithms [57].

In the Amazon biome, the burning activity is performed to clean newly deforested areas for
agriculture expansion, and sometimes the fires escape to forest areas causing forest degradation.
Nevertheless, these remaining areas contain less biomass and are not considered in the carbon balance
yet. In non-forested areas, burnings are caused by the use of fire to improve the productivity of
grassland and pastureland covers. In this context, previous validation studies have indicated that global
satellite-derived burned area products typically perform best in regions where fire activity is more
prevalent [69], and, for South America, Reference [70] found that the smallest relative uncertainties
occur in the frequently burning savannas and grasslands.

5. Conclusions

The use of remote sensing burned areas products requires confident estimates uncertainties.
Therefore, in this paper, a method combining products with higher spatial and temporal resolutions to
estimate the burned areas, by using OLI, PROBA-V, and NPP-VIIRS datasets, was proposed. The shade
fraction images showed the advantages to reduce the data volume to be analyzed and highlighting
the burned areas facilitating the image classification process, even with a high volume of data. In the
study area, 11% (10,111 km2) of burnings occurred in forested areas, reaching the double of burned
area extension compared with areas destined for agriculture (5%, 4873 km2). This indicates that fire
occurrences are less in areas intended for agriculture using mechanized practices, although it is still a
common practice due to its low cost and cultural habits. On the other hand, Brazilian government
policies still need to be rethought to contemplate the reduction of forest fires and the mitigation of their
negative effects.

Regarding to the total burned area, the 30 m high spatial resolution of OLI sensor resulted in the
best results and the less commission errors; however, when evaluated with reference data (Sentinel-2
MSI), the Fire CCI global burned area product presented the best correlation, and this fact can be
explained by the persistency of clouds in Mato Grosso State of 2015 year, resulting in less available
images of OLI sensor, indicating the crucial importance of temporal resolution in burned areas analysis.

The final product OLI+PROBA-V+VIIRS used by the proposed method overestimated the burned
areas and presented a moderate correlation compared to the reference data; however, it presented the
lowest omission of burned areas and the best performance related to the mapping of burnings in areas
with active fire observations. Therefore, these results indicate that the combination of higher temporal
and medium spatial resolutions sensor data could be a better approach to identifying burned areas,
since the best spatial resolution is indicated to small scars identification and high temporal resolution
is used to avoid omission errors. In this context, the temporal resolution is also extremely important,
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being necessary the use of all scenes available, and a cloud mask could assist in the use of images that
have a longer revisit period, improving the results obtained. For future studies, the recommendation
is to use a machine learning algorithm and cloud processing for monitoring burned areas using
different datasets and a high volume of data for larger areas. In addition, using ancillary information,
e.g., water bodies map, may avoid the confusion of burned areas and water bodies and, consequently,
improve the classification process.

The proposed method provided a general perspective about the patterns of fire in the Amazon,
Cerrado, and Pantanal biomes of Mato Grosso State, Brazil, discriminating by forestland, cropland,
and deforested and non-forested areas. Such information is important for environmental studies,
especially related to fire severity, regeneration, and greenhouse gas emissions.
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Appendix A

Table A1. Landsat OLI images (path/row and dates) used in this study.

Path/Row Date Path/Row Date

223/067 21/Oct/2015 227/067 17/Oct/2015
223/068 21/Oct/2015 227/068 17/Oct/2015
223/069 21/Oct/2015 227/069 17/Oct/2015
223/070 21/Oct/2015 227/070 17/Oct/2015
223/071 21/Oct/2015 227/071 17/Oct/2015
224/067 12/Oct/2015 227/072 17/Oct/2015
224/068 12/Oct/2015 228/066 08/Oct/2015
224/069 12/Oct/2015 228/067 08/Oct/2015
224/070 12/Oct/2015 228/068 08/Oct/2015
224/071 12/Oct/2015 228/069 08/Oct/2015
224/072 29/Nov/2015 228/070 08/Oct/2015
225/067 19/Oct/2015 228/071 08/Oct/2015
225/068 19/Oct/2015 229/065 15/Oct/2015
225/069 19/Oct/2015 229/066 15/Oct/2015
225/070 19/Oct/2015 229/067 15/Oct/2015
225/071 19/Oct/2015 229/068 15/Oct/2015
225/072 19/Oct/2015 229/069 15/Oct/2015

226/067 08/Sep/2015
10/Oct/2015 229/070 15/Oct/2015

226/068 08/Sep/2015
10/Oct/2015 229/071 15/Oct/2015

226/069 08/Sep/2015 230/066 06/Oct/2015
226/070 08/Sep/2015 230/067 06/Oct/2015
226/071 08/Sep/2015 230/068 06/Oct/2015
226/072 23/Aug/2015 231/066 11/Sep/2015

231/067 11/Sep/2015
13/Oct/2015



Remote Sens. 2020, 12, 3827 20 of 23

References

1. Belcher, C.M. Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science; College of Life
and Environmental Sciences, University of Exeter: Exeter, UK, 2013.

2. Coutinho, L.M. Fire in the ecology of the Brazilian cerrado. In Fire in the Tropical Biota; Goldammer, J.G., Ed.;
Springer-Velarg: New York, NY, USA, 1990; pp. 82–105.

3. Alencar, A.; Nepstad, D.; Silva, E.; Brown, F.; Lefebvre, P.; Mendosa, E.; Almeida, D.; Carvalho, O., Jr. Uso
do Fogo na Amazônia: Estudos de Caso ao Longo do Arco de Desmatamento; World Bank Report; World Bank:
Brasilia, Brazil, 1997.

4. Sampaio, G.; Nobre, C.; Costa, M.H.; Satyamurty, P.; Soares Filho, B.S.; Cardoso, M.F. Regional climate
change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett. 2007,
34, 1–7. [CrossRef]

5. Marengo, J.A.; Nobre, C.; Salazar, L.F. Regional climate change cenarios in South America in the Late XXI
Century: Projections and expected impacts. Nova Acta Leopoldina 2010, 112, 251–265.

6. Bustamante, M.M.C.; Roitman, I.; Aide, T.M.; Alencar, A.; Anderson, L.; Aragão, L.; Asner, G.P.; Barlow, J.;
Berenguer, E.; Chambers, J.; et al. Towards an integrated monitoring framework to assess the effects of
tropical forest degradation and recovery on carbon stocks and biodiversity. Global Change Biology 2016, 1,
92–109. [CrossRef] [PubMed]

7. Cochrane, M.A.; Ryan, K.C. Fire and fire ecology: Concepts and principles. In Tropical Fire Ecology, Climate
Change, Land Use and Ecosystem Dynamics; Cochrane, M.A., Ed.; Springer: Chichester, UK, 2009; pp. 60–97.
[CrossRef]

8. Freitas, S.R.; Longo, K.M.; Dias, M.A.F.S.; Dias, P.L.S.; Chatfield, R.; Prins, E.; Artaxo, P.;
Grell, G.A.; Recuero, F.S. Monitoring the transport of biomass burning emissions in South America.
Environ. Fluid Mechanics 2005, 5, 135–167. [CrossRef]

9. Fearnside, P.M.; Righi, C.A.; Graça, P.M.L.A.; Keizer, E.W.H.; Cerri, C.C.; Nogueira, E.M.; Barbosa, R.I. Biomass
and greenhouse gas emissions from land-use change in Brazil’s Amazonian “arc of deforestation”: The states of
Mato Grosso and Rondônia. Forest Ecology Manag. 2009, 258, 1968–1978. [CrossRef]

10. Leblon, B.; Bourgeau-Chavez, L.; San-Miguel-Ayanz, J. Use of Remote Sensing in wildfire management.
In Sustainable Development–Authoritative and Leading Edge Content for Environmental Management;
Curkovic, S., Ed.; InTech Press: Rijeka, Croatia, 2012; pp. 55–82.

11. Tyukavina, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Smith-Rodriguez, K.; Okpa, C.; Aguilar, R.
Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Science Advances 2017, 3,
e1601047. [CrossRef]

12. Davidson, E.A.; De Araüjo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Mercedes, M.M.; Coe, M.T.; Defries, R.S.;
Keller, M.; Longo, M.; et al. The amazon basin in transition. Nature 2012, 481, 321–328. [CrossRef]

13. Cardozo, F.S.; Pereira, G.; Shimabukuro, Y.E.; Moraes, E.C. Analysis and Assessment of the Spatial and
Temporal Distribution of Burned Areas in the Amazon Forest. Remote Sensing 2014, 6, 8002–8025. [CrossRef]

14. Stephenson, C.; Handmer, J.; Betts, R. Estimating the economic, social and environmental impacts of wildfires
in Australia. Environ. Hazards 2013, 12, 93–111. [CrossRef]

15. Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S.; Arellano, A.F., Jr. Interannual
variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 2006, 6, 3423–3441.
[CrossRef]

16. Andreae, M.O. Biomass burning: Its history, use, and distribution and its impact on environmental quality
and global climate. In Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications; Levine, J.S.,
Ed.; The MIT Press: Cambridge, MA, USA, 1991; pp. 2–21.

17. Durigan, G.; Ratter, J.A. The need for a consistent fire policy for Cerrado conservation. J. Appl. Ecol. 2016, 53,
11–15. [CrossRef]

18. Mataveli, G.A.V.; Silva, M.E.S.; Pereira, G.; Cardozo, F.S.; Kawakubo, F.S.; Bertani, G.; Costa, J.C.; Ramos, R.C.;
Silva, V.V. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian
savannas. Nat. Hazards Earth Syst. Sci. 2018, 18, 125–144. [CrossRef]

19. Ichoku, C.; Kahn, R.; Chin, M. Satellite contributions to the quantitative characterization of biomass burning
for climate modeling. Atmos. Res. 2012, 111, 1–28. [CrossRef]

http://dx.doi.org/10.1029/2007GL030612
http://dx.doi.org/10.1111/gcb.13087
http://www.ncbi.nlm.nih.gov/pubmed/26390852
http://dx.doi.org/10.1007/978-3-540-77381-8_2
http://dx.doi.org/10.1007/s10652-005-0243-7
http://dx.doi.org/10.1016/j.foreco.2009.07.042
http://dx.doi.org/10.1126/sciadv.1601047
http://dx.doi.org/10.1038/nature10717
http://dx.doi.org/10.3390/rs6098002
http://dx.doi.org/10.1080/17477891.2012.703490
http://dx.doi.org/10.5194/acp-6-3423-2006
http://dx.doi.org/10.1111/1365-2664.12559
http://dx.doi.org/10.5194/nhess-18-125-2018
http://dx.doi.org/10.1016/j.atmosres.2012.03.007


Remote Sens. 2020, 12, 3827 21 of 23

20. Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.;
Kaufman, Y. The MODIS fire product. Remote Sens. Environ. 2002, 83, 244–262. [CrossRef]

21. Pereira, G.; Siqueira, R.; Rosário, N.E.; Longo, K.L.; Freitas, S.R.; Cardozo, F.S.; Kaiser, J.W.; Martin, J.;
Wooster, M.J. Assessment of fire emission inventories during the South American Biomass Burning Analysis
(SAMBBA) experiment. Atmos. Chem. Phys. 2016, 16, 6961–6975. [CrossRef]

22. Roy, D.P.; Lewis, P.E.; Justice, C.O. Burned area mapping using multi-temporal moderate spatial resolution
data—a bi-directional reflectance model-based expectation approach. Remote Sens. Environ. 2002, 83, 263–286.
[CrossRef]

23. Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; Miguel, J.S.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.;
Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from
satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [CrossRef]

24. Coppoletta, M.; Merriam, K.E.; Collins, B.M. Post-fire vegetation and fuel development influences fire
severity patterns in reburns. Ecol. Appl. 2016, 26, 686–699. [CrossRef]

25. Andrés, R.G.; Davies, G.M.; Waldron, S.; Scott, E.M.; Gray, A. Increased fire severity alters initial vegetation
regeneration across Calluna-dominated ecosystems. J. Environ. Manag. 2019, 231, 1004–1011. [CrossRef]

26. Casady, G.M.; Marsh, S.E. Broad-scale environmental conditions responsible for post-fire vegetation dynamics.
Remote Sens. 2010, 2, 2643–2664. [CrossRef]

27. Chen, Z. A literature Survey: The Effects of Forest Fire on Ecology and Regeneration. Ph.D. Thesis, Faculty of
Forestry and the Forest Environment, Lakehead University, Thunder Bay, ON, USA, 2019; 43p.

28. Hantson, S.; Padilla, M.; Corti, D.; Chuvieco, E. Strengths and weaknesses of MODIS hotspots to characterize
global fire occurrence. Remote Sens. Environ. 2013, 131, 152–159. [CrossRef]

29. Andela, N.; van der Werf, G.R.; Kaiser, J.W.; van Leeuwen, T.T.; Wooster, M.J.; Lehmann, C.E.R. Biomass
burning fuel consumption dynamics in the tropics and subtropics assessed from satellite. Biogeosciences 2016,
13, 3717–3734. [CrossRef]

30. Loboda, T.; O’Neal, K.J.; Csiszar, I. Regionally adaptable dNBR-based algorithm for burned area mapping
from MODIS data. Remote Sens. Environ. 2007, 109, 429–442. [CrossRef]

31. Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 burned area
algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17.
[CrossRef]

32. Schroeder, W.; Morisette, J.T.; Csiszar, I.; Giglio, L.; Morton, D.; Justice, C.O. Characterizing vegetation fire
dynamics in Brazil through multisatellite Data: Common trends and practical issues. Earth Interact. 2005, 9,
1–26. [CrossRef]

33. Giglio, G.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping
Algorithm and Product. Remote Sens. Environ. 2018, 217, 72–85. [CrossRef]

34. Humber, M.L.; Boschetti, L.; Giglio, L.; Justice, C.O. Spatial and temporal intercomparison of four global
burned area products. Int. J. Digital Earth 2019, 12, 460–484. [CrossRef]

35. Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.;
Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping burned areas using dense time-series of
Landsat data. Remote Sens. Environ. 2017, 198, 504–522. [CrossRef]

36. Cabral, A.I.R.; Silva, S.; Silva, P.C.; Vanneschi, L.; Vasconcelos, M.J. Burned area estimations derived
from Landsat ETM+ and OLI data: Comparing Genetic Programming with Maximum Likelihood and
Classification and Regression Trees. ISPRS J. Photogramm. Remote Sens. 2018, 142, 94–105. [CrossRef]

37. Chen, D.; Pereira, J.M.C.; Masiero, A.; Pirotti, F. Mapping fire regimes in China using MODIS active fire and
burned area data. Appl. Geogr. 2017, 85, 14–26. [CrossRef]

38. Melchiorre, A.; Boschetti, L. Global Analysis of Burned Area Persistence Time with MODIS Data. Remote Sens.
2018, 10, 750. [CrossRef]

39. Urbanski, S.; Nordgren, B.; Albury, C.; Schwert, B.; Peterson, D.; Quayle, B.; Hao, W.M. A VIIRS direct
broadcast algorithm for rapid response mapping of wildfire burned area in the western United States.
Remote Sens. Environ. 2018, 219, 271–283. [CrossRef]

40. Fernández-Manso, A.; Quintano, C. A Synergetic Approach to Burned Area Mapping Using Maximum
Entropy Modeling Trained with Hyperspectral Data and VIIRS Hotspots. Remote Sens. 2020, 12, 858.
[CrossRef]

http://dx.doi.org/10.1016/S0034-4257(02)00076-7
http://dx.doi.org/10.5194/acp-16-6961-2016
http://dx.doi.org/10.1016/S0034-4257(02)00077-9
http://dx.doi.org/10.1016/j.rse.2019.02.013
http://dx.doi.org/10.1890/15-0225
http://dx.doi.org/10.1016/j.jenvman.2018.10.113
http://dx.doi.org/10.3390/rs2122643
http://dx.doi.org/10.1016/j.rse.2012.12.004
http://dx.doi.org/10.5194/bg-13-3717-2016
http://dx.doi.org/10.1016/j.rse.2007.01.017
http://dx.doi.org/10.1016/j.rse.2018.12.011
http://dx.doi.org/10.1175/EI120.1
http://dx.doi.org/10.1016/j.rse.2018.08.005
http://dx.doi.org/10.1080/17538947.2018.1433727
http://dx.doi.org/10.1016/j.rse.2017.06.027
http://dx.doi.org/10.1016/j.isprsjprs.2018.05.007
http://dx.doi.org/10.1016/j.apgeog.2017.05.013
http://dx.doi.org/10.3390/rs10050750
http://dx.doi.org/10.1016/j.rse.2018.10.007
http://dx.doi.org/10.3390/rs12050858


Remote Sens. 2020, 12, 3827 22 of 23

41. Shimabukuro, Y.E.; Arai, E.; Duarte, V.; Dutra, A.C. Assessment of Land Use Land Cover in Brazil,
South America, Using Fraction Images Derived from Proba-V Datasets. In Proceedings of the
IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan,
28 July–2 August 2019; pp. 6401–6404.

42. Aguiar, A.P.D.; Shimabukuro, Y.E.; Mascarenhas, N.D.A. Use of synthetic bands derived from mixing models
in the multispectral classification of remote sensing images. Int. J. Remote Sens. 1999, 20, 647–657. [CrossRef]

43. Shimabukuro, Y.E.; Ponzoni, F.J. Spectral Mixture for Remote Sensing. Linear Model and Applications;
Springer Nature: Basel, Switzerland, 2017; p. 77. [CrossRef]

44. Anderson, L.O.; Aragão, L.E.O.C.; Lima, A.; Shimabukuro, Y.E. Detecção de Cicatrizes de Áreas Queimadas
Baseada No Modelo Linear de Mistura Espectral e Imagens Índice de Vegetação Utilizando Dados
Multitemporais Do Sensor MODIS/TERRA No Estado Do Mato Grosso, Amazônia Brasileira. Acta Amaz.
2005, 35, 445–456. [CrossRef]

45. Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O.; Shimabukuro, Y.E. Mapping Burned Areas
in Mediterranean Countries Using Spectral Mixture Analysis from a Uni-Temporal Perspective. Int. J.
Remote Sens. 2006, 27, 645–662. [CrossRef]

46. Shimabukuro, Y.E.; Arai, E.; Duarte, V.; Jorge, A.; Santos, E.G.D.; Gasparini, K.A.C.; Dutra, A.C. Monitoring
deforestation and forest degradation using multi-temporal fraction images derived from Landsat sensor
data in the Brazilian Amazon. Int. J. Remote Sens. 2019, 40, 5475–5496. [CrossRef]

47. IBGE, Estados. 2016. Available online: Ftp://geoftp.ibge.gov.br/cartas_e_mapas/mapas_estaduais_e_distrito_
federal/informacoes_ambientais/ (accessed on 7 April 2020).

48. Rossi, F.S.; Santos, G.A.A. Fire dynamics in Mato Grosso State, Brazil: The relative roles of gross primary
productivity. Big Earth Data 2020, 1–22. [CrossRef]

49. Assis, L.F.F.G.; Ferreira, K.R.; Vinhas, L.; Maurano, L.; Almeida, C.; Carvalho, A.; Rodrigues, J.; Maciel, A.;
Camargo, C. TerraBrasilis: A Spatial Data Analytics Infrastructure for Large-Scale Thematic Mapping.
ISPRS Int. J. Geo-Inf. 2019, 8, 513. [CrossRef]

50. INPE—Instituto Nacional de Pesquisas Espaciais. Coordenação Geral de Observação da Terra. Programa de
Monitoramento da Amazônia e Demais Biomas. Desmatamento—Amazônia Legal. 2020. Available online:
http://terrabrasilis.dpi.inpe.br/downloads/ (accessed on 15 April 2020).

51. Cochrane, M.A.; Laurance, W.F. Fire as a large-scale edge effect in Amazonian forests. J. Trop. Ecol. 2002, 18,
311–325. [CrossRef]

52. Silva Junior, C.H.L.; Aragão, L.E.O.C.; Fonseca, M.G.; Almeida, C.T.; Vedovato, L.B.; Anderson, L.O.
Deforestation-Induced Fragmentation Increases Forest Fire Occurrence in Central Brazilian Amazonia.
Forests 2018, 9, 305. [CrossRef]

53. INPE—Instituto Nacional de Pesquisas Espaciais. Portal do Monitoramento de Queimadas e Incêndios.
2020. Available online: http://www.inpe.br/queimadas (accessed on 15 April 2020).

54. Pettinari, M.L.; Lizundia-Loiola, J.; Chuvieco, E. ESA CCI ECV Fire Disturbance: D4.2 Product User
Guide—MODIS, Version 1.0. 2020. Available online: https://www.esa-fire-cci.org/documents (accessed on
1 May 2020).

55. Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a global algorithm for systematic fire-affected area
mapping using MODIS time series data. Remote Sens. Environ. 2005, 97, 137–162. [CrossRef]

56. Giglio, L.; Justice, C.; Boschetti, L.; Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global
500 m SIN Grid V006. 2015. Available online: https://doi.org/10.5067/MODIS/MCD64A1.006 (accessed on
10 March 2020).

57. Boschetti, L.; Eva, H.D.; Brivio, P.A.; Grégoire, J.M. Lessons to be learned from the comparison of three
satellite-derived biomass burning products. Geophys. Res. Lett. 2004, 31. [CrossRef]

58. Arai, E.; Eyji Sano, E.; Dutra, A.C.; Cassol, H.L.G.; Hoffmann, T.B.; Shimabukuro, Y.E. Vegetation Fraction
Images Derived from PROBA-V Data for Rapid Assessment of Annual Croplands in Brazil. Remote Sens.
2020, 12, 1152. [CrossRef]

59. Shimabukuro, Y.E.; Smith, J.A. The least squares mixing models to generate fraction images derived from
remote sensing multispectral data. IEEE Trans. Geosci. Remote Sens. 1991, 29, 16–20. [CrossRef]

60. Camara, G.; Souza, R.C.M.; Freitas, U.; Garrido, J. SPRING: Integrating remote sensing and GIS by
object-oriented data model. Comput. Graph. 1996, 20, 395–403. [CrossRef]

http://dx.doi.org/10.1080/014311699213118
http://dx.doi.org/10.1007/978-3-030-02017-0
http://dx.doi.org/10.1590/S0044-59672005000400009
http://dx.doi.org/10.1080/01431160500212195
http://dx.doi.org/10.1080/01431161.2019.1579943
Ftp://geoftp.ibge.gov.br/cartas_e_mapas/mapas_estaduais_e_distrito_federal/informacoes_ambientais/
Ftp://geoftp.ibge.gov.br/cartas_e_mapas/mapas_estaduais_e_distrito_federal/informacoes_ambientais/
http://dx.doi.org/10.1080/20964471.2019.1706832
http://dx.doi.org/10.3390/ijgi8110513
http://terrabrasilis.dpi.inpe.br/downloads/
http://dx.doi.org/10.1017/S0266467402002237
http://dx.doi.org/10.3390/f9060305
http://www.inpe.br/queimadas
https://www.esa-fire-cci.org/documents
http://dx.doi.org/10.1016/j.rse.2005.04.007
https://doi.org/10.5067/MODIS/MCD64A1.006
http://dx.doi.org/10.1029/2004GL021229
http://dx.doi.org/10.3390/rs12071152
http://dx.doi.org/10.1109/36.103288
http://dx.doi.org/10.1016/0097-8493(96)00008-8


Remote Sens. 2020, 12, 3827 23 of 23

61. Shimabukuro, Y.E.; Batista, G.T.; Mello, E.M.K.; Moreira, J.C.; Duarte, V. Using shade fraction image
segmentation to evaluate deforestation in Landsat Thematic Mapper images of the Amazon region. Int. J.
Remote Sens. 1998, 19, 535–541. [CrossRef]

62. Bins, L.S.; Fonseca, L.M.G.; Earthal, G.J. Satellite imagery segmentation: A region growing approach. In
Proceedings of the VIII Simpósio Brasileiro de Sensoriamento Remoto, Salvador, BA, Brazil, 14–19 April 1996;
pp. 677–680.

63. Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Oxford, UK; Waltham,
MA, USA, 2011.

64. Roy, D.P.; Boschetti, L. Southern Africa Validation of the MODIS, L3JRC, and GlobCarbon Burned-Area
Products. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1032–1044. [CrossRef]

65. Morello, T.F.; Parry, L.; Markusson, N.; Barlow, J. Policy instruments to control Amazon fires: A simulation
approach. Ecol. Econ. 2017, 138, 199–222. [CrossRef]

66. Schroeder, T.A.; Schleeweis, K.G.; Moisen, G.G.; Toney, C.; Cohen, W.B.; Freeman, E.A.; Yang, Z.; Huang, C.
Testing a Landsat-based approach for mapping disturbance causality in U.S. forests. Remote Sens. Environ.
2017, 195, 230–243. [CrossRef]

67. Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I. Detection rates of the MODIS active fire
product in the United States. Remote Sens. Environ. 2008, 112, 2656–2664. [CrossRef]

68. Schroeder, W.; Prins, E.; Giglio, L.; Csiszar, I.; Schmidt, C.; Morisette, J.; Morton, D. Validation of GOES
and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens. Environ. 2008, 112,
2711–2726. [CrossRef]

69. Padilla, M.; Stehman, S.V.; Ramo, R.; Corti, D.; Hantson, S.; Oliva, P.; Alonso-Canas, I.; Bradley, A.V.;
Tansey, K.; Mota, B.; et al. Comparing the accuracies of remote sensing global burned area products using
stratified random sampling and estimation. Remote Sens. Environ. 2015, 160, 114–121. [CrossRef]

70. Brennan, J.; Gómez-Dans, J.L.; Disney, M.; Lewis, P. Theoretical uncertainties for global satellite-derived
burned area estimates. Biogeosciences 2019, 16, 3147–3164. [CrossRef]

71. Rodrigues, J.A.; Libonati, R.; Pereira, A.A.; Nogueira, J.M.; Santos, F.L.; Peres, L.F.; Santa Rosa, A.;
Schroeder, W.; Pereira, J.M.; Giglio, L.; et al. How well do global burned area products represent fire patterns
in the Brazilian Savannas biome? An accuracy assessment of the MCD64 collections. Int. J. Appl. Earth
Obs. Geoinf. 2019, 78, 318–331. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/014311698216152
http://dx.doi.org/10.1109/TGRS.2008.2009000
http://dx.doi.org/10.1016/j.ecolecon.2017.03.043
http://dx.doi.org/10.1016/j.rse.2017.03.033
http://dx.doi.org/10.1016/j.rse.2007.12.008
http://dx.doi.org/10.1016/j.rse.2008.01.005
http://dx.doi.org/10.1016/j.rse.2015.01.005
http://dx.doi.org/10.5194/bg-16-3147-2019
http://dx.doi.org/10.1016/j.jag.2019.02.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Remote Sensing Datasets 
	PROBA-V 
	Suomi NPP-VIIRS 
	Landsat-8 OLI 
	Sentinel-2 MSI 

	Global Burned Area Products 
	Fire Hotspots Products 
	Land Cover Maps 
	Forest and Non-Forest Map 
	Mato Grosso Cropland Map 

	Methodological Overview 
	Evaluation and Agreement Analysis 

	Results 
	Burned Area Spatial Distribution and Estimates by Land Cover 
	Evaluation and Agreement Analysis 

	Discussion 
	Burned Area by Land Cover 
	Overall Accuracy and Agreement Analysis 
	Specific Product of Burned Area by Each Dataset 
	Comparison with Active Fires 

	Conclusions 
	
	References

