
1. Introduction
Electron fluxes in the outer radiation belt are essentially governed by the dynamics of trapped particle 
motion in the inner magnetosphere, wherein the energetic particles execute complex periodic motions. 
Each motion is associated with one adiabatic invariant, namely, gyromotion around the magnetic field line, 
which is described as the first adiabatic invariant, bounce motion along the magnetic field line being iden-
tified as the second adiabatic invariant, and drift motion around the Earth as the third adiabatic invariant 
(Northrop & Teller, 1960; Roederer, 1970). Early spacecraft data revealed that phase space densities across 
the belts can vary significantly with time (see Roederer 1968), in which the violation of one or more adi-
abatic invariants can be required. This violation can occur due to the presence of several electrodynamic 
and magnetohydrodynamic processes in the magnetosphere, causing variations in the outer radiation belt 
electron flux, such as dropouts (e.g., Alves et al., 2017; Turner et al. 2012; Turner & Ukhorskiy, 2019), and 
enhancements (e.g., Baker et al., 1994, 2014; Baker & Kanekal, 2008; Boyd et al., 2018; Da Silva et al., 2019). 
Usually, it is hard to distinguish the dominant process leading to outer belt electron flux variability when 
several of them are acting at the same time.
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The different electrodynamic and magnetohydrodynamic processes in the magnetosphere that are able to 
violate the adiabatic invariants can take place when solar wind structures reach the Earth, like High-Speed 
solar wind Streams (HSS) and Interplanetary Coronal Mass Ejections (ICME; Tsurutani & Lakhina, 2014). 
The variability of the outer radiation belt electron flux is driven by a complex chain of processes extending 
from the solar wind into the inner magnetosphere (e.g., Kalliokoski et al., 2020; Nagai, 1988; Paulikas & 
Blake, 1979). Solar wind structures such as ICME are the ones usually with the strongest intensity since its 
origin in the solar corona (Burlaga et al., 1981). Consequently, the deposit of energy in the magnetosphere 
will occur with greater intensity, compared to other solar wind structures and quiet periods (Ponomarev 
et al., 2006). The energy delivered to the magnetosphere is considerably larger during ICME occurrences, 
which may cause strong compression of the magnetopause. Among the consequences of this impact, it is 
possible to detect the outer radiation belt flux decrease as abrupt dropouts.

Due to the ICME's impingement on the geomagnetic field, electromagnetic waves over a wide range of 
frequencies can be excited in the magnetosphere, both during and after the ICME occurrence, such as ul-
tralow frequency (ULF) waves (a few milihertz up to about 5 Hz) (e.g., Kivelson & Southwood, 1985; Mann 
et al.,  1999), electromagnetic ion cyclotron (EMIC) waves (0.2 up to 5 Hz) (e.g., Horne, 2002; Medeiros 
et al., 2019; Thorne, 2010), and whistler mode chorus waves (hundreds of Hz up to about 10 kHz) (e.g., 
Alves et  al.,  2016; Gurnett & O'Brien,  1964). Dynamic mechanisms related to wave-particle interaction 
processes, such as radial diffusion and pitch angle scattering can occur during the aforementioned wave 
activities, and they can be, in turn, associated with either losses or replenishments of the outer radiation 
belt electron flux.

The ICMEs' signatures are distinguished from the ambient solar wind by specific plasma, compositional, 
and magnetic field signatures (e.g., Zurbuchen & Richardson, 2006), on average. When an ICME is suffi-
ciently faster than the preceding solar wind, a shock wave develops ahead of the ICME, generating a tur-
bulent region between the shock and the ICME, called the sheath region (See E. Kilpua et al., 2017). The 
sheath region is a turbulent and compressed structures with large amplitude magnetic field variations and 
high dynamic pressure. The ICME with Sheath region drives practically all intense geomagnetic storms (E. 
Kilpua et al., 2017), which enable effective magnetic reconnection at the magnetopause when their magnet-
ic field has a strong southward component.

Although the literature shows that the most important drivers of geomagnetic activity are the ICMEs and 
sheath regions, the approach extensively studied by the scientific community is the geomagnetic storm 
response in the outer radiation belt flux variability (Reeves et al., 2013; Turner et al., 2013, 2014), without 
considering the driver. A recent statistical study showed that the turbulent sheath regions preceding ICMEs 
can cause significant changes in the outer radiation belt electron fluxes during both nongeoeffective and 
dramatic geoeffective sheaths (Kalliokoski et al., 2020). This specific statistical study motivates the scientific 
community to investigate in detail the response of the outer radiation belt flux to sheath regions of ICMEs 
during both weak and moderate geomagnetic storms. Therefore, this work analyzes the outer radiation belt 
response to the sheath region of an ICME during a sudden commencement storm, classified as a moderate 
geomagnetic storm, in which the dynamic mechanisms are identified and quantified during the influence 
of the turbulent ICME sheath region.

This work is divided into the following sections: instrumentation (Section 2); description of the observa-
tions employed (Section 3); the dynamical processes likely responsible for the electron flux variability in 
the outer radiation belt (Section 4); discussion about Section 4 through pitch angle distribution and time 
evolution of phase space density radial profiles (Section 5), and finally the conclusions (Section 6).

2. Instrumentation
Satellite and ground-based data are employed for the development of this study. The radiation belt electron 
flux is studied using data from both the Relativistic Electron-Proton Telescope (Baker et al., 2013) and Mag-
netic Electron Ion Spectrometer (Blake et al., 2013) instruments onboard Van Allen Probes A and B (Mauk 
et al., 2012), and also from the Space Weather Suite/Space Environment Monitor/High Energy Particle De-
tector (SWS/SEM/HEPD) data onboard FengYun series spacecraft 3C (S. Y. Zhang et al., 2014). Van Allen 
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Probes' mission had a highly elliptical geocentric orbit with a perigee altitude of 618 km, and an apogee 
altitude of 30,414 km. Their inclination was 10.2°, and the orbit period was 537.1 min. FengYun 3C is the 
third flight unit of the FY-3 satellite series. Their orbit is sun-synchronous (Low Earth orbit), quasipolar, 
constant equatorial time, and altitude 831 km.

Solar wind parameters at the L1 Lagrangian point are acquired from the Magnetic Field Experiment (MAG) 
instrument with a temporal resolution of 5 min, and the Solar Wind Electron, Proton, and Alpha Monitor 
(SWEPAM) instrument with a temporal resolution of 5  min. Both detectors are onboard the Advanced 
Composition Explorer (ACE, Stone et al., 1998) spacecraft. Solar wind parameters are also acquired from 
three-dimensional plasma and energetic particle investigation (3DP) instrument onboard the WIND space-
craft (Ogilvie et al., 1995).

ULF, EMIC, and chorus wave power spectral densities were calculated using data from the Electric and 
Magnetic Field Instrument Suite and Integrated Science (EMFISIS, Kletzing et al., 2013) instrument on-
board the Van Allen Probes. ULF wave power spectral densities were also calculated from the Interna-
tional Monitor for Auroral Geomagnetic Effects (IMAGE) ground magnetometer network (Viljanen & 
Hakkinen, 1997).

3. Overview of the Interplanetary Conditions and the Overall Response of the 
Magnetosphere
The Earth's magnetosphere is embedded in the Solar Atmosphere. In this way, changes in the structure of 
the solar wind trigger a wide range of disturbances in the magnetosphere collectively known as magnetic 
storms (Gonzalez et al., 1994). This section, describes the conditions of the solar wind, and the overall re-
sponse of the magnetosphere from July 19, 2016 12:00 Universal Time (UT) to July 23, 2016 00:00 UT.

Figure 1 presents an overview of the interplanetary conditions measured by instrumentation onboard the 
ACE spacecraft, orbiting the Lagrangian point L1. In Figures 1a and 1b, we present the solar wind speed 
and density, respectively. The blue lines are 5-min averages from ACE spacecraft. As solar wind density at 
a level-2 calibration for the ACE spacecraft is not available, we also show for reference 1-h averages from 
Wind spacecraft (red lines). Panel (1c) presents the total magnetic field (Bt) and the z component of the in-
terplanetary magnetic field (IMF) in the Geocentric solar magnetospheric (GSM) coordinate system. Panel 
(1d) displays the x and y components of the IMF, also in GSM.

The dashed line S1 indicates the occurrence of shock in the interplanetary medium on July 19, 2016 23:05 
UT. The boundary of the ICME can be estimated based on plasma and magnetic field observations (e.g., 
Burlaga et al., 1981; Cane & Richardson, 2003; Kilpua et al., 2013). The dashed lines MC1 and MC2 show 
the boundaries of the following interplanetary magnetic cloud observed on July 20, 2016 07:00 UT and July 
22, 2016 15:00 UT, respectively.

It is possible to observe just behind the shock S1, in the ICME sheath region, an intense north-south IMF Bz 
component reaching approximately −26 nT that seems to be a consequence of the draping of the magnetic 
field around the ejecta. The solar wind velocity reaches a maximum of approximately 600 km/s near the 
leading edge of the magnetic cloud (MC1). A density peak of approximately 50 #/cm3 was observed just 
behind the shock S1.

We present in Figure  1e the symmetric geomagnetic index (Sym-H), which is a proxy of the global re-
sponse of the near equatorial current systems. An impulse, denoted by the vertical dotted bar marked as 
SC occurred on July 19, 2016 at 23:50 UT. The travel time from the ACE spacecraft to the magnetopause 
was approximately 45 min. The increase in the Sym-H index reached a maximum of 52 nT was caused by 
the enhancement of the Chapman-Ferraro current system due to the rise of the solar wind pressure (not 
shown). The Sym-H Index remained at this level until 01:05 UT on July 20, 2016. The ring current build-up 
caused a monotonic decrease of the Sym-H index. This decrease is the signature of the main phase of the 
magnetic storm that lasted until 07:00 UT on July 20, 2016 when the Sym-H index reached its lowest value 
of approximately −32 nT.
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We present in panels (a) and (b) of Figure 2 the electron flux at 2.10 MeV energy as a function of L-shell 
(vertical axis) and time (horizontal axis) for Van Allen Probes A and B, respectively. The L-shell is more fit 
to be used with flux data as fluxes are not conserved (Reeves et al., 2013). To improve the visualization of 
the fluxes, we employ a triangulation-based linear interpolation with a uniform grid with a time interval 
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Figure 1. (a) solar wind speed (Vp); (b) density (Np); (c) Interplanetary Magnetic Field (IMF) intensity (Bt) and Bz component; (d) IMF Bx (blue) and By (red) 
components; (e) symmetric geomagnetic index (Sym-H) obtained from the OMNI database. The Vp (blue line), Np (blue line), Bt, Bz, Bx and By are obtained 
by ACE satellite in the Lagrangian L1 point. The Vp (red line), Np (red line) are obtained by the WIND satellite in the Lagrangian L1 point. The dashed line 
S1 indicates the occurrence of the interplanetary shock on July 19, 2016 at 23:05 UT. The dashed lines MC1 and MC2 show the boundaries of the following 
interplanetary magnetic cloud observed on July 20, 2016 at 07:00 UT and July 22, 2016 at 15:00 UT, respectively. The dashed line SC indicates the sudden 
commencement impulse occurred on July 19, 2016 at 23:50 UT. The MS indicates the ICME's magnetosheath. ICME, interplanetary counterpart of a solar 
coronal mass ejection.
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Figure 2. (a and b) Electron flux at 2.10 MeV energy as a function of L-shell (vertical axis) and time (horizontal axis) for the Van Allen Probe A and B, 
respectively; (c) solar wind dynamic pressure calculated from ACE satellite data; (d) magnetopause stand-off distance by the Shue et al., (1998) model; (e) 
symmetric geomagnetic index (Sym-H) obtained from the OMNI database. The dashed line SC indicates the sudden commencement impulse occurred on July 
19, 2016 at 23:50 UT, in which the S1 time was shifted to coincide to the SC time. The dashed line MC1 shows the following interplanetary magnetic cloud 
boundary, in which MC1 time was shifted to the time-lagged one (07:45 UT). TH-D represents the spacecraft THEMIS-D crossing magnetopause at ∼23:50 UT 
(x-GSE ∼8RE).
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of 72 min and a parameter L interval of 0.1, a method widely used by the scientific community of this area 
(e.g., Alves et al., 2016; Da Silva et al., 2019; Souza et al., 2017). Figures 2c and 2d display the solar wind 
dynamic pressure and the magnetopause standoff distance, respectively. The magnetopause standoff dis-
tance, which is a crucial parameter for understanding the dropout of high-energy particles quasitrapped in 
the outer radiation belt, was estimated by employing the empirical model of Shue et al. (1998). We indicate 
in Figures 2c and 2d the period when the estimates of the solar wind dynamic pressure and the standoff 
distance are not reliable. The period not reliable is due to the limitation of the empirical model regarding 
the interplanetary medium data, in which the proton density is approximately zero.

Here we focus on the region between the shock and the leading edge of the magnetic cloud, the turbulent 
sheath region. For reference, the dashed lines (Figure 2) show the sudden commencement impulse (SC) 
and the time-lagged leading edge of the magnetic cloud. A visual inspection in Figure 2 suggests that the 
high-energy electron flux (2.1 MeV energy channel) decreased significantly, by three orders of magnitude 
from L-shell = 4.7 to 6 and by two orders of magnitude below L-shell = 4.7, during the passage of the tur-
bulent ICME magnetosheath region (see Figure S2—non interpolated version).

Figure 3 presents the electron fluxes at 0.65–1.2, 1.2–2, and 2–5.7 MeV energies as a function of L-shell (ver-
tical axis) and time (horizontal axis) observed by the low-orbit FengYun 3C spacecraft (the orbital effects 
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Figure 3. Electron fluxes at 0.65–1.2 MeV (upper panel), 1.2–2 MeV (middle) and 2–5.7 MeV (bottom) energies as a function of L-shell (vertical axis) and time 
(horizontal axis) observed by low-orbit FengYun 3C spacecraft. The color scale specifies the logarithmic values of electron fluxes (counts/cm2/s/sr).



Journal of Geophysical Research: Space Physics

are present in Figure 3). Although the Van Allen Probes (equatorial orbit) and FengYun series spacecraft 3C 
(Sunsyncronous orbit) make different orbits, visual inspection in Figure 3 also suggests that the high-energy 
electron flux (>1 MeV) dropout occurred during the time when the Earth's magnetosphere was under the 
influence of the turbulent ICME's sheath region, presenting a significant flux decrease above L-shell = 4.7 
and below L-shell = 4.6.

High-energy electron flux (1.8, 2.10, 2.6, and 3.4 MeV) available from the Van Allen Probe B (Figure 4), ob-
tained at L* = 5.2 and 4.6 provide details regarding the flux dropout that occurred under the influence of the 
turbulent ICME's sheath region. At L* = 5.2 the flux dropout was observed after 21:56 UT, while at L* = 4.6 
the flux dropout was observed after 22:45 UT.

4. Dynamic Mechanisms Associated with the High-Energy Electron Flux 
Dropout
The conditions of the solar wind during the analyzed period are favorable to compress the dayside magne-
topause and excite magnetospheric waves in a wide range of frequencies. As noted by Xiang et al., (2017), 
during the fast dropouts, the radiation belt electrons can be lost either by transport across the magnetopause 
into the interplanetary space or by precipitation into the atmosphere. The scientific community presently 
accepts, that both magnetopause shadowing combined with outward radial diffusion, and the particle pre-
cipitations into the atmosphere due to wave-induced pitch angle scattering can contribute to radiation belt 
dropouts (e.g., X. Li et al., 1997; Morley et al., 2010; Tu et al., 2010; D. L. Turner et al., 2012).

The recent statistical evidence and series of new observational results from in-depth case studies revised by 
Turner and Ukhorskiy (2019) show that the community is still somewhat divided on exactly how and why 
losses in some outer belt dropout events are dominated by magnetopause incursions and enhanced outer 
radial transport while others are dominated by losses from interactions with EMIC waves. Therefore, it is 
important to investigate in detail both magnetopause shadowing and the wave-particle interaction mecha-
nisms. The following sections address this point.

4.1. Magnetopause Shadowing

Magnetopause shadowing occurs when higher solar wind dynamic pressure compresses the magnetopause 
(Herrera et al., 2016; Wilken et al., 1982). The compression normally is associated with solar wind struc-
tures, which are able to perturb and inject energy on the Earth's magnetosphere (Gonzalez et al., 1994). 
We use the empirical model of Shue et  al.  (1998) and the Space Weather Modeling Framework/Block-
Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme (SWMF/BATS-R-US) global MHD model (De Zeeuw 
et al., 2004; Gombosi, et al., 2004; Tóth et al., 2012; Tóth et al., 2005; Powell et al., 1999; Ridley and Liemohn 
et al., 2002; Wolf et al., 1977) developed at the University of Michigan in the Center for Space Environment 
Modeling (CSEM) to estimate the magnitude of the compression.

Figure 5d presents the empirical model results. A strong dayside magnetopause compression can be seen at 
∼23:05 UT on July 19th, with the modeled stand-off distance reaching ∼6 RE, suggesting that the magneto-
pause reached the outskirts of the outer radiation belt. Global magnetic field compression generally induces 
an impulsive electric field in the azimuthal direction, which can play an essential role in accelerating and 
transporting radiation belt electrons (D. Zhang et al., 2018). This compression is observed almost simulta-
neously with the ICME's shock signatures, namely, an abrupt increase in the solar wind velocity (Figure 5b) 
and IMF strength and an abrupt decrease in the north-south component Bz (Figure 5c). Also, the magneto-
pause compression occurred nearly simultaneously with the sudden ∼ three orders of magnitude decrease 
of the relativistic electron flux in L* = 5.2 (Figure 5a). These results suggest that the magnetopause shadow-
ing mechanism contributed to the loss of high-energy (relativistic) electrons.

A global MHD simulation of the Earth's magnetosphere interaction with the ICME on July 19, 2016, has 
been performed to confirm again the likelihood of magnetopause shadowing occurrence. The simulation 
setup is similar to that done by Alves et al. (2016) and Da Silva et al. (2019). The whole simulation domain 
is set with the following dimensions −224 ≤ x ≤ 32 RE, and −64 ≤ y, z ≤ 64 RE, where x, y, and z are in the 
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Figure 4. (a and b) electron fluxes at 1.8, 2.10, 2.6, and 3.4 MeV energies at a fixed L* = 5.2 location. (c and d) same as panels (a and b) but at a fixed L* = 4.6 
location. The electron fluxes are obtained by the REPT instrument on board of the Van Allen Probes (B)
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Geocentric Solar Magnetospheric (GSM) coordinate system. SWMF/BATS-R-US employs a Cartesian grid 
whose spatial resolution increases by factors of two as one approaches the Earth. Far downstream in the 
solar wind region the coarsest grid resolution used in our setup is 4 RE, whereas the finest grid resolution 
of 0.25 RE is used in a box surrounding Earth with dimensions −7 ≤ x,y ≤ 7 RE, and −3 ≤ z ≤ 3 RE. The 
inner boundary of SWMF/BATS-R-US is delimited by a sphere with 2.5 RE radius centered at Earth. Over 
this surface, the uniform temperature and plasma density number are specified at 25,000 K and at 28 cm−3, 
respectively.
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Figure 5. (a) electron fluxes at 1.8, 2.10, 2.6, and 3.4 MeV energies at a fixed L* = 5.2 location; (b) solar wind speed (Vp); (c) Interplanetary Magnetic Field 
(IMF) intensity (Bt) and Bz component of the IMF; (d) Magnetopause stand-off distance by the Shue et al. (1998) model. The electron fluxes are obtained by 
the REPT instrument on board of the Van Allen Probes A and (b) The Vp, Bt, Bz, Bx, and By are obtained by the ACE satellite in the Lagrangian L1 point. TH-D 
represents the spacecraft THEMIS-D crossing magnetopause at ∼23:50 UT (x-GSE ∼8RE).
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Figure 6 presents the global MHD simulation results, considering the time-lagged by 45 min. Panels (a), (c) 
and (e) showing instantaneous images, at the X-Z GSM meridional plane, of the modeled magnetospheric 
current density magnitude values (in units of μA/m2) extracted from SWMF/BATS-R-US which has been 
coupled to the Rice Convection Model (De Zeeuw et al., 2004; Toffoleto et al., 2003). The domain of the RCM 
model is centered at Earth and extends up to about 7 RE–8 RE in the geocentric distance. The RCM model 
provides a self-consistent description of the electrodynamics of the coupled inner magnetosphere-iono-
sphere system (see De Zeeuw et al., 2004, for an in-depth view of the RCM coupling with the global mag-
netosphere module of SWMF/BATS-R-US). Briefly, RCM calculates a more accurate inner magnetosphere 
thermal plasma pressure by including the transport of the inner plasma sheet and ring current particles via 
gradient/curvature drifts. Such plasma pressure is then mapped back to the global magnetosphere module 
of SWMF/BATS-R- US. Panels (b), (d), and (f) show equatorial (X-Y GSM) cuts of the modeled magneto-
sphere at time instants showed on top of the panels (a), (c), and (e), respectively. Such time instants refer 
to simulated magnetosphere parameters taken (a, b) prior to the ICME arrival, (c, d) at the ICME arrival, 
and (e, f) during the maximum magnetosphere compression. Color-coded lines in panels (b), (d), and (f) 
indicate magnetic field strength isocontours ranging from 100 (blue) up to 300 nT (green). They nearly cor-
respond to drift paths of equatorially mirroring (i.e., nearly 90° equatorial pitch angle) electrons (see, e.g., 
Sibeck et al., 1987, for details). The black line in panels (b), (d), and (f) represents the equatorial, dayside 
magnetopause boundary which has been obtained by taking the maximum along radial profiles of the cur-
rent density magnitude. During the maximum magnetosphere compression (panel e and f), the modeled 
magnetopause boundary intercepts the 100 nT isocontour line, which would correspond to the drift paths 
of equatorially mirroring electrons near geosynchronous orbit. Thus, such electrons would be lost to the 
adjacent magnetosheath region upon interception with the magnetopause (see also Medeiros et al., 2019), 
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Figure 6. Global (MHD) simulation of the Earth's magnetosphere on the arrival of the ICME on July 19, 2016, considering the time-lagged by 45 min. Panels 
(a, c, and e) show instantaneous images of magnetospheric current density magn itude values in units of μA/m2 (color's scale) extracted from the SWMF/
BATS-R-US coupled with the RCM model at the X-Z GSM meridional plane. Panels (b, d, and f) show equatorial (X-Y GSM) cuts of the modeled magnetosphere 
at these instants of time. Color-coded lines in panels (b, d, and f) indicate magnetic field strength isocontours for different intensities (100 up to 300 nT). The 
black line on those panels represents the magnetopause stand-off distance in the dayside equatorial region. Panels (a–f) are referent to the global (MHD) 
simulation of the Earth's magnetosphere at 23:43:30 UT (prior to the ICME arrival), 23:47:00 UT (at the ICME arrival), and 23:50:00 UT (during the maximum 
magnetosphere compression), respectively. ICME, interplanetary counterpart of a solar coronal mass ejection.
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therefore strongly suggesting that magnetopause shadowing significantly contributed to remove relativistic 
electrons from the outermost region of the outer Van Allen belt. We thus identify magnetopause shadowing 
as the first dynamical mechanism contributing to the high-energy electron loss during the turbulent ICME's 
sheath region.

4.2. Wave-Particle Interactions

Generally, during magnetically active periods, a number of electromagnetic waves can be excited and sub-
sequently interact with radiation belt electrons, resulting in violation of one, two or even all three adia-
batic invariants. ULF waves can violate the third adiabatic invariant and cause radial diffusion (Da Silva 
et al., 2019; Perry et al., 2005). Chorus waves and EMIC waves can violate the first and second adiabatic in-
variants, leading to both diffusive transport and advective transport to the loss cone (Horne & Thorne, 1998; 
Shprits, 2009). It is important to highlight that this case study occurred under the influence of an ICME and 
its turbulent sheath region. Even though this solar wind structure did not cause a strong geomagnetic storm, 
it may have excited electromagnetic waves in the magnetosphere. Therefore, first we need to detect the wave 
activities, and after that, we should carefully investigate the possibility of occurrence of the wave-particle 
interactions during the electron flux variability in the outer Van Allen radiation belt.

4.2.1. Outward Radial Diffusion by ULF Waves

ULF waves are generally excited at the magnetopause boundary in response to velocity shears (Claudepierre 
et al., 2008; Elkington et al., 2006) or to solar wind pressure fluctuations (Claudepierre et al., 2009; Ukhor-
skiy et al., 2006). They may also be excited internal to the magnetosphere by natural instabilities of the 
magnetospheric plasma (Elkington, 2006; Hasegawa, 1969; Southwood et al. 1969; Takahashi et al., 1985). 
Their properties can be obtained from both observational data and global MHD simulations, which in turn 
can be used to study the dynamic response of the outer belt electron flux to the solar wind variability (Fei 
et al., 2006; Kress et al., 2007).

ULF wave characteristics are used to evaluate the radial diffusion mechanism (Brautigam et al., 2005; Da 
Silva et  al.,  2019; Huang et  al.,  2010; Ozeke et  al.,  2014; Ukhorskiy et  al.,  2005). Observational ground-
based data from the IMAGE network are used here to calculate ULF power spectral density (PSD) in the 
1–8.33 mHz, that is., within the Pc5 frequency range, from July 16th to July 23rd, as shown in Figure 7 
(upper panel). Notice that enhanced ULF wave activity started approximately at 23:00 UT on the 19th of 
July, which is almost coincident with the shock associated with the ICME (23:05 UT, see Figure 1). The ULF 
wave activity was as intense as 104 nT2/Hz and sustained from 23:00 UT on the 19th until 04:00 UT on the 
20th. The wave activities encompass most of the outer radiation belt at L-shell ≥3 during this specific time 
interval, which occurs under the influence of the ICME's sheath. The persistence, as seen by ground-based 
observatories, in ULF wave activity continued until approximately 18:00 UT on the 20th, meaning that the 
ULF waves were present in both ICME's sheath and magnetic cloud regions, and ULF waves were also ob-
served after the magnetic cloud. Although the ULF waves have been detected outside the ICME's sheath, 
the electron flux dropout is not observed in this period.

Although the Van Allen Probe A location for this event to be near apogee between 00:00 and 01:30 UT, we 
would like a global vision of the ULF wave activities just after the strong ICME's sheath compression in the 
magnetopause. Therefore, we decided to use a global MHD model to simulate the ULF PSD in the inner 
magnetosphere at different MLT when the Earth's magnetosphere was influenced by the ICME and its 
turbulent sheath. Magnetohydrodynamic model is an essential tool to study space plasmas. It is extensively 
used by the scientific community to study the large-scale interaction between different solar wind structures 
and Earth's magnetosphere. It also has been widely used to address the low-frequency waves generation (in 
a few to tens of mHz range) like the ULF waves in the inner magnetosphere, specifically in the radiation 
belts (e.g., Alves et al., 2016; Claudepierre et al., 2010, 2008; Da Silva et al., 2019; Jauer et al., 2019; Komar 
et al., 2017; Souza et al., 2017). Da Silva et al. (2019) and Souza et al. (2017) used the SWMF/BATS-R-US 
model to study the ULF waves in the equatorial and nightside magnetosphere during the influence of the 
Alfvénic fluctuations associated with HSS. Claudepierre et al. (2008) used the Lyon-Fedder-Mobarry (LFM) 
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model to study the production of ULF waves in the magnetosphere to the HSS. Both the results showed that 
the magnetopause motions in the flank regions are consistent with the Kelvin-Helmholtz (KH) instability, 
which drove the ULF waves in the inner magnetosphere.

Figure 8 shows the ULF PSD as a function of frequency and L-shell at noon, that is, at 12:00 MLT, simulated 
by the SWMF/BATS-R-US/RCM model on July 20, 2016 (00:30 to 01:00) (Figure 8-top), July 20, 2016 (01:00 
to 01:30) (Figure 8-middle) and (01:30 to 02:00) (Figure 8-bottom). The 12:00 MLT analyses are discussed 
here to highlight the outward radial diffusion mechanism driven by ULF waves during the electron flux 
dropout, which coincides with the magnetopause shadowing mechanism. The parallel magnetic compo-
nent (B||), azimuthal electric component (Eφ), and radial electric component (Er) are shown in the first, 
second, and third columns, respectively. The dipole inclination is not considered in this MHD simulation, 
and the radial distance analyses here are less than geosynchronous orbit. It means the magnetic equator is 
localized at the Z_GSM = 0, and the simulated magnetic field can be approximately considered as a purely 
dipolar field. Thereby, L* and L-shell are practically equivalent, as viewed in Figure 8.

ULF polarization modes were simulated for 00:00 MLT, 06:00 MLT, 12:00 MLT, and 18:00 MLT, to deter-
mine which ULF waves were significant in each MLT. Figure 8 presents the PSD at 12:00 MLT because 
it is important to verify the generation of the ULF associated with the arrival of the ICME at the Earth's 
magnetosphere. Compressional modes (B||) just after the ICME arrival (Figure 8a) have a strong signature 
concentrated between L-shell = 3–5. During the next subsequent period (Figure 8b), B|| presents signatures 
between L-shell = 3–6, followed (Figure 8c) by concentration between L-shell = 4–5. Poloidal mode (Eφ) 
and toroidal mode (Er) electric fields were significant during all periods analyzed here. The simulation re-
sults show that the ULF waves may have contributed to the decrease in electron flux observed in the outer 
radiation belt, considering that the power of B|| and Eφ were considerably strong during all the time when 
the Earth's magnetosphere has been under the influence of the ICME's sheath.
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Figure 7. (top) IMAGE network's ULF power spectral density in the 1–8.33 mHz frequency range (color's scale) as a function of L-shell and time from July 
16 to 22, 2016. (bottom) radial diffusion coefficient DLL in units of day-1 (color's scale) as a function of L-shell (vertical axis) and time (horizontal axis from July 
16–22, 2016), estimated from the Kp index data from the OMNI database with the help of the analytic expression derived by Ozeke et al. (2014). ULF, ultralow 
frequency.
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The ULF wave-particle interactions through drift resonances violate the third adiabatic invariant and en-
hance the outward radial diffusion. Radial diffusion can be estimated by an analytical expression derived 
by Ozeke et al. (2014). Then, the influence of the ULF waves in the high-energy electron flux dropout can 
be analyzed. Figure 7 shows (top) the ground-based ULF PSD in the 1–8.33 mHz frequency range, and 
(bottom) the radial diffusion coefficient DLL from July 16–22, 2016. DLL, which is the sum of E B

LL LLD D  is 
estimated from the Kp index (OMNI database) according to Equations 8 and 9 of Da Silva et al. (2019), and 
intensifies when the shock reaches the Earth's magnetosphere. This intensity remains for approximately 4 h 
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Figure 8. The ULF power spectral density (color's scale) as a function of frequency (vertical axis) and L-shell (horizontal axis) at 12:00 MLT simulated by the 
SWMF/BATS-R-US/RCM model on July 20, 2016 (a) from 00:30 to 01:00 UT, (b) from 01:00 to 01:30 UT, and (c) from 01:30 to 02:00 UT. The parallel magnetic 
component (B||), azimuthal electric field component (Eφ) and radial electric field component (Er) are showed in the first, second and third column, respectively. 
ULF, ultralow frequency.
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during the influence of the ICME's sheath, which is concomitant with the beginning of ULF wave activities 
recorded in ground-based data. After that, DLL presents a slight decrease that persists for approximately 4 h, 
and the second decrease during the influence of the ICME's magnetic cloud, which is coincident with ULF 
PSD calculated from ground-based data. Thereby, it is suggested that the outward radial diffusion mech-
anism contributed to the high-energy electron flux dropout observed during the influence of the ICME's 
sheath, since the DLL is considerably significant in this region.

The identification of the dominant dynamic mechanism during the relativistic electron flux dropout is not 
straightforward since several mechanisms are detected at the same time. Therefore, it is important to inves-
tigate the influence of some magnetospheric waves during losses of radiation belt electrons via wave-par-
ticle interactions, in which we also include the investigations referent to the whistler-mode chorus and 
EMIC waves (see, Medeiros et al., 2019; Ni et al., 2013, 2015, 2017; Summers et al., 2007; Shprits, Kellerman, 
et al., 2017; Thorne, 2010; Turner et al., 2014) as discussed in the next subsections.

4.2.2. Pitch Angle Scattering—EMIC Waves

EMIC waves are generated in the magnetosphere from anisotropic (T⊥/Tǁ>1) distributions of ring current 
ion populations (∼10–100  keV) (Cornwall,  1965; Horne & Thorne,  1993; Jordanova et  al.,  2012; Kennel 
& Petschek, 1966). EMIC waves are discrete electromagnetic emissions, which usually are separated into 
hydrogen (H+), helium (He+), and oxygen (O+) bands by their corresponding ion gyrofrequencies. Magne-
tospheric compressions, as observed in this case study, can lead to anisotropic distributions for ring current 
ions, which generate EMIC waves on the dayside magnetosphere (see e.g., Denton et al., 2002; McCollough 
et al., 2010).

EMIC waves can have an important role in the loss of relativistic electrons to the upper atmosphere (see 
e.g., Medeiros et al., 2019; Sandanger et al., 2007; Thorne & Kennel, 1971; Usanova et al., 2014; X. J. Zhang 
et al., 2016). The ion composition is decisive to define how the wave-particle interaction can occur. EMIC 
waves appear mostly left-hand polarized, in the Pc1-2 ULF frequency range, that is, from 0.1 to 5 Hz, and 
the wave amplitude varies from 0.1 nT to 10s of nT (Halford et al., 2016). The local ion composition has 
been assumed (see e.g., Summers & Thorne, 2003 and Medeiros et al., 2019) here to define the wave-particle 
interaction effectiveness as well as wave amplitude, time duration, frequency band, and particle energy. 
The minimum resonant energy can be inferred by the Equation 1 (see e.g., Kang et al., 2016; Summers & 
Thorne, 2003):
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v is the electron velocity parallel to the field line, me is the electron rest mass, ω and k are the angular fre-
quency and wave number of EMIC waves, respectively, Ωe is the electron gyrofrequency, c is the speed of 
light, n is the resonance harmonic number (assumed to be 1), and finally s is set to be −1 for the left-hand 
mode.
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The literature (Halford et al., 2010; Meredith et al., 2014; Usanova et al., 2012) shows that the occurrence 
rate of EMIC waves can increase during geomagnetic storms, as well during nonstorm periods. The ICME 
detected by the ACE satellite (Figures 1c–1f) for this event exhibits a strong shock and a strong spike in 
the north-south component Bz, while the SYM-H index that reached +50 nT confirms the storm sudden 
commencement and the AE index that reached 1,000 nT confirms substorm activity, so it is important to 
investigate EMIC wave activities. Van Allen Probe B measurements were not propitious at the beginning of 
the ICME's sheath region, because the satellite was at perigee. Therefore, we use Van Allen Probe A meas-
urements to analyze EMIC waves from approximately 01:00 UT on July 20, in which the EMIC activities 
are persistent for approximately 3 h (under the influence of the ICME's sheath). Figure 9 shows the EMIC 
PSD as a function of frequency and time (top) and the magnetic field perturbation δB, on July 20, 2016, from 
01:00 UT to 04:00 UT (middle). T1, T2, and T3 are three specific periods of EMIC activities (bottom). EMIC 
PSD (Figure 9, top) shows a considerable time interval containing EMIC wave signatures in the Hydrogen 
band starting at 01:55 UT. The beginning of the EMIC wave activity almost coincides with the high-energy 
electron flux dropout in L* <4.7 (See Figure 4d). The T1 box shows a well-defined packet of EMIC waves 
with strong (a few nT) amplitudes in a short time period, which is used here to analyze their potential to 
interact with the high-energy electrons under the influence of the ICME's sheath.
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Figure 9. The EMIC power spectral density (color's scale) as a function of frequency (vertical axis) and time (horizontal axis) (top) and the magnetic 
field perturbation (middle) on July 20, 2016, at 1–4 UT. T1, T2, and T3 are three specific periods of EMIC wave activities (bottom). Data from the EMFISIS 
instrument on board Van Allen Probe A were used. EMFISIS, Electric and Magnetic Field Instrument Suite and Integrated Science; EMIC, electromagnetic ion 
cyclotron.
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EMIC wave-particle interactions through the gyroresonance violate the first and second adiabatic invariant 
and lead to pitch angle scattering and diffusive transport (e.g., Kennel & Petschek, 1966). The minimum 
resonance energy is calculated here using the most intense EMIC waves. In this context, we assumed the 
plasma composition to be H+ = 75%, He+ = 20% and O+ = 5% (see e.g., Medeiros et al., 2019; Summers 
& Thorne, 2003). We also consider cold plasma dispersion and take the frequency where the most intense 
wave packet occurs is 0.8 ΩH+, where ΩH+ is the proton gyrofrequency. The spacecraft potential provides 
the electron number density and the minimum resonance energy calculated is 1.2 MeV, which indicates 
that the EMIC wave packets observed in this event can resonantly interact with electrons ≥1.2 MeV. Con-
sequently, EMIC waves may have scattered electrons to the loss cone (see e.g., Medeiros et al., 2019) during 
the high-energy electron flux dropout in the outer radiation belt under the influence of the ICME's sheath.

4.2.3. Pitch Angle Scattering—Chorus Waves

Whistler-mode chorus waves are intense natural plasma waves that occur in the Earth's magnetosphere 
(Helliwell, 1969; Storey, 1953). Their signatures are usually observed in the region outside the plasmapause 
(Burton & Holzer, 1974; Lauben et al., 2002; LeDocq et al., 1998). Chorus waves typically occur over a wide 
frequency range from hundreds of Hz up to about 10 kHz (Gurnett & O'Brien, 1964) generated by the elec-
tron cyclotron instability near the equator (Agapitov et al., 2012, 2013; LeDocq et al., 1998) in association 
with injected plasma sheet electrons (Kennel & Petschek, 1966). Chorus wave activity intensifies during en-
hanced substorm activity and also during the recovery phase of geomagnetic storms (Agapitov et al., 2015, 
2018; Meredith et al., 2001).

Chorus waves generally occur in two distinct bands above and below half of the electron gyrofrequency 
(Tsurutani & Smith, 1974), and they are termed as upper and lower band and chorus, respectively. Wave-par-
ticle interactions mediated by lower band (LB) chorus play an important role in the loss of radiation belt 
electrons (Bortnik & Thorne, 2007; Horne & Thorne, 1998; Thorne et al., 2010), in which the scattering 
processes can occur and the energetic particles can be lost to the atmosphere as diffuse auroral precipitation 
(W. Li et al., 2014; Ni et al., 2008; Nishimura et al., 2010, 2011; Thorne et al., 2010). The scattering processes 
here are investigated analytically under the quasilinear approximation (Mourenas et al., 2014) during the 
flux decrease observed at L* ≤4.6 (∼01:55:30 UT to 02:00:00 UT on July 20, 2016) (See Figure 4d).

Figure 10 shows the magnetic field dynamic power spectrum from the EMFISIS instruments aboard Van 
Allen Probes A (panel a) and B (panel c) measured at L* ∼4–5 and magnetic latitude λ∼2° for a 6-h peri-
od (00:00 UT to 06:00 UT on July 20, 2016), under the influence of the ICME's sheath. Panels (b) and (d) 
present the whistler wave normal angle for this time interval. The structure of chorus waves is presented in 
panels (e) which shows the wave form and (f) the dynamic spectrum. The structured rising tone elements 
are observed in the frequency range from 0.2 fce to 0.4 fce. The average wave amplitudes are about 200 pT 
(with maximal values up to 1–2 nT). The observed wave amplitude lead to significant pitch-angle scatter-
ing with characteristic scales of about an hour for 1 MeV electrons. Taking into account the obliqueness 
of the observed waves the scattering time scales for these amplitudes can be 2–3 times less, that is, about 
tens of minutes leading to significant decrease of the core population of the outer radiation belt (Artemyev 
et al., 2013, 2016). The high geomagnetic activity level (the AE index exceeded 800 nT) can lead to decrease 
of ωpe/Ωce ratio especially in the night sector of the outer radiation belt providing additional efficiency to 
wave-particle interactions (O. Agapitov et al., 2019). Therefore, we can suggest that pitch angle scattering by 
chorus wave-particle interaction may have contributed to high-energy electron flux dropout observed in the 
outer radiation belt under the influence of the ICME's sheath from 01:55 UT on 20 July.

During the chorus wave activities during the ICME's sheath there are also some local enhancements of flux 
at L*∼3.5–4.5 due to the observed field-aligned waves (Figure S1). Therefore, it is worth noting that some-
times chorus wave-particle interaction also may have contributed to the acceleration of particles during the 
turbulent ICME's sheath region, especially when field-aligned chorus waves are observed. Additionally, 
although the chorus wave activities also occur during the magnetic cloud region (Figure S1), and the pre-
dominance of the obliqueness of this observed waves persist several hours, the high-energy electron flux 
dropout during the magnetic cloud is subtle, that is, the flux decreases by less than one order of magnitude.
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Similar results during the influence of the ICME's sheath region are obtained making use of the interac-
tion of relativistic electrons with several chorus subelements (e.g., Alves et al., 2016). Figure 11 presents in 
panel (a) magnetic field spectrograms for EMFISIS measured at L*∼5 and magnetic latitude of ∼0.5° for a 
5-h period going from 00:00 UT to 05:00 UT on July 20, 2016, and in panel (b) a zoom-in of the data shown 
in panel (a) with a 4.5 min period going from 01:55:30 UT to 02:00:00 UT also on July 20, 2016. The arrows 
in Figure 11b indicate when burst mode data were available for the selected period. The selected chorus 
subelement (Figure 11c) presented the wave magnetic field amplitude Bmax ≥ 0.5 nT. Panel (c) shows the 
high-resolution magnetic field measurements correspond to a period of higher magnetic spectral density as 
shown in panel (b).

Several chorus subelements were identified during the intervals where burst mode data were available, and 
an example of a chorus subelement is shown in Figure 11c. For three of such subelements taken at times 
01:57 UT, 01:58 UT and 01:59 UT indicated by the red arrows in Figure 11b, we compute the change in pitch 
angle according to Equation 2 below undergone by an electron as a result of the cyclotron resonant inter-
action with the chorus wave for the whole subelement period τ, as well with only one wave cycle period T. 
Each period duration is illustrated in Figure 11c.

max

0

ΩΔ Δe
i i

B t
B




 (2)

where Bmax is the peak instantaneous wave packet amplitude, B0 the equatorial ambient magnetic field mag-
nitude, Ωe the electron cyclotron frequency, γ the Lorentz factor, and Δti = iVg∕Vs (Lakhina et al., 2010). The 
term Δti is the ratio between the chorus subelement's scale size iVg, where i can be either τ (subelement's 
time duration) or T (corresponding to one wave cycle period) and Vs. Vg is the group velocity and Vs is the 
relativistic relative velocity between the chorus wave and the electron's parallel resonant velocity calcu-
lated in the satellite frame. From Figure 11c, the parameters used in Equation 2 are identified as follows: 
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Figure 10. Magnetic field dynamic spectra and the wave normal angle as a ratio of wave normal angle θ on θres (cos θres = ω/Ω) from the Van Allen A (a and b) 
and B (c and d). The waveform (e) and high-resolution dynamic spectra (f) show the chorus emission structure with rising tone elements.
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Figure 11. (a) EMFISIS' magnetic field spectrogram measured at L∗∼5 and magnetic latitude ∼0.5° for a 5-h period (00:00 UT to 05:00 UT July 20, 2016). (b) 
EMFISIS' magnetic field spectrogram measured at L∗∼5 and magnetic latitude ∼0.5° for a 4.5 min period (01:55:30 UT to 02:00:00 UT July 20, 2016). Arrows 
indicate when burst mode data were available for the selected period. (c) The high-resolution magnetic field measurements corresponding to a period of higher 
magnetic spectral density. Several chorus subelements were identified during the signature of the burst mode data as seen in panel (b), and panel (c) shows 
an example of it. Relevant parameters used in Equation 2 are identified as follows: Bmax, the maximum instantaneous absolute value of the wave amplitude, T 
corresponding to one wave cycle period, and τ the subelement's time duration. EMFISIS, Electric and Magnetic Field Instrument Suite and Integrated Science.
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Bmax = ∼0.9 nT, the maximum instantaneous absolute value of the wave amplitude, T = 1.5 milliseconds 
corresponding to one wave cycle period and τ = 6.0 ms the subelement's time duration.

According to the description above, Table 1 shows the parameters obtained directly from the observational 
data, as τ, T, Bmax, B0, and n (electron density), and the derived parameters as fce (electron cyclotron frequen-
cy), fpe (electron plasma frequency), Vph (phase velocity), Vg, Δtτ, ΔtT, Δατ, and ΔαT. We chose one subele-
ment for each of the following times 01:57:15:945 UT–01:57:15:951 UT, 01:58:21:757 UT–01:58:21:763 UT 
and 01:59:17:957.1 UT–01:59:17:964.5 UT to compare the characteristics of the parameters observed. The 
ratio fpe/fce was above 5 during each of these three chorus subelements. According to Horne et al. (2003), 
this means that the chorus wave activities detected during each subelement here are not favorable to any 
acceleration process.

The three chorus subelements had similar characteristics. Each τ had approximately 4.0–5.0 wave cycles 
T (see Figure 11c), that is, τ ∼ 4.5 T during this electron flux dropout observed in the outer radiation belt. 
Considering the longer interaction time between an electron and a chorus subelement to be four/five wave 
cycle periods, the estimated change in pitch angle Δατ is between 46.09° and 70.23°. Considering the shorter 
interaction time between the electron and chorus subelements to be one wave cycle period, the estimated 
change in pitch angle ΔαT was considerably lower than Δατ, namely, between 11.52° and 15.51°. In this 
way, from the analysis of the chorus subelements, we can also suggest that the pitch angle scattering via 
wave-particle interaction mediated by whistler mode chorus waves may have contributed to the electron 
flux dropout observed under the influence of the ICME's sheath.

5. Discussion
The decrease of relativistic electron flux in the outer radiation belt occurred during a storm sudden com-
mencement period, under the influence of an ICME and its turbulent sheath. The main dynamic mecha-
nisms related to this high-energy electron flux dropout were described in the previous section, in which 
we considered the influences of the wave-particle interaction and magnetopause compressions. Thereby, 
to discuss and confirm each mechanism identified before, the present section presents the analyses of the 
pitch angle distribution (PAD) and the time evolution of radial profiles of phase space density (PhSD).

5.1. Pitch Angle Distribution Analyses

PADs provide essential information concerning the physical processes taking place at or prior to the time 
of the measurement, either remotely or locally (Horne et al., 2003; Sibeck et al., 1987; Souza et al., 2018). 
Figure 12 show (from top to bottom) the electron PAD (vertical-axis) as a function of time (horizontal axis) 
for the 2.10 MeV energy channel (color's scale); the magnetic field dynamic spectra (color's scale) as a func-
tion of frequency (vertical axis), and time (horizontal axis) to EMIC, Chorus, and ULF waves, respectively, 
obtained from Van Allen Probe A for the period of July 19 at 22:30 UT to July 20 at 06:00 UT.

The PAD shows the high-energy flux dropout in the pitch angles between 50° and 130° in three periods. 
The first period occurred in approximately 30 min, starting at 00:45 UT, between the pitch angle 60° and 
120°. The second dropout period persisted around by 1 h, between pitch angles 50° and 130°. In contrast, 
the third period of the dropout had a considerably shorter period of occurrence and pitch angle range, as 
it persisted a few minutes between the pitch angles 80° and 110°. The high-energy flux dropout observed 
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Time chorus subelements τ(ms) T (ms) Bmax (nT) fpe/fce Vph (m/s) Vg (m/s) Δtτ(ms) ΔtT (ms) Δατ(°) ΔαT (°)

01:57:15:945 UT–01:57:15:951 UT 6.0 1.5 0.64 6.08 2.82E + 07 5.63E + 07 32.32 8.08 46.09 11.52

01:58:21:757 UT–01:58:21:763 UT 6.0 1.5 0.90 6.37 2.55E + 07 5.10E + 07 30.93 7.73 62.02 15.51

01:59:17:957.1 UT–01:59:17:964.5 UT 7.4 1.5 0.73 5.81 2.74E + 07 5.47E + 07 37.98 7.60 70.23 14.05

Table 1 
Parameters Used in 2 for Three Different Time Chorus Subelements
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in the pitch angles between 50° and 130° to each period is concomitant with significant signatures of the 
ULF waves (Figure 12, bottom) between 1 and 10 mHz. The outward radial diffusion by ULF waves occurs 
through the drift resonance process (Schulz & Lanzerotti, 1974), in which the adiabatic transport of elec-
trons can affect this drift resonance condition. It means that the radial transport rate will vary with each 
equatorial pitch angle. Thereby, the ULF waves' radial diffusion depended on the equatorial pitch angle (see 
Kamiya et al., 2018). It means the radial diffusion driven by ULF waves is responsible for these flux dropouts 
observed in the pitch angles between 50° and 130° (e.g., Alves et al., 2016; Ozeke et al., 2014; Ukhorskiy 
et al., 2005), as discussed in Section 4.2.1.

Besides the outward radial diffusion driven by ULF waves, the PAD morphology observed during the first 
dropout may have also been generated by the combination of the different mechanisms, as magnetopause 
shadowing (e.g., Baker et al., 2016; Kim et al., 2008) through the compression on the magnetopause dis-
cussed in Section 4.1, drift orbit bifurcation (e.g., Shabansky, 1971; Ukhorskiy et al., 2011, 2014), and drift 
shell splitting (e.g., Sibeck et al., 1987; Zheng et al., 2016). Here we discuss only the magnetopause shad-
owing. Occurrences of both drift orbit bifurcation and drift shell splitting are not necessarily associated 
with dropout events. So, as the focus here is to identify and understand the main dynamic mechanisms 
responsible by the high-energy electron flux dropouts in the outer belt, we concentrated and confirmed that 
both magnetopause shadowing and outward radial diffusion mechanisms contributed to this first dropout 
observed from 00:45 UT.

The high-energy flux dropout is also observed in the pitch angles between 130°–160° and 20°–50°. The 
first flux decrease for these pitch angles is considered moderate (approximately 1 order of the magnitude), 
observed around 01:00 UT and 01:45 UT. This period is concomitant with the whistler-mode chorus waves. 
Usually, the chorus waves are generated near the equator and propagate toward higher latitude. They 
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Figure 12. (From top to bottom) the electron PAD (vertical-axis) as a function of time (horizontal axis) for the 2.10 MeV energy channel (color's scale); 
the magnetic field dynamic spectra (color's scale) as a function of frequency (vertical axis), and time (horizontal axis) to EMIC, Chorus, and ULF waves, 
respectively. The data is obtained from Van Allen Probe A for the period of July 19 at 22:30 UT to July 20 at 06:00 UT. EMIC, electromagnetic ion cyclotron; 
ULF, ultralow frequency.
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interact with bouncing, counter-streaming electrons in both hemispheres through the cyclotron resonance, 
launching the electrons into the loss cone (see Kasahara et al., 2018). It means that the pitch angle scattering 
driven by chorus waves is responsible for this first flux dropout observed in these pitch angles. The second 
flux dropout for these pitch angles is observed since 01:45 UT, persisting until approximately 04:00 UT, coin-
cident with the EMIC wave life time. The EMIC waves are generally generated near the equator, in which its 
polarization turns linear as they are convected away from the magnetic equator. These Left-hand polarized 
EMIC waves resonate predominantly with low pitch angle relativistic electrons (see Summers et al., 2007). 
It is essential to highlight that the chorus waves also were present in this period. The PAD morphology 
observed here confirms that particles were lost to the atmosphere by pitch-angle scattering mechanism 
through the EMIC wave-particle interaction (see, Aseev et al., 2017 and Usanova et al., 2014) and chorus 
wave-particle interaction discussed at Sections 4.2.2. and 4.2.3, respectively.

5.2. PhSD Analysis

PhSD is an important tool to confirm the dynamic mechanisms related to high-energy electron flux decreas-
ing on the outer radiation belt under the influence of the ICME and its turbulent sheath region. PhSD is 
calculated as a function of μ, K, and L* parameter, which are adiabatic invariants that constrain the electron 
motions. The first adiabatic invariant (μ) is dependent upon both the particle's pitch angle and the particle's 
energy. The second adiabatic invariant (K) depends upon the pitch angle. The inverse of the third adiabatic 
invariant (L*) depends upon both position and pitch angle (Green & Kivelson, 2004; Hartley et al., 2014; 
Schulz & Lanzerotti, 1974; Walt, 1994).

Conversion of the measured particle flux to PhSD for fixed invariants is obtained as follows (Hartley 
et al., 2014):

 (1)  PhSD is calculated from the Calculated K to local pitch angles (RBSP-A) available at https://www.rb-
sp-ect.lanl.gov/data_pub/rbspa/MagEphem/definitive/, which is obtained from the geomagnetic field 
model TS04 (Tsyganenko & Sitnov, 2005). We obtain α for a chosen K, that is, αK

 (2)  Equation 3 below is used to calculate μ and E for the pitch angle αK, and obtain Eμ

 2 2 2
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 (3)  Obtain fluxes at αK

 (4)  Obtain fluxes at Eμ

 (5)  Equation 4 below is used to convert measured flux j to PhSD f
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 (6)  We use calculated L* values available at: https://www.rbsp-ect.lanl.gov/data_pub/rbspa/MagEphem/
definitive/

 (7)  Finally, we obtain PhSD in adiabatic invariant coordinates

 , , ,f K L t  

The adiabatic invariants are conserved under specific circumstances (Roederer, 1970). PhSDs were calculat-
ed from RBSP-A data for values of μ = 1,000, 1,500, 2,000, and 2,500 MeV/G and K = 0.041 and 0.128 G1/2RE. 
These K values were chosen because they optimize the coverage of L* while limiting both the equatorial 
PhSD to approximately 70°–90° pitch angle range (K  =  0.041  G1/2RE) (see Da Silva et  al.,  2019; Reeves 
et al., 2013; Souza et al., 2017), and the PhSD to approximately 50°–60° pitch angle range (K = 0.128 G1/2RE) 
(see Aseev et al., 2017; Iles et al., 2006; Shprits, Horne, et al., 2017). The μ values chosen (μ = 1,000, 1,500, 
2,000, and 2500 MeV/G) correspond to electrons at relativistic energies (See, Boyd et al., 2016 and Murphy 
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et al., 2018) at which the decrease in the outer radiation belt flux is observed. Due to the behavior of the 
relativistic energies to be practically the same only the Figures referent to μ = 1500 MeV/G (Figures 13 and 
14) are shown here and the Figures referent to others μ values are shown in the Supporting Information 
(Figures S3–S8 ).

Figure 13 shows the time evolution of PhSD radial profiles as a function of L* for fixed first (μ = 1500 MeV/G) 
and second (K = 0.041G1/2RE) adiabatic invariants for both (a) inbound and (b) outbound parts of the RB-
SP-A orbits. The legend shows the start day and time in the dd/hh:mm format for both the inbound and 
outbound portions. The time evolution of the PhSD profiles in the inbound regions of the Van Allen Probes 
A orbit (Figure 13a) presents the flux decrease from L* = 4 (green curve—from 02:00 UT), highlighted by 
feature A. This profile confirms that the outward radial diffusion mechanism may have contributed to the 
high-energy flux dropout at such L* values (see Da Silva et al., 2019; Reeves et al., 2013; Souza et al., 2017). 
The outward radial diffusion mechanism observed here agrees with the results presented in Section 4.2.1. 
Feature B refers to a small peak that indicates local acceleration between L* ∼4.5 and 5.2 (green curve). 
This local acceleration is probably driven by chorus wave-particle interaction, as discussed in Section 4.2.3. 
Figure 13b (outbound) presents a significant electron flux decrease from L* = 5.3 (green curve—from 22:00 
UT), highlighted by feature C. This profile confirms that the magnetopause shadowing mechanism con-
tributed to the high-energy electron flux dropout, as discussed in Section 4.1 (see Figure 16 by W. Li & 
Hudson, 2019). These results for μ = 1,500 MeV/G are similar to μ = 1,000, 2,000, and 2,500 MeV/G (see 
Figures S3–S5).

Figure 14 shows the time evolution of PhSD radial profiles as a function of L* for fixed first μ = 1,500 MeV/G 
and second K = 0.128 G1/2RE adiabatic invariants for both (a) inbound and (b) outbound parts of the RBSP-A. 
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Figure 13. Time evolution of phase space density radial profiles at fixed first (μ = 1500 MeV/G) and second 
(K = 0.041 G1/2RE) adiabatic invariants for both (a) inbound and (b) outbound parts of the RBSP-A orbit. The inserts in 
Figures a and b show the start day and time (in the dd/hh:mm format) of either the inbound or outbound portions of 
RBSP-A.
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Figure 14a presents the time evolution of the PhSD profiles in the inbound regions of the Van Allen Probes 
A orbit, in which two local flux decreases (green curve—from 02:00 UT) are observed, the first in L* ∼4.8 
(feature E), and the second in L* ∼5.2 (feature F). These local loss processes contributed to the electron flux 
dropout during the influence of the ICME's magnetosheath, which is attributed to the pitch angle scattering 
mechanisms by EMIC and chorus waves, respectively, as discussed in Sections 4.2.2 and 4.2.3 (see Aseev 
et al., 2017; Iles et al., 2006; W. Li & Hudson 2019; Shprits, Horne, et al., 2017). The local flux increase is 
also observed between L* ∼4.8 and ∼5.2 (feature D), driven by the chorus waves, as discussed in previous 
sections. Figure 14b (outbound) presents a local loss between both L* ∼4.8 and 5.3 (green curve—from 22:10 
UT), named here as feature G which is also observed for μ = 2,000 and 2,500 MeV/G) (Figures S7 and S8).

5.3. Event Timeline

The study's main results suggest that the interplanetary coronal mass ejections' structures and their sheath 
can trigger the drivers to generate the different dynamic mechanisms responsible for the radiation belt 
population variability. Thereby, we use a timeline in Figure 15 to show each driver able to generate these 
different dynamic mechanisms responsible by high-energy flux dropout along the time.

ULF wave activities measured on the ground (IMAGE network) are represented for the solid green line. 
Chorus and EMIC wave activities measured in situ (Van Allen Probe A) are designated by both the blue and 
red solid lines, respectively. RMP (magnetopause standoff distance) minimum is represented for the solid 
brown line. The blue, yellow, and light pink boxes represent the flux dropout period after 21:56 UT (L* = 5.2), 
the flux dropout period after 02:39 UT (L* = 4.6), and the period without flux dropout, respectively. S1 and 
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Figure 14. Time evolution of phase space density radial profiles at fixed first (μ = 1500 MeV/G) and second 
(K = 0.128 G1/2RE) adiabatic invariants for both (a) inbound and (b) outbound parts of the RBSP-A orbit. The inserts in 
Figures a and b show the start day and time (in the dd/hh:mm format) of either the inbound or outbound portions of 
RBSP-A.
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SC indicate the occurrence of the interplanetary shock and the sudden commencement impulse, respective-
ly. MS and MC1 indicate the ICME's magnetosheath, and the boundary of the subsequent interplanetary 
magnetic cloud, respectively.

The high-energy electron flux dropout observed after 21:56 UT (box blue) occurred under the influence of 
the following dynamic mechanisms:

 (1)  Magnetopause shadowing due to the magnetopause compression (t1–t2)
 (2)  Outward radial diffusion driven by ULF waves (t1–t6)
 (3)  Pitch angle scattering driven by chorus waves (t3–t6), and
 (4)  Pitch angle scattering driven by EMIC waves (t4–t6)

The high-energy electron flux dropout observed after 02:39 UT (box yellow) occurred under the influence 
of the following dynamic mechanisms:

 (1)  Outward radial diffusion driven by ULF waves (t5–t8)
 (2)  Pitch angle scattering driven by chorus waves (t5–t8), and
 (3)  Pitch angle scattering driven by EMIC waves (t5–t7)

Although the ULF and chorus waves presented the activities after t8, the wave-particle interaction does not 
look efficient to cause variability in the outer radiation belt flux (box light pink).
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Figure 15. Timeline of the drivers that generate the different dynamic mechanisms responsible by high-energy 
electron flux dropout observed under the influence of the ICME's sheath region. ULF wave activities measured on the 
ground (IMAGE network) are represented for the solid green line. Chorus and EMIC wave activities measured in situ 
(Van Allen Probe A) are designated by both the blue and red solid lines, respectively. RMP (magnetopause standoff 
distance) minimum is represented for the solid brown line. The blue, yellow, and light pink boxes represent the flux 
dropout period after 21:56 UT (L* = 5.2), the flux dropout period after 02:39 UT (L* = 4.6), and the period without flux 
dropout, respectively. S1 and SC indicate the occurrence of the interplanetary shock and the sudden commencement 
impulse, respectively. MS and MC1 indicate the ICME's magnetosheath, and the boundary of the following 
interplanetary magnetic cloud, respectively. EMIC, electromagnetic ion cyclotron; ICME, interplanetary counterpart of 
a solar coronal mass ejection; ULF, ultralow frequency.
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6. Concluding Remarks
Our results, in this study, suggest that the structures of the interplanetary coronal mass ejections can trig-
ger the drivers to generate the different dynamic mechanisms responsible for the radiation belt population 
variability. We found that the following processes may have contributed to the high-energy electron flux 
dropout observed during the turbulent ICME's sheath region."

•  The interplanetary shock S1 caused a strong compression in the magnetopause, as estimated by the 
SWMF/BATS-R-US global MHD model and by the empirical Shue et al. (1998) model. Magnetopause 
stand-off distance reached L = 6, which confirms that the magnetopause shadowing mechanism con-
tributed to this high-energy electron flux dropout in the study

•  Observational ground-based data from the IMAGE network confirm strong ULF wave activity during the 
ICME's sheath region, decreasing significantly in the magnetic cloud region

•  The global MHD SWMF/BATS-R-US simulation results suggest that the ULF waves contributed to this 
high-energy electron flux dropout, once the power of both B|| and Eφ were considerably strong in the 
analyzed 1.5 h interval

•  The radial diffusion coefficient DLL was calculated through an analytical expression derived by Ozeke 
et al. (2014), in which the results suggest that the outward radial diffusion mechanism contributed to 
this high-energy electron flux dropout

•  Observational data from Van Allen Probes confirm both EMIC and chorus wave activities during the 
ICME's sheath region. However, EMIC waves are detected during the period when the Earth's magneto-
sphere is under the influence of only the ICME's sheath, while the chorus waves are also detected in the 
subsequent magnetic cloud period

•  The minimum resonance energy estimate as 1.2 MeV suggests that the EMIC wave packets detected may 
resonantly interact with particles ≥1.2 MeV. Consequently, we suggest that the pitch angle scattering 
mechanism driven by EMIC waves contributed to the high-energy electron flux dropout during this 
interval

•  The cyclotron resonant interaction between particles and chorus waves estimated through the analyses 
of the chorus subelements (∼01:55:30 UT to 02:00:00 UT on July 20, 2016), has shown that the pitch 
angle scattering by chorus wave-particle interaction may have contributed to this high-energy electron 
flux dropout

•  The cyclotron resonant interaction between particles and chorus waves estimated analytically under the 
quasilinear approximation (∼01:55:30 UT to 02:00:00 UT on July 20, 2016), has shown that the wave am-
plitude leads to significant pitch-angle scattering with the characteristic time scales of about an hour for 
1 MeV electrons. The wave obliqueness may have led to scattering time scales of tens of minutes. There-
by, this result confirms the contribution of the pitch angle scattering by chorus waves in this high-energy 
electron flux dropout

•  The PAD shows the high-energy flux dropout in the pitch angles between 50° and 130° in three periods, 
concomitant to the significant signatures of the ULF waves. Thereby, we conclude that ULF waves' out-
ward radial diffusion is responsible for this shape in PAD

•  The PAD also shows the high-energy flux dropout in the pitch angles between 130°–160° and 20°–50°, 
which are concomitant with chorus and EMIC waves. Thereby, we conclude that the pitch angle scatter-
ing driven by the chorus and EMIC waves is responsible for PAD's shape

•  The PhSD profiles in the inbound regions considering μ = 1500 MeV/G and K = 0.041 G1/2RE confirms 
that the outward radial diffusion mechanism contributed to the high-energy flux dropout from L* = 4. 
The PhSD profiles in the outbound regions confirms that the magnetopause shadowing mechanism 
contributed to the high-energy electron flux dropout from L* = 5.3

•  The PhSD profiles in the inbound regions considering μ = 1500 MeV/G and K = 0.128G1/2RE confirm 
the pitch angle scattering mechanisms by EMIC and chorus waves contributed to the high-energy flux 
dropout in L* ∼4.8 and ∼5.2. The PhSD profiles in the outbound regions for μ = 1500 MeV/G and second 
K = 0.128G1/2RE confirm a local loss between L* ∼4.8 and 5.3
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Data Availability Statement
All the data used are available at: ECT: https://www.rbsp-ect.lanl.gov/data_pub/, SWS/SEM/HEPD: 
https://doi.org/10.5281/zenodo.4111070, EMFISIS: https://emfisis.physics.uiowa.edu/Flight/, ACE: http://
www.srl.caltech.edu/ACE/ASC/DATA/browse-data/, IMAGE: http://supermag.jhuapl.edu/mag/, WIND: 
https://cdaweb.gsfc.nasa.gov
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