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Abstract The study of the interaction between solid

objects and magnetohydrodynamic (MHD) fluids is of

great importance in physics as consequence of the sig-

nificant phenomena generated, such as planets inter-

acting with stellar wind produced by their host stars.

There are several computational tools created to simu-

late hydrodynamic and MHD fluids, such as the FLASH

code. In this code there is a feature which permits the

placement of rigid bodies in the domain to be simulated.

However, it is available and tested for pure hydrody-

namic cases only. Our aim here is to adapt the existing

resources of FLASH to enable the placement of a rigid

body in MHD scenarios and, with such a scheme, to

produce the simulation of a non-magnetized planet in-

teracting with the stellar wind produced by a sun-like

star. Besides, we consider that the planet has no signifi-

cant atmosphere. We focus our analysis on the patterns

of the density, magnetic field and velocity around the

planet, as well as the influence of the viscosity on such

patterns. At last, an improved methodological approach

is available to other interested users.
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1 Introduction

The simulation of rigid bodies interacting with flu-

ids is a problem of great interest in physics as con-

sequence of the significant phenomena generated. As

examples of an application of such a problem, one may

cite aerodynamic studies of mechanical structures such

as airfoils and planets interacting with stellar winds.

In the literature, one may find examples of approaches

to the problem in question: in [1], the authors describe

the modeling of the interaction of a fluid with a rigid

body, where they use the Cubic Interpolated Propa-
gation (CIP) to simulate the fluid itself and the Vol-

ume of Solid (VoS) to handle the interaction of the

body with the fluid; in [2], it is shown a computational

approach to solve problems of rigid objects in contact

with viscous incompressible fluids, in which the authors

used the arbitrary Lagrangian-Eulerian method and the

streamline-upwind/Petrov-Garlerkin finite element vol-

ume scheme.

It is worth bearing in mind that the examples

such as the ones discussed above involved pure hydro-

dynamic scenarios only. However, when dealing with

electrically conducting fluids, including plasmas un-

dergoing the effects of electromagnetic fields, the hy-

drodynamic model should be replaced by appropriate

physical-mathematical frameworks. Of these, one of the

simplest is MHD, which describes the behavior of plas-

mas under the influence of magnetic fields[3]. For ex-

ample, in [4] the authors use the immersed boundary

method to address the case of a MHD fluid interacting

with a circular cilinder.
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In Astrophysics one may cite as examples of MHD

studies of interactions of fluids and bodies the paper

[5], where the authors use the 3D code Nurgush to

simulate the shocks between the winds from two low-

mass stars forming a binary system, and [6], in which

it is used the code A.I.K.E.F. (Adaptive Ion-Kinetic-

Electron-Fluid) as a tool to treat lunar type plasma in-

teractions. Other pertinent examples include the study

of exoplanets under the influence of the environment

produced by their host stars: [7] addresses to Venus-

like, non-magnetized exoplanets interacting with the

wind from a M-dwarf star; [8] discusses exoplanets with

magnetospheres undergoing Earth-like magnetospheric

interaction with the solar wind; and in [9] the authors

analyze observations of the “warm Neptune” GJ436b

and the interaction between its exhosfere with the stel-

lar wind. Further, it is worth mentioning [10], which

focuses on the interaction of the solar wind with non-

magnetized planets, while [11] studies the flow of the

solar wind around Jupiter, Saturn, Uranus, Neptune

and Pluto.

There are several computational schemes created

to handle hydrodynamic and MHD problems. In this

paper we use the FLASH code of the University of

Chicago. However, it is important to point out that the

tool which permits the placement of bodies in the sim-

ulations are, until this time, implemented and tested in

such a code for pure hydrodynamic cases only.

Our aim here is to simulate the MHD interaction

of the wind produced by a sun-like star with a non-

magnetized planet, which has the approximate size of

Earth and is placed at an orbital distance equal to the

mean radius from the sun to Mercury. Furthermore,

in our model the planet has no significant atmosphere.

We achieve this by adapting the existing tools for sim-

ulating solid objects in pure hydrodynamic scenarios

present in FLASH.

We investigate the influence of the viscosity on the

regions around the planet, particularly its effects on the

recirculation patterns and the behavior of the wake. Be-

sides, in order to analyze the consistence of our scheme,

we pay special attention to the magnetic field profiles

and the mesh refinement in the MHD scenarios. For the

sake of comparison, we perform a similar simulation in

a pure hydrodynamic scenario.

The scheme presented here is interesting once it

creates new perspectives for using the FLASH code,

concerning the simulations of interactions of MHD flu-

ids with rigid bodies. In addition, with the exponential

growth of interest in research associated with exoplan-

ets in the last two decades, both in observational and

theoretical aspects, there is now strong interest in the

studies of orbital evolution of planets due to their in-

teraction with the protoplanetary disc, the central star

and other planets (see, e.g., the recent work [12]). Such

studies are situated in a step that can be immediately

extended from the work presented here.

This paper is organized as follows: in Section 2 we

show the basic formalism of MHD; in Section 3 we dis-

cuss the numerical details of the simulations, concern-

ing both the computational and the physical aspects;

in Section 4 the results and their respective discussions

are presented, while the conclusions are given in Section

5.

2 Basic formalism of MHD

Magnetohydrodynamics is one of the simplest frame-

works for modelling the interaction between a conduct-

ing fluid and a magnetic field[13] and describes the

macroscopic behavior of electrically conducting fluids,

of which the most common is the plasma[14]. Roughly

speaking, MHD consists in the combination of the

equations governing the fluid dynamics with Maxwell’s

equations of the electromagnetism.

Though the resulting system of equations can be

presented in different ways, it is usually written in con-

servative form such that, in a fixed frame of reference

(or Eulerian coordinate system), it assumes the form for

the case where the viscosity is non-negligible:[15,16]

∂

∂t
(ρv) =

∇ ·
[
−ρvv +

1

µ
BB− I

(
p+

B2

2µ

)]
+ ρν∇2v, (1)

∂B

∂t
= ∇ · (vB−Bv), (2)

∂ρ

∂t
= −∇ · (ρv), (3)

∂ε

∂t
= ∇ ·

[
−
(
ε+ p+

B2

2µ

)
v +

1

µ
(B · v)B

]
, (4)

∇ ·B = 0, (5)

where: ε = ρv2/2+p/(γ−1)+B2/2µ is the total energy

density of the fluid; µ, v, B, ρ, p are the magnetic per-

meability, the velocity, the magnetic field, the density

and the pressure of the plasma; I is the 3 × 3 identity

matrix and ν is the kinematic viscosity[15]. Besides, it

is considered a equation of state in the form p = (γ−1)ε

where γ is the adiabatic index.

From the form of such equations one may note

that, with the exception of the term proportional to
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ν in Eq. (1), their right-hand sides are the divergent

of the fluxes through the boundaries of the volume

considered[13] and they represent, from top to bottom,

the time evolution of the momentum, magnetic field,

mass density and total energy, while Eq. (5) is the zero-

divergence constraint on the magnetic field.

Computational codes use the conservative equations

of MHD as shown here, once that particular form make

them suitable for working out finite difference schemes.

On the other hand, properties of the analytic equations

can be used to validate the performance of numerical

schemes[13].

3 Numerical Aspects

The FLASH code has been originally developed for sim-

ulating astrophysical phenomena involving MHD and

is distributed by the Center for Astrophysical Ther-

monuclear Flashes (FLASH Center) of the Univer-

sity of Chicago∗. The default package used by this

code for handling the adaptive-mesh refinement grid

is PARAMESH[17], which employs a refinement crite-

ria adapted from Löhner’s error estimator[18] with a

threshold 10−2 in order to trigger the mesh refinement

process. Besides, FLASH uses the Message-Passing In-

terface (MPI) library and HDF5 to allow portability

on a variety of computers when dealing with parallel

computation[19]. Its modular architecture is such that

it permits customization of the codes in order to sim-

ulate particular cases by means of changes in the algo-

rithms and creation of new physics modules.

We consider five, six and seven levels of refinement

in our simulations. However, we focus our analysis on

the scenarios with five and seven levels; a result with six

levels was generated just in order to investigate the con-

vergence of the solutions and it is briefly mentioned in

Subsection 4.2 (with a panel shown in Subsection 4.4).

Increasing the level of refinement by one duplicates the

number of blocks in each coordinate and, as we start

with a domain of 3×3×3 blocks, we obtain 48×48×48,

96 × 96 × 96 and 192 × 192 × 192 blocks with five, six

and seven levels, respectively. Each block has 8× 8× 8

cells.

In our MHD simulation we use the unsplit staggered

mesh (USM) algorithm in order to solve Eqs. (1)-(4).

It is based on the Godunov method, basically consist-

ing in a conservative finite-volume scheme using spatial

discretisation to solve the partial differential equations.

For the pure hydrodynamic scenario it is used the un-

split hydro solver (UHS) which, in the present context,

can be treated as a simplified version of USM where a

∗http://flash.uchicago.edu/site/flashcode

fundamental difference is the presence of magnetic and

electric fields in the latter. It is worth recalling that

UHS uses the zone-edge data-extrapolated method as

a specific predictor-corrector formulation.

The FLASH code employs as default the Roe ap-

proximate Riemann solver[20], which has been applied

to a wide range of physical problems. However, despite

the sucess of that solver, it can fail in regions of very low

densities, producing unphysical states near strong rar-

efaction regions. Such a characteristic can represent a

critical disadvantage in MHD scenarios, where in gen-

eral the gas pressure is much less than the magnetic

pressure[21]. Besides, due to the fact that the Roe solver

demands eigen decomposition, it may become computa-

tionally costly in MHD problems. In order to overcome

the mentioned limitations we use the HLL (Harten-Lax-

van Leer-Contact) solver in both MHD and pure hydro

scenarios, once this scheme satisfies the integral form

of the conservation laws and it is computationally more

robust[22].

The time advancement of the equations in USM and

UHS is based on a MUSCL-Hancock[23] type algorithm

and the code uses the constrained transport method

to assure numerically the physical constraint given by

Eq. (5) (see [24]). On the other hand, all the simulations

use a Courant Friedrichs Lewy (CFL) condition[25] of

0.8 and have an adiabatic index γ = 5/3.

3.1 Physical parameters of the problem

We created a scenario representing a planet with the

approximate size of Earth orbiting a sun-like star and

placed at an orbital distance equal to the mean ra-

dius from the sun to Mercury, namely, 0.39 AU ≈ 6.0×
1012 cm. Such a planet is inserted as a sphere of radius

6×108 cm and center at (6.0×109, 0, 0) cm in a rectan-

gular box whose dimensions are: x ∈ [0.0, 18.0]×109 cm,

y ∈ [−9.0, 9.0] × 109 cm, z ∈ [−9.0, 9.0] × 109 cm for

the scenarios presented in Subsection 4.1 and 4.3; and

x ∈ [0.0, 18.0] × 109 cm, y ∈ [−12.0, 6.0] × 109 cm,

z ∈ [−12.0, 6.0] × 109 cm for the case shown in Sub-

section 4.2.

The magnetic field B to be used as an of the ini-

tial parameters in our simulations is determinated by

means of Parker’s model for the solar wind, such that its

components are written in spherical coordinates as[26]

http://flash.uchicago.edu/site/flashcode
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Br = B0

(
b

r

)2

, (6)

Bθ = 0, (7)

Bφ = B0

(
Ω

vsw

)
(r − b)

(
b

r

)2

sin θ, (8)

where B0 and b are constants, Ω is the angular velocity

of the sun, vsw is the radial velocity of the solar wind

and r is the heliocentric distance. As we are assuming

that the orbit of our hypothetical planet is in the eclip-

tic plane (θ = π/2) and given the fact that Eqs. (6)-(8)

do not depend on φ, we can, for the sake of convenience,

consider that Br and Bφ have the directions of the x-

axis and y-axis in our domain, respectively.

Since, according to [27], the components of the mag-

netic field at 1 AU (written as Ber and Beφ) have val-

ues such that
√

(Ber)2 + (Beφ)2 = 7 nT and Beφ/B
e
r ≈

1, we can use Eqs. (6)-(8) to evaluate such compo-

nents at 0.39 AU (writting them as Bmr and Bmφ in

this case). With effect, from Eq. (6) we deduce that

Bmr (0.39)2 = Ber(1)2, giving Bmr = 32.5 nT. Now, di-

viding Eq. (8) by Eq. (6) and using vsw = 400 km s−1,

Ω = 2.7 × 10−6 rad s−1 and b = 4.6 × 10−2 AU [28],

we have Bφ/Br ≈ r; for r = 0.39 AU we obtain finally

Bmφ = 12.7 nT.

From Eqs. (6)-(8) we note that Parker’s model does

not define a component perpendicular toBr andBφ. On

the other hand, the presence of a Bθ different from zero

is justified, for example, by the transport of magnetic

fields on the solar surface and turbulence[29], making

interesting the inclusion of such a component in our sce-

narios. According to [29], measurements of Bθ taken be-

tween 0.31 AU and 0.47 AU by spacecrafts such as MES-

SENGER and Helios present large flutuations around

zero, making difficult in principle to choose a “typi-

cal” value to be used here. However, as we can deduce

from the histograms shown in [29], more than ≈ 90%

of the pertinent observational data lie in the interval

≈ [−15, 15]nT, suggesting us that it would be reason-

able to consider an initial Bθ (written as Bz hereafter)

of ∼ 10 nT in our simulations.

The remaining initial parameters, namely, ρ (ob-

tained from the proton density np and the electron

density ne) and p at r = 0.39 AU can be obtained

by a similar procedure to the one used in the evalu-

ation of Bmr and Bmφ . With effect, from Parker’s model,

we may consider that ne and np has a dependence

on r in the form ne,p ∝ r−2[26]. Besides, let us as-

sume that the proton temperature Tp and the elec-

tron temperature Te vary with r as Tp ∝ r−1 and

Te ∝ r−1/2[27]. Now, from the fact that at r = 1 AU

Table 1 Numerical values of the initial parameters ρ, p, v
and B used in the domain and in the defined boundary con-
dition (which represents the stellar wind flowing from x = 0).

ρ p v B
(×10−23) (×10−9) (×107)
g cm−3 dyn cm−2 cm s−1 nT

1.17 3.38 (4.0,1.4,0) (32.5,12.7,10.0)

we have np = ne = 7 cm−3, Tp = 1.2 × 105 K and

Te = 1.4 × 105 K[27], we are able to deduce that such

variables have the values n = 46 cm−3 (dropping the

subscripts), Tp = 3.08×105 K and Te = 2.24×105 K at

r = 0.39 AU.

The pressure is calculated by p = nkB(Tp + Te)

where kB is the Boltzmann constant, giving p = 3.38×
10−9 dyn cm−2; besides, ρ = n(mp +me) with mp and

me representing the proton and electron masses, yield-

ing ρ = 1.17× 10−23 g cm−3.

The values of ρ, p and B calculated above are

used as initial conditions of the domain (inside the

planet we use different conditions, as explained sub-

sequently). On the other hand, the initial v of the do-

main is given by (vsw, vφ, 0). From Parker’s model we

have vφ = Ω(r − b) sin θ which, in our case, yields the

value vφ = 140 km s−1. Table 1 summarizes the initial

ρ, p, v and B to be used in the simulations.

The stellar wind is represented as flowing from the

border at x = 0 of the domain with the velocity given

by Table 1. In order to do so we employ the user de-

fined boundary condition, defining at such a border the

values for ρ, p, v and B given in Table 1. The out-

flow boundary condition, which stands for a zero nor-

mal gradient at the region being considered, is applied

to the remaining edges. As a particular case shown in

Appendix 1, we performed a simulation where we con-

sider the user defined condition at the left (x = 0), top

and bottom boundaries, whereas at the right one we

maintain the outflow condition.

The physical initial conditions inside the solid body

are defined in the following way: vbody = 0, Bbody = 0,

ρbody = 1.17 × 10−22 g cm−3 and pbody = 3.38 ×
10−9 dyn cm−2. Actually, in preliminar simulations we

tested different values for ρbody and pbody and we veri-

fied that the results are not noticeably affected by the

exact numerical choice of such parameters in the cases

where they are greater than or equal to, respectively,

ρ and p in Table 1. Despite the fact that in a typical

planet ρ ∼ 1 g cm−3, we consider the mentioned value

of ρbody for the sake of convenience in the treatment

and visualization of the results. It is worth noting that

inside rigid bodies the MHD equations do not evolve;
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further, the code applies the reflecting boundary con-

dition at the surface of such objects.

3.2 Values of the viscosity to be used in the

simulations

According to the model for the kinematic viscosity

ν of the solar wind discussed in [30], we have ν =

300 km2 s−1 at r = 0.39 AU, giving us one of the val-

ues of ν to be employed in our scenarios. On the other

hand, [31] presents a estimate of ν ∼ 1000 km2 s−1 at

r = 0.72 AU (the heliocentric distance of Venus), while

the model by [30] yields ν ≈ 600 km2 s−1 at the same

r. Such a fact suggests us that, according to the litera-

ture, there may be discordance about the evaluations of

ν corresponding to each r. Therefore, besides consider-

ing ν = 300 km2 s−1, it would be interesting to simulate

additional cases with different values of ν. For this pur-

pose we use ν = 1000 km2 s−1 and ν = 5000 km2 s−1.

The latter is artificially high and was included in order

to analyze the effects of the viscosity on the processes

being simulated.

It is useful to define the Reynolds number Re, which

may be written in function of ν as[4]

Re =
uD

ν
, (9)

where u is the velocity of the fluid (
√
v2sw + v2φ in our

case) and D represents a characteristic linear dimension

of the body. Here, D is considered as the diameter of

the planet.

The model used in our simulations is essentially col-

lisionless, once in such a formalism the viscosity is con-

sidered as totally caused by protons being scattered by

“kinks” in the magnetic fields, while the proton-proton

collisions are neglected in the deductions. Though such

a model is suitable for our purposes, the solar wind

may in fact be weakly collisional for the scales used

here; with effect, strictly speaking, the wind is consid-

ered collisionless up to ∼ 10 R�. See [32] for a detailed

discussion.

It is worth mentioning that in the regions where the

solar wind is collisional, we have the predominance of

Coulomb collisions. Such processes have influence on

the physical characteristics of the plasma, such as af-

fecting the ion velocity distributions. See [33] for details.

4 Results

In this section we present the simulations for three

cases: purely hydrodynamic, MHD with the initial B

given by Table 1 and MHD considering an initial B in

the form (0, 12.7, 10.0) nT.

4.1 Purely hydrodynamic case

Figure 1 shows the density profiles in the xy-plane and

at the instant t = 1200 s (after the vanishing of the tran-

sients present at the initial instants of the simulation)

for the purely hydrodynamic case. We considered the

values of ρ, p and v in Table 1 as initial parameters of

the domain; besides, we used five levels of refinement.

The dimensions of the box are in 109 cm and ρ is in

units of log(ρ/10−24 g cm−3).

The left profile in Fig. 1 represents the case where we

neglect the viscosity; the right one corresponds to ν =

300 km2 s−1 (Re = 17000). We may note the formation

of vortices past the planet, which tend to the right top

region of the domain due to the presence of vφ. Com-

paring both panels we note that the differences between

their correspondent patterns caused by the viscosity are

very small for that particular value of ν. Also, both sce-

narios are characterized by ρ ≈ 3.0×10−23 g cm−3 and

p ≈ 2.0×10−8 dyn cm−2 at the left side of the body and

ρ ≈ 1.0 × 10−23 g cm−3 and p ≈ 3.0 × 10−9 dyn cm−2

at right (in the wake between x = 7 × 109 cm and

x = 9× 109 cm).

It is worth noting the shock seen between the men-

tioned wake and the vortices, where its left side is

characterized by ρ = 1.3 × 10−23 g cm−3, p = 4 ×
10−9 dyn cm−2 and |v| = 3.5 × 107 cm s−1, while the

right one has ρ = 2.0 × 10−23 g cm−3, p = 1.5 ×
10−8 dyn cm−2 and |v| = 2.0× 107 cm s−1.

Figure 2 presents the velocity vector field and the

vorticity profiles for the purely hydrodynamic simula-

tions at t = 1200 s in the xy-plane. Note that we focus

on the regions around the planet. The vorticity ωz is

calculated from v by means of

ωz =
∂vy
∂x
− ∂vx

∂y
. (10)

Four scenarios are considered: using ν = 5000 km2 s−1

(Re = 1020), ν = 1000 km2 s−1 (Re = 5100), ν =

300 km2 s−1 (Re = 17000) and with no viscosity. The

maximum value of |v| in the four profiles of Fig. 2 are

of ≈ 5.0× 107 cm s−1. The length L of the reciculation

region is calculated from the surface of the planet (point

x = 6.6×109 cm, y = 0) until the edge of the circulation

pattern seen at the right top of panels of Fig. 2. For the

range of values considered here, L slightly decreases as

Re increases: for Re = 1020, Re = 5100 and Re =

17000 we have L = 2.3× 109 cm, L = 2.1× 109 cm and

L = 2.0 × 109 cm, respectively (see Fig. 12); besides,
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Fig. 1 Density profiles for the purely hydrodynamic simulations at t = 1200 s in the xy-plane. The density is given in
log(ρ/10−24 g cm−3) and the dimensions of the box are in 109 cm. Right: scenario with no viscosity; left: scenario with
ν = 300 km2 s−1 (Re = 17000).

L = 1.8× 109 cm with no viscosity. On the other hand,

the maximum value of |ωz| increases as Re increases

(see the values of |ωz| for each case in Fig. 2 and the

diagrams in Fig. 12.) Note that, for convenience, |ωz|
for this case is shown multiplied by four in Fig. 12.

Our simulations might be compared to other results

found in the literature. In fact, the particular case of

the solar wind interacting with the Moon presented in

[10] has a characteristic in common with our hydrody-

namic simulations: in both cases there is no formation of

bow shock, once the authors of such a paper considered

that the Moon has no magnetic field and ionosphere to

deflect the solar wind.

Observing Fig. 2 we note that the fluid is deflected

as it pass around the planet once that in FLASH the

surface of rigid bodies is treated as a reflecting bound-

ary. However, the velocities of the fluid drop nearly to

zero at the region where it reaches radially the sur-

face of the planet. On the other hand, we should bear

in mind that in [10] the particles of the solar plasma

which hit the lunar surface are stopped and removed

from the flow. Both scenarios are intrinsically different

once in [10] the fluid is absorbed by the surface of the

body.

In [4] it is shown, among other results, the influence

of the viscosity on the size of the recirculation regions

for a hydrodynamic fluid interacting with a cylinder.

The authors found that, for Re ' 50, higher values

of Re are related to smaller L. We observed a similar

behavior in our hydrodynamic simulations, though the

geometry of the body in [4] is not the same as the one

used here (see Fig. 12).

4.2 MHD scenario with initial Bx = 32.5 nT

Figure 3 presents the density profiles of the MHD simu-

lations at t = 1400 s in the xy-plane (left panels) and xz-

plane (righ panels) with the initial conditions of the do-

main given in Table 1 and using five levels of refinement;

the upper and lower panels correspond respectively to

the scenarios with no viscosity and considering ν =

300 km2 s−1 (Re = 17000). Generally speaking, there

is the formation of a thick, distinct bow shock with

ρ ≈ 3× 10−23 g cm−3 and p ∼ 1× 10−8 dyn cm−2. The

low-density tails are characterized by ρ ∼ 10−24 g cm−3

and p ∼ 1 × 10−7 dyn cm−2 at their central regions in

both scenarios. Further, note that, for five levels of re-

finement, the viscosity has no noticeable effects on the

density profiles.

Besides, for the sake of testing the convergence of

the solutions (bearing in mind the numerical dissipation

effects), the simulation for Re = 17000 was obtained

using seven levels of refinement (shown in Fig. 4).

Figures 3 and 4 show the outlines of the mesh re-

finement. The most refined areas are along the shocks,

as well as around the object and where ρ and B

present variations (see Fig. 5 too), indicating us that

PARAMESH remains stable in MHD simulations with

solid objects under the present conditions.

Comparing Figs. 3 and 4 we may note that the wake

is thinner for seven levels when compared to the other

scenarios. Such a behavior is related to the refinement

of the solutions: the higher the refinement, the thinner

the wakes, with their dimensions converging to a partic-

ular value for sufficiently high refinements. With effect,

concerning the dimensions of the wake, the simulation

with six levels (left panel of Fig. 11) represents an in-

termediate case between the less and the more refined

ones.
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Fig. 2 Velocity vector field and vorticity profiles for the hydrodynamic simulations in the xy-plane and at t = 1200 s. From
top to bottom and from left to right: scenarios with ν = 5000 km2 s−1 (Re = 1020), ν = 1000 km2 s−1 (Re = 5100),
ν = 300 km2 s−1 (Re = 17000) and with no viscosity. The maximum |v| are of ≈ 5.0× 107 cm s−1 and the dimensions of the
box are in 109 cm.

Note the structures in the wake of the right profile

of Fig. 4. A closer view of these structures is shown in

Fig. 6, which shows the density in colors (same scale as

in Fig. 3 and 4) and Bxz = {Bx, Bz} as a vector field.

The vectors of Bxz are not scaled by magnitude for a

better visualization but |Bxz| has a maximum value of

∼ 100 nT in the region. The behavior of Bxz in Fig. 6 is

suggestive of a magnetic reconnection process possibly

happening in such a region.

It is interesting to observe that, though the stel-

lar wind is parallel to the x-axis, there is no symmetry

around y = 0 in Fig. 3 and 4. We explain this behavior

as follows: as the simulation evolves, the plasma start-

ing with velocity v = vsw î undergoes magnetic forces

due to By and Bz, causing the emergence of vy and vz
components in the fluid velocities (though some of vy
and vz arises from the interaction with the rigid body).

Then Bx exerts forces transverse to the x-axis on the

portions of the fluid where vy and vz are different from

zero.

We plot the magnetic field at t = 1400 s, shown in

Fig. 5. The perspective is from the xy-plane, with the

components Bx and By represented as a vector field

and Bz in color plot. The left and right panels cor-

respond to the scenarios with no viscosity and with

ν = 300 km2 s−1, respectively. In both cases we have√
B2
x +B2

y ≈ 300 nT around the planet and Bz ≈
13 nT along the bow shock; besides, in the wake |B|
has the lowest values.

Analyzing the initial B given in Table 1, we deduce

that the interaction of the wind with the body increases√
B2
x +B2

y by a factor of ≈ 8.5, while the values of Bz

remains of the same order of magnitude.
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Fig. 3 Density profiles for the MHD simulations at t = 1400 s and using five levels of refinement. The density is given in
log(ρ/10−24 g cm−3) and the dimensions of the box are in 109 cm. Upper panels: xy and xz-planes for the scenario with no
viscosity; lower panels: same as the upper ones but considering ν = 300 km2 s−1 (Re = 17000).

Fig. 4 Density profiles for the MHD simulations at t = 1400 s. The density is given in log(ρ/10−24 g cm−3) and the dimensions
of the box are in 109 cm. The panels show the xy and xz-planes for the scenario with ν = 300 km2 s−1 (Re = 17000) and
considering seven levels of refinement.
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Fig. 5 Magnetic field in nT at t = 1400 s for the cases with no viscosity (left, with five levels) and ν = 300 km2 s−1 (right,
with seven levels). The components Bx and By are represented as a vector field and Bz in color plot. The dimensions of the
box are in 109 cm.

Fig. 6 Zoom of the structures in the wake of the right bottom
panel of Fig. 3. The density is shown in colors (same scale
as in Fig. 3) and the vector field (not scaled by magnitude)
represents Bxz = {Bx, Bz}.

Figure 7 shows the velocity vector field and the vor-

ticity profiles for the MHD simulations at t = 1400 s

in the xy-plane. As in the previous case, four scenarios

are considered: with ν = 5000 km2 s−1 (Re=1020), ν =

1000 km2 s−1 (Re=5100), ν = 300 km2 s−1 (Re=17000)

and with no viscosity. The four scenarios were gener-

ated with five levels of refinement. The maximum value

of the velocity in the four scenarios of Fig. 7 are of

≈ 3.0× 108 cm s−1. Here we have L ≈ 1.7× 109 cm for

the four scenarios; the maximum |ωz| slightly increases

with Re and its values may be observed in Fig. 7 and

Fig. 12.

4.3 MHD scenario with initial Bx = 0

As an extra result, we performed simulations using

the same parameters as the ones shown in Subsec-

tion 4.2 but considering Bx = 0 in the initial condi-

tions. Though this scenario is not realistic, once from

Parker’s model Br/Bφ � 1 only for large heliocen-

tric distances, it will help us to observe the influ-

ence of the transversal components of B on the in-

teraction of the wind with the planet. The densities

and mesh refinement with five levels at t = 1400 s

are shown in Fig. 8. We note that there is symme-

try about y = 0 and, as in the previous MHD case,

it is formed a discernible bow shock. The bow shocks

in Fig. 8 are characterized by ρ = 1 × 10−23 g cm−3

and p = 2.0 × 10−8 dyn cm−2, while the wakes have
ρ ∼ 10−24 g cm−3 and p = 7.0 × 10−8 dyn cm−2 at

their central regions.

Concerning the mesh refinement, we see that the

most refined areas are around the shocks, object and

wakes, following the variations of ρ and B. As in the

previous MHD scenario, we point out the stability

of the numerical schemes that are integrated in the

PARAMESH structure in this case.

Figure 9 for B follows the same scheme of Fig. 5.

We have
√
B2
x +B2

y = 143 nT (left panel) and√
B2
x +B2

y = 149 nT (right panel) around the planet

and |Bz| has maximun values of ≈ 19 nT. We see that√
B2
x +B2

y is increased by the factors ≈ 4.1 (left panel)

and ≈ 4.3 (right panel) when compared to its initial

value; Bz reachs values which are 1.9 higher than the

initial one. In Figs. 5 and 9 we observe a pattern of cir-

culation of B in the xy-plane. Particularly, in the inner

regions of the wake we have magnetic field lines which



10

Fig. 7 Velocity vector field and vorticity profiles for the MHD simulations in the xy-plane and at t = 1400 s. From left to right:
ν = 5000 km2 s−1 (Re=1020), ν = 1000 km2 s−1 (Re=5100), ν = 300 km2 s−1 (Re=17000) and no viscosity. The maximum
|v| are of ≈ 3.0 × 108 cm s−1 and the dimensions of the box are in 109 cm. All the panels were obtained with five levels of
refinement.

Fig. 8 Same as in Fig. 3 but considering an initial Bx = 0 and with five levels of refinement in both scenarios.
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are oppositely directed and are close to each other. Un-

der certain circumstances, such a behavior could poten-

tially create suitable conditions for the onset of mag-

netic reconnection.

The velocity vector field and the vorticity profiles

at t = 1400 s are given in Fig. 10. The scheme is similar

to Fig. 7. However, note that here, in order to bet-

ter observe the recirculation zones, the arrows of the

velocity fields are not scaled by magnitude. We have

L = 5.8×108 cm, L = 9.6×108 cm and L = 1.7×109 cm

for increasing values of Re (L = 3.3 × 109 cm with

no viscosity); |ωz| increases between Re = 1020 and

Re = 5100 and its values are shown in Fig. 10 and

Fig. 12.

In the MHD simulations there is the formation of a

low-density layer between the object and the interacting

stellar wind, which has a minimum thickness of, for

example, ≈ 1.3 × 108 cm in the upper panels of Fig. 3

and ≈ 2.0×108 cm in Fig. 8. As this phenomenon is not

present in the hydrodynamic case we deduce that it is

mainly due to the action of B which, moreover, reach

its maximum values in the areas adjacent to the object.

In [10], the scenario of the interaction of the solar

wind with Venus (considered as having no significant

magnetic field) presents a bow shock similar to the ones

in our MHD simulations; besides, in such a scenario

there is a low-density layer of thickness 5× 107 km be-

tween the shock and Venus. According to the authors,

that layer is formed when the ionosphere of the planet

deflects the solar wind, preventing it to hit the surface.

Though in our model the planet has no atmosphere,

the action of |B| around the body produced a similar

effect, as explained in the previous paragraph.

The influence of the viscosity on the length of the

recirculation zone in MHD simulations may be found,

for example, in [4]. In this paper, the MHD scenarios

(with streamwise and transverse magnetic fields) for

Re = 100 have, generally speaking, higher L when com-

pared to the cases where Re = 40.

4.4 Influence of the boundaries on the simulations

Though we are using outflow boundary conditions, it

would in principle be possible that some interaction

at the borders could propagate back to the domain

and influence the results of the simulations. In order

to investigate the influence of the boundaries on our

results, we performed the simulation of the MHD sce-

nario with initial Bx = 32.5 nT, ν = 300 km2 s−1 and

five levels of refinement using domains with two sizes:

x ∈ [0.0, 18.0] × 109 cm, y ∈ [−12.0, 6.0] × 109 cm,

z ∈ [−12.0, 6.0] × 109 cm and x ∈ [0.0, 12.0] × 109 cm,

y ∈ [−6.0, 6.0]×109 cm, z ∈ [−6.0, 6.0]×109 cm. Figure

11 presents the density panels at t = 1400 s for the big-

ger (center) and smaller (right) domains. Besides, for

the sake of comparison, we show a simulation with the

same domain and conditions than the one of the center

panel but using six levels of refinement (left.) Note that

the center profile is the same as the one presented in

Fig. 3 (bottom left panel). It was shown here again to

facilitate a visual comparison.

From Fig. 11 we note that the center and right pro-

files have essentially the same characteristics; we do not

observe patterns which would potentially be caused by

“back reactions” of the boundaries. The patterns in the

form of shocks in the right bottom of the panels are cre-

ated near the planet at the first instants of the simula-

tion and propagate from the left. In Fig. 8 the reader

may observe similar patterns above the planet in the

left panels.

Though the center and right panels in Fig. 11 have

similar characteristics, we may note that they are not

equal. We explain the difference between that two cases

as follows: in both scenarios we started with the same

number of blocks, that is, 3 × 3 × 3 in the first level

and reaching to 48×48×48 in the fifth (see Section 3).

So, the domain at right in Fig. 11 is smaller than the

other but has the same number of blocks, such that

it seems “more refined” (see the discussion in Subsec-

tion 4.2). With effect, we may compare the center and

right profiles in Fig. 11 to the left one and to the cases

with seven levels of refinement in Fig. 3. Particularly,

note the similarity between the right and left profiles

in Fig. 11. We conclude that the size of the domain do

has influence on the results in the sense of refinement,

as explained above.

5 Conclusions

In this paper we simulated the interaction between the

wind produced by a sun-like star and a non-magnetized

planet. Such a planet has the approximate size of Earth

and an orbital radius of 0.39 AU, which corresponds to

the mean distance between the sun and Mercury. We

used the FLASH code to simulate hydrodynamic and

MHD scenarios, having as purpose to implement and

test the inclusion of a solid and stationary object in

MHD simulations in this code. The results presented

here are new and interesting once the tool for simulating

solid bodies in FLASH is currently implemented and

tested for hydrodynamic cases only.

The hydrodynamic simulation used as initial param-

eters of the domain the values of v, ρ and p shown in

Table 1, besides a maximum time of 1200 s and five

levels of refinement. We presented the profiles of ρ in
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Fig. 9 Same as in Fig. 5 but considering an initial Bx = 0 and with five levels of refinement in both scenarios.

Fig. 10 Same as in Fig. 7 but considering an initial Bx = 0.

Fig. 11 Center and right: simulations for the MHD case with initial Bx = 32.5 nT, ν = 300 km2 s−1 and five levels of
refinement using domains with two sizes; left: the same domain as in the center panel but using six levels. The scale of
densities are the same in the three panels and the profiles were taken at 1400 s.
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the xy-plane for the scenarios with no viscosity and

with ν = 300 km2 s−1; besides, we plotted the veloc-

ity fields and the vorticity for Re = 1020, Re = 5100,

Re = 17000 and no viscous. The differences in the pro-

files of ρ between the two cases are very small, while

the velocity fields indicated us that L slightly decreases

(and |ωz| increases) as Re increases. See Fig. 12.

For the MHD scenario we considered the same ini-

tial parameters of the domain as in the hydrodynamic

simulation besides adding B. We used Parker’s model

to define the initial Bx and By, whereas the values

of Bz was estimated by means of observations from

the spacecrafts MESSENGER and Helios[29], giving

Bx = 32.5 nT, By = 12.7 nT and Bz = 10 nT. As an

extra MHD result, we simulated the case where we have

initially Bx = 0 which, though is not realistic, helped

us to investigate the influence of the transversal com-

ponents of B on the simulations.

For the MHD simulations with initial Bx = 32.5 nT

we shown the profiles of ρ and the outlines of the mesh

refinement in the xy and xz-plane: using five levels for

the cases with Re = 17000 and with no viscosity; and

seven levels for Re = 17000. Besides, we present B and

the velocity (with vorticity) fields in the xy-plane. The

velocity fields corresponded to Re = 1020, Re = 5100,

Re = 17000 and no viscous scenarios. We observed the

formation of a bow shock with ρ ≈ 3.0× 10−23 g cm−3

and p ∼ 1.0 × 10−8 dyn cm−2 and a wake with ρ ∼
10−24 g cm−3 and p = 1.0× 10−7 dyn cm−2 at its cen-

tral line. We observed that, in our simulations with

five levels of refinement, the viscosity has no noticeable

effects on the density profiles. Besides, we briefly dis-

cussed the simulation with six levels of refinement (left

panel of Fig. 11) and we concluded that the solutions

converge for Re = 17000.

The interaction of the wind with the planet causes

the increase in |B| around the body when compared to

its initial values:
√
B2
x +B2

y is higher by a factor 8.5

and |Bz| remains of the same order of magnitude when

compared to the initial conditions. We investigated the

possible occurrence of magnetic reconnection in a case

where ν = 300 km2 s−1 (right panel of Fig. 4).

The velocity and vorticity fields of Fig. 7, as well as

Fig. 12, show that ωz slightly increases as Re increases

while L remains approximately with the same size in

the four cases.

In the case where we have and initial Bx = 0 and

using five levels of refinement, we observed the char-

acteristics: the bow shock has ρ = 1.0 × 10−23 g cm−3

and p = 2.0 × 10−8 dyn cm−2; the wake is character-

ized by ρ ∼ 10−24 g cm−3 and p = 7.0×10−8 dyn cm−2

at its inner regions. Contrary to the previous MHD

case, these results present symmetry around y = 0. Be-

sides,
√
B2
x +B2

y around the body is higher by a factor

4.1− 4.3 than the value calculated from the initial con-

ditions, while |Bz| is higher by a factor 1.9.

Figure 10 and Fig. 12 show us that L increases from

Re = 1020 to Re = 17000, while ωz increases between

Re = 1020 and Re = 5100. For the scenario with no

viscosity, L = 3.3 × 109 cm. As in the previous MHD

case, we observed higher refinement along the shocks,

around the object and other regions where ρ and B

present variations, indicating us that PARAMESH re-

mained stable in those cases.

The presence of an initial Bx different from zero

in the MHD simulations causes the loss of symmetry

around the x-axis both in y and z-directions. We ex-

plained such a behavior as the action of the component

Bx on the portions of the fluid with vy 6= 0 and vz 6= 0,

generating a dominant force in the y and z-direction.

The absence of a bow shock in our purely hydro-

dynamic simulations is a characteristic observed in the

interaction of the solar wind with the Moon found in

[10]. Still in [10], the interaction of the wind with Venus

has some features in common with our MHD scenarios:

the presence of a bow shock and the formation of a low-

density layer between the shock and the object. In our

case, this phenomenon is mainly due to the action of

|B| around the body, while in [10] it is caused by the

ionosphere of the planet.

The influence of the viscosity on L shown in [4] for

the hydrodynamic case is similar to the one deduced

from Fig. 2: for Re ' 50, higher Re are related to

smaller L; in [4], the MHD case with Re = 100 has,

generally speaking, higher L when compared to the sce-

nario with Re = 40. In our scenario with initial Bx = 0,

L increases with Re.

We investigated the potential influence of the size

and borders of the domain on the simulations. In the

case used as example, we did not observe patterns which

would be caused by the influence of the boundaries;

however, we deduced that the size of the domain has

effect on the refinement of the solutions.

From all the discussions presented here, we con-

cluded that, under the conditions considered in this

paper, our scheme generated promising results and it

creates new perspectives for using the FLASH code in

realistic simulations of planets interacting with stellar

winds. For example, it is known that Mercury has a

tenuous exosphere which undergoes strong variations

between the perihelion and the aphelion, making in-

teresting the inclusion of objects with atmospheres in

future works in order to study such scenarios. We will

investigate in more details the effects of higher levels of

refinement on the simulations, as well as the influence of

the sizes of the domain on the results. Further, we will
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Fig. 12 Left: length of the recirculation zone vs. Reynolds number; right: vorticity vs. Reynolds number. For a better visual-
ization, |ωz| for the hydrodynamic case was multiplied by four.

consider scenarios with different boundary conditions

and investigate how their choice affect the results.
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Appendix 1

Figure 13 show the xy-plane of the simulation for a scenario
similar to the one of the top panels of Fig. 3 but consider-
ing the user defined condition at the left (x = 0), top and
bottom boundaries; at the right one we maintain the outflow
condition.

We note that the lower region of the wake in Fig. 13 is
slightly wider than the one observed in the upper left panel
of Fig. 3. This feature, probably, is due to the stellar wind
flowing from the lower boundary, once we are considering that
vy 6= 0.

Fig. 13 Same as in the top left panel of Fig. 3 but considering
the user defined condition at the left (x = 0), top and bottom
boundaries; at the right one we use the outflow condition.

Appendix 2

This Appendix yields further computational details of the
simulations shown in this paper and it would be of special
interest for those readers which have some familiarity with
the FLASH code.

All the necessary files to the MHD simulation are placed
in the folder FLASH4/source/Simulation/SimulationMain/

magnetoHD/StarPlanetInt. Such files are:

– Makefile.h: contains auxiliary instructions used to com-
pile the particular problem being treated.

– Config: in this file we specify the required units and
define the default runtime parameters. Particularly, we
used the units physics/Hydro/HydroMain/unsplit/MHD_

StaggeredMesh and physics/Eos/EosMain/Gamma.
– flash.par: in this file we define the initial runtime param-

eters such as the initial values of the physical quantities,
boundary conditions, maximum level of refinement and
the Riemann solver being used. See Section 3 for such
parameters.
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– Simulation data.F90: this module stores data specific to
the problem being simulated.

– Simulation init.F90: this routine gets the necessary pa-
rameters and initialize other variables in the module.

– Simulation initBlock.F90: it applies the initial condi-
tions, as well as rigid bodies and other desired particu-
larities, to the domain of the problem. Here we insert a
body in the form of a sphere of radius R in the simulation
by means of the algorithm:

r=
√

(xi − xc)2 + (yi − yc)2 + (zi − zc)2

VAR(BDRY) = −1
if r ≤ R then

VAR(BDRY) = 1
end if

where (xi, yi, zi) and (xc, yc, zc) are the coordinates of
the i-th cell of the domain and of the center of the sphere,
respectively. The variable BDRY is defined in such a way
that it has the value +1 in the cells inside the object;
in the rest of the domain we have VAR(BDRY) = −1.
Besides, inside the sphere the physical parameters have
the particular values discussed in Section 3.

– Grid bcApplyToRegionSpecialized.F90: a default ver-
sion of this module is found in the folder FLASH4/source/
Grid. We use it to define specific boundary conditions at
the left edge of the domain, describing the stellar wind
flowing toward the body, as explained in Section 3.

The files Makefile.h, Simulation data.F90 and
Simulation init.F90 have the standard form used
in many of the supplied test problems imple-
mented in FLASH4, which are placed in the folder
/FLASH4/source/Simulation/SimulationMain/.

In order to compile and run our MHD simulation, we use
the following commands:

.\setup -auto -<n>d magnetoHD/StarPlanetInt +usm

cd object

make

mpirun -np N flash4

where <n> is the number of dimensions of the simulation
and N is the number of processors being used.

The files used in the pure hydrodynamic scenario
are placed in /FLASH4/source/Simulation/SimulationMain/

StarPlanetInt. They are similar to the ones of the MHD
case, but with the following modifications:

– we exclude from the files all the variables related to the
magnetic field, including killdivb.

– in Config we use the unit physics/Hydro/HydroMain/

unsplit instead of physics/Hydro/HydroMain/unsplit/

MHD_StaggeredMesh.

To compile and run the pure hydrodynamic simulation,
we use:

.\setup -auto -<n>d StarPlanetInt +uhd

cd object

make

mpirun -np N flash4
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