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ABSTRACT
New time-series analysis tools are needed in disciplines as diverse as astronomy, economics, and meteorology. In particular, the
increasing rate of data collection at multiple wavelengths requires new approaches able to handle these data. The panchromatic
correlated indices K

(s)
(f i) and L

(s)
(pf c) are adapted to quantify the smoothness of a phased light-curve resulting in new period-finding

methods applicable to single- and multiband data. Simulations and observational data are used to test our approach. The results
were used to establish an analytical equation for the amplitude of the noise in the periodogram for different false alarm probability
values, to determine the dependency on the signal-to-noise ratio, and to calculate the yield rate for the different methods. The
proposed method has similar efficiency to that found for the string length period method. The effectiveness of the panchromatic
and flux-independent period finding methods in single as well as multiple wavebands that share a fundamental frequency is also
demonstrated in real and simulated data.

Key words: methods: analytical – methods: data analysis – methods: statistical – techniques: photometric – astronomical data
bases: miscellaneous – surveys.

1 IN T RO D U C T I O N

If the brightness variations of a variable star are periodic, one can
fold the sparsely sampled light curve with that period and inspect
the magnitude as a function of phase plot. This will be equivalent to
all the measurements of the star brightness taken within one period.
The shape of the phased light curve and the period allow one to
determine the physical nature of variability (pulsations, eclipses,
stellar activity, etc.). If the light curve is folded with a wrong
period, the magnitude measurements will be all over the place
rather than align into a smoothly varying function of the phase.
Other methods figure out the best period fitting a specific model
into the phased light curve, like a sine function. The most common
methods used in astronomy are the following: the Deeming method
(Deeming 1975), phase dispersion minimization (PDM, Stellingwerf
1978; Dupuy & Hoffman 1985), string length minimization (SLM,
Lafler & Kinman 1965; Dworetsky 1983; Stetson 1996; Clarke
2002), information entropy (Cincotta, Mendez & Nunez 1995), the
analysis of variance (ANOVA, Schwarzenberg-Czerny 1996), and
the Lomb–Scargle periodogram and its extension using error bars
(LS and LSG, Lomb 1976; Scargle 1982; Zechmeister & Kürster
2009). All of these methods require as input the minimum frequency
(fmin), the maximum frequency (fmax), and the sampling frequency
(or the number of frequencies tested – Nfreq). The input parameters
and their constraints to determine reliable variability detections were
addressed by Ferreira Lopes, Cross & Jablonski (2018), where a
summary of recommendations on how to determine the sampling
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frequency and the characteristic period and amplitude of the detected
variations is provided. From these constraints, a good period finding
method should find all periodic features if the time-series has enough
measurements covering nearly all variability phases (Carmo et al.
2020).

Light-curve shape, non-Gaussianity of noise, non-uniformities in
the data spacing, and multiple periodicities modify the significance
of the periodogram and to increase completeness and reliability,
more than one period finding method is usually applied to the
data (e.g. Angeloni et al. 2012; Ferreira Lopes et al. 2015a, c).
The capability to identify the ‘true’ period is increased by using
several methods (see Section 4.3). However, this does not prevent
the appearance of spurious results. Therefore, new insights into
signal detection which provide more reliable results are welcome
mainly when the methods provide dissimilar periods. Moreover, the
challenge of big-data analysis would benefit a lot from a single
and reliable detection and characterization method. This paper is
part of a series of studies performed in the project called New
Insight into Time Series Analysis (NITSA), where all steps to
mining photometric data on variable stars are being reviewed. The
selection criteria were reviewed and improved (Ferreira Lopes &
Cross 2016, 2017), optimized parameters to search and analyse
periodic signals were introduced (Ferreira Lopes et al. 2018), and
now new frequency finding methods are proposed to increase our
inventory of tools to create and optimize automatic procedures to
analyse photometric surveys. The outcome of this project is crucial
if we are to efficiently select the most complete and reliable sets
of variable stars in surveys like the VISTA Variables in the Via
Lactea (VVV, Minniti et al. 2010; Angeloni et al. 2014), Gaia
(Gaia Collaboration et al. 2016), the Transiting Exoplanet Survey
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Satellite (Ricker et al. 2015), the Panoramic Survey Telescope and
Rapid Response System (Pan-STARRS, Chambers et al. 2016), a
high-cadence All-sky Survey System (Tonry et al. 2018), Zwicky
Transient Facility (Bellm et al. 2019) as well as the next generation
of surveys like PLAnetary Transits and Oscillation of stars (Rauer
et al. 2014), and Large Synoptic Survey Telescope (Ivezic et al.
2008).

Many efforts are being performed to generalize for multiband data
the period finding methods. Süveges et al. (2012) utilized the prin-
cipal component analysis to optimally extract the best period using
multiband data. However, the multiband observations must be taken
simultaneously that impose an important limitation to the method.
On the other hand, VanderPlas & Ivezić (2015) introduce a general
extension of the LS method, while Mondrik, Long & Marshall (2015)
for the ANOVA from single-band algorithm to multiple bands not
necessarily taken simultaneously. Indeed, methods combining the
results from two different classes of period-determination algorithms
are also being reached (Saha & Vivas 2017). The current paper
adds one piece to this puzzle. Section 2.1 describes the new set
of periodic signal detection methods as well as their limitations
and constraints. Next, numerical simulations are used to test our
approach in Section 3. From this, the efficiency rate and the fractional
fluctuation of noise (FFN) are determined. Real data are also used to
support our final results (see Section 4). Finally, our conclusions are
presented in Section 5.

2 PA N C H RO M AT I C A N D F L U X - I N D E P E N D E N T
F R E QU E N C Y F I N D I N G M E T H O D S

The Welch–Stetson variability index (Stetson 1996) was generalized
and new ones were performed by Ferreira Lopes & Cross (2016).
From where the panchromatic and flux-independent variability in-
dices were proposed. These indices are used to discriminate variable
stars from noise. To summarize, the panchromatic index is related
to the correlation amplitude (or correlation height), while the second
one computes the correlation sign, that is, if the correlation value
is negative or positive without taking into account the amplitude.
The flux-independent index provides correlation information that
is weakly dependent on the amplitude or the presence of outliers.
These features enable us to reduce the misclassification rate and
improve the selection criteria. Moreover, this parameter is designed
to compute correlation values among two or more observations. The
correlation order (s), gives the number of observations correlated
together, that is, s = 2 means correlation computed between pairs
of observations and s = 3 means that correlations are computed on
triplets. However, these observations must be close in time, that is,
those observations are taken in an a interval time smaller much less
than the main variability period. Inaccurate or incorrect outputs will
be obtained if this restriction is not enforced. Therefore, the data sets
and sources with observations close in time were named as correlated
data otherwise non-correlated data.

The efficiency rate to detect variable stars is maximized using
the panchromatic and flux-independent variability indices when the
number of correlations is increased, that is, when there is a strong
variability between bins, but only slight differences between the
measurements in each correlation bin. These variability indices only
use those measurements that are close in time (i.e. a time interval
much smaller than the variability period) and hence this constraint
substantially reduced the number of possible correlations for sparse
data. If we consider a light curve folded on its true variability period,
with little noise, we could calculate these indices using standard
correlated observations grouped in time, missing the observations

where too few meet the criteria of having at least s closer than � T

in time. Alternatively, all measurements can be used to compute the
indices if the observations are grouped by phase instead of time. It
is the main idea to support the panchromatic and flux-independent
frequency finding methods.

For the main variability period, the observations closed in phase
should return strong correlation values. Since many variable stars
show most variation as a function of phase, and little variation
from period to period, recalculating the indices this way should
return indices that are as strong as those grouped by time. On the
other hand, if the light curve is folded on an incorrect period and
the calculated phase is no longer a useful correlation measure, so
correlations will be weaker, much like adding more noise to the data.
The statistics considered in this paper are unlikely to be useful for data
with multiple periodicities or if noise keeps its autocorrelation for
phased data. In the next section, we propose an approach to compute
the panchromatic and flux-independent indices in phase and hence
provide a new period finding method.

Be aware that, the definition of expected noise performed by
Ferreira Lopes et al. (2015a) needs to be corrected, as pointed
by the referee of the current paper. The authors provided the
correct theoretical definition of expected noise but the mathematical
expression was incorrect. In the case of statistically independent
events, the probability that a given event will occur is obtained by
dividing the number of events of the given type by the total number
of possible events, according to the authors. There will always be
two desired permutations (either all positive or all negative) for any s
value. However, the total number of events is 2s, not s2 as defined by
the authors. The correct definition for expected noise value is then
given by,

Ps = 2

2s
= 2(1−s) (1)

The relative differences between the old and new definition for
s = 2 and 4 are zero, while for s = 3 is ∼ 11 per cent. However, for
s values larger than 4 these differences increase considerably. The
authors have only used the noise definitions to set the noise level
for s values smaller than 4, so far. Therefore, this mistake has not
provided any significant error in the results of the authors to date.

2.1 New frequency finding methods

In common to other frequency finding methods, in our approach
the light-curve data are folded with a number of trial frequencies
(periods). The trial frequency that produces the smallest scatter in
the phase diagram according to some criteria is taken as the estimate
of the real period of variations. In our approach, we combine data
from multiple bands with special transformations and characterize
the phase diagram scatter using variability indices calculated from
correlations of the phases (rather than correlations in the observation
times, as they were used in previous works). The even statistic (for
more details, see Paper II – Ferreira Lopes & Cross 2017) was
used to calculate the mean, median, and deviation values. It only
requires that the data must have even number of measurements (and
if there is an odd number, the median value is not used), while the
equations to compute these parameters are equal to the previous
ones. This statement will be more important when the data have only
a few measurements. On the other hand, these parameters assume
equal values to the previous ones when the data have even number
of measurements and they are quite similar for large data samples
(typically bigger than 100).
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Consider a generic time-series observed in multiple wavebands
with observations not necessarily taken simultaneously in each band.
This could also mean a time-series of the same sources taken by
different instruments in single or multiwavelength observations. The
subindex w is used to denote each waveband. Using this notation, all
data are listed in a single table where the ith observation is

[
ti,w, δi,w

]
where δi, w is given by

δi,w =
√

nw

nw − 1
·
(

yi,w − ȳw

σi,w

)
, (2)

where nw is the number of measurements, yi, w are the flux mea-
surements, yi,w is the even-mean computed using those observations
inside of a 3σ clipped absolute even-median deviation (for more
details, see Paper II – Ferreira Lopes & Cross 2017), and σ i, w denotes
the flux errors of waveband w. One should note that greater success
in searching for signals in multiband light curves is found when a
penalty and an offset between the bands are used (for more details,
see Long, Chi & Baraniuk 2014; VanderPlas & Ivezić 2015; Mondrik
et al. 2015). However, these modifications require a more complex
model since more constraints need to be added. For our purpose,
we suppose that all wavebands used are well populated in order to
provide a good estimation of the mean value.

The vector given by
[
ti,w, δi,w

]
values contains data measured

in either a single or multiwavebands. For instance, w assumes
a single value if a single waveband is used. Therefore, the w
subindex is only useful to discriminate different wavebands and to
compute the δi, w . To simplify, the w subindex is suppressed in the
following steps. Therefore, the notation regarding all observations
(N), observed in single or multiwavebands by a single or different
telescopes, is given by [(t1, δ1), (t2, δ2), . . . , (tN , δN )]. From which,
the panchromatic (PL(s)) and flux-independent (PK(s)) period finding
indices are proposed as following;

(i) First, consider a frequency sampling F = [f1, f2, . . . , fNfreq ].

(ii) Next, the phase values �
′ = [φ

′
1, φ

′
2, . . . , φ

′
N ] are computed

by φ
′
i = ti × f1 − �ti × f1�, where ti is the time and the �� means

the ceiling function of ti × f1.
(iii) The phase values are re-ordered in ascending sequence of

phase where � = [φ1, φ2,. . . , φN] and φi ≤ φj for all i < j, and the
δi are also re-ordered with their respective phases. Where for each
phase value we have [(φ1, δ1), (φ2, δ2), . . . , (φN, δN )].

(iv) Next, the following parameter Q of order s is computed as;

Q
(s)
i = �

(s)
i, ... ,i+s−1

s
√

|δi . . . δi+s−1| (3)

where the �(s) function is given by

�
(s)
i =

⎧⎪⎪⎨
⎪⎪⎩

+1 if δi > 0, . . . , δi+s−1 > 0 ;
+1 if δi < 0, . . . , δi+s−1 < 0 ;
0 if δi = 0, . . . , δi+s−1 = 0 ;
−1 otherwise.

(4)

Since we are assuming that the variables are periodic, when the period
is correct, φ ∼ 0 should be equivalent to φ ∼ 1, so the last phases can
be correlated with the first phases, that is, if s = 2, Q

(s)
N correlates δN

with δ1, and if s = 3, Q(s)
N−1 correlates δN − 1 with δN and δ1, and Q

(s)
N

correlates δN with δ1 and δ2, and so on. This consideration ensures
the non-repetition of any term and keeps the number of Q(s) terms
equal to the number of observations. The subindex s sets the number
of observations that will be combined (for more details, see Paper I
– Ferreira Lopes & Cross 2016).

(v) Finally, the period indices, equivalent to the flux-independent
and panchromatic indices are given by,

PK (s) = N (+)

N
(5)

and,

PL(s) = 1

N

N∑
i=1

Q
(s)
i , (6)

where N(+) means the total number of positive correlations (see
equation 4). Indeed, the total number of negative correlations (N(−))
is given by N(−) = N − N(+).

(vi) The steps (ii)–(v) are repeated for all frequencies, f1 to fNfreq .

One should be aware that δi, w values are strongly dependent on
the average and hence incorrect values can be found for Algol -
type variable stars and time-series which have outliers, for example.
In order to more accurately measure the average value only those
observations within three times the absolute even-median deviations
of the even median were used to do this. Additionally, �(s) is a
bit different from that proposed for the flux-independent variability
indices. The current version assumes �(s) = 0 if δi = 0 . . . δi+s−1 =
0. This would produce PK(s) and PL(s) equal zero in the trivial case
of all observations being exactly equal, for example, a noiseless non-
variable example, that is, yi = yj for all i values (see two last panels
of Fig. 2).

2.2 The maximum PK(s) considering different signals

The maximum value allowed for the PK(s) parameter considering the
true variability frequency (ftrue) of a signal is limited by the number of
measurements which lead to �(s) = −1, that is, the minimum number
of times that one of the consecutive phase observations has a value on
the opposite side of the even mean (N(c)). This restriction limits the
maximum value achievable by PK(s) (PK

(s)
(max)). PK

(s)
(max) also varies

with the order, s, since the number of �(s) = −1 corresponding
to observations on opposite sides of the even mean varies with s.
Indeed, N(c) depends on the shape of the signal. For instance, N(c) =
1 for a line, N(c) = 2 for a sinusoidal signal, and N(c) = 4 for a
eclipsing binary light curve. Moreover, if a set of measurements is
given by a line y = ax + b (a �= 0), the number of negative correlation
measurements will be N−

(min) = 1 for s = 2, N−
(min) = 2 for s = 3, and

N−
(min) = 3 for s = 4. Therefore, N−

(min), and hence the maximum
PK(s) value, varies with s. These considerations can be expressed
as following N−

(min) = N(c) × (s − 1). Lastly, the general relation for

PK
(s)
(max) can be written as

PK
(s)
(max) = 1 − N−

(min)

N
= 1 − N(c) × (s − 1)

N
. (7)

A similar analytic equation for PL(s) index is not possible since it
depends on the amplitude. On the other hand, two features of PK(s)

can be seen in equation (7). First, PK
(s)
(max) values computed for two

time-series having the same N−
(min) value but a different number of

observations differ (see Fig. 1). Second, all frequencies close to ftrue

produce PK (s) 	 PK
(s)
(max), since N >> N−

(min). These frequencies
include the sub-harmonic frequencies of ftrue. Indeed, ftrue will always
return the PK

(s)
(max) value for time-series models or signals without

noise (see blue lines on Fig. 2). However, when noise is included,
statistical fluctuations can lead to the wrong identification of ftrue.
This means that the PK(s) and consequently PL(s) parameters can
return a main frequency that implies a smooth phase diagram but is
different to ftrue.
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Figure 1. The PK
(s)
(max) as function of number of measurements for a

sinusoidal function (see equation 7) for s = 2 (solid black line), s = 3
(solid red line), and s = 4 (solid blue line) where N−

(min) = 2 was adopted.

The values of N(c) and therefore N−
(min) depend on the arrangement

of observations around the even mean and are intrinsically related
to the signal-to-noise ratio (S/N) as discussed above (see Fig. 2).
For instance, the detached eclipsing binary (EA) signal looks like
noise if only the measurements outside of the eclipse are observed,
for example, if the phase fraction of the eclipses is � 2

N
. This

means that the detection of the correct period using the PK(s) and
PL(s) parameters will be extremely dependent on the number of
observations at the eclipses. On the other hand, the RR Lyr (RR)
objects show a small dispersion around the even mean even if the
S/N is a bit low. To summarize, the PK(s) power will have a peak
for all frequencies which produce smooth phase diagrams, with the
largest spectrum peak corresponding to the smallest N−

(min). On the

other hand, the PK
(s)
(max) results in discrete values and so is more

degenerate for a small number of observations.
Fig. 2 shows the phase diagrams for a Cepheid (Ceph), an RR Lyrae

(RR), an RR Lyrae having the Blazhko effect (RRblz), eclipsing
binaries (EA and EB), a rotational variable (Rot), and two white noise
light curves generated by uniform and normal distributions (for more
details see Section 3). One thousand equally spaced phased mea-
surements where used to plot each model and to compute the PK(s)

shown in each panel (PK(Model)). For these examples, we normalize
amplitude to allow us to separate out the effects of the morphology
of the light curves on these indices. As already mentioned, PK(s) is
not directly dependent on the amplitude of the signal, as opposed
to PL(s), which is. As expected, the model crosses the even-mean
twice (N−

(min) = 2) for the Ceph, RR, RRblz, and Rot models giving

PK
(2)
(max) = 0.998. For the eclipsing binaries, the model crosses the

even mean four times, implying a PK
(2)
(max) = 0.996. Actually, the

EA and EB models have PK
(2)
(max) = 0.994 due to fluctuations of

the model about the even median. Uniform and normal distributions
(i.e. time-series mimicking noisy data) PK

(2)
(max) = γ + 21−s where

γ is a positive number related with the maximum fluctuation of
positive correlations. However, the PK

(s)
(max) = 1 only happens when

δi = 0 ∀ i values, that is, noiseless non-variation.
The PL(s) values for the data are biased by the amplitude, that

is, signals having different amplitudes will provide distinct values.
Consider the index values computed using the data: the EA and EB
signals have the smallest PL(2) values among all model tested due
to their morphology, since the majority of measurements are near
to the even mean and hence the peak power is reduced. The Ceph,
RR, and RRblz signals usually have large amplitudes and hence

Figure 2. Phase diagrams for pulsating stars (RR, Ceph, and RRblz),
eclipsing binaries (type EA and EB), rotational variable stars (Rot), and white
noise from uniform and normal distributions. The data and model are shown
as black dots and solid lines, respectively. The even-mean value considering
those measurements within three times the absolute even-median deviation is
shown as orange dashed lines. Moreover, the PK(2) and PL(2) values for the
real and modelled data are displayed at the bottom of each diagram.

large PL(2) values. The highest PL(2) values are found for RR and
Ceph signatures since there are a larger fraction of measurements
distant from the even-mean than for the other models. The PL(2)

value for RR stars is about half that found for the Rot model. This is
a property related to the morphology of the phase diagram. Finally,
the smallest values are found for pure-noise signals (normal and
uniform distributions).
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An examination of equation (7) can be used to estimate the
theoretical expected value for any signal type. However, in real
data, where noise is included, the PK

(s)
(max) values are smaller (see

Fig. 2) since the values decrease with the increase in the dispersion
of individual measurements about the even-\ mean. Therefore, Rot
and EA models have the largest reduction in PK

(s)
(max). In contrast,

the smallest reduction of PK
(s)
(max) is found for Ceph and RR models

since the dispersion about even mean is small. A detailed analysis of
the weight of S/N on PK(s) for different signal types is performed in
the Section 3.

2.3 The optimal s value

The optimal s value (s(opt)) will be found when the difference between
PK(s) computed on the phase diagram folded using ftrue (PK

(s)
(max))

and those ones found at other frequencies PK
(s)
(fother)

is maximum.
This difference can be written as,

PK
(s)
(ftrue) − PK

(s)
(fother)

	 PK
(s)
(max) − PK

(s)
(noise) (8)

where we consider that PK
(s)
(fother)

	 PK (s)
noise and compare the expres-

sions (7) and (8)

N+
ftrue

N
	 1 − N(c) × (

s(opt) − 1
)

N
(9)

and hence,

s(opt) 	 1 +
(
N − N+

ftrue

)
N(c)

, (10)

where N+
ftrue

is the number of positive correlations for f = ftrue.
Equation (10) provides the s value where the maximum difference
between the PK

(s)
(ftrue) and PK

(s)
(fother)

is found.
For high-S/N light curves, that is, N − N+

ftrue
→ N(c), s(opt) = 2

since for this case N+
ftrue

→ N . Indeed, the N+
ftrue

is directly propor-
tional to the S/N, while N(c) is the opposite, that is, the increase
of S/N increases N+

ftrue
and decreases N(c). Therefore, for low-S/N

N+
ftrue

→ N/2 and hence s(opt) ≈ 1 + N/2 × N(c). However, at the
limit, N(c) also tends to N/2 and hence s(opt) ≈ 2. To summarize, the
choice of s value depends on the signal type and S/N, since N(c) and
N+

ftrue
vary with both parameters. For instance, a large value of N(c) is

expected for EA binary systems whatever its S/N and hence a small s
value is recommended to increase the range of signal type detected.
The choice of s value must take all of these properties into account.

3 NUMERICAL TESTS AND SIMULATIONS

Artificial variable stars were simulated using a similar set of models
as those produced in Paper III (for more details, see Ferreira
Lopes et al. 2018). Seven simulated time-series were created that
mimic rotational variables (Y(Rot)), detached eclipsing binaries (Y(EA)),
eclipsing binaries (Y(EB)), pulsating stars (Y(Ceph), Y(RR), Y(RRblz)),
and white noise (Y(Uniform) and Y(Normal)). The Ceph, RR, RRblz,
EA, and Rot models were based on the CoRoT light curves
CoRoT-211626074, CoRoT-101370131, CoRoT-100689962, CoRoT-
102738809, and CoRoT-110843734, respectively. The variability
types were previously identified by Debosscher et al. (2007), Poretti
et al. (2015), Paparó et al. (2009), Chadid et al. (2010), Maciel,
Osorio & De Medeiros (2011), Carone et al. (2012), and De Medeiros
et al. (2013), while the variability period and amplitudes were
reviewed by Ferreira Lopes et al. (2018). The models of variable
stars were found using harmonic fits having 12, 12, 12, 24, 24,
and 6 coefficients for Ceph, RR, RRblz, EA, EB, and Rot variable

stars, respectively. The white noise simulations given by a normal
distribution were used to determine the FFN. The Ceph, RR, RRblz,
EA, and Rot models were used to realistically test and illustrate our
approach.

The efficiency rate of any frequency finding method depends
mainly on the signal type, the S/N ratio, and the number of
observations. Therefore, three sets of simulations having 20, 60, and
100 measurements for an interval of S/N (see equation 11) ranging
from ∼1 to ∼20 were created for the models found in Fig. 2. In
particular, 20 per cent of measurements were randomly selected at
the eclipses for EA and EB simulations. This is required because
these simulations look like noise if no measurement is found at the
eclipses, and is justified because any light curves that are processed
with period-finding algorithms in NITSA must already have been
selected as variables, so eclipsing binaries with few measurements
must have a relatively high fraction at the eclipses. There will be
a selection effect against binaries with narrow eclipses, since the
probability of them being detected as variables is reduced. Values
sorted randomly from a normal distribution were used to add noise
to the simulations and the error bars were set to be the differences
between the model and simulated data. The error bars are not
relevant to compute the PK(s) values. However, they are necessary to
determine PL(s) parameters. The S/N was computed as,

S/N = A

2.96 × eMAD(δy)
(11)

where A is the signal amplitude, δy are the residuals (observed minus
its predicted measurement), and eMAD is the even median of the
absolute deviations from the even-median. The eMAD is a slight
modification of median absolute deviation from median (MAD).
The 2.96 × eMAD(δy) is equivalent to two times the standard
deviation but it is a robust estimate of the standard deviation when
outliers are considered (e.g. Hoaglin, Mosteller & Tukey 1983). For
completeness, other estimates of the S/N where the model is not
required were tested (e.g. Rimoldini 2013). According to our tests,
the latter usually overestimates the S/N compared with those values
computed by equation (11).

3.1 Fractional fluctuation of noise

The FFN for signal detection is related to the level for which the figure
of merit of the methods (e.g. power, in the classical periodogram)
is not expected to exceed more than a fraction of times due to
stochastic variation (or noise) on the input light curve. Indeed, the
FFN mimics a false alarm probability since it sets the power value
above which a certain percentage of spurious signals are found.
Indeed, there are many difficulties of estimating FAPs in realistic
astronomical time-series (for more detail, see Koen 1990; Sulis,
Mary & Bigot 2017; VanderPlas 2018) and hence FFN only means
the lower empirical limit to find a reliable signal. The expected value
of the flux-independent index, K

(s)
fi , for white noise is analytical

defined as Ps = 2s − 1 (see Section 2). The same equation can be
applied to PK(s) since K

(s)
fi and PK(s) are based on the same concept.

Therefore, the FFN(s) can be defined as,

FFN (s) = Ps + � =
√

α

N
+ β (12)

where α and β are real positive numbers. β must be larger than Ps

since it is a threshold for white noise. 107 Monte Carlo simulations us-
ing a normal distribution were run with the number of measurements
ranging from 10 to 1000 in order to compute the free parameters for
equation (12). Fig. 3 shows the mean values of PK(s) above which
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4128 C. E. Ferreira Lopes et al.

Figure 3. PK(s) as a function of the number of measurements for orders 2, 3,
and 4. The results for significance levels of 99 per cent (orange), 95 per cent
(grey), and 90 per cent (blue) are in different colours. The dashed lines
indicate the FFN(s) for models while the solid, red line shows the expected
value for the noise (see Section 3.1).

Table 1. The constraints to FFNs models (see equation 12) which delimit 99
per cent, 95 per cent, and 90 per cent of white noise, respectively.

99 per cent 95 per cent 90 per cent
Order α β α β α β

FFN(2) 0.9459 0.5107 0.5350 0.5177 0.4377 0.5112
FFN(3) 1.2321 0.2541 0.6150 0.2696 0.4784 0.2625
FFN(4) 1.0937 0.1316 0.4511 0.1482 0.2380 0.1482

1 per cent (orange dots), 5 per cent (grey dots), and 10 per cent (blue
dots) of simulated data are found. The FFN(s) models are shown as
dashed lines and the free parameters of the models are presented in
Table 1. The minimum values of FFN(s) are found when N → ∞.
For this condition the FFN(s) estimates have values above the noise
(see Table 1). The scatter found for small numbers of measurements
(typically less than 20) is related to the discrete values allowed for
PK(s) (for more details, see Ferreira Lopes & Cross 2016). The results
shown in Fig. 3 are quite similar for all uncorrelated zero-mean noise
distributions.

The FFN(s) can be used as a reference to remove unreliable
signals that lead to random phase variations in any survey, whatever
the wavelength observed. This property is related to the weak
dependence of PK(s) on amplitude, error bars, or outliers according
to Ferreira Lopes & Cross (2017). Indeed, spurious periods that lead
to smooth phase diagrams will break this constraint. On the other
hand, the period that produces the main peak in the periodogram
can be related with a phase diagram which has gaps for common
methods like PDM and LSG. This happens because the function

used to measure the periodogram can interpret this arrangement of
measurements as a smooth phase diagram. This result can lead to the
highest periodogram peak when the signal is not well defined and/or
when a small number of epochs are available. On the other hand,
the periods that lead to folded phase diagrams with gaps may not
have many correlated measurements and hence they will not leads to
peaks in the PK(s) and PL(s) periodogram. Indeed, the main peak of
the periodogram will be the arrangement of measurements that leads
to the largest correlation value.

3.2 Dependency on the signal-to-noise ratio

The Ceph, RR, RRblz, EA, EB, and Rot models (for more details,
see Section 3) were used to analyse the PK(s) values for the main
variability signal. PK(s) values were computed using 107 Monte Carlo
simulations for S/N ranging from 1 to 20. The simulations were
created for s = 2, 3, and 4. The results for s = 3 and 4 show
lower efficiency than those found for s = 2 for lower S/N values, as
expected from Section 2.3. The results for larger orders, s, provide
better results than those found for s = 2, for high S/N time-series,
having large number of measurements (see Section 2.3). Therefore,
we only show the results for s = 2. Fig. 4 shows the PK(s) as function
of S/N for s = 2. The results are displayed using box plots instead of
error bars because PK(s) results in discrete values and its distribution
is not symmetric. A box plot range that includes 90 per cent of results
was used, and the red line sets the middle of the distribution. The
main results can be summarized as follows:

(i) The maximum value achieved by PK(s) is limited by the number
of measurements for all S/N. Moreover, this effect is also observed for
higher s orders in agreement with the values estimated by equation (7)
(see Fig. 1).

(ii) PK(s) tends to PK
(s)
(max) for simulations using 20, 60, and 100

measurements and high S/N for Ceph, RR, RRblz, EB, and Rot
models. The same trend having a slower growth is also observed
for EA. Indeed, PK(s) values are improved for EA models when
the number of measurements, mainly at the eclipses, is increased.
About ∼ 50 per cent of PK(s) values for S/N =3 are found below
the expected noise value when the time-series has 20 measurements.
This number is reduced to less than ∼ 10 per cent when more than
60 measurements are available.

(iii) The dispersion of PK(s) values decreases with the number of
measurements for all values of S/N. The effect is less noticeable for
EA models. This happens because the simulated time-series looks
like noise when most of the measurements are sorted outside of
eclipses.

(iv) About ∼ 95 per cent of PK(2) values are above P2 values for
the whole range of S/N for Ceph, RR, RRblz, EB, and Rot simulations
using 60 and 100 measurements. This is also true for the simulations
containing 20 measurements for S/N > 2. On the other hand, the
EA model shows PK(2) values around the noise level for the whole
range of S/N on the simulations containing 20 measurements. The
reason for this behaviour is the same as explained in the last item.

(v) The time-series like EA and EB models have the lowest PK(s)

values among all models analysed.

In summary, the probability of finding PK (s) values above the
noise is dependent on the number of measurements, S/N, and
signal type, as expected. For all simulations, when the number of
measurements is increased, we can measure reliable periods at lower
S/N. The simulations for higher s order are quite similar to those
found for s = 2.
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Figure 4. PK(s) as a function of S/N for order 2 (s = 2) for the variable stars models shown in the Fig. 2. Each column displays the results for 20 (left-hand
column of panels), 60 (middle panels), and 100 (right-hand columns of panels) measurements while each row presents the results for different variable types:
Cepheid, RRlyrae, RRblz, EA, EB, and Rot models. Box plots containing 90 per cent of the data are shown. The even-median values for each box are marked
by a solid red line, while the dashed blue lines show the expected value for the noise.

4 T E S T I N G TH E M E T H O D O N R E A L DATA

A robust numerical simulation is complex because it usually does
not reproduce the correlated nature of the noise intrinsic to the data
as well as variations related to the instrumentation. Many constraints
are required to provide realistic simulations such as a wide range of
amplitudes, error bars, outliers, and correlated noise, to name a few.
However, the simulation of the PK(s) power is facilitated because: (i)
the amplitude can be a free parameter since PK(s) is only weakly
dependent on it; (ii) the even mean values (see equation 2) are
computed using those observations within three times the absolute
even-median deviation, which effectively reduces the outliers weight
on zero-point estimation (yw , see equation 2) but all epochs are
considered to compute the powers; and (iii) the correlated nature of
successive measurements is reduced since they are computed using

phase diagrams. On the other hand, a robust simulation for PL(s)

covering all important aspects of it is difficult because PL(s) has a
strong dependence on amplitude, outliers, and error bars. Therefore,
the discussions in the previous sections only address the constraints
on PK(s).

The PK(s) and PL(s) methods can be tested on real data using
existing variable stars catalogues. The WFCAMCAL variable stars
catalogue (WVSC1) having 280 stars (Ferreira Lopes et al. 2015a)
and the Catalina Survey Periodic Variable star catalogue (CVSC1)
having ∼47000 sources (Drake et al. 2014) were used to estimate the
efficiency rate of our new period finding methods. The WVSC1 was
created from the analysis of the WFCAM Calibration 08B release
(WFCAMCAL08B, Hodgkin et al. 2009; Cross et al. 2009). More
information about the design, the data reduction, the layout, and
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4130 C. E. Ferreira Lopes et al.

Figure 5. Cumulative histograms of S/N, PK2, and number of measurements for WVSC1 and CVSC1 stars. The results are shown for Z (brown), Y (grey), J
(red), H (green), K (blue), V (yellow), as well as the panchromatic (black) data.

about variability analysis of this data base are described in detail
in Hambly et al. (2008), Cross et al. (2009), and Ferreira Lopes
et al. (2015a). The WFCAMCAL data base is a useful data set to
test single and panchromatic wavelength period finding methods. To
summarize, WFCAM data base contains panchromatic data (ZYJHK
wavebands) that were observed to calibrate the UKIDSS surveys
(Lawrence et al. 2007). A sequence of filters JHK or ZYJHK were
observed within a few minutes during each visit the fields. These
sequences were repeated in a semiregular way that leads to an uneven
sampling having large seasonal gaps. On the other hand, the CVSC1
has a huge amount of objects, with seventeen variable stars types that
were visually inspected by the authors.

In order to perform a straightforward comparison between the
results, the S/N of WVSC1 and CVSC1 stars were also estimated
using equation (11). Also, the number of measurements and the PK(2)

values were computed. Fig. 5 shows the cumulative histograms of
S/N and number of measurements for WVSC1 and CVSC1 stars.
The results for each waveband as well as for panchromatic data
are shown by different colours. About ∼ 90 per cent of WVSC1
single waveband has S/N > ∼3 while this number decreases to
∼ 70 per cent for the CVSC1 and panchromatic data. The WVSC1
single waveband data have a number of measurements ranging from
∼30 to ∼150, while CVSC1 stars have a number from ∼100 to
∼300. When the panchromatic data are considered, the number of
measurements increases considerably by a factor ∼5 compared with
WVSC1 single waveband. However, the S/N are smaller than those
found for single wavebands. In general, the S/N for panchromatic
wavebands are smaller than those found for CVSC1 stars.

Understanding the peculiarities of the sample tested is crucial
when analysing the efficiency rate of our approach. Therefore, we
summarize how the period searches were performed to find periods
for WVSC1 and CVSC1 stars. Ferreira Lopes et al. (2015a) selected
about 6651 targets to which four period finding methods were
applied. Next, the 10 best ranked periods in each of the four methods
were selected. For each period, a light-curve model was created
using harmonics fits. Finally, the very best period was chosen as
that with the smallest χ2 with respect to all ranked periods; on the
other hand, the period search for ∼154 000 CVSC1 sources was made
using the LS method. Next, the main periods were analysed using

the Adaptive Fourier Decomposition method (Torrealba et al. 2015)
in order to determine the main variability period and reduce the
number of sources to be visually inspected (112 000). Additionally,
the periods of a large number of the sources were improved and
corrected by the authors. Many of the variability periods of WVSC1
and CVSC1 were related to subharmonics of their true period and the
final results were set after visual inspection.

The following sections discuss the WVSC1 and CVSC1 variable
stars from the viewpoint of PK(s) and PL(s) parameters. The peri-
odogram, the efficiency rate, and the peculiarities of our approach are
analysed. For that, we perform the period search using the SLM, LSG,
and PDM methods besides the panchromatic and flux-independent
methods. A frequency range of (2/Tmax)d−1 to 30d−1 was explored
and we evenly sampled this frequency range with a frequency step of

1
300×Tmax

, where Tmax is the total time span. The frequency sampling
constrains a maximum phase shift of 0.1 that allows us to detect the
large majority of signal types (for more detail see Paper III). A quick
visual inspection was performed on some of WVSC1 and CVSC1 to
test our analysis in the next sections. The main goal of this work
is to propose a new period finding method instead of checking the
reliability of the periods in the WVSC1 and CVSC1 catalogues.

4.1 Periodogram and efficiency rate

The PK(2) and PL(2) periodograms were computed for the WVSC1 and
CVSC1 stars. For better visualization, the differential panchromatic
light curve (see Fig. 6) was obtained by subtracting the even median
from the magnitudes in each light curve. As a result, light curves with
zero mean are produced. The PK(s) and PL(s) parameters do not use
any kind of transformation to combine measurements at different
wavelengths. However, a better way to combine multiwavelength
data is an open question.

Fig. 6 shows the phase diagrams and their normalized periodogram
for some WVSC1 stars. The phase diagrams (left-hand panels) show
the folded panchromatic data, while the periodogram considering
single and panchromatic wavebands are displayed in the centre and
right-hand panels respectively. The periodogram for a large part of
CVSC1 stars are quite similar to those found for panchromatic data,
that is, periodogram for sources having more measurements and

MNRAS 501, 4123–4135 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/3/4123/6047184 by Instituto N
acional de Pesquisas Espaciais user on 24 February 2021



New insights into time-series analysis IV 4131

Figure 6. Phase diagrams of panchromatic data (left-hand panels) and the PK(s) and PL(s) normalized periodograms for Z and ZYJHK wavebands (right-hand
panels). The cross symbols in the phase diagrams set the measurement of Z (brown), Y (grey), J (green), H (red), and K (blue) wavebands. The dashed green
lines indicate the published variability periods, while the full yellow lines indicate the periods related with the largest peak in the periodogram.
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smaller S/N than for the WVSC1 single waveband. The main results
can be summarized as follows:

(i) PK(2) has more than one peak related with the maximum power
for WVSC-239 and WVSC-263, that is, this means that PK

(s)
(max)

indicates more than one viable period. The number of such periods
gives the ‘degeneracy’ of a particular arrangement of measurements
in the phase diagram. This number increases as the number of
measurements decreases (see equation 7).

(ii) The main period found by PK(2) is not the same as that
obtained by PL(2). This means that the maximum number of positive
correlations is not the same as the maximum correlation power.
Besides, the ‘degeneracy’ of periods found for PK(2) is not observed
in the PL(2) periodogram.

(iii) PK(2) and PL(2) periodograms for the Z waveband show a
scatter around the expected noise level. Additionally, the WVSC-054
and WVSC-209 periodograms show an increase in PK(2) for long
periods. Indeed, this behaviour is observed in all wavebands and
hence it is an attribute of the proposed method.

(iv) PK(2) for panchromatic data increases with periods up to a
maximum of around 5 d and then levels off and drops slightly for
longer periods for almost all sources. These sources have variability
periods of less than 5 d. This behaviour is not found for WVSC-209
and WVSC-102. Indeed, WVSC-102 has a variability period of 589 d
and hence the trend observed is different to the others. On the other
hand, WVSC-209 has a low-S/N signal. Therefore, this trend is related
with the variability period and S/N. Indeed, the phase diagram keeps
part of the correlation information when the light curve is folded
using a test period bigger than the true variability period.

(v) PK(2) and PL(2) periodograms have peaks at the previous
measured (true) variability periods of WVSC1 stars. However, the
period related with the largest peak is not always the true variability
period.

(vi) The panchromatic data have lower S/N. Indeed, no clear signal
can be observed in WVSC-263. This could mean that the signal shape
is very different from one band to another, or a signal or seasonal
variation is present in a single waveband, or the variability period is
wrong, to name the most likely possibilities.

To summarize, the PK(s) and PL(s) periodograms indicate the
arrangement of measurements in the phase diagram that maximize
the correlation signal and power, respectively. Therefore, the PK(s)

and PL(s) parameters can be used to identify the periods that lead to
a smooth phase diagram from the viewpoint of correlation strength.

4.2 Accuracy

The accuracy was measured considering the main signal(s) detected
by the PK(2) and PL(2) methods. Indeed, the largest power of PK(s)

periodogram can be related to more than one period. Therefore, all
periods related to the largest periodogram peak were considered to
measure the accuracy, that is, the recovery fraction of variability
periods. Two parameters to measure the accuracy were considered:
E(M) – when the main period is detected; E(MH) – when the main
variability period (PLit), measured in Ferreira Lopes et al. (2015a),
or its subharmonic, or overtone is found. Indeed, the processing time
of each method was not taken into account in this discussion. A new
approach to reduce the running time necessary to perform period
searches will be addressed in a forthcoming paper in this series.
Those signals found within ±1 per cent of the variability period
were considered as detected. Table 2 shows the results for individual
wavebands as well as for the panchromatic data. The main results
can be summarized as:

(i) The accuracy is lower than 100 per cent for all methods and
data tested. However, new estimates of Catalina variability periods
have been produced recently (e.g. Papageorgiou et al. 2018) and the
CVSC1 combines the results found by PDM, LSG, and STR methods
for all wavebands to determine the best variability period. Therefore,
the accuracy for both data sets is larger than that displayed in Table 2
if these results are taken into consideration.

(ii) PK(2) has the highest efficiency rate considering only the main
period (E(M)) for the Z, Y, J, H, and K wavebands. The efficiency rate
of PK(2) for the V waveband and panchromatic data is similar to that
found for the SLM and PL(2) methods. E(M) decreases form Z to K
wavebands because the first ones have larger S/N.

(iii) The E(MH) values for Z, Y, J, H, and K for PK(2) and SLM
are quite similar and they have the highest accuracy for the Z and Y
wavebands. On the other hand, PDM has the highest E(MH) values for
H, ZYJHK, and V wavebands. Indeed, the E(MH) values for PDM and
LSG are quite similar for the V waveband.

(iv) The E(M) for PL(2) is always smaller than that found for PK(2)

except for V band where it is 4 per cent lower for PK(2).
(v) The highest E(M) is found for PK(2) method while the highest

E(MH) is found for the PDM method. The accuracy found for LSG
method is quite similar to that found for PDM method for V
waveband, while in other wavebands, the PDM method has twice
the accuracy. Indeed, this difference is reduced by a few per cent
if a higher relative error is considered. Indeed, the PLit found by
the ZYJHK wavebands are refined using the SLM method (for more
details, see Ferreira Lopes et al. 2015a). On the other hand, the
V waveband results were computed using LS and refined using
reduced χ2 (for more details, see Drake et al. 2014). Therefore,
the accuracy can be biased by the approach used to improve the
variability period estimation. Indeed, a deep discussion about how
to determine accurately the variability period and its error is found
in the third paper of this series (for more detail,s see Ferreira Lopes
et al. 2018).

(vi) The panchromatic data do not significantly increase the
efficiency rate for any method. The panchromatic data provides a
larger number of measurements but a smaller S/N compared with
those found for single wavebands (see Fig. 5).

(vii) The efficiency rate of PK(2), PL(2), and SLM is strongly
decreased for V and panchromatic data. This is related with the
smaller S/N of these data. It indicates a strong dependence of the
PK(2) and PL(2) methods on the S/N.

The periods detected by PDM are also detected by the LSG
method. Moreover, almost all periods detected using the PK, PL,
and STR methods are also found by the LSG method. The periods
detected using LSG or PDM which are not found by other meth-
ods belong mainly to a few types: W UMa (∼ 61 per cent), EA
(∼ 13 per cent), RR Lyr on first overtone (∼ 10 per cent), and RR
Lyr on several modes (∼ 2 per cent), measured using the ratio of the
number of missed sources to the total number of sources missed.
Indeed, the largest miss rate is found for the multiperiodic RR Lyr-
type when the relative number of sources are considered, that is,
the fraction of missed sources divided by the number of sources
detected for each variability type. As expected, the multiperiodic
periods have the largest miss rate since the current approach is not
designed to select these periods. From quick visual inspection on
phased data of the periods found by methods other than PDM and
LSG the following concerns have been raised: the period found is a
higher harmonic or overtone of that found in the literature; the phase
diagram is not always smooth; the period found sometimes produces
a smooth phase diagram but the period found is different or has a
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Table 2. Accuracy considering two approaches; the main period (E(M)) and the main period plus its subharmonic and overtone. We consider that there is
agreement if the relative difference is smaller than 1 per cent.

Z Y J H K ZYJHK V
E(M) E(MH) E(M) E(MH) E(M) E(MH) E(M) E(MH) E(M) E(MH) E(M) E(MH) E(M) E(MH)

PK(2) 0.30 0.55 0.30 0.59 0.30 0.60 0.29 0.59 0.23 0.50 0.19 0.40 0.24 0.51
PL(2) 0.20 0.46 0.22 0.49 0.22 0.50 0.28 0.57 0.17 0.44 0.14 0.27 0.25 0.53
LSG 0.10 0.27 0.09 0.29 0.09 0.34 0.09 0.26 0.11 0.31 0.09 0.32 0.20 0.87
PDM 0.17 0.50 0.26 0.59 0.25 0.62 0.27 0.62 0.22 0.57 0.26 0.69 0.22 0.88
SLM 0.30 0.55 0.30 0.59 0.29 0.63 0.28 0.59 0.22 0.50 0.15 0.32 0.25 0.49

relative difference larger than 1 per cent. This means that STR, PK,
and PL methods are more likely to return spurious periods or higher
harmonics of the main variability period since the majority of the
sources missed belong to these groups.

On the other hand, about ∼ 8 per cent of the Catalina periods do
not correspond to our periods. We also made a quick visual inspection
of the phased data using the periods found by Catalina and those
found by us. As a result, we verify that the large majority (more
that ∼ 70 per cent) of phase diagrams of this subsample produce
smoother phase diagrams using our periods than those found using
Catalina periods (see the third row of panels of Fig. 7). Indeed, this
assumes that the true or main variability period should be that one
which produces the smoothest phase diagram.

In summary, the PK(s) and PL(s) methods can be used as a new
tool to find periodic signals. In fact, they are more efficient than all
methods tested if high S/N data are considered. As a rule, the new
approach can be used in the same fashion as other period finding
methods. One should be aware that, the lower efficiency rate for
small S/N, probable bias for longer periods, and the multiple periods
given by PK(s)must be taken into account.

4.3 Cautionary notes on period searching

The main variability period is assumed to be that one which provides
the smoothest phase diagram. Indeed, the periodicity of many signals
in oversampled data like CoRoT and Kepler light curves (e.g. Paz-
Chinchón et al. 2015; Ferreira Lopes et al. 2015b) can be easily
identified by looking directly at the light curve. This may not include
low S/N multiperiodic signals. On the other hand, the signals in
undersampled data can only can be identified by eye using phase
diagrams. In both cases, the phase diagram should be smooth at
the main variability period. However, more than one period can
lead to smooth phase diagrams. In fact, due to the nature of the
analysis of big data sets it is highly likely that some observational
biases exist or that pathological cases arise where the combination
of random or correlated errors, nearby sources, mimic expected
variations. Therefore, additional information must be put together
to solve this puzzle. For instance, photometric colours, amplitudes,
nearby saturated sources, crowded sky regions, distances, and other
information are crucial to confirm the period reliably.

All configurations that produce smooth phase diagrams return the
peaks in the PK(s) method. The current approach was designed to find
the main variability period from the viewpoint of correlation. Indeed,
the harmonic periods also provide peaks in the periodogram since
the number of consecutive measurements that cross the even mean
is only a small increase (see equation 7), often smaller than random
crosses due to noise. Actually, other signals not related to the main
variability period also can lead to smooth phase diagrams and hence
they also have peaks close to PK

(s)
(max). Moreover, incorrect periods

also can be obtained if all configurations that lead to smoother phase
diagrams are not addressed.

The PK(s) method is a useful tool to find all periods that lead
to smooth phase diagrams. Other methods, for example, the string
length, or PDM method, or the fitting of truncated Fourier series
also lead to smooth phase diagrams. For completeness, the most
prominent peaks should be examined to evaluate the best candidate
for the main variability signal. The best period can be assumed to be
the one that leads to the smallest χ2 of a model computed from the
phase diagram (e.g. Drake et al. 2014; Ferreira Lopes et al. 2015a;
Torrealba et al. 2015). Fig. 7 shows five cases from CVSC1 where
topics discussed here are a hindrance. In each row of panels are
presented some examples as follows:

(i) First row of panels: stars where the PK(2) method does not
identify the correct variability period. In these cases, an examination
of the phase diagrams for the other peaks in PK(2) may help to find
the correct value.

(ii) Second row of panels: stars for which a smooth phase diagram
is not clearly defined by either CVSCI or the PK(2) method. Therefore,
both the PLit and PPK estimate may be wrong. Indeed, Drake et al.
(2014) use other criteria to define the period reliably. However, this
analysis is hindered if other information besides of light curve are
not available.

(iii) Third row of panels: both the PLit and PPK estimates produce
smooth phase diagrams. However, they are not subharmonics of one
another. This means that both periods are subharmonic of the main
variability period or one of them is incorrect. Indeed, these systems
also might be a complex systems with multiple periodicities, for
example, an eclipsing binary where one of component is a pulsating
star. These examples illustrate that the criterion of having a smooth
phase diagram per se is not enough to define the variability period.

(iv) Fourth row of panels: the variability period found by PK(2)

method is an overtone (greater than 2) of the variability period.
Therefore, it indicates that the efficiency rate discussed in Section 4.2
is better if higher subharmonics are considered.

(v) Last row of panels: stars where PLit is wrong or inaccurate. PPK

returns smoother phase diagrams than those using PLit. Indeed, the
PK(s) period for CSS J110010.1 + 165359 appears to be a subhar-
monic of the true variability period. The wrong period determination
can result in a misclassification since many of parameters used for
classification are derived from the variability period.

The WVSC1 stars have similar features to those discussed using
CVSC1 stars. A quick visual inspection was performed to support our
remarks. A few stars look like those found on the last row of panels
shown in Fig. 7 in both samples. Indeed, the main goal of this work
is to provide a new way to find and analyse variability time-series.
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Figure 7. Phase diagrams for CVSC1 stars considering the published variability period (PLit) and that one found by PK(2) method (PPK). The star name is
shown on the top of each diagram, while the periods are in the bottom left corners.
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5 C O N C L U S I O N S

Two new ways to search variability periods are proposed. These
methods are not derived from any previous period finding method.
The PK(s) method is characterized by presenting ordinates in the
range 0–1, does not have a strong dependence on the amplitude of
the signal, and also has an analytical equation to determine the FFN.
Moreover, the weight of outliers is reduced since the method only
considers the signs of the correlation signal. These are unique features
that allow us to determine a universal false alarm probability, that
is, the cut-off values that can be applied to any time-series, where
it mainly depends on the S/N of the light curve. In contrast, the
PL(s) method uses the correlation values and provides complementary
information about the variability period.

The PK(s) and PL(s) methods were compared with the LSG, PDM,
and SLM methods from real and simulated data having single- and
multiwavelength data. As result, the efficiency rate found for LSG
and PDM methods are better than all other methods for sub-samples
having low (<3) or high (>3) S/N data. On the other hand, PK(s)

and PL(s) efficiency is similar to that found for SLM method for
data in both constraints. As expected, the accuracy of all methods is
increased for data having high S/N.

In fact, the statistics considered in this paper are unlikely to be
useful for data with multiple periodicities. The current methods were
recent applied in the entire data of VVV survey (Ferreira Lopes et al.
2020) from where the periods estimated from five period finding
method can be found. This paper is the second of this series about
period search methods. Our next paper will provide our summary of
recommendation to reduce running time and improve the periodicity
search on big data sets.

DATA AND MATERIALS

The data underlying this article are available in the Catalina
repository1 and in the WFCAM Science Archive – WSA.2 A friendly
version of the data also can be shared on reasonable request to the
corresponding author.
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