
Vol.:(0123456789)1 3

Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2021) 43:198  
https://doi.org/10.1007/s40430-021-02908-7

TECHNICAL PAPER

Spacecraft real‑time thermal simulation using artificial neural 
networks

J. D. Reis Junior1  · A. M. Ambrosio1 · F. L. de Sousa1 · D. F. Silva1

Received: 23 July 2020 / Accepted: 22 February 2021 
© The Brazilian Society of Mechanical Sciences and Engineering 2021

Abstract
Spacecraft Operational Simulators are mainly used for training satellite operators, to test the ground control system, and the 
evaluation of operational and onboard procedures before their execution in the real satellite. To achieve these objectives, all 
the internal models of the Operational Simulator must provide information in real time. Traditionally, the thermal simula-
tion in these simulators is accomplished through interpolation on a set of pre-calculated scenarios or by the integration of 
a very simplified mathematical model. Both approaches, however, have limitations in both fidelity and runtime. In order to 
overcome these limitations, in this work it is proposed to build the thermal model of a Spacecraft Operational Simulator using 
artificial neural networks. This approach was applied to the Amazonia-1, a medium size satellite currently being developed 
at the Brazilian National Institute for Space Research. The obtained results show increased fidelity and an extremely short 
execution time, evidencing the potential of the approach to simulate satellite thermal behavior in Operational Simulators.
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Abbreviations
ACE  Attitude control electronics
ANN  Artificial neural network
EPC  Electronic power controller
GD  Gradient descent algorithm
GPS  Global positioning system
GYRO EM  Gyro sensor electronic module
GYRO ICU  Gyro sensor inertial control unit
IR  Earth’s infrared radiation
LNA  Low noise amplifier
MLP  Multi-layer perceptron
OBDH  On-board data handling
PCDU  Power conditioning and distribution unit
QPSK-TX  Quadrature phase shift keying
RTU   Remote terminal unit
SADA  Solar array drive assembly
SADE  Solar array drive electronics
SDC  Subsystem Distribution controller

SINDA  Systems improved numerical differencing 
analyzer

SPE  Signal processing electronics
SSR  Solid state recorder
TCE  Thruster control electronics
TT&C  Telemetry, tracking and command
TWT   Travelling wave tube

1 Introduction

With the advancement of computer processing capabili-
ties, computational modeling and simulation have been 
progressively used in the development process of complex 
systems. In particular for space systems, simulations con-
tribute to reduce costs and time required for development, 
since they allow the evaluation of functionality and perfor-
mance without the need to construct physical models and to 
test scenarios that would not be possible in the laboratory, 
increasing the reliability of the system [1–6]. Simulations 
are used along all the satellite development phases, from 
the system conception, through the establishment of mis-
sion performance requirements, functional engineering pro-
cesses, functional validation, software validation, assembly, 
integration and test (AIT), ground system test, to the final 
phases for training, operations and maintenance [7, 8]. In 
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the early phases, the models are simpler and more general 
because the details of the system have not yet been defined. 
While in the final stages, as the system is already completely 
defined, the models are much more complex and have a high 
fidelity to the real system [9].

In this work, the focus is on the simulators used for train-
ing, operations, and maintenance called here simply Opera-
tional Simulators. These simulators are mainly used in the 
pre-launch phase for ground system validation and operator 
training, and also during the operation for prior evaluation of 
operational and onboard procedures before performing them 
with the actual system and also for analysis of contingency 
situations. The Operational Simulator allows executing com-
plete scenarios so realistically that it is virtually impossible 
to tell the difference between a simulated scenario and the 
actual operation of the satellite [10, 11].

In order to meet these requirements, the Operational Sim-
ulator must provide information in real time, i.e. the infor-
mation must be available to the operator at the same time 
as it would be if the actual satellite were in contact with the 
satellite control system. This implies that all internal models 
of the simulator must run in a short enough time so that the 
response of the system as a whole is given in real time, hav-
ing also high dependability requirements [12].

In general terms, the simulation of a spacecraft thermal 
behavior with high fidelity has a high computational cost 
(consequently requiring an extensive time to be processed), 
since the computational methods necessary to determine 
the temperature distribution require the resolution of a large 
number of differential equations.

For the satellite thermal design, usually, commercial soft-
ware packages are used, in which the satellite is discretized 
in a set of nodes. This set can reach thousands of nodes on an 
average satellite like the Amazonia-1 [13]. The discretized 
set of equations is solved using mainly the finite difference 
and finite element methods and must be calculated each 
time the thermal state of the satellite is required. This type 
of simulation, applied to a complete satellite, in different 
operating scenarios and environmental conditions, presents 
a high computational cost. For example, the simulation of 
each scenario of Amazonia-1 satellite running on a personal 
computer, using the SINDA/FLUINT software [14], took 
up to 10 h, which makes its direct use impracticable in an 
Operational Simulator.

In the literature, there are very few works on the construc-
tion of thermal model for operational simulators [15, 16]. 
According to Perpiñán [15], there are basically two alter-
natives to perform this task: interpolation over predefined 
scenarios or integration of a simplified thermal model.

Both the interpolation and integration approaches present 
limitations for their use in a real-time simulator. Generally, 
the interpolation is performed between scenarios in which 
the thermal behavior of the satellite was predetermined. 

Despite producing good results for these scenarios, the inter-
polation may produce results with unpredictable errors for 
the scenarios that were not previously calculated, because 
the temperature varies in a nonlinear way and depends on 
the combination of many system and environmental param-
eters. On the other hand, in the second approach, the satellite 
thermal model is simplified so that it is possible to integrate 
the heat transfer equations in real time. The disadvantage of 
this approach is the loss of fidelity in comparison with the 
actual satellite for all scenarios.

Recently, Manon et al. [16] proposed a hybrid approach in 
which the external heat fluxes on the satellite and the inter-
nal radiation exchange factors are pre-calculated for many 
discretized directions and then used to build a coefficient 
table. During the simulation, the total flux received by each 
node is determined by interpolation in the coefficient table 
using information from satellite attitude and orbital position, 
as well as the power of the source and the physical proper-
ties of the node. The temperatures of each node are then 
calculated by integration of the heat equations. The authors 
applied this method to a CubeSat and obtained promising 
results.

In this work it is proposed the use of machine learning, 
particularly, artificial neural networks (ANN) of the recur-
rent type, for the simulation of the thermal behavior of satel-
lites in real time.

The recurrent ANNs are universal approximators of non-
linear dynamic systems [17]. The choice of neural networks 
is due to their ability to map complex relationships between 
large input and output data sets, as well as to interpolate or 
generalize, that is, to provide reasonable outputs for inputs 
not presented in the training [18, 19].

In recent years, neural networks have been successfully 
applied in many aerospace engineering problems [20–23] 
and also in general thermal problems [24–26]. In all these 
works, neural networks have proven to be good alternatives 
(sometimes even better) to the traditional approaches.

During the research, different architectures and train-
ing algorithms were experimented, including the Leven-
berg–Marquardt [38, 39] and an adaptation of the general-
ized extreme optimization algorithm [40] to artificial neural 
networks. All algorithms provided similar results, but the 
gradient descent (GD) algorithm provided the smallest gen-
eralization errors and with shorter training times.

In addition, the complexity of the simulated source were 
gradually increased, first an aluminum sphere, then a Cube-
Sat [27–29], and finally a real medium-sized satellite. In 
this work it is presented the final ANN architecture and the 
results obtained with its application for the Amazonia-1 
satellite [30], which is currently being developed at the 
National Institute for Space Research (INPE).

This machine learning approach has shown the advantage 
of presenting high fidelity for the trained scenarios, small 
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mean generalization error for the untrained ones and very 
low computational cost.

The paper is organized as follows, Sect. 2 describes the 
Amazonia-1 satellite, Sect. 3 discusses artificial neural net-
works, Sect. 4 presents the approach used to simulate the 
satellite thermal behavior using RNN, Sect. 5 shows and 
discusses the results, and Sect. 6 concludes the paper.

2  Amazonia‑1 satellite

The Amazonia-1 is a remote sensing satellite, whose main 
objective is to monitor Brazilian natural resources, espe-
cially the Amazon rainforest and agricultural areas [30]. The 
generated data will also be useful to attend other related 
applications, such as monitoring of coastal region, water 
reservoirs, natural and cultivated forests, environmental dis-
asters, among others. The satellite, which will act in synergy 
with existing environmental programs, is being completely 
designed, integrated and tested in Brazil. In Fig. 1 is shown 
the satellite’s physical model used for the thermal balance 
tests.

Some features of Amazonia-1 are: dimensions 
2.20 × 0.95 × 0.95 m; about 650 kg; Sun-synchronous orbit; 
752.4 km of altitude; 98.405º of inclination (polar); 3 axes 
of stabilization; 4 years of mission lifetime.

The Amazonia-1 is a Sun-synchronous (polar) orbiting 
satellite with a 5-day revisit rate. It has a wide-view opti-
cal imager, a camera with 3 visible frequency bands and 1 
near infrared band, capable of observing a swath of approxi-
mately 850 km with 60 m of resolution.

In addition to the objectives associated with providing 
data for monitoring the environment, the Mission has an 
important technological goal: the validation of the Multi-
Mission Platform (PMM) as a system, which will be used 
for the first time in the Amazonia-1 satellite.

The PMM, developed at INPE with financial support 
from the Brazilian Space Agency (AEB), is a generic plat-
form for LEO satellites in the 500 kg class. It provides 
pointing, power generation, data management and service 
telecommunication for the payload, and is capable of being 
used in different types of missions.

Figure 2 shows an exploded view of the Amazonia-1 
satellite, with the bus (PMM) on the left and the payload 
module on the right.

The Amazonia-1 thermal mathematical model was built 
using ThermalDesktop/Radcad—SINDA/FLUINT thermal 
software package [14], which runs under an AutoCad 2005 
platform. The whole model is composed by 11,806 nodes, 
including diffusion and arithmetic nodes (used to represent 
components with very low thermal capacitances), and is 
shown in Fig. 3.

3  Artificial neural networks

In its most general form, an artificial neural network (ANN) 
is a virtual machine designed to model the way the biologi-
cal brain acquires knowledge through experience [18]. To 
achieve this goal, artificial neural networks employ a vast 
interconnection of simple computational cells or processing 
units, called neurons.

An artificial neuron is the fundamental information pro-
cessing unit for the operation of a neural network. Figure 4 
illustrates the model of an artificial neuron in a diagram-
matic way. In this diagram, three basic elements of the neu-
ronal model can be identified: a set of synapses or connec-
tion links, each one characterized by its own intensity, called 
synaptic weight (w); a fixed input, called bias; a summation 
junction, which performs a linear combination of the input 
signals (x) with the synaptic weights; and an activation func-
tion (f) that restricts the amplitude of the output of the neu-
ron to a finite value (s).

Figure 5 shows a general architecture of a multi-layered 
network, called multi-layer perceptron (MLP) [18, 31]. MLP 
networks have one or more inner layers of neurons, called 
hidden layers. The circles in the figure represent the artificial 
neurons.Fig. 1  Thermal balance physical model of the Amazonia-1 satellite
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Fig. 2  Exploded view of the Amazonia-1 satellite

Fig. 3  Amazonia-1 thermal 
mathematical model

Fig. 4  Artificial neuron model 
(adapted from [18])
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Knowledge is acquired by the network through a training 
process, in which a series of data, also called training sam-
ples, are presented to the network. In a simplified way, the 
training process of a neural network consists of inserting into 
the network an input value that is transmitted by the neurons 
until the production of an output value. The output value is 
then compared to the desired response and the associated 
error is calculated. The error, in turn, is used to update the 
weights of the network, so that the output is closer to the 
desired value. This procedure is repeated until the total aver-
age error is less than a specified tolerance value.

This process, known as “learning”, allows the network 
to not only reproduce the acquired knowledge but also gen-
eralize, that is, produce reasonable outputs for inputs not 
provided during training.

The generalization capability is essential for the appli-
cation of neural networks, since even if it presents a low 
training error, it may not respond well to data not presented 
in training phase. For this reason, the minimization of the 
generalization error is as important as the training error.

In order to avoid overfitting, i.e. when the network is so 
adapted to the training data that it loses its ability to gen-
eralize (low training error but high generalization error), a 
procedure called cross-validation or simply validation can be 
used. In this procedure, the training set is partitioned in two 
subsets: training (or estimation) and validation. The train-
ing subset is used as input data to train the network, and the 
validation subset is used to test the network during training 
to avoid overfitting. In this way, the validation procedure can 
be used as a stopping criterion when it reaches a minimum. 
However, the validation error can have several local minima, 

depending on the complexity of the problem. So it is recom-
mended to continue the training for a longer period and then 
select the parameters of the point where the minimum in the 
validation occurred.

According to Yang [24] ANNs are very useful, because 
firstly ANNs accurately recognize the inherent relationship 
between any input and output set without a physical model, 
and yet the results account for all the physics that relates 
output to input. Secondly, the approach is inherently fault-
tolerant because of the large number of processing units 
that perform massive parallel data processing. Finally, their 
learning ability also allows adaptation to changes in the 
parameters.

4  Satellite thermal simulation using ANNs

For the simulation of satellite thermal behavior using ANNs, 
it is first necessary to have available data for training the 
ANN. They can come from experiments, or from numeri-
cal simulation, provided that the satellite numerical thermal 
model has been validated using experimental data. In fact, a 
validated detailed numerical thermal model of the satellite 
is more appropriate, since it can generate as many training 
scenarios for the ANN as desired, or necessary, what would 
be very costly, or even impractical, if experimental data were 
to be used.

Next, the ANN´s architecture is defined, along with the 
input, output, and internal parameters. The input data con-
sists of the internal and external thermal loads acting on the 
satellite, while the output data is the temperature of chosen 

Fig. 5  Multi-layer perceptron 
neural network (adapted from 
[18])
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points of interest, for example equipment, over the satellite. 
Note that both the heat loads as well as the temperatures 
are functions of time, since in orbit the satellite is subjected 
to varying thermal conditions, resulting in a time variable 
temperature distribution.

The following step is the ANN training, in which the 
weights of the network are updated in an iterative process 
to reduce the error in the output in comparison with the 
expected values.

After ANN training, the results are analyzed, and its gen-
eralization capability is verified comparing to the data not 
presented in training. If it is not capable of properly pre-
dict the expected results, the ANN architecture or internal 
parameters are redefined, until a suitable arrangement for 
the ANN is found. Figure 6 summarizes this process in a 
block diagram, and Sects. 4.1 to 4.5 details the steps for 
ANN training.

4.1  Input and output data

The input and output data used for training the ANN were 
generated by simulating the transient thermal behavior of 
the Amazonia-1 satellite, for a set of orbit scenarios. Ther-
malDesktop—SINDA/FLUINT (SINDA) satellite thermal 
analysis software was used for the simulations. The satellite 
model is the same used for the thermal design and analysis 
of Amazonia-1 satellite. This model was adjusted and vali-
dated by a Thermal Balance Test (TBT) at INPE´s Test and 
Integration Laboratory (LIT) [13].

The thermal model used with SINDA has a total of 
11,806 nodes, since it is a high precision model in which 
the temperatures are obtained by calculating the thermal 

conduction between each node and its neighbors, and the 
radiation emitted and received by each node. In order to 
train the ANN only 50 nodes, in which the temperature is 
relevant in the Operational Simulator, were chosen. The 
nodes’ selection criteria consisted of choosing at least one 
node per piece of equipment that needs its temperature to 
be monitored according to its thermal control requirements.

A total of 12 scenarios were generated in SINDA, two 
of them being the extreme Hot and Cold scenarios, and 
10 intermediate scenarios, nominated from A to J, with 
parameters randomly defined within the nominal ranges for 
each variable. The Hot scenario is an operational scenario 
with all the equipment working at full power and with the 
space environment parameters at their maximum values. In 
the Cold scenario, in turn, the pieces of equipment are in 
standby mode and the environmental parameters are set to 
their minimum values.

4.2  ANN architecture

There are different ANN architectures and methodologies in 
the literature such as multi-layer perceptron networks, radial 
basis functions networks, support vector machines, convolu-
tional neural networks, and deep learning neural networks. 
Among the existing architectures, MLP networks are the 
most used for function approximation and identification of 
dynamic systems [18, 19, 32, 41].

MLP networks have three distinctive features: a nonlinear 
activation function, one or more layers of hidden neurons 
and a high degree of connectivity. The combination of these 
characteristics gives these networks a significant computa-
tional power, allowing them to learn through a training pro-
cess and then generalize from the acquired knowledge.

Recurrent neural networks were initially proposed for 
modeling time series [33–35]. The structure of the network 
is similar to that of a canonical MLP, with the distinc-
tion that non-feedforward connections among neurons are 
allowed and associated with a time delay. Through these 
connections the model can retain information about the past, 
enabling it to discover temporal correlations between events 
that are far away from each other in the data [36]. Addition-
ally, it has been proved that the recurrent networks are uni-
versal approximators of nonlinear dynamic systems [17]. For 
this reason, in this work it was chosen to use recurrent MLP 
networks, and to optimize their parameters for the particular 
problem of satellite thermal control simulation.

During the research, it was experimented with 2 and 
3 hidden layers, but better results (smaller generalization 
errors) were obtained with just one hidden layer, besides 
the input and the output layers. The ANN used has 95 input 
parameters in total, 1 hidden layer with 20 neurons, and 50 
output neurons, as illustrated in Fig. 7. Tests with 10 to 70 
neurons in the hidden layer were performed. It was observed 

Fig. 6  ANN modeling process
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that with 20 neurons the ANN presented greater stability 
in the results and, at the same time, a lower generalization 
error. The variables hr1 to hr6 represent the heating rates on 
the 6 external surfaces of the satellite. These heating rates 
were calculated using SINDA, based on the values of the 
environmental variables (Solar, Albedo, and Earth’s infrared 
radiations) and the satellite’s attitude at each orbit position. 
The variables Equip1 to Equip39 refer to the power of the 
internal equipment selected for training and the variables 
T1(z−1) to T50(z−1) are the temperatures generated at the 
exit of the network for the immediately previous instant with 
Δt = 60 s (recurrent inputs). At the first iteration of each sce-
nario, the temperatures of the first point in orbit  (t0) are used 
as the temperatures of the previous instant and the training 
starts with data from the second point in orbit  (t1).

4.3  ANN training

In order to train the recurrent MLP architecture, it was used 
the gradient descent (GD) algorithm, defined by RUMEL-
HART et al. [33] for ANN training.

Initially, the training was performed with only the Hot 
and Cold scenarios. Then, scenarios A through E were grad-
ually added to the training data set in independent runs. The 
training set for each scenario had 101 patterns (vectors of 
data), generated with SINDA in intervals of 60 s, referring to 
a complete orbit (6000 s) plus one point, to ensure continuity 
at the boundary. Thus, the initial training set (HotCold) had 
202 patterns and the final training set, with the inclusion of 
5 additional scenarios (HotColdABCDE) had 707 patterns.

During the training process, each line (pattern) of each 
scenario of the training set is presented to the network. To 
avoid overfitting, each scenario is presented in a random 
order. When the last scenario is presented, this constitutes 
one epoch of training.

The training process consisted of the following general 
steps:

1. Initialize the weights of the ANN.
2. Read the initial temperatures of the 50 nodes (T1(z−1) to 

T50(z−1)) of the first point in orbit and skip to the next 
training pattern.

3. Insert on the input layer the heating rates (hr1 to hr6), 
the power of the equipment (Equip1 to Equip39), and the 
temperatures of the 50 nodes of the previous instant.

4. Propagate the data through the network to obtain the 
temperatures on the output layer.

5. Compare the temperatures with the data generated with 
SINDA. If the error is greater than a pre-defined value 
(tolerance), backpropagate the error to update the net-
work weights (GD algorithm).

6. If the training pattern is less than or equal 101, return to 
step 3 (loop until complete one orbit).

7. If there is another scenario to be trained, return to step 
2 (loop until all scenarios are trained).

8. At each 1000 epochs, suspend the training process and 
perform the validation procedure with scenarios F and 
G (see Sect. 4.4).

9. If there is at least one pattern with error greater than the 
tolerance, restart the training set to the first scenario and 
return to step 2 (this counts as one epoch). Otherwise, 

Fig. 7  ANN architecture
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if the network has converged or if the number of epochs 
reaches  106, finish the training.

This training process is illustrated in Fig. 8.
The order in which the scenarios were presented to the 

ANN was randomized at each epoch. For each training set, 
10 independent runs with different random initialization 
of weights were performed, aiming to reduce, on average, 
the probability of the GD algorithm to be stuck in local 
minima.

The ANN internal parameters used for training were: 
tolerance τ =  10–5, learning rate η = 0.01, and momentum 
constant α = 0.5. The learning rate is a parameter used in 
the GD algorithm to adjust the size of the changes to the 
weights of the network. The smaller the learning rate, the 
smoother will be the trajectory in weight space, at the cost 
of a slower rate of learning. On the other hand, the larger 
the learning rate, the faster will be the rate of learning, 
but if it is too large the network may become unstable. To 
avoid this instability, a momentum term can be included 
in the weight correction equation [18]:

where wji(n) is the synaptic weight connecting neuron i to 
neuron j; n is the number of the iteration; α is the momentum 
constant; η is the learning rate; δj(n) is the local gradient; 
and yi(n) is an input signal of neuron j.

4.4  ANN validation

The validation procedure consists of, at each predefined 
interval of epochs (in this case 1000 epochs), to verify the 
error of the temperature values generated by the ANN for a 
set of data not applied in training. This procedure is used to 
avoid the so-called overfitting, which is the excessive adap-
tation of the network parameters to the training set, conse-
quently harming its generalization capability [18].

The complete set of data was separated into three groups: 
training, validation, and test. Scenarios Hot, Cold, A, B, C, 
D, and E were used for training. Scenarios F and G were 
used for validation. Finally, the scenarios F, G, H, I, and 
J were selected to test the generalization capability of the 
ANN. Scenarios F and G were also included in the test as 

(1)Δwji(n) = �Δwji(n−−1) + ��j(n)yi(n)

Fig. 8  Training process
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they were not part of the scenarios used as input during 
training.

In this way, at each 1000 epochs the training process was 
suspended to validate the ANN, comparing the output tem-
peratures with the expected temperatures (generated with 
SINDA) of the F and G scenarios. If this validation error 
was lower than the previous ones, the weight values were 
stored. At the end of training, the weights of the network 
that presented the lowest validation error were selected as 
the best weight set and then used to generate temperature 
curves for testing.

4.5  Additional details

The testing procedure consisted of using the trained ANN 
to generate temperature curves for each scenario (Hot, Cold, 
A, B, C, D, E, F, G, H, I, and J) and then compare with the 
data generated with SINDA, in order to test its capability 
to reproduce the training data and to generalize for data not 
used for training (random scenarios). Figure 9 illustrates 
how the network was used for testing after training.

To use the network after training, data defining the sce-
nario and satellite’s current state (heating rates, equipment 
power, and node temperatures), for a given point in orbit, 
is entered into the input layer and propagated to the output 
layer to generate the temperatures. In the next cycle (next 
point in orbit), temperatures at the exit of the previous cycle 
are used as input and the other variables are updated accord-
ing to the satellite position in orbit and the duty cycle of the 
equipment.

For testing, the initial temperatures were defined as the 
average values between their lowest (cold case) and highest 
(hot case) values. First, it was cycled through the network 
for 10 orbits to reach the equilibrium. Then, the ANN was 
used to generate temperature curves for 1 orbit. Finally, these 
curves were compared with the data generated by SINDA.

The implementation of neural networks in this paper was 
carried out using C programming language and most of the 
training was performed on a workstation with an 8-core Intel 
Xenon processor. The main reason to use this language is 
because INPE’s Operational Simulator was developed using 
it. So, it would be easier for their developers to understand it, 
especially if they aren’t experts on neural networks. Besides 

Fig. 9  Use of the ANN after training
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that, C/C +  + usually has performance advantages over other 
languages (like Python, Java, etc.). In addition, it was opted 
to develop the algorithms from the ground up and not use 
any off-the-shelf machine learning framework, as these add 
an additional layer of opacity, that is, lack of full knowledge 
of its internal processing, besides the already known opacity 
of neural networks [37].

Usually, in the design of a satellite thermal control sub-
system, a difference of up to 5ºC between numerically cal-
culated and experimentally obtained temperatures over the 
satellite is considered acceptable for validating the satellite´s 
numerical thermal model. This value was used in the present 
work as a limiting error to the difference between the tem-
peratures calculated using SINDA and the ones predicted 
by the ANN.

Since the numerical thermal model has already been 
adjusted to the Amazonia-1′s Thermal Balance Test, the dif-
ference between it and the real satellite is very low. Moreo-
ver, after the satellite launch, the ANN can be re-trained 
with the telemetry data obtained from the in-orbit satellite, 
in order to improve its accuracy.

5  Results and discussion

This section shows the results of applying ANN to simulate 
the thermal behavior of the Amazonia-1 satellite.

5.1  Amazonia‑1 thermal simulation with ANN

A sample of the values comprising the scenarios used for 
training, validation, and testing are shown in the columns of 
Table 1 (D, E, G, I, and J scenarios, as well as some equip-
ment, are not shown due to space constraints).The top three 
rows are the external radiation sources (used to calculate 
the heating rates on SINDA) and the remaining rows are 
the equipment power. The duty cycles of the equipment are 
described in Table 1 notes (just below the table).

The parameters of the Hot and Cold scenarios cover just 
the maximum and minimum/standby operational values. 
These scenarios teach to the ANN the range (maximum and 
minimum) in which the temperatures can vary, whereas the 
parameters of the A to H scenarios are chosen randomly in 
order to teach to the ANN how to generalize in unpredict-
able situations. During the research, different approaches 
were used to guide the choice of the parameters’ values, 
but choosing them randomly provided better generalization 
results.

Although some parameters on Table 1 are constant for 
each scenario, the heating rates (also an input parameter) 
on the satellite’s external surfaces vary throughout the orbit 
due to the variation of the surface exposure to the Sun and 
the satellite’s attitude.

The following 3 figures show a comparison between the 
temperature curves generated by SINDA tool and the ANN, 
for different sets of scenarios. In this way the influence of 
increasing the number of random scenarios on the ANN 
training can be analyzed. The idea is that, as the number of 
scenarios increases, the ANN will receive more information 
about the satellite’s thermal behavior and will be able to not 
only reproduce the trained scenarios, but also generalize to 
scenarios not presented during training.

Each figure has 4 graphs that shows the results for 2 sce-
narios presented in the training (Hot and Cold) and 2 scenar-
ios not presented (F and H), to analyze the ANN capability 
to reproduce and generalize, respectively.

The temperature curves refer to 3 pieces of equipment: 
TCE (Thruster Control Electronics), Gyro ICU (Gyro Iner-
tial Control Unit) and SPE (Signal Processing Electronics). 
These pieces of equipment were selected because they have 
temperature difference high enough to allow their visualiza-
tion independently in the same graph.

Figure 10 shows results for the ANN training with data of 
just the Hot and Cold scenarios (HotCold set).

As expected, the temperatures generated by the ANN 
(in blue) for the trained cases Hot and Cold present a good 
match with those simulated in SINDA tool (in red). How-
ever, for the untrained cases F and H, the difference between 
the curves is very significant (> 10 ºC). This big difference 
occurs because the network has acquired information from 
only the two most extreme scenarios (Hot and Cold) and 
is therefore unable to produce satisfactory results for other 
untrained scenarios.

Figure 11 shows the results for training the ANN with the 
Hot, Cold, A, and B scenarios (HotColdAB set). The curves 
produced by the ANN for the Hot and Cold cases continue 
to present a small error in comparison with those gener-
ated by the SINDA, although there are small differences in 
some regions. The curves for the F and H scenarios, in turn, 
remain distant and have some localized oscillations (noise).

The results for the training with the Hot, Cold, A, B, C, D, 
and E scenarios (HotColdABCDE set) are shown in Fig. 12. 
In this case, despite the small error, the curves for the trained 
scenarios (Hot and Cold) present some more evident differ-
ences, especially for the Cold scenario. The increased error 
for these trained cases, as new scenarios are included, is due 
to the fact that the neural network must adapt to all training 
data at the same time. In other words, the greater the num-
ber of scenarios presented during training, the greater the 
difficulty of the network adapting to each one individually.

Concerning the untrained scenarios (F and H), it is 
observed that the difference between the curves generated 
by the ANN and the SINDA was drastically reduced. The 
localized oscillations also decreased their intensity, but they 
still remain in some regions. This noise is mainly due to, in 
most scenarios, the equipment starts in operating mode and 
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in specific points it turns to standby mode. This makes it 
more difficult for the network to reproduce the temperature 
curves smoothly, but it is much more realistic than keep-
ing the equipment turned on (or in standby) throughout the 
whole orbit.

The results for the HotColdA, HotColdABC, and Hot-
ColdABCD data sets are not shown to avoid excessive 
repetitions.

The temperature errors calculated as the difference of the 
temperatures obtained with the ANN and with SINDA for 
the F, G, H, I, and J scenarios, not used as training input, 
are called generalization errors. Table 2 contains the mean 
generalization errors of the temperatures generated by the 

ANN trained with the HotColdABCDE data set, for the 10 
independent weight initialization runs. The values were 
calculated as the average for the full orbit and for the 39 
equipment. The Studentized Range is the difference between 
the largest and the smallest  Emg divided by the standard 
deviation.

In order to analyze the evolution of the generalization 
error with the inclusion of the additional scenarios (A, B, 
C, D, and E), in Table 3 it is shown the values of the mean 
generalization errors  (Emg) for each data set. The values were 
calculated as the average of the 10 independent weight ini-
tialization runs. In other words, there were 6 tables, simi-
lar to Table 2, one for each data set (HotCold, HotColdA, 

Table 1  Sample of data set used 
for training, validation, and 
generalization analysis

The Solar and IR radiations are measured in W/m2, the albedo is a fraction the Solar radiation, and the 
power of all equipment is measured in Watts (W)
Nominal values: TT&C2 = 21.0 W; EPC1 = 9.0 W; QPSK-TX = 12.0 W; SDC = 5.3 W; TWT1 = 45.0 W
Standby values: TT&C2 = 6.5 W; EPC1 = QPSK-TX = SDC = TWT1 = 0.0 W
*starts at displayed value and decreases to 15.8 W at t = 3980 s
**starts at displayed value, decays to 26.8 W at t = 180 s, returns to the value shown at t = 720 s, and decays 
again to 26.8 W in 900 s
***start at their nominal value (see below) and decay to standby at t = 1200 s
****starts at displayed value and decreases to 6.7 W at t = 1500 s

Heat source Scenarios

Hot Cold A B C F H

Solar 1418 1326 1357 1367 1355 1365 1375
Albedo 0.42 0.34 0.383 0.377 0.397 0.406 0.39
IR 233 208 209.2 221 226 215.6 221.9
ACE 22.0 12.0 13.8 14.4 21.7 18.1 18.4
Battery 1 2.8 2.3 2.61 2.8 2.54 2.59 2.76
GPS receiver 11.7 9.3 11.44 10.79 9.5 10.58 10.24
GYRO EM 30.0 21.6 26.2 22.3 29.8 29.7 29.6
GYRO ICU 0.15 0.08 0.086 0.08 0.119 0.132 0.148
LNA 0.65 0.65 0.65 0.65 0.65 0.65 0.65
Magnetotorq. 1 2.7 0.0 2.08 1.86 0.06 0.77 0.59
OBDH 32.5 32.5 32.5 32.5 32.5 32.5 32.5
PCDU* 57.0 6.3 19.6 56.0 53.3 45.8 21.8
R. wheel 1** 161.6 6.7 119.7 69.6 48.3 101.8 55.5
SADA 1 6.5 5.1 5.81 5.73 6.24 5.96 6.5
SADE 17.5 10.95 16.87 15.44 13.91 15.5 13.61
Star sensor 1 13.5 0.225 6.79 7.95 11.22 0.29 9.19
TCE 0.8 0.0 0.8 0.8 0.8 0.8 0.8
TT&C 2*** 21.0 6.5 19.1 0.0 8.7 20.9 0.0
DC/DC 10.4 6.42 8.05 6.49 8.11 6.8 6.61
EPC 1*** 9.0 0.1 8.1 0.0 8.2 5.2 2.0
QPSK-TX*** 12.0 0.0 11.3 7.0 4.1 11.4 3.2
RTU 1 5.7 5.3 5.5 5.5 5.5 5.5 5.5
SDC*** 5.3 0.0 4.5 2.4 2.8 0.1 2.9
SPE**** 57.3 6.7 48.1 30.0 34.7 12.5 55.0
SSR 10.8 10.08 10.8 10.8 10.8 10.8 10.8
TWT 1*** 45.0 0.0 0.0 18.7 0.0 7.2 37.2
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HotColdAB, HotColdABC, HotColdABCD, and HotCold-
ABCDE), and the last row of each of those tables was used 
to build Table 3.

Figure 13 shows the evolution of the mean generaliza-
tion error as a function of the number of random scenarios 
added in training. The graph was constructed with the data 
shown in the last column of Table 3. The solid lines are only 
guides to the eye, and the dashed line represents the limit of 
5ºC, referred to the requirement that the generalization error 
should be less than this temperature value.

Despite the abrupt decline with the inclusion of the first 
random scenario,  Emg was not reduced below 5ºC. This 
occurred only after the addition of the third random sce-
nario, and the  Emg decayed to less than 4ºC after the inclu-
sion of the fifth random scenario.

As mentioned before, this result refers to the mean gen-
eralization error obtained over 10 independent weight ini-
tializations. This means that in some training runs it was 
possible to get even lower errors. As in a real application 
one would use the weights obtained with just one inde-
pendent run. In Table 4 it is shown the best (lowest) mean 

generalization errors, obtained for the best training run for 
the HotColdABCDE set (Run 4), as well as the maximum 
errors  (Emax) observed for this specific run.

The overall mean of the best  Emg (Run 4) obtained for the 
untrained scenarios was 2.3ºC, well below the requirement 
of 5ºC, with a standard deviation of less than 1.0ºC. This 
means that the temperatures generated by ANN are very 
close to the expected values (generated by SINDA).

Besides that, some larger localized errors were observed, 
being 18.0ºC the greatest error observed for one of the nodes 
in scenario H. In order to further analyze these maximum 
errors, in Table 5 it is shown the maximum generalization 
temperature errors for the equipment shown in Table 1 
(except the LNA because its temperature is not part of the 
50 network output nodes), on the best run (Run 4) for sce-
narios F, G, H, I, and J.

As can be seen in Table 5, the maximum generalization 
errors for some nodes are higher than 10ºC, reaching the 
limit of 18.0ºC. Although these values are not desirable, in 
most cases the maximum errors are below or near 5ºC. This 
higher error occurred due to the presence of the observed 

Fig. 10  Comparison of the temperature curves generated by SINDA and the ANN trained with the HotCold set (TCE, ICU, SPE)
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noise in the curves generated by the ANN, which is related 
to the complexity of the information that the neural net-
work needs to acquire, considering the thermal behavior of 
50 nodes for several different scenarios, associated with the 
change in the equipment operation modes during orbit. Not-
ing that these results refer to scenarios not used as input dur-
ing training, in the conclusion chapter, possible approaches 
to improve these results are discussed.

5.2  Execution time evaluation

As pointed out previously, the satellite thermal model in the 
Operational Simulator must provide the temperature varia-
tion in a time interval short enough for the Simulator to gen-
erate the telemetries and to execute as a whole in real time. 
For this reason, run-time tests were performed on different 
personal computers to verify the processing time required 
for the ANN to generate 5 orbits for the Amazonia-1 satellite 
(the choice of 5 orbits was to obtain a minimum significant 
average). The results of these tests are shown in Table 6.

Although only the processor name is listed, other factors 
may also influence the running time such as the number 

of simultaneous running programs, hard disk and memory 
speed, and operating system.

The values   shown in the table refer to the average time 
for the ANN to generate 5 orbits (equivalent to 500 points), 
calculated from several independent runs. This means that 
the ANN can provide the temperatures of 50 different points 
in the satellite for 5 orbits at around 0.1 s.

Since the satellite’s thermal behavior changes very slowly, 
the temperatures can be updated at a time interval like every 
10 s on the Operational Simulator. This gives more than 
enough time for the ANN to generate the temperatures.

By comparison, the time required for SINDA to generate 
the same 5 orbits for a specific scenario of the Amazonia-1 
satellite can take up to 10 h on a personal computer.

6  Conclusions

In this paper, it is shown how artificial neural networks can 
be used to simulate with good accuracy the thermal behavior 
of a satellite in orbit. The use of a trained ANN makes pos-
sible the estimation of temperatures at predefined satellite 

Fig. 11  Comparison of the temperature curves generated by SINDA and the ANN trained with the HotColdAB set (TCE, ICU, SPE)
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Fig. 12  Comparison of the temperature curves generated by SINDA and the ANN trained with the HotColdABCDE set (TCE, ICU, SPE)

Table 2  Mean generalization 
errors of the 10 independent 
runs for the HotColdABCDE 
data set

Run No Emg (ºC) Total mean Standard 
deviation

Studen-
tized 
rangeF G H I J

Run 1 13.9 3.3 3.3 2.6 12.8 7.2 5.7 2.0
Run 2 10.9 1.9 3.0 2.4 7.3 5.1 3.9 2.3
Run 3 3.8 1.6 4.9 2.5 1.8 2.9 1.4 2.4
Run 4 3.5 1.8 1.7 2.4 2.0 2.3 0.7 2.5
Run 5 4.3 2.2 8.6 2.8 1.9 4.0 2.8 2.4
Run 6 3.5 2.0 2.2 3.0 1.9 2.5 0.7 2.3
Run 7 4.5 2.0 2.9 2.2 1.5 2.6 1.2 2.6
Run 8 4.5 1.9 2.7 3.2 1.7 2.8 1.1 2.5
Run 9 2.9 1.5 14.6 2.8 15.1 7.4 6.8 1.9
Run 10 4.1 2.1 2.1 2.9 1.9 2.6 0.9 2.4
Total mean 5.6 2.0 4.5 2.7 4.8 3.9 1.5 2.4
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internal locations, fast enough to be used in a real-time 
simulator.

As a case study, the proposed solution was applied to the 
estimation of on orbit temperatures of the Earth observation 
Amazonia-1 satellite, currently being developed in Brazil.

The results obtained with the ANN show low mean gen-
eralization errors, which represents a good accuracy in com-
parison with the data simulated with SINDA, although some 
larger localized errors were observed.

Table 3  Evolution of the mean 
generalization errors with the 
inclusion of additional scenarios

Data set Emg (ºC) Total mean Standard 
deviation

Studen-
tized 
rangeF G H I J

HotCold 11.8 10.1 9.4 7.3 8.2 9.4 1.7 2.6
HotColdA 8.3 4.1 5.4 4.8 5.0 5.5 1.6 2.6
HotColdAB 5.4 8.6 10.4 6.5 7.8 7.8 1.9 2.6
HotColdABC 5.5 4.7 2.2 9.4 2.4 4.9 2.9 2.5
HotColdABCD 4.5 4.2 5.4 5.3 4.7 4.8 0.5 2.3
HotColdABCDE 5.6 2.0 4.5 2.7 4.8 3.9 1.5 2.4

Fig. 13  Mean generalization error as a function of the number of ran-
dom scenarios added in training

Table 4  Best mean generalization errors (Emg), standard deviation, 
and maximum generalization errors (Emax) for the best training run 
(Run 4)

Scenario Best Emg (ºC) Standard 
deviation

Emax (ºC)

F 3.5 0.5 11.9
G 1.8 0.4 8.9
H 1.7 0.8 18.0
I 2.4 0.7 8.1
J 2.0 0.4 10.2
Overall mean 2.3

Table 5  Maximum generalization errors per equipment for the best 
run

Equipment F G H I J
Emax (ºC) Emax (ºC) Emax (ºC) Eax (ºC) Emax (ºC)

ACE 4.2 1.6 0.8 3.3 4.0
Battery 1 1.8 1.2 2.4 2.1 3.7
GPS receiver 3.2 2.0 1.4 1.9 2.3
GYRO EM 2.6 1.4 4.0 4.1 2.3
GYRO ICU 1.4 1.0 4.9 3.7 1.9
Magnetotorq. 

1
1.5 0.8 1.7 2.1 2.1

OBDH 2.1 1.2 1.2 1.6 2.4
PCDU 8.7 4.5 1.9 5.5 5.1
R. wheel 1 8.1 4.8 18.0 8.1 6.7
SADA 1 2.5 1.2 1.1 1.7 1.4
SADE 1.8 0.4 1.9 0.5 1.7
Star sensor 1 2.2 1.3 5.6 4.6 1.6
TCE 2.7 1.1 0.8 2.2 2.7
TT&C 2 1.4 2.2 8.2 4.9 2.7
DC/DC 7.8 3.0 0.4 4.3 1.1
EPC 1 11.3 5.2 3.3 4.5 2.2
QPSK-TX 7.4 2.8 1.5 3.5 1.0
RTU 1 6.4 3.2 1.4 3.3 0.9
SDC 7.5 2.9 1.3 3.4 1.6
SPE 9.4 7.0 1.6 3.5 1.0
SSR 6.7 2.5 1.4 3.4 1.2
TWT 1 11.9 8.9 16.1 6.7 10.2

Table 6  Mean time to generate 5 orbits

# Processor Mean time (s)

1 Intel Core i5 M 460 0,063
2 Intel Core i5 750 0,115
3 Intel Core i5-4590S 0,084
Overall mean 0,088
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In addition, the results showed that the processing time 
required for ANN to generate the thermal behavior of the 
Amazonia-1 satellite is about 5 orders of magnitude shorter 
than that required for SINDA.

Besides that, it must be said that the computational cost 
for obtaining the trained ANN may be high, in the case of 
the present work on the order of 100 h. Nevertheless, this 
is worth the effort since it is done just once, and after that 
the trained ANN can be used to simulate very quickly the 
satellite thermal behavior.

As future work, in order to reduce the observed maximum 
errors, the authors intend to explore the following strategies: 
(i) reduce the time interval from 60 s down to 1 s, conse-
quently increasing the number of training patterns for each 
scenario; (ii) increase the number of scenarios presented 
in training; and (iii) use data from the two or three previ-
ous instants at the input of the ANN, to acquire long term 
information.
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