
sid.inpe.br/mtc-m21c/2021/03.30.15.24-TDI

DATA CUBE ALGORITHM FOR HIGH
SEQUENTIALITY SATELLITE TELEMETRY DATA

ANALYSIS

Yuri Matheus Dias Pereira

Master’s Dissertation of the
Graduate Course in Engineering
and Space Technology/Space
Systems Engineering and
Management, guided by Drs.
Maurício Gonçalves Vieira
Ferreira, and Rodrigo Rocha
Silva, approved in March 25, 2021.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/44DTA5B>

INPE
São José dos Campos

2021

http://urlib.net/

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Coordenação de Ensino, Pesquisa e Extensão (COEPE)
Divisão de Biblioteca (DIBIB)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE
INTELLECTUAL PRODUCTION - CEPPII (PORTARIA No

176/2018/SEI-INPE):
Chairperson:
Dra. Marley Cavalcante de Lima Moscati - Coordenação-Geral de Ciências da Terra
(CGCT)
Members:
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação (CPG)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia, Tecnologia e
Ciência Espaciais (CGCE)
Dr. Rafael Duarte Coelho dos Santos - Coordenação-Geral de Infraestrutura e
Pesquisas Aplicadas (CGIP)
Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Divisão de Biblioteca (DIBIB)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB)
André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB)
ELECTRONIC EDITING:
Ivone Martins - Divisão de Biblioteca (DIBIB)
André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB)

pubtc@sid.inpe.br

sid.inpe.br/mtc-m21c/2021/03.30.15.24-TDI

DATA CUBE ALGORITHM FOR HIGH
SEQUENTIALITY SATELLITE TELEMETRY DATA

ANALYSIS

Yuri Matheus Dias Pereira

Master’s Dissertation of the
Graduate Course in Engineering
and Space Technology/Space
Systems Engineering and
Management, guided by Drs.
Maurício Gonçalves Vieira
Ferreira, and Rodrigo Rocha
Silva, approved in March 25, 2021.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/44DTA5B>

INPE
São José dos Campos

2021

http://urlib.net/

Cataloging in Publication Data

Pereira, Yuri Matheus Dias.
P414a Data cube algorithm for high sequentiality satellite telemetry

data analysis / Yuri Matheus Dias Pereira. – São José dos
Campos : INPE, 2021.

xxiv + 86 p. ; (sid.inpe.br/mtc-m21c/2021/03.30.15.24-TDI)

Dissertation (Master in Engineering and Space
Technology/Space Systems Engineering and Management) –
Instituto Nacional de Pesquisas Espaciais, São José dos Campos,
2021.

Guiding : Drs. Maurício Gonçalves Vieira Ferreira, and
Rodrigo Rocha Silva.

1. Data Cube. 2. Inverted Index. 3. Satellite. 4. Telemetry.
5. Satellite Operations. I.Title.

CDU 629.783:621.398

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

13/04/2021 SEI/MCTI - 6793472 - Ata de Reunião

https://sei.mctic.gov.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=7575746&infra_sist… 1/1

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS
Serviço de Pós-Graduação - SEPGR

DEFESA FINAL DE DISSERTAÇÃO DE YURI MATHEUS DIAS PEREIRA
BANCA Nº 038/2021, REG 144118/2018

No dia 25 de março de 2021, as 09h, Via GOOGLE MEET, o(a) aluno(a) mencionado(a) acima defendeu seu
trabalho final (apresentação oral seguida de arguição) perante uma Banca Examinadora, cujos membros estão
listados abaixo. O(A) aluno(a) foi APROVADO(A) pela Banca Examinadora, por unanimidade, em
cumprimento ao requisito exigido para obtenção do Título de Mestre em Engenharia e Tecnologia
Espaciais/Engenharia e Gerenciamento de Sistemas Espaciais.

Título: “ALGORITMO DE CUBO DE DADOS PARA DADOS DE TELEMETRIA DE SATÉLITE
COM ALTA SEQUENCIALIDADE”

Eu, Walter Abrahao dos Santos, como Presidente da Banca Examinadora, assino esta ATA em nome de todos
os membros, com o consentimento dos mesmos.

Membros da banca:

Dr. Walter Abrahao dos Santos - Presidente - INPE
Dr. Mauricio Gonçaves Vieira Ferreira - Orientador - INPE
Dr. Rodrigo Rocha Silva - Orientador - FATEC
Dr. Milton de Freitas Chagas Junior - Membro Interno - INPE
Dr. José Eduardo Morello Lobo - Membro Externo - UMC

Documento assinado eletronicamente por Walter Abrahão dos Santos, Tecnologista, em
13/04/2021, às 11:37 (horário oficial de Brasília), com fundamento no art. 6º do Decreto nº 8.539, de
8 de outubro de 2015.

A auten�cidade deste documento pode ser conferida no site h�p://sei.mc�c.gov.br/verifica.html,
informando o código verificador 6793472 e o código CRC AC27267C.

Referência: Processo nº 01340.001178/2021-12 SEI nº 6793472

“But I try not to think with my gut. If I’m serious about
understanding the world, thinking with anything besides my brain, as
tempting as that might be, is likely to get me into trouble. It’s OK to

reserve judgment until the evidence is in.”.

Carl Sagan and Ann Druyan
in “The Demon-Haunted World:

Science as a Candle in the Dark”, 1995

v

Ao meu avô Antônio Macena
vii

ACKNOWLEDGEMENTS

Primeiramente gostaria de agradecer a toda a minha família, sem a qual nada disso
seria possível, em especial a minha mãe Xarlene e minha madrinha Araída por
sempre acreditarem em mim, minha irmã favorita do mundo Natália, meu pai Irair,
minhas avós Genoveva e Maria das Graças e meu padrasto Eudes. Também a todos os
inúmeros parentes que me acolheram de alguma forma, seja no Tocantins, em Goiás,
no Distrito Federal ou em São Paulo. Em especial ao meu avô Antônio Macena, que
nos deixou muito cedo em um acidente logo após o início deste trabalho.

Ao Dr. Maurício, por me acolher no INPE, aceitado como aluno e me abrir as
portas do CCS, meu sincero obrigado pela oportunidade e por todo o suporte que
me forneceu.

Ao Dr. Rodrigo, por aceitar um completo desconhecido como aluno, e me ensinar
tantas coisas sobre computação ao longo desse tempo, e pelos puxões de orelha
merecidos.

Aos meus colegas Bruno e Gabriela que aceitaram dividir apartamento comigo, e
me aguentarem por todo esse tempo.

Ao Ítalo, Isomar, Danilo e Johnathan pela amizade, tantos almoços compartilhados
e por serem estarem disponíveis para uma conversa aleatória sobre algum conceito
espacial obscuro de um manual da União Soviética dos anos 70.

As comissões organizadoras do WETE e do CubeDesign que me permitiram ajudar
a organizar esses eventos incríveis, e pelas amizades feitas quando todos trabalham
por um mesmo objetivo.

Ao Jun, Pascote, Maria do Carmo, secretarias e todos os trabalhadores do CCS, pelas
imensa ajuda dentro do prédio do CCS ao longo dos anos e por sempre proverem o
melhor suporte para quem está perdido.

Aos seguranças do INPE, em especial ao Eduardo pelas conversas que passavam da
meia noite.

Aos membros do projeto CITAR por compartilharem tantos almoços e piadas, bem
como informações importantes da área. Nunca iria acreditar que questões do Stack-
Overflow poderiam acabar em código de míssil sem vocês.

ix

A todos os membros da biblioteca do INPE, que ao longo dos anos proveram suporte
para encontrar os melhores livros, e aguentaram minhas constantes visitas para
renovar livros.

Ao INPE e todos os funcionários que proveram todas a infraestrutura necessária
para este trabalho, em especial as secretarias da pós-graduação que estão sempre
disponíveis para responder perguntas.

我慢してくれた雑種に心から感謝します.

E finalmente, a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES) pela bolsa de estudos para executar este trabalho.

x

ABSTRACT

Satellites are monitored by ground teams via telemetry packages, which report the
current status of the equipment and allow them to assess the satellite’s ability to
continue its mission. These telemetry packages compose a large and complex body
of data, with satellites that are operated for several years generating large volumes
of historical data that is still useful for operation activities and needs to be archived.
The volume of historical telemetry data available to the National Institute for Space
Research (INPE) is currently estimated to be at least 3 terabytes in total, with a
tendency to grow in the coming years. With this volume, and considering that the
data analysis on these data is not trivial, requiring expert engineering knowledge, it
is necessary to implement systems to perform queries and analysis on them. In this
work we identify the queries that are of interest to satellite operators, create a multi-
dimensional model for the telemetry data using a data cube model, and then use the
Frag-Cubing data cube computation algorithm as a basis for implementation. First
an approach that uses pre-processing of the selected queries is implemented, where
the dimensions related to the query are filtered out and low-dimensional cubes are
created from them. This approach is compared to the high dimensionality approach
that uses all available dimensions, and finds that, while queries are restricted to
the filtered dimensions, it has a 15% advantage in query time and in the best cases
consumes only 10% of the memory used by the high dimensionality approach. So if
the queries have a low dimensionality, there is advantage in using a pre-processed
cube from disk than running a query on a data cube already built with the high
dimensionality approach. Then an approach based on modifying the Frag-Cubing
inverted index algorithm is experimentally validated, which consists in using the
high-sequentiality characteristic of some satellite telemetry to replace the lists of tu-
ple identifiers (TID list) with lists of intervals.. This approach on high dimensional
data, tested on the queries defined by the operators, uses on average 20% of the
memory that traditional lists use, and is up to 3200% faster to answer queries on
dimensions with high sequentiality, while being up to 400% slower to answer queries
on dimensions with low sequentiality.

Keywords: Data Cube. Inverted Index. Satellite. Telemetry. Satellite Operations.

xi

ALGORITMO DE CUBO DE DADOS PARA DADOS DE
TELEMETRIA DE SATÉLITE COM ALTA SEQUENCIALIDADE

RESUMO

Satélites são monitorados pelas equipes de solo via pacotes de telemetria, que infor-
mam o estado atual dos equipamentos e permitem avaliar a capacidade do satélite de
continuar a sua missão. Esses pacotes de telemetria constituem um corpo de dados
de elevado tamanho e complexidade, com satélites que são operados por vários anos
geram dados históricos de grande volume, ainda úteis para as atividades de oper-
ação e que necessitam de ser arquivados. O volume de dados históricos de telemetria
disponíveis ao Instituto Nacional de Pesquisas Espaciais (INPE) atualmente é esti-
mado em ao menos 3 terabytes no total, com tendência a crescer nos próximos anos.
Com este volume, e considerando que as análises de dados sobre esse arquivos não é
trivial, necessitando de conhecimento especialista de engenharia, é necessário a im-
plementação de sistemas para realizar consultas e análises sobre esses dados. Neste
trabalho é feita a identificação das consultas que são de interesse dos operadores
de satélite, é criada uma modelagem multidimensional para os dados de telemetria
utilizando de cubo de dados e então o algoritmo de computação do cubo de dados
Frag-Cubing é utilizado como base para implementação. Primeiramente uma abor-
dagem de pré-processamento das consultas selecionados é implementada, onde as
dimensões relacionadas a consulta são filtradas e cubos de baixa dimensionalidade
são criados à partir delas. Essa abordagem é comparada com a abordagem de alta
dimensionalidade com todas as dimensões disponíveis, e encontra que, conquanto
que as consultas sejam restritas as dimensões filtradas, tem uma vantagem de 15%
no tempo de consulta e nos melhores casos consumindo apenas 10% de memória
utilizada pela abordagem de alta dimensionalidade. Assim, se as consultas tiverem
uma dimensionalidade baixa, existe vantagem em utilizar um cubo preprocessado
do zero do que executar uma consulta em uma cubo de dados construído com abor-
dagem de alta dimensionalidade. Depois uma abordagem baseada na alteração do
algoritmo de índice invertido do algoritmo Frag-Cubing é experimentalmente vali-
dade, que compõe em utilizar da característica de alta sequencialidade de algumas
telemetrias de satélite para substituir as listas de identificadores de tuplas (TID list)
por listas de intervalos. Essa abordagem sobre os dados de alta dimensionalidade,
testada nas consultas definidas pelos operadores anteriormente, usa em média 20%
da memória que a listas tradicional utiliza, e é até 32x mais rápida para responder
consultas em dimensões com alta sequencialidade, porém sendo até 4x mais lenta
para responder consultas com dimensões com baixa sequencialidade.

Palavras-chave: Cubo de Dados. Índice Invertido. Satélite. Telemetria. Operação de
Satélites.

xiii

LIST OF FIGURES

Page

1.1 Historic telemetry data generation. 2

2.1 Data Cube example. 11
2.2 All subcubes for a three dimensional cube. 12
2.3 Star schema. 13
2.4 Snowflake schema. 13
2.5 Fact Constellation scheme. 14
2.6 OLAP operations in a Data Cube. 16
2.7 Computing the data cube with the Top-Down strategy. 18
2.8 Computing the data cube with the Bottom-Up strategy. 19

3.1 Data flow in a Big Data architecture. 22
3.2 Inverted Index computation example. 26
3.3 Shell Fragmentation example. 27

4.1 SCD2. 32
4.2 General Data Cube Architecture. 33
4.3 General Data Cube Architecture. 35

5.1 Query 1 results. 47
5.2 Query 2 results. 48
5.3 Query 3 results. 49
5.4 Query 4 results. 50
5.5 Query 5 results. 51

6.1 IntervalIntersection example. 57
6.2 IntervalFrag for Q1 and Q2. 60
6.3 IntervalFrag for Q3 and Q4. 61
6.4 IntervalFrag for Q5. 61
6.5 Comparison: Time to Cube. 62
6.6 Comparison: Baseline memory. 63

A.1 Set Intersection Algorithm results. 85

xv

LIST OF TABLES

Page

3.1 Operations Data. 21
3.2 Satellite Operators and Big Data Architectures. 24

5.1 Telemetries overview. 41
5.2 Queries overview. 43
5.3 Cube representations used in the experiment. 45

6.1 IntervalFrag x Frag-Cubing, memory consumption in KiB. 59
6.2 IntervalFrag x Frag-Cubing, query response times in ms. 59

7.1 Preferred algorithm to use. 65

8.1 Resulting published work. 68

A.1 Set Intersection Results, in milliseconds. 84

xvii

LIST OF ABBREVIATIONS

DW – Data Warehouse
OLAP – On-Line Analytical Processing
OLPT – On-Line Transaction Processing
NoSQL – Not Only SQL
TAD – Abstract Data Type
ROLAP – Relational OLAP
MOLAP – Multidimensional OLAP
HOLAP – Hybrid OLAP
DBMS – Data Base Management System
TLE – Two Line Element
TID – Tuple Identifier
CSV – Comma-separated Value
INPE – National Institute for Space Research
CCS – Satellite Control Center
SCD – Data Collection Satellite
CBERS – China-Brazil Earth Resources Satellite
AMZ – Amazonia Satellite
NASA – National Aeronautics and Space Administration
NOAA – National Oceanic and Atmospheric Administration
L-3 – Level 3
ESA – European Space Operations Centre
EUMETSAT – European Organisation for the Exploitation of Meteorological Satellites
AWS – Amazon Web Services
HDFS – Hadoop Distributed File System
CSMT – China Satellite Marine Track & Control Department
SISET – Shandong Institute of Space Electronic Technology
CDM – Conjuction Data Message

xix

CONTENTS

Page

1 INTRODUCTION . 1
1.1 Research objectives . 4
1.2 Method . 5
1.3 Contributions . 5
1.4 Document structure . 6

2 THEORETICAL BACKGROUND 7
2.1 Satellite operations . 7
2.2 Big data . 7
2.3 Data warehouse . 8
2.4 OLAP . 9
2.5 Data cube . 10
2.5.1 Data cube cells . 11
2.5.2 Dimensional modelling . 12
2.5.3 Concept hierarchies . 13
2.5.4 Measures . 14
2.5.5 OLAP operations . 15
2.5.6 Data cube computation . 15

3 RELATED WORKS . 21
3.1 Operations data . 21
3.1.1 Data flow . 21
3.2 Data analysis by satellite operators . 23
3.2.1 Data analysis at INPE . 25
3.3 Data cube computation . 25
3.3.1 Frag-Cubing . 25
3.3.2 Other algorithms . 28

4 METHOD . 31
4.1 Objectives . 31
4.2 Case study: SCD2 . 31
4.3 Proposed architecture . 32
4.3.1 Proposed changes . 33

xxi

5 QUERY PARTITION . 37
5.1 Algorithm . 37
5.1.1 Aggregation generator . 37
5.1.2 Relationship strength calculation . 38
5.2 Queries . 40
5.2.1 Q1 . 41
5.2.2 Q2 . 42
5.2.3 Q3 . 42
5.2.4 Q4 . 42
5.2.5 Q5 . 43
5.2.6 Summary . 43
5.3 Experimental validation . 43
5.3.1 Dataset and method . 44
5.3.2 Results . 45
5.3.2.1 Q1 . 46
5.3.2.2 Q2 . 47
5.3.2.3 Q3 . 48
5.3.2.4 Q4 . 49
5.3.2.5 Q5 . 50
5.4 Summary and analysis . 51

6 INTERVALFRAG . 53
6.1 Using intervals in inverted indexes . 53
6.2 Algorithm . 54
6.2.1 IntervalInsertion . 55
6.2.2 IntervalIntersection . 56
6.3 Results . 58
6.4 Summary . 63

7 ANALYSIS AND DISCUSSION 65

8 CONCLUSIONS . 67
8.1 Main contributions . 67
8.2 Future work . 68
8.3 Final thoughts . 69

xxii

REFERENCES . 71

APPENDIX A - INTERSECTION ALGORITHMS 81
A.1 Problem . 81
A.2 Algorithms . 81
A.3 Experiments . 84

xxiii

1 INTRODUCTION

The Satellite Control Center (CCS) at the National Institute for Space Research
(INPE) currently operates the following satellites: the Data Collection Satellite
(SCD) family, comprised of the satellites SCD1 and SCD2; and the China-Brazil
Earth Resources Satellite (CBERS) family, currently operating the fifth and the
sixth satellites in the family, CBERS-4 and CBERS-4A. Each satellite pass by
INPE’s ground stations, a period called overpass in which the CCS receives satellite
health via telemetry data, and sends telecommands to control the satellite. This
entails maintenance and operation capabilities, as the orbit and equipment health
need to be measured and adjusted for each satellite, with decisions being made by
engineers (AZEVEDO; AMBRÓSIO, 2010).

Telemetry data are composed of on-board sensors and equipment health measures
gathered by the On-Board Computer (OBC), like battery current, system voltage,
whether a given equipment is active or not, and any other data that is necessary for
the satellite operators to execute the operation procedures (LARSON; WERTZ, 1999).
These data need to be stored for the entire life cycle of the satellite, as long-lived
satellites that work for decades generate a considerable amount of data, which must
be analyzed by the operators. For the SCD family, SCD1 has been operational for
25 years, even if in an degraded state, and keep generating data of about 7GB per
year, with an average of 8 station passes per day.

However SCD1 is only a small satellite, tracking only about 100 different telemetries,
and more complex satellites like the ones from the CBERS family will track over
4000 telemetries at once. With the future launch of the Amazônia-1 satellite, INPE
will be operating 5 satellites at once (CBERS-4, CBERS-4A, AMZ-1, SCD1 and
SCD2), which generates pressure to the operation activities (JULIO et al., 2017).

Figure 1.1 shows a simple statistic of the expected volume of telemetry data being
handled by CCS since the launch of SCD1 in 1993, and with the added volume of the
CBERS and AMZ programs. This assumes a constant rate for the telemetry data,
however closely tracks the average raw engineering data generation. The majority
of these data are not available for analysis, as every few years it is archived. Thus
the operators only deal with data that goes a few months back for each satellite,
and not with the full volume for each, simplifying the task. It is necessary to be
careful so that the data does not become “dark data”, a concept meaning data is
not available for all users that could benefit from it (HEIDORN, 2008).

1

Figure 1.1 - Historic telemetry data generation.

0

1000

2000

3000

4000

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

H
is

to
ric

 S
iz

e
(G

B
)

Estimated telemetry data volume generated by INPE since the first satellite launch.
SOURCE: Author.

These data can be classified as Big Data, as they represent a considerable volume,
are constantly generated, have differing formats, their analysis is of high value and
there is some uncertainty as to quality of the data, as not only communication
problems occurs, the natural degradation of equipments can mislead users. These
characteristics are encapsulated by the five Vs of Big Data: Volume, Variety, Velocity,
Value and Veracity (EMANI et al., 2015).

Even if all of these data were available for the satellite operators at once, there is
still the problem of querying a database with terabytes of data, in which queries
over a long timespan or over too many telemetries would not be trivial and could
take hours to complete.

In order to make the operator work feasible, database systems are deployed that
enable the visualization of telemetry points over time, get the data in a specific

2

format and execute query operations on it. However, to go beyond previously defined
queries and visualizations, these systems require the use of a query language, which
further requires operator training and experience to know what and how to ask, and
how to format the result as to make it understandable for other mission members.
This is further complicated by each satellite and telemetry format being different:
it is necessary to understand how each individual spacecraft behaves and how the
telemetries communicate that behavior to perform analysis on the data (UHLIG et

al., 2015).

An efficient solution is to create a Data Warehouse (DW) suited to the analysis of the
data, tailored to answer the most relevant and frequent domain questions about the
data, which is extended by implementing On-Line Analytical Processing (OLAP),
that aims to enable the exploratory analysis of the data in a fast and user-centric
way (HAN et al., 2011; VISWANATHAN; SCHNEIDER, 2014). This has been proposed
and implemented for the satellite operations and ground segment with good results
(ADAMSKI, 2016; YVERNES, 2018).

In order to allow for fast OLAP operations on a Data Warehouse, the data cube
has been created as a query operator to pre-compute and store multidimensional
aggregations, enabling users to perform multidimensional analysis on-line, and have
since played an essential role in creating stable solutions for Data Warehouses (GRAY

et al., 1996). However, it is often necessary to materialize a part of the data cube
beforehand, as this provides a way to pre-compute and store multi-dimensional ag-
gregates and operations, enabling for multi-dimensional analysis to be performed on
the fly (on-line).

A data cube is constituted of dimensions and measures: dimensions relate to the
constituent attributes of the data, determining its context; while measures are the
calculated relationships between the dimensions. Each dimension can have different
values at different data points, the number of distinct values in the dimension is
defined as the dimension’s cardinality (denoted by Ci for a dimension i). The data
cube is based on the tuples of the data, as the cube operator will generalize groups
of values in each dimension as part of the concept of aggregate cells that have
those values in those dimensions, thus generating the cells of the cube (HAN et al.,
2011). The tuples can be of any value, and the distribution of these values within a
dimension is called the skew: if values are repeated too often (Ci � n, for a dimension
i), the dimension is said to have a high skew.

The cells that are related to some dimensions form a cuboid: one of the possible sub-

3

sets of the combination of dimensions, with a resulting measure computed between
the data, resulting in the relationship between those dimensions. These cuboids will
have the size of the cardinalities of each constituent dimensions multiplied, and they
can be 0-dimensional up to n-dimensional, for a number of n dimensions.

For that reason it is necessary to choose an appropriate data cube computation
algorithm, of which several have been proposed to partially, or fully, materialize a
data cube, like (DOKA et al., 2011; ??; LI; WANG, 2005; LI et al., 2004; XIN et al.,
2007). To say that a cube is fully materialized means that all the 1-dimensional to
n-dimensional cuboids have been pre-computed, with partial materialization pre-
computing some of those cuboids, and no materialization pre-computing 0 cuboids.

However, one of the main limitations that these algorithms face is keeping system
memory consumption low: as it is a 2d storage operation, with d being the number
of dimensions, it is often not possible to fully materialize the data cube, making
partial materialization strategies necessary.

The work of Li et al. (2004) presents Frag-Cubing, an algorithm to materialize the
minimal data cube necessary to answer queries with few dimensions, while using
less memory to answer the queries that need more dimensions. Frag-Cubing uses an
inverted index schema that excels at answering queries from data that has a high
skew: data that focuses on values that are repeated often are compressed into fewer
indices, that can then be used to more efficiently answer queries. In Frag-Cubing,
each attribute value of a tuple is associated with 1 to n tuple identifiers (TID).
Point queries with two or more attribute values are answered by intersecting tuple
identifier lists of these attribute values.

Though the choice of the data cube construction algorithm can reduce the memory
and storage space usage of the data warehouse, it is still necessary to adapt the data
into schemas to further reduce the dimensionality and improve the organization of
the data.

1.1 Research objectives

The goal of this thesis is to create a data cube base to represent satellite telemetry
data along a mission, using the distribution of the telemetry values to ease analysis
and querying of the satellite’s state by satellite engineers.

Specific objectives of this work include:

4

• To test two approaches of reducing the memory usage of the Frag-Cubing
algorithm, with the goal of reducing implementation requirements for a
data warehouse based on a data cube, using the telemetry value distri-
bution of satellite telemetry data. It will use the information gathered by
analysing the satellite telemetries to select and optimize queries, taking
into account the high dimensionality, high number of tuples, high skew
and high cardinality of the base data.

• To probe whether the use of inverted index compression via list intervals
can improve the memory consumption and query response times for the
Frag-Cubing algorithm. With the results being evaluated against the Frag-
Cubing original implementation, it will be possible to know when to use
each of the alternatives and decide for which dimensions and/or kinds of
data they are applicable.

1.2 Method

In order to evaluate whether the approaches are useful for a satellite operator, first
an algorithm will be implemented to find relationships between telemetries and then
this will be evaluated with an experienced satellite operator as to how useful it is.
The queries selected will be filtered, and an approach of pre-processing the input
data will be executed, were the data are filtered to only the dimensions that will be
queried and then evaluated as to whether that improves query response times and
memory consumption for each type of query.

This will be experimentally evaluated on data from one of INPE’s satellite, notably
SCD2, for which the Satellite Control Center (CCS) has allowed the use of over 4
years of satellite telemetry data, totalling over 24GB of raw data and associated
documentation, with 135 telemetries being tracked.

1.3 Contributions

This work aims to use open source software to define an improved data cube algo-
rithm, and thus it is expected to save money and time for space organizations that
operate satellites and need to implement their own telemetry data analysis struc-
tures to analyse data. This work is being performed using open source software,
open literature and aims to publish the satellite telemetry data used as a case study
for others in the end. Furthermore, all analyses and experiments are designed to be
reproducible via open source software repository.

5

For the Frag-Cubing-derived algorithms, this also shows that simpler strategies can
be used to improve memory consumption and query response times, first by simple
pre-processing of frequent queries and then by changing the inverted index compres-
sion strategy of the algorithm to drastically reduce memory usage.

1.4 Document structure

The remainder of this documented is structured as follows:

• Chapter 2: Presents the theoretical background on satellite operations,
Data Warehouse, Big Data and Data Cube approaches necessary for the
understanding of this work;

• Chapter 3: Related works in the literature will be presented and reviewed,
as well as data cube concepts close to this one, and how other satellite
operators are solving these problems with what technologies;

• Chapter 4: Presents the method, the case study experimental setup with
the SCD2 satellite and showcases the sample data warehouse-based archi-
tectural vision for this work and operation activities;

• Chapter 5: Presents the Query Partitioning algorithm, and the results of
filtering the data by the query related dimensions;

• Chapter 6: Presents the IntervalFrag algorithm and the experimental val-
idation;

• Chapter 7: Presents a critical analysis of the results, where each algorithm
is better suited and where they excelled or had drawbacks;

• Chapter 8: Concludes the thesis, summarizing the usefulness of the results
and future work that can be discussed from them.

6

2 THEORETICAL BACKGROUND

This chapter presents the theoretical background necessary to understand the con-
cepts in this thesis, starting with satellite operations, the definitions of Big Data,
Data Warehouse, OLAP and Data Cubes.

2.1 Satellite operations

A satellite is divided into two modules: the service module and the payload. The
service module is composed of everything necessary for the operation of the on-board
equipment, such as the power supply system, the ground communication system, the
on-board computer, etc. The payload is composed of all the necessary equipment to
fulfill the mission objectives, these being sensors, cameras, telescopes, etc (LARSON;

WERTZ, 1999).

A satellite generates two different types of data: payload data and telemetry data.
Payload data is the data generated to fulfill the mission of the satellite, and it can be
photos taken for remote sensing, photos taken by telescopes, communication data if
this is the focus of the mission among others (LARSON; WERTZ, 1999). The telemetry
data are the monitoring data of the health status and good operation of the satellite
systems. These data are collected by the satellite’s on-board computer, and are sent
to the ground stations via telecommunication systems.

The telemetry data usually consist of sensor measurements on the satellite equip-
ment, information collected by the on-board computer (such as whether an instru-
ment is turned on or not), and other data whose collection has been defined as
relevant to the operation of the satellite. Depending on the mission, other mea-
surements can be classified as telemetry, e.g. satellite-facing cameras, radars for the
detection of possible collisions, etc (KRAG et al., 2017).

This data must be analyzed by satellite operators, who are responsible for monitoring
and operating the satellite, on the ground after reception at the control center. This
analysis aims to ensure that the satellite is performing the tasks as it should, and
that its state of health allows the continuation of the mission.

2.2 Big data

The concept of Big Data is still evolving, and in this work the 5 Vs definition will
be used: Volume, Variety, Velocity, Value and Veracity (EMANI et al., 2015).

7

• Volume: This term generally specifies an amount of data in which a tradi-
tional database management system is ineffective. It is important to note
that this is not only about the storage of data, but also about its process-
ing (BOUSSOUF et al., 2018). Using a large volume of data usually implies in
better models, which are then hoped to produce better analyses, justifying
the collection of a large amount of data.

• Variety: The data has multiple sources, with different formats, without a
standardized modeling scheme, such as data coming from computertexts,
sensor data, multimedia data, etc. As a consequence, these data should be
used as transparently as possible in the analysis.

• Velocity: data is made available very quickly, and should be analyzed
as quickly as possible. This implies that the data might be stored and
analyzed even in real time.

• Value: data must be stored to create some value for its users, be it eco-
nomic, scientific, social, organizational, etc.

• Veracity: the data has no guarantees as to its quality, such as incon-
sistencies and lack of accuracy, but the analysis must be of high quality
anyway.

These V’s are related to the construction of a Data Warehouse, and can also be seen
as requirements for data set characterized by Big Data (ZHANG et al., 2017). There
is also a relationship with the idea of “NoSQL” (“Not only SQL”), where not only
relational database systems are considered, but also other paradigms are used, such
as document oriented, key and value, etc (BIMONTE, 2016).

2.3 Data warehouse

A Data Warehouse (DW) is a subject oriented, integrated, time-varying or time par-
titioned, non-volatile data repository that assists the decision making process (IN-

MON; HACKATHORN, 1994). This definition can be divided into:

• Subject oriented: the DW is used for the analysis of a specific area. For
example, a DW for telemetry data might just be useful for the operators,
but not specific enough for engineering.

• Integrated: the DW must integrate data from multiple sources in a struc-
tured way. For example, even if there are two different representations for
the same product, the DW should have only one representation. This re-
quires the use of data cleaning and integration techniques in order to ensure

8

data consistency.
• Time-varying or time partitioned: the DW must explicitly or implic-

itly contain the time perspective. This means that DW has historical data
and they can be consulted during the analysis. For example, one might
want to know data from days, months or years ago.

• Non-volatile: once inside DW, the data is not removed or updated, being
a requirement for consulting historical data.

These features differentiate the Data Warehouse from other repository systems such
as database systems, transaction processing systems and file systems (HAN et al.,
2011).

A DW is generally represented by a dimensional model that allows efficiency in
data organization and management information retrieval (KIMBALL; ROSS, 2013).
Furthermore, this model has a few definitions: facts, dimensions and measures. A fact
corresponds to the business subject to be analyzed, each dimension is a visualization
perspective of the business subject and measures are numerical values that quantify
the business subject. One of the dimensions is always temporal to allow the analysis
of the subject over time.

2.4 OLAP

On-line Analytical Processing (OLAP) is a term that refers to a set of tools that are
used to summarize, consolidate, visualize, apply formulations and synthesize data
according to multiple dimensions (CODD et al., 1998).

An OLAP system allows the response of multi-dimensional queries using data stored
in the Data Warehouse (KIMBALL; ROSS, 2013), and the main features are (BI-
MONTE, 2016):

• Online queries: must be made Online, that is, in time for the user.
• Multidimensional queries: They are defined using the dimensions and

measures provided by the Data Warehouse, which expect high quality data.
• Simple representation: Query results must be represented using tables

and graphs, because end users are usually decision makers who need visu-
alizations that are relevant to the subject.

• Exploratory: queries are used in an exploratory way, since users generally
do not know in advance all the data available for queries.

9

Each OLAP tool must manipulate a new Abstract Data Type (ADT), called a data
cube, using specific strategies due to the way the data is stored, being classified
in (MOREIRA; LIMA, 2012):

• Relational OLAP (ROLAP): use relational Database Management Sys-
tems (Data base Management System - DBMS) for the management and
storage of data cubes. ROLAP tools include optimizations for each DBMS,
implementation of navigation logic in aggregations, services and additional
tools;

• Multidimensional OLAP (MOLAP): implement multidimensional
data structures to store data cubes in main memory or in external memory.
No relational repositories are used to store multidimensional data and the
navigation logic is already integrated into the proposed structure;

• Hybrid OLAP (HOLAP): combine ROLAP and MOLAP techniques,
where detailed data is stored in a relational database (ROLAP), and ag-
gregations are stored in multidimensional data structures (MOLAP).

It is important to highlight the difference between OLAP and Online Transaction
Processing (OLPT), since common database systems use only OLTP, which has the
purpose of performing valid transactions and processing queries. This covers the vast
majority of day-to-day operations, such as stock control, banking operations, etc.,
serving various users of an organization. OLAP is used by decision makers and data
analysts and is geared towards higher level decisions in the organization (HAN et al.,
2011).

2.5 Data cube

The data cube was originally created as a relational operator that generates all the
possible combinations of its attributes according to a measure (GRAY et al., 1996).

The structure of the data cube allows the data to be modeled and visualized in
multiple dimensions, and it is characterized by dimensions and measures. A mea-
surement is an attribute whose values are calculated by the relationship between
the dimensions, which is calculated using aggregation functions such as sum, count,
average, mode, median, etc. A dimension is made by the entities that compose the
data, determining the context of the subject in question. A dimension can also be
divided into members, which can have a hierarchy, such as a time dimension divided
in day, month and year (HAN et al., 2011).

10

The organization of a data cube allows the user the flexibility to visualize the data
from different perspectives, since the cube operator generates combinations through
the concept of the value ALL, where this concept represents the aggregation of all
possible combinations of a set of attribute values. Operations in data cubes exist in
order to materialize these different views, allowing search and interactive analysis of
stored data (HAN et al., 2011).

A data cube is composed of cells and each cell has values for each dimension, in-
cluding ALL, and values for the measurements. Figure 2.1 shows an example of a
data cube. The value of a measure is computed for a given cell using lower aggrega-
tion levels to generate the values of the higher aggregation levels in the Top-down
strategy, with the inverse order used in Bottom-up.

Figure 2.1 - Data Cube example.

Satellite

sat1

sat1

Telemetry

TM1

TM2

Values

23

20

Satellite

sat1

sat1

sat1

ALL

ALL

ALL

Telemetry

TM1

TM2

ALL

TM1

TM2

ALL

Values

23

20

43

23

20

43

Cube

SOURCE: Author.

2.5.1 Data cube cells

A data cube is composed of several subcubes, which are all possible levels of aggrega-
tion in the specified dimensions. Subcubes are composed of base cells and aggregated
cells, and an aggregated cell is a cell that uses the special value ALL (“∗”) to demon-
strate that it is summarizing values in one or more dimensions. A base cell does not
use the ALL notation, being composed of the lowest level of aggregation (LIMA,
2009). Figure 2.2 shows all levels of aggregation of a cube composed of dimensions
A, B and C, from the most generic (apex) to the most specific (base).

Formally, assuming a n-dimensional data cube, a cell a of any subcube is defined by
a = (a1, a2, a3, . . . , an,measures). The cell is m-dimensional (from a subcube with
m dimensions), if exactly m, with (m ≤ n), values between (a1, a2, a3, . . . , an) are
not “∗”. If m = n, then a is a base cell, otherwise (m < n), it is an aggregate cell.

11

Figure 2.2 - All subcubes for a three dimensional cube.

ABC

AB AC BC

A B C

ALL 0-D (base)

1-D

2-D

3-D (apex)

A Hasse Diagram of a data cube with three dimensions A, B and C.
SOURCE: Author.

A descending-ancestral relationship can exist between cells. In a n-dimensional data
cube, a cell a = (a1, a2, a3, . . . , an,measuresa) with level i is an ancestor of a cell
b = (b1, b2, b3, . . . , bn,measuresb) of level j, and b is a descendant of a, if and only
if i < j and 1 ≤ m ≤ n, where am = bm whenever am 6= ∗. In particular, a a cell is
called the parent of a b cell, and b the child of a, if and only if j = i + 1 and b is a
descendant of a (HAN et al., 2011).

2.5.2 Dimensional modelling

There are three main schemes for the dimensional modeling of a data cube: Star
Schema, Snowflake Schema and Fact Constellation. The star schema is the most
used, as it contains a central table called the fact table, where most of the data is lo-
cated, with a smaller set of tables, called dimension tables, for the other dimensions.
Figure 2.3 shows an example of a star scheme.

The snowflake scheme is a variation of the star scheme, where some dimensions are
normalized, dividing the data of the dimension tables into other tables. This has the
advantages of eliminating redundancies in the dimension tables, but it creates prob-
lems during the execution of queries since it is necessary to perform join operations
with the new tables. Figure 2.4 shows an example of a snowflake scheme.

The Fact Constellation uses multiple fact tables, like multiple star schemas but
sharing dimension tables, leading to its name as a group of stars. Figure 2.5 shows
an example of a fact constellation scheme.

12

Figure 2.3 - Star schema.

SOURCE: Author.

Figure 2.4 - Snowflake schema.

SOURCE: Author.

2.5.3 Concept hierarchies

A concept hierarchy is used to define a mapping sequence between a set of low-level
concepts and a set of high-level, more general concepts. It is a style of grouping and
discretization, because it groups the values in order to reduce the cardinality of a
dimension (HAN et al., 2011). They help make the analysis easier to understand, as

13

Figure 2.5 - Fact Constellation scheme.

SOURCE: Author.

the operations translate the low-level data into a representation that is easier for
the end user, thus facilitating the execution of queries and their subsequent use.

2.5.4 Measures

Each cell of a cube is defined as a pair 〈(d1, d2, . . . , dn),measures〉, where
(d1, d2, . . . , dn) represent the possible combinations of attribute values over dimen-
sions. A measure is calculated for a certain cell by aggregating the data correspond-
ing to the combination of dimensions and values (HAN et al., 2011). Measurements
can be classified into three types: distributive, algebraic and holistic.

A distributive measure is a measure whose calculation can be partitioned and then
combined, and the result would be the same if the calculation was performed on the
entire data set. For example, the sum function is distributive: dividing the N data
into n sets, and making the sum of each n set, will have the same result as if it were
done directly over N .

An algebraic measure is a measure that can be calculated with two or more distribu-

14

tive measures. For example, a measure of average can be calculated by dividing the
measure sum by the measure count, which are both distributive.

A measure is holistic if there is no algebraic measure with M arguments that per-
forms the computation. This means that computing cannot be partitioned, with
exact values obtained only if the measure is applied to all data. Some examples are
the measures of mode, standard deviation and median (HAN et al., 2011).

2.5.5 OLAP operations

To perform queries in the Data Warehouse, it is necessary to use some operations
on the data cube to obtain the appropriate results. These queries must also be
able to go through the hierarchy of concepts of each dimension, as well as follow
the dimensional model of the cube, in order to offer a user-friendly interface for
interactive analysis (HAN et al., 2011). Some operations are exemplified in Figure 2.6,
but they usually are:

• Roll-up: performs aggregation in the data cube, either by navigating the
concept hierarchy from a specific level concepts to a more generic one, or
by reducing a dimension.

• Drill-down: the inverse of the roll-up operation, navigates in the hierarchy
of concepts from the most generic level to the most specific level, or adds
dimensions to the current cube.

• Slice: performs a selection in a cube dimension, resulting in a subcube
focused on that dimension.

• Dice: defines a subcube by making a selection (slice) in two or more di-
mensions.

• Pivot: also called rotation, it allows changing the position of the dimensions
in view, changing rows to columns and vice versa.

Depending on the OLAP system, it is possible to execute other operations, like drill-
across between multiple fact tables, and drill-through where queries are executed
directly on the low-level representation of the data (HAN et al., 2011).

2.5.6 Data cube computation

Data cube computation is an essential task, as pre-computing all or part of a data
cube can significantly increase DW performance. However, this task has exponential
complexity in relation to the number of dimensions, being called materialization,

15

Figure 2.6 - OLAP operations in a Data Cube.

34
55

40 21 31

33.42342

41 19.5 32.5

21 15 35
40 50 60

32
64

Satellite

Time

Telemetry
TM1 TM2 TM3

2018

SCD1
SCD2
CBERS1

2019

2020

Slice

Roll-up

Drill-Down

Dice Satellite

Time

Jan

Fev

Mar

Telemetry

Abr

Satellite

Time
2000's

2010's

Telemetry

Time

Pivot

19.5

23
21

41

42
40

32.5

33.4
31

2019

2018

Time

2020

TM1 TM2 TM3
Telemetry

42

23
33.4

41

19.5
32.5

40

21
31

TM2

TM1Telemetry

TM3

2018 20192020

21
21

3442

40 21

23

Telemetry

Time

Satellite

2020

TM1

SCD1

TM2

2019

SCD2

Common OLAP operations on a three-dimensional data cube with Satellite, Time and
Telemetry dimensions.

SOURCE: Author.

with complete materialization requiring a large number of cells, and therefore a
high consumption of memory and time (HAN et al., 2011).

The original calculation of the data cube computation was proposed by Gray
et al. (1996), being: given an input relation R with tuples of size n,
the number of subcubes that can be generated is 2n, where n is the
number of dimensions of the cube. For example, assuming a cube with
three dimensions Satellite, Telemetry, Value, we have 23 = 8 possi-
ble subcubes: {(satellite, telemetry, value), (satellite, value), (satellite, telemetry),
(telemetry, value), (telemetry), (value), (satellite), ∅}, with ∅ denoting the empty
grouping (base cell, dimensions are not grouped).

16

However, in practice, dimensions can have associated concept hierarchies, as for the
time dimension: “day<month<quarter<semester<year’. For a cube with n dimen-
sions with multiple concept hierarchies, the total number of subcubes is shown in
Equation 2.1.

subcubes =
n∏

i=1
(Li + 1) (2.1)

Where Li is the number of concept levels of the i dimension. It is necessary to add
one to the Equation 2.1 to denote the virtual level ALL. The size of each subcube
also depends on the cardinality of each dimension, that is, the number of distinct
values. While the number of dimensions, concept hierarchies, and cardinality of the
cube increases, they also increase the space requirements exponentially, being known
as the Curse of Dimensionality in computing.

To be able to answer the queries properly, it is necessary to choose a method for
subcube computing: non-materialisation, complete materialisation and partial ma-
terialisation.

In non-materialisation, the aggregated subcubes are not pre-computed, so the ag-
gregations are computed in query time, which can be extremely slow, but has the
lowest memory consumption.

Complete materialization computes all possible aggregations of the cube, generating
a complete data cube. This method generates the best response times, because the
aggregations have already been computed, but it requires a large amount of memory.

Partial materialization only computes a selected subset of subcubes, and there are
several different techniques for selecting the subcubes to be computed. One of them
is to compute all the subcubes that contain only cells that satisfy a given crite-
rion, specified by the user. These cubes are called iceberg (BEYER; RAMAKRISHNAN,
1999).

Another technique is to compute small cubes, usually between 3 and 5 dimensions,
to form complete cubes. To answer queries with more dimensions, the combinations
between the small subcubes are aggregated. This technique is called shell fragment,
and the cube is called cube shell (LI et al., 2004).

A data cube where cells with identical measurements are encapsulated in a single

17

abstraction, called a closed cell is called a closed cube (DONG et al., 2006), or quotient
cube (LAKSHMANAN et al., 2002).

The choice of partial materialization depends on the required balance between re-
sponse time and storage space. However, full cube computation remains relevant,
and advances in partial cube computation are generally adopted in full cube com-
putation. There is also the problem of updating the cube, as each update can cause
a partial or complete recomputation of the cube to maintain the correct measure-
ments.

From a base cube, the data cube computation can use the Top-down or Bottom-up
strategy for the generation of the remaining subcubes (HAN et al., 2011).

Figure 2.7 shows the generation of a four-dimensional data cube by the Top-down
strategy. ABCD being a base cube, the three dimension subcubes are: ABC, ABD,
ACD and BCD; which can use the results of the base cube to be computed.

Figure 2.7 - Computing the data cube with the Top-Down strategy.

SOURCE: Silva (2015).

The results of computing the ACD subcube can be used to compute AD, which
consequently can be used to compute A. This shared computation allows the Top-
down strategy to compute aggregations in multiple dimensions. The intermediate
aggregate values can be reused for computing successive descendant subcubes.

Figure 2.8 shows the generation of a 4-dimensional data cube using the Bottom-
up strategy. Subcubes with few dimensions become parents of subcubes with more
dimensions. Unfortunately, the shared computation used in the Top-down strategy

18

cannot be applied when using the Bottom-up strategy, so each descending subcube
needs to be computed from scratch.

The results of the ACD subcube computation can be used to compute AD, which
consequently can be used to compute A. This shared computing allows the Top-
down strategy to compute aggregations in multiple dimensions. The intermediate
aggregated values can be reused for the computation of successive descending sub-
cubes.

Figure 2.8 shows the generation of a 4-dimensional data cube through the Bottom-up
strategy. Low dimensional subcubes become parents of more dimensioned subcubes.
Unfortunately, the shared computing used in the Top-down strategy cannot be ap-
plied when using the Bottom-up strategy, so each descending subcube needs to be
computed from the beginning.

Figure 2.8 - Computing the data cube with the Bottom-Up strategy.

SOURCE: Silva (2015).

19

3 RELATED WORKS

In this section the related works will be presented, and they can be divided into two
sections: the Big Data solutions from other operators, and the algorithms for the
construction of data cubes with high cardinalities.

3.1 Operations data

Table 3.1 shows the common data types used and generated by satellite operators,
their origin and the common format for communication. These data are either avail-
able to the satellite, or to the satellite operators in some way.

Table 3.1 - Operations Data.

Data Type Source Format
On-Board sensors Satellite Equipment Tables, CSV
Computer Logs On-Board computer Text (Logs)
Multimedia Camera MP4, JPG, RAW

Orbital Parameters Operations and Tracking TLE, text, tables
Associated documentation Operators, Engineering Text (Word, Excel, PDF)

Space Weather Space or ground based
information Text, tables, warnings

Situational Awareness Radars, US-STRACOM,
etc CDM, text, tables, warnings

SOURCE: Adapted from Zhang et al. (2017)

For this work, only the data from the on-board sensors will be considered, as the
other data in this table can considered for a larger data management effort by the
operator organization, however they are out of scope.

3.1.1 Data flow

Based on previous works and on the relevant data, Figure 3.1 shows a sample data
flow expected of a Big Data architecture for satellite operators. This flow is split
into five phase that go from the source of the data to their final product analysis,
and this work will only showcase the flow based on the correlated works, with each
phase being:

21

Figure 3.1 - Data flow in a Big Data architecture.

Collection Analysis PresentationStoragePreparation

Satellite Pre-processing

Decommutation

Transformation

Database

Algorithms

Queries

Visualizations

Analysis Results

Reports

Satellite Operators

Others

SOURCE: Adapted from Zhang et al. (2017).

• Collection: where the data are collected at their source (satellite, ground
sensors, etc). This phase treat where and how to collect the data, as well
as which data are important enough to be collected. The source here can
be a third party, another department or available through other means.

• Preparation: the relevant data are selected and the necessary transfor-
mations to insert them into the database are peformed. This phase treats
the specific format of the data, doing cleaning, quality control and rele-
vance for analysis, among others. The objective is to guarantee the quality,
relevance and adequacy of the data to the database.

• Storage: after processing, the high quality data are stored in a database,
where they will be available for analysis. At this point any data storage
means are used, treating only how these data are stored and how they will
be available for analysis.

• Analysis: queries and algorithms will be executed on the data, with the
assurance and availability of high quality data. This can range from simple
queries (“what’s the value of telemetry X during pass Y?”), to the use of
complex algorithms (“predict the values of telemetry X for the next three
passes on station Z”).

• Presentation: analysis and algorithmic results are displayed to their end
users. These can range from simple graphs to complex reports, as well as
the result of algorithms, or anything that reaches the decision makers.

22

The works of Zhang et al. (2017), Mateik et al. (2017) and Boussouf et al. (2018)
have this process the best well defined out of all presented articles.

3.2 Data analysis by satellite operators

Table 3.2 shows some recent published work made by satellite operators about the
architectures that they use to process and analyze satellite data.

Their common objective is to ease the satellite operator activities by means of
anomaly detection algorithms and telemetry bounds checking. Some operators in
this list are responsible for constellations of complex satellites, like remote sensing
and communications, which are only cost-effective with a certain degree of automa-
tion and maturity for satellite operators.

These articles are related only technologies that are used by the operators and
not necessarily by the mission exploitation, as the housekeeping telemetry is on a
different data ingestion pipeline than the payload data, as shown in Mateik et al.
(2017) and Adamski (2016).

Some of these do not shown complete infrastructure for the entire data flow, like Fer-
nández et al. (2017) and Trollope et al. (2018) that use ad-hoc scripting, and focus
on only one part of the data flow.

In Yvernes (2018) the authors showcase some OLAP queries and the use of a data
cube, having used dimensional modelling to aid the operation of a satellite constel-
lation. However, this work only presents at a very high level their methodology, and
mention that the work was performed only on at the modelling level to be integrated
with other tools, not showing the rest of the infrastructure needed.

23

Table 3.2 - Satellite Operators and Big Data Architectures.

Reference Operator Tool Technologies

(ADAMSKI, 2016) L3 (EUA) InControl

Hadoop, Spark,
HBase, MongoDB,
Cassandra, Amazon

AWS

(BOUSSOUF et al., 2018) Airbus Dynaworks
Hadoop, Spark,
HDFS, HBase,

PARQUET, HIVE

(DISCHNER et al., 2016) SwRI +
NOAA CYGNSS MOC SFTP, -

(EDWARDS, 2018) EUMETSAT MASIF
FTP, RESTful service,
JMS Messague Queue,

PostgreSQL

(EVANS et al., 2016) S.A.T.E +
ESA/ESOC - Java, CSV

(FEN et al., 2016) CSMT
(China) - -

(FERNÁNDEZ et al., 2017) NASA MARTE R, CSV, ad-hoc

(GILLES, 2016) L-3 InControl Amazon EC2, LXC,
Nagios

(HENNION, 2018) Thales Alenia AGYR

Logstash, Kafka,
InfluxDB,

ElasticSearch, Kibana,
Grafana

(MATEIK et al., 2017) Stinger,
NASA -

Logstash,
ElasticSearch, Kibana,

HDF5, CSV, R,
Python, AWS, Excel

(SCHULSTER et al., 2018) EUMETSAT CHART MATLAB, MySQL,
Oracle

(TROLLOPE et al., 2018) EUMETSAT CHART ad-hoc algorithms, a
case study only

(YVERNES, 2018) Telespazio
France PDGS

OLAP (DataCube),
Saiku, Pentaho,
Jaspersoft OLAP

(ZHANG et al., 2017) SISET
(China) -

Hadoop, HDFS,
PostgreSQL,

MongoDB, Logstash,
Kibana, ElasticSearch,
Kafka, MapReduce

SOURCE: Author.

24

3.2.1 Data analysis at INPE

INPE already performs data analysis on satellite telemetry, and in fact in many
departments other than satellite operations. The satellite operators must monitor
the telemetries, analyse the incoming data, and act based on engineering guidance
in case a problem is identified (TOMINAGA et al., 2017). An example is in Magalhães
(2012), made about a fault on the CBERS-2 satellite, where the proposed model
would enhance knowledge about a phenomenon known as thermal avalanche that
can make a satellite inoperable and thus identify and be able to stop that from
happening again. Furthermore, as in line with Table 3.2, anomaly detection is a
common area of study (AZEVEDO et al., 2011).

Other departments will mostly use data from the payload or from external agents,
like remote sensing data, which analysis is also not trivial and are definitely a Big
Data problem. Monteiro (2017) use Big Data concepts to the trajectory analy-
sis; Ramos et al. (2016) showcase the use of tools like Hadoop to analyse Space
Weather data, and Simões et al. (2018) show an architecture based on data cubes
for remote sensing time series analysis, to name a few.

3.3 Data cube computation

The selective computation of data cubes has had a lot of research interest, mostly
due to the curse of dimensionality, as cube computation algorithms need a way to
treat high dimensional data and deal with limited available memory (HAN et al.,
2011).

The Frag-Cubing algorithm uses cube shells, where subcubes with few dimensions
(generally from 2 to 5) will be computed using an inverted index, thus using the
fragments as a compromise between used memory and how many dimensions can
be answered with a multidimensional query (LI et al., 2004).

3.3.1 Frag-Cubing

This work will focus on ways of improving the performance of the Frag-Cubing al-
gorithm, both in query response time and memory usage. For that, it is necessary to
understand how the algorithm computes the cube and answer queries. It does this by
using the concept of an inverted index, where each inverted tuple iT has an attribute
value, an Tuple Identifier (TID) list, and some computed measure values. For ex-
ample, let us consider four tuples: t1 = (tid1, a1, b2, c2,m1), t2 = (tid2, a1, b3, c3,m2),
t3 = (tid3, a1, b4, c4,m3), and t4 = (tid4, a1, b4, c1,m4). These four tuples will gener-

25

ate eight inverted tuples: iTa1, iT b2, iT b3, iT b4, iT c1, iT c2, iT c3 and iT c4, shown in
Figure 3.2.

For each attribute value an occurrence list is built, so for a1 there is iTa1 =
(a1, tid1, tid2, tid3, tid4,m1,m2,m3,m4) where the attribute value 1 is associated with
TIDs: tid1, tid2, tid3, and tid4. Tuple identifier tid1 has the measure value m1, tid2

has the measure value m2 and so on. Query q = (a1, b4, COUNT) can be answered
by intersecting the lists iTa1 ∩ iT b4 = (a1b4, tid3, tid4, COUNT (m3,m4)), in which
q, iTa1 ∩ iT b4 indicates the common TIDs between iTa1 and iT b4, their set inter-
section.

Figure 3.2 - Inverted Index computation example.

TID

tid1

tid2

tid3

tid4

A

a1

a1

a1

a1

Value

a1

b2

b3

b4

c1

c2

c3

c4

TID list

tid1, tid2, tid3, tid4

tid1

tid2

tid3, tid4

tid4

tid1

tid2

tid3

Measures

m1, m2, m3, m4

m1

m2

m3, m4

m4

m1

m2

m3

B

b2

b3

b4

b4

C

c2

c3

c4

c1

m

m1

m2

m3

m4

SOURCE: Author.

The complexity of the intersection is proportional to the number of times that an
attribute value occurs in the input data, but bounded by the size of the smallest
list, and in this example iT b2 with a single TID is the smallest list. The number of
TIDs associated to an attribute value can then be enormous, with low cardinality
dimensions and high number of tuples needing a high processing capacity. Smaller
TID lists allow for queries to be quickly answered, so relations with a low skew, or
uniformity of values in the relation attributes, and high cardinality are more suitable
to be computed by approaches with Frag-Cubing.

26

Furthermore, a skew close to zero can indicate a relation with uniformly distributed
values, and the higher this value the less uniform the relation list will be.

The algorithm also introduces the concept of cube shells: instead of computing every
combination of low-dimensional cubes, only a thin shell of dimensions is computed.
This translates to dividing the number of dimensions in the data by the supplied
fragment size parameter F and generating all subcubes with that amount of dimen-
sions, but not repeating the dimensions that have already been generated. Figure 3.3
shows a typical full cube with three dimensions A,B and C, with the top being the
raw cell data (0-dimensional cube) and the base being the most aggregated cell that
summarizes all data.

If we set F = 1, then the Frag-Cubing algorithm will only pre-compute dimensions
A,B and C, as they are the lowest dimensions that fit the fragment size, as is the
standard of a cube that doesn’t compute any aggregation besides the single dimen-
sions. However, if we set F = 2, then the algorithm will compute from left to right
the subcube {A,B}, then see that there aren’t enough dimensions for another cube
with the same size as the fragment and compute the next remaining not computed
subcube {C}, thus computing the subcubes [{A,B}, {C}]. If F = 3, then the full
cube would be precomputed, equating a fully materialized cube with all children
subcubes being computed too.

Figure 3.3 - Shell Fragmentation example.

{}

{A} {B} {C}

{A, B} {A, C} {B, C}

{A, B, C}

SOURCE: Author.

27

3.3.2 Other algorithms

There are of course, more algorithms than Frag-Cubing, and they need some review
of how they are applicable. Using distributed computing, Doka et al. (2011) shows
the Brown Dwarf, a Peer-to-Peer system that allows for cells to be updated and to
reduce the redundancy in distributed cubes.

PopUp-Cubing is shown in Heine and Rohde (2017), using icebergs to deal with
streaming data, and having superior results to FTL and Star-Cubing. This work
specially deals with streaming data, which is of interest for real time data analysis
of telemetries, however that that is not an scenario explored by this work.

Using MapReduce as a base, Wang et al. (2013) presents HaCube, seeking a balance
between parallel cube computation between various MapReduce nodes, allowing up-
dates and incremental computation of measures. Due to its own distributed nature,
it needs some fault tolerance to work, and also the tests were limited to only 5 di-
mensions, with up to 2,4 billion tuples. Also using MapReduce Yang and Han (2017)
demonstrates the computing of holistic measures by presenting Multi-RegionCube,
however with less testing than the previous method.

In Zhao et al. (2018) is presented Closed Frag-Shells Cubing, which combines the
C-Cubing approach by ??) of creating closed cube cells that losslessly compress drill-
down/roll-up semantics, with the Frag-Cubing approach of using shell fragments,
adding their own bitmap-based indexing on top to enhance query response times.
This work is probably the closest to this own, however with fewer implementation
requirements.

qCube by Silva et al. (2013) extend the Frag-Cubing approach by adding value in-
terval queries, allowing for other comparison operators besides equality to be used
in queries. HFrag by Silva et al. (2015) uses of external memory to aid in the com-
putation of the inverted index, using a hybrid system to partition the cube in both
main and secondary memory by keeping the most frequent used values in the main
memory and the least used in the secondary memory. Hybrid Inverted Cubing (HIC)
also by Silva et al. (2016) is an extension to the HFrag algorithm that uses a critical
accumulated frequency parameter, which ends up having better results in practice.

Of these works Frag-Cubing keeps being a base robust algorithm to compute the
cube, as the inverted index techniques are still relevant and the results are adequate.
However, Li et al. (2004) show the exponential memory usage of the different cube

28

computation schemes using only 12 dimensions, and there is a clear saturation when
cubes with 20, 50, 100 or more dimensions are used to compute the cube (SILVA,
2015).

29

4 METHOD

In this section, the objectives will be reviewed, the case study data will be presented
and also the proposed architecture.

4.1 Objectives

Recalling from section 1.1, the main objective of this thesis is to "create a data cube
base architecture to represent satellite telemetry data along a mission, using the
distribution of the telemetry values to ease analysis and querying of the satellite’s
state by satellite engineers". In order to achieve that, and as specific goals, two
different architectures will be proposed and implemented: one tries to reduce main
memory consumption by pre-processing the data to be queried into high-dimensional
and low-dimensional, and then filters the resulting data cubes by the dimensions
related to each pre-defined query; the other uses an inverted index compression
technique of changing the TID lists to hold interval lists instead of raw number lists,
and tries to see how that affects query response time and memory consumption.

4.2 Case study: SCD2

The case study used in this thesis will be the satellite SCD2 (Data Collection Satel-
lite 2), which has over 20 years of continuous operations by the Satellite Control
Center at INPE (ORLANDO; KUGA, 2007). It is one of the first satellites designed,
tested and assembled in Brazil, the second in the SCD family of data collection
satellites (OLIVEIRA, 1996). The mission goal is to retransmit to assigned receiver
stations (Cuiabá and Alcântara, for example), data obtained from a network of
Automatic Environmental Data Collection Platforms (PCD), which are distributed
throughout the Brazilian territory. Figure 4.1 shows a commemorative mission patch
for the satellite.

Each PCD is composed of a transmitter in UHF band (about 400Mhz) that collects
environmental data and continuously transmits them back into space. This trans-
mission is then relayed by the PCD transponder to one of the receiver stations, and
thus the data is gathered. This relaying can only happen when the satellite is visible
by both the receiver stations and the PCDs, which happens around eight times per
day (MIGUEZ et al., 1993).

The SCD2 satellite is composed of ten subsystems, including the DCP payload. With
over 20 years of operation, more than 135 telemetry data points and generating over
8GB of data per year, there is a lot to be analyzed from the housekeeping telemetry

31

data alone. This work has access to data taken between 2014 and 2018, and amounts
to about 23GB of CSV files. These data were obtained by exporting the telemetry
database to CSV format via the SatCS program developed at INPE (INSTITUTO NA-

CIONAL DE PESQUISAS ESPACIAIS - INPE, 2015), taking over three weeks to process
the data.

Figure 4.1 - SCD2.

Data Collection Satellite 2 (SCD2) mission patch.
SOURCE: INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS -

INPE (1998).

4.3 Proposed architecture

One of the using necessities of different data cube algorithms is in the number of
dimensions that a certain cube can perform queries: queries with more than 15
dimensions are not generally (or practically) executed in some algorithms, as the
work of Silva et al. (2016) demonstrates, however demonstrating some works that
do execute queries with more dimensions than that.

The telemetry data of interest has many more dimensions than the common limit
for data cube with up to 60 dimensions: with over 135 telemetries for the SCD
family satellites, and thousands for larger satellites like CBERS and Amazonia,
running high-dimensional queries would typically be infeasible in traditional cube
construction algorithms.

It is then needed to first propose an overall architecture that takes the data from
input, processes it and then spits out an analysis on the other side. This is presented
as a data cube answering queries, after having been inputed sufficient data and
statistical information about this data. An overview of this architecture is present

32

in 4.2, showing how the data is based on databases The figure 4.2 shows an overview
of the proposed structure. The biggest gain of using the data cube is, plainly, to
easily execute group-by operators on multiple aggregation levels and using multiple
dimensions at once to compute the relationship measures between them.

In this figure, the Frag-Cubing algorithm has been arbitrarily divided into the steps
of reading the input, building the inverted index, building the shell fragments in
accord to the algorithm and then the cubing step that generates the data cube ag-
gregations and is shown in the middle of the picture. The users can then query into
this structure via a Query Processor, which is built-in in the Frag-Cubing imple-
mentation.

Figure 4.2 - General Data Cube Architecture.

Queries

Satellite Engineers,
Satellite Operators,

other users

SatCS

Telemetry
Database

Export Input

Ground Stations:
Cuiabá, Alcântara

Frag-Cubing

Cubing and
Fragmenting

Inverted Index Query Processor

Input Processing

SCD2

Filtered
Telemetries

PostgreSQL

Data Cube-based architecture showing the data being generated by the satellite, being
processed by SatCS, exported to a raw CSV format into PostgreSQL, which is then used
as a Data Warehouse base to build a Data Cube using the Frag-Cubing algorithm. The
user can then query the data cube directly.

SOURCE: Author.

4.3.1 Proposed changes

In order to achieve the objectives of this thesis, the following changes are then
proposed, illustrated by Figure 4.3: change the Frag-Cubing algorithm into the In-
tervalFrag algorithm by altering the inverted index step into an inverted index with
intervals; add the Query Partition step in which the telemetry value distribution is
used to filter out relationships between the telemetries with the help of a Satellite
Engineer, and have those relationships influence what data is then input into In-
tervalFrag. The overall objective is to show that only some changes are made into
the Frag-Cubing algorihtm, and the Query Partition is an added optional step. The
changes have been highlighted in red lettering.

In the next chapters, the Query Partition algorithm will be presented and the re-
sults of using the approach will be shown, then the IntervalFrag algorithm will be

33

explained, the constituent algorithms that diverge from Frag-Cubing explained and
the experimental results shown.

34

Figure 4.3 - General Data Cube Architecture.

Queries

Satellite Engineers,
Satellite Operators,

other users

SatCS

Telemetry
Database

Export

Input

Ground Stations:
Cuiabá, Alcântara

IntervalFrag

Cubing and
Fragmenting

Inverted Index with
Intervals Query Processor

Input Processing

SCD2

Filtered
Telemetries

PostgreSQL

Relationships
Influence what data is selected

Query Partition

Aggregation
Generator

Relationship
computation

Input

Data Cube-based architecture showing the data being generated by the satellite, being
processed by SatCS, exported to a raw CSV format into PostgreSQL, which is then used
as a Data Warehouse base to build a Data Cube using the IntervalFrag algorithm. The
Query Partition algorithms can then use the information obtained from the data to filter
out dimensions to be input into IntervalFrag. The user can then query the data cube
directly, or the relationships if necessary.

SOURCE: Author.

35

5 QUERY PARTITION

In this chapter, an algorithm for aggregating the satellite telemetries into relation-
ship groups is presented, which is then used to selected useful queries for a satellite
operator. These queries are then compared with the Frag-Cubing algorithm: one set
is called High-Dimensional, in which the queries are executed on the full data dimen-
sionality; and the other is Low-Dimensional, in which the input data for the data
cube algorithm is made of only the dimensions that the query will execute. The aim
of this work is then to see if the query response time and memory consumption can
be improved by pre-filtering the data that will be searched with just the dimensions
related to the query.

5.1 Algorithm

The objective of this algorithm is to easily classify the rate of change between groups
of telemetries, as from previous data science work conducted on the telemetry data,
just by identifying whether a group of telemetries changing on a similar rate, it is
possible to find a relationship between them. The algorithm is separated into two
parts: the groups generation and the strength calculation.

5.1.1 Aggregation generator

The algorithm works by creating telemetry groups with all possible dimensional
combinations, considering each telemetry as a dimension. The combination of a
given set of n elements taken k at a time is given by Equation 5.1.

Cn
k =

(
n

k

)
(5.1)

Since the number of telemetries is usually on the order of hundreds to thousands,
it’s best to limit the algorithm to combinations taken from 2 to 5 at a time. This
is equivalent of computing all subcubes with those dimensions. That gives us the
following number of combinations, with kmax being the biggest k that we want, on
Equation 5.2.

kmax∑
2≤k≤n

(
n

k

)
= 2n−2 (5.2)

Each of these combinations is generated from a vector of n telemetry names that

37

we’re interested. For each of the generated combinations, we then execute aggrega-
tion measures:

• Group the available telemetry readings by the combination groups

– for the combination “TM001”, “TM002”, group the table by “TM001”
and “TM002”

• Each aggregate is counted for frequency that the values appear, called
count henceforth

– TM001 = [“01”] && TM002 = [“02”] -> count = 25

• For each of the telemetries used, compute the cardinality of the telemetry,
called Ct for telemetry t

– TM001 = [‘01’, ‘02’,‘03’], then it’ll have cardinality 3

• Compute descriptive statistics over all the values of count

– Number of aggregates (length of the vector)
– Mean
– Median
– Standard deviation

5.1.2 Relationship strength calculation

We can then use the descriptive statistics to calculate the strength of the relationship
between the telemetries. This involves the use of conditionals and some parameters
from the algorithm.

The initial condition is that if the cardinality of any telemetry is 1, it means that it
didn’t change in the time period, hence any aggregate with Ct = 1 will be marked
with NONE on relationship. If the number of groups is 1 it also means that no
changes were observed in the period, so we can’t infer any relationships from the
data, and the relationship is marked NONE.

If that condition passes, then we compute some values to help with classifying the
other cases:

The biggest possible number of groups expected is the product of the sequence of
cardinalities, called maxc is given by Equation 5.3.

38

maxc =
∏

t

Ct = C1 ∗ ... ∗ Ct (5.3)

The biggest cardinality in the combination, to us the minimum possible value for
the number of groups, called minc on Equation 5.4.

minc = max(C1, ..., Ct) (5.4)

The proportion of the number of groups by the maximum cardinality, called cratio
on Equation 5.5.

cratio = numgroups

maxc
(5.5)

The absolute cardinality difference, as it is more representative of the discrepancy
between bigger cardinalities, called abscdiff on Equation 5.6.

abscdiff = cratio− minc

maxc
(5.6)

The coefficient of variation, from the standard deviation σ and the mean µ, called
CV, is used to check the variability of the number of groups inside an aggregate on
Equation 5.7.

CV = σ

µ
(5.7)

After all of those values, we are left with the choice of some parameters: the absolute
cardinality ratio cutoff; the CV minimum and maximum cutoff and the CV minimum
cutoff for the medium case.

Each of these parameters is necessary to characterize the distribution of each com-
bination. A high number of groups does not tell us much about its distribution: we
need more statistics to know if the groups are evenly spread or if they are focused
on few values. Knowing that is essential to be able to distinguish the strength of the
relationships.

39

So, the cardinality ratio cutoff is the first: it tells us how the cardinalities change in
relation to each other. The number cratio will be closer to 1 if there’s a relationship
of 1 to 1 for each telemetry. This means that every time that one telemetry changes,
the others changes too.

In contrast, a number closer to 0 means that the telemetries have very little vari-
ability, and that they’re using the minimum expected cardinality. This means that
the number of groups is closer to minc, and the variability is low.

The CV is then used to peer into the distribution of aggregates, by telling us if they’re
focused on few values or more spread evenly. A value close to, or bigger than, one
means that the data are very spread, and thus might have a strong relationship, as
that means that they tend to change together. A value closer to the CV minimum
cutoff has data with low variability, which means that they’re probably clustered
together on few values. If it’s within the absolute cardinality variability cutoff, then
this value also denotes a strong relationship. If the value is within both cutoffs,
then it’s neither very clustered nor much variable, so we adopt a medium strength
relationship.

From each of these paths, we have a single strength relationship, however the relative
adoption of the relationship strength calculation is subjective, as the cutoff points
need to be manually defined. With this algorithm, some 2x2 and 3x3 relationships
were generated by grid searching all possible relationships and then presented to a
satellite operator for evaluation.

5.2 Queries

With the satellite operator help, some sample queries that are frequent to the satel-
lite operation procedures were filtered, not only related by their relationship but
how useful the operator found them for their activities. The related telemetries are
summarized in Table 5.1, with their identification, brief description and the calcu-
lated cardinality from the historic database. In this table, the cardinality of each
telemetry is defined as the number of unique values that the telemetry can take.

40

Table 5.1 - Telemetries overview.

ID Description Cardinality
TM001 Payload receiver voltage 149
TM002 Payload RF output power 175
TM003 Magnetometer 1, Y axis 251
TM004 Magnetometer 1, -X axis 251
TM005 Magnetometer 1, Z axis 251
TM006 Magnetometer 2, Y axis 251
TM072 Battery Temperature 1 251
TM075 Solar Panels Current 251
TM077 Battery Charge Regulator 1 2
TM078 Battery Charge Regulator 2 2
TM081 Battery Temperature 2 251
TM082 Battery Discharge Regulator 1 2
TM083 Battery Discharge Regulator 2 2
TM130 Solar sensor temperature 1 233
TM131 Solar sensor temperature 2 233

5.2.1 Q1

Question: are the batteries being charged or discharged?

The related telemetries are: TM072 and TM081 are each of the satellite’s battery
thermistor readings, TM077 and TM078 are charge regulator telemetries for each
of the batteries, and TM080 and TM081 are discharge regulator indicators for each
battery. The regulator telemetries simply indicate whether each battery is being
charged or discharged as seen by the OBC, and take the form of “ON” and “OFF”
values, while the thermistor telemetries indicate the thermal behavior of each bat-
tery.

This seems trivial at first glance: TMs 77, 78, 80 and 81 already display this informa-
tion as each batteries’ charge regulators, directly as collected by the OBC. However,
in the case of this satellite, the thermal behavior of the batteries is important to
verify whether the batteries are actually being charged or not. Furthermore, an over-
loading of one of the batteries might cause the relationship between the regulators
to change and not show an accurate picture of what is happening, relating the query
to anomaly discovery.

41

5.2.2 Q2

Question: what is the current satellite orientation?

The three telemetries are related to the magnetometer measurements, each (3, 4, 5)
being of one axis (Y, X, Z) and with 300 mGauss precision.

This query has a simple objective of showcasing one of the most frequent operator
activities: determining the satellite attitude. The strongest magnetic field will be the
Earth’s, and for this satellite, it has the objective of determining attitude, and to
verify the satellite’s rotation rate. This satellite is stabilized by spin, and so verifying
the speed and direction of spin is crucial for operations.

5.2.3 Q3

This question is meant as a comparative between the previous query: is there any
difference between the magnetometer readings in the satellite?

As mentioned, TM003 is related to the magnetometer in the Y axis at 300 mGauss,
and TM006 is just a redundant instrument with 600 mGauss precision for the same
axis. This is meant to both create a redundancy in the instrument readings, as there
are two instruments to measure the attitude that can be directly compared to see if
there is any discrepancy in the sensors.

5.2.4 Q4

This question means to probe the data collection antenna: is the payload antenna
working as expected?.

These telemetries are related to the primary payload, the Data Collection Payload.
TM001 measures the voltage of the data collection antenna, while TM002 measures
the output transmission gain of the antenna. This subsystem works by retransmitting
the data from data collection platforms on various places of the earth to INPE’s
Mission Exploitation Center, and thus is relatively simpler to maintain. This query
aims to see if the antenna is working as it should: the output gain is generally
very stable, and the voltage is meant to just monitor if the antenna electronics are
working.

42

5.2.5 Q5

Question: are there any discrepancies between the measured currents and
the solar panels temperatures?

Telemetries 130 and 131 are thermistor readings for the solar panels, 75 measures
the total output current, and 76 measures the shunt current for the solar charging
system. The shunt aims to regulate the current that is measured in TM075, that is
the main output of the solar panels, and used to charge the batteries and to power
the satellite. If the temperature telemetries (130 and 131) have readings that are
too hot or too cold, the solar panels might fail and not provide the necessary power
to the satellite anymore, which would be catastrophic failure, as the satellite would
not be able to recharge its batteries and would stop working.

5.2.6 Summary

Table 5.2 has an overview of the queries presented, with the query identification,
the telemetries that are queried and the product of the cardinalities involved.

Table 5.2 - Queries overview.

ID Telemetries Product of cardinalities

Q1 TM072, TM081, TM077,
TM078, TM082, TM083 983.920

Q2 TM003, TM004, TM005 15.813.251
Q3 TM003, TM006 63.001
Q4 TM001, TM002 26.075
Q5 TM130, TM131, TM075 14.397.360

5.3 Experimental validation

In order to validate whether the pre-selection effectively reduces query memory
consumption and response times, it is needed to test it against the Frag-Cubing
algorithm. This section details how this selection was performed, the used algorithms
and presents a simple overview of the results.

43

5.3.1 Dataset and method

The Frag-Cubing algorithm used the Illimine project implementation (ILLINOIS,
2004) that was coded in C++ and compiled on a Linux Kernel 5.0.0-29 machine,
with gcc 7.4.0. Some adaptations were made to the original code to allow for better
output formatting, however these were minimal format changes and didn’t impact
on the performance or changed how the algorithm works. All the experiments were
executed on an Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz, with 16 GB of DDR4
@ 2400 MHz system memory and on an Adata XPG SX8200 Pro Solid State Drive
using PCIe Gen 3x4 interface.

The experiments were designed to measure:

• Base cube main memory;
• Runtime to build the base cube representation;
• Query response time;
• Query memory increase, which measures how much memory was needed

to answer the query beyond what was used by the base cube.

As a notational convention, we use D to denote the number of dimensions, C the
cardinality of each dimension, T the number of tuples in the database, F the size
of the shell fragment, I the number of instantiated dimensions, Q the number of
inquired dimensions, and S the skew or zipf of the data. Minimum support level is
1, as well as F = 1 for all experiments.

Each test was executed 5 times, with the average value of the five runs being taken.
Additionally, before each test a baseline with no performed queries was executed,
just computing the time to cube: how long, and using how much memory, it takes
for the algorithm to compute the initial cube. This is meant to ease the comparison
of the results.

The central idea of this experiment is to partition the input data with the dimensions
with the expected dimensions used in a query, to see if that is a better or worse cube
construction strategy. In order to achieve that, the 4 year of data resulted in to 24 M
(2.4× 107) tuples over the satellite’s 135 telemetries, saved in a relational database.
Those were separated into files for each query and each data size. In order to better
provide comparisons, each data was separated into datasets of equal interval: 2M,
4M, 6M, 8M and 10M tuples (2× 106, 4× 106, 6× 106, 8× 106 and 107).

44

In a first test run it was found that the different data distributions at those levels were
interfering with the experiment, and so, to evaluate only the general distribution of
the data and how it was organized, each tuple of each dataset was sampled from the
full 2.4× 107 original data.

In the end, this resulted in 12, 83 GB of data converted to Frag-Cubing’s format,
counting the datasets with the full 135 telemetries and the datasets with the filtered
telemetries, resulting in 30 different data files (5 for the high-dimensional case, and
5 for each query).

For this paper, the names in Table 5.3 will be used to refer to each of these cubes.
The cubes with 135 dimensions will be treated as “C0”, with “C1” to “C5” being
the cubes with dimensions filtered for the telemetries in “Q1” to “Q5”.

Table 5.3 - Cube representations used in the experiment.

ID Query Dimensions Total
Size

C0 - 135 11,29 GB
C1 Q1 6 0,44 GB
C2 Q2 3 0,34 GB
C3 Q3 2 0,22 GB
C4 Q4 2 0,20 GB
C5 Q5 3 0,34 GB

The process to separate the data was performed as follows:

a) Select from telemetry database (PostgreSQL) the dimensions that are used
in the query (ex. ‘SELECT TM001, TM002 FROM telemetries’);

b) Filter first n tuples from that selection, where n is in 2 × 106, 4 × 106,
6× 106, 8× 106 and 107;

c) Save the results to a file and convert it to Frag-Cubing’s input format,
naming it cube i (eg. "Ci"), where i is one of the query identifiers;

d) Load the file into Frag-Cubing and execute the relevant queries.

5.3.2 Results

For the algorithm to partition the queries, it was quickly apparent that the output
was too broad and the difference between the queries was too hard to classify by an

45

operator, as most relationships are not clear and would all require further investi-
gation to validate, which would defeat the purpose of the algorithm. As the output
could not be fully validated, it was used only as a guide with previous confirmation
as to what queries are justifiable and of interest.

Due to low availability of reliable operator interview time, the separation in queries
used was used as per the operator’s experience, and thus are inherently biased. The
algorithm needs more study and a robust dataset to be validated, and there are some
experiments in the literature trying to use them, but data is sparse and the necessary
information still needs human analysis. Further improvements to the algorithm, as
well as robust validation will from now on be out of the scope of this work.

Thus, this section will deal with the results from the experiment detailed in section
5.3.1. Each defined query is compared with their execution in C0 and the relevant
cube, with their memory and response times being measured by each.

5.3.2.1 Q1

Figure 5.1-A shows the query response times for query Q1, with the execution of
the query in the C0 and C1 cubes. There’s a speedup of about 10% with C1 for
the T = 107 case, for the query that uses the highest amount of dimensions on all
the studied queries. Figure 5.1-B shows the query memory difference between C0
and C1 for query Q1. There’s a clear advantage of C1 taking only one third of the
memory that C0 takes to answer the same query.

46

Figure 5.1 - Query 1 results.

1m
2m
3m
4m
4m
5m
6m
7m
8m
9m

10m

2M 4M 6M 8M 10M
Tuples

m
in

ut
es

Query RuntimeA

0GB

1GB

2GB

3GB

4GB

5GB

6GB

7GB

8GB

9GB

2M 4M 6M 8M 10M
Tuples

G
B

Query Memory ConsumptionB

Cube C0 C1 Query Q1

(A) Total time to answer a query, including the time to read the data from the disk,
build the cube and then answer the query Q1, with cubes C0 and C1. (B) Total memory
consumption to answer Q1 with cubes C0 and C1.

SOURCE: Author.

5.3.2.2 Q2

Figure 5.2-A shows the query response times for query Q2, with the execution of
the query in the C0 and C2 cubes. Here the difference when T = 107 is C2 having
a runtime 40% faster than C0. Figure 5.2-B shows the query memory difference
between C0 and C2 for query Q2. Again the result is C2 taking only a fraction
(14%) of the same query under C0.

47

Figure 5.2 - Query 2 results.

24s
47s
71s
95s

118s
142s
165s
189s
213s
236s
260s
284s

2M 4M 6M 8M 10M
Tuples

se
co

nd
s

Query RuntimeA

0GB

1GB

2GB

3GB

4GB

5GB

6GB

7GB

8GB

9GB

2M 4M 6M 8M 10M
Tuples

G
B

Query Memory ConsumptionB

Cube C0 C2 Query Q2

(A) Total time to answer a query, including the time to read the data from the disk,
build the cube and then answer the query Q2, with cubes C0 and C2. (B) Total memory
consumption to answer Q2 with cubes C0 and C2.

SOURCE: Author.

5.3.2.3 Q3

Figure 5.3-A shows the query response times for query Q3, with the execution of the
query in the C0 and C3 cubes. With less inquires and dimensions this operation is
expected to be faster, however the speedup is even greater: Q3 under C3 takes only
12% of the memory used by C0. Figure 5.3-B shows the query memory difference
between C0 and C3 for query Q3, with C3 needing only 7% of the memory used by
C0.

48

Figure 5.3 - Query 3 results.

0s
6s

12s
18s
24s
30s
36s
42s
48s
54s
60s
66s

2M 4M 6M 8M 10M
Tuples

se
co

nd
s

Query RuntimeA

0GB

1GB

2GB

3GB

4GB

5GB

6GB

7GB

8GB

9GB

2M 4M 6M 8M 10M
Tuples

G
B

Query Memory ConsumptionB

Cube C0 C3 Query Q3

(A) Total time to answer a query, including the time to read the data from the disk,
build the cube and then answer the query Q3, with cubes C0 and C3. (B) Total memory
consumption to answer Q3 with cubes C0 and C3.

SOURCE: Author.

5.3.2.4 Q4

Figure 5.4-A shows the query response times for query Q4, with the execution of
the query in the C0 and C4 cubes. Another query with only two dimensions, and
expected to be faster, with C4 taking 5% of the time used by C0. Figure 5.4-B shows
the query memory difference between C0 and C4 for query Q4, showing the same
speedup pattern.

49

Figure 5.4 - Query 4 results.

0s
6s

11s
17s
22s
28s
33s
39s
44s
50s
55s
61s

2M 4M 6M 8M 10M
Tuples

se
co

nd
s

Query RuntimeA

0GB

1GB

2GB

3GB

4GB

5GB

6GB

7GB

8GB

9GB

2M 4M 6M 8M 10M
Tuples

G
B

Query Memory ConsumptionB

Cube C0 C4 Query Q4

(A) Total time to answer a query, including the time to read the data from the disk,
build the cube and then answer the query Q4, with cubes C0 and C4. (B) Total memory
consumption to answer Q4 with cubes C0 and C4.

SOURCE: Author.

5.3.2.5 Q5

Figure 5.5-A shows the query response times for query Q5, with the execution of
the query in the C0 and C5 cubes. Here with more dimensions than the previous
two queries the speedup is less, but still substantial, with C5 taking only 43% of the
runtime used by C0. Figure 5.5-B shows the query memory difference between C0
and C5 for query Q5, where the same figure of speedups are maintained.

50

Figure 5.5 - Query 5 results.

0s
10s
20s
31s
41s
51s
61s
71s
81s
92s

102s
112s

2M 4M 6M 8M 10M
Tuples

se
co

nd
s

Query RuntimeA

0GB

1GB

2GB

3GB

4GB

5GB

6GB

7GB

8GB

9GB

2M 4M 6M 8M 10M
Tuples

G
B

Query Memory ConsumptionB

Cube C0 C5 Query Q5

(A) Total time to answer a query, including the time to read the data from the disk,
build the cube and then answer the query Q5, with cubes C0 and C5. (B) Total memory
consumption to answer Q5 with cubes C0 and C5.

SOURCE: Author.

5.4 Summary and analysis

For this experiment, the time dimension has the property of having a cardinality that
is approximately equal to the amount of tuples (Cd = T , for a cardinality of dimen-
sion d and with a database of T tuples), as each observation is time-stamped and
therefore unique. This creates a considerable skew to the results with all teleme-
tries, as with 107 tuples, a single dimension with Cd = 107 is not suitable to be
computed entirely, and very different from the other dimensions that have a max-
imum cardinality of Cd = 256. As this time dimension was not considered in any
query, this is expected to have been one of the reasons for the great difference in
memory consumption between the queries and C0.

In summary, these results show that building the cube with only the dimensions for
a given query can yield up to 80 times less memory for the cube construction, and
using between 1% to 33% less memory to answer the same query on the same data,
with variations depending on the amount of inquired dimensions. The speedup is so
apparent that it’d be faster to read, build and then answer a query using one of the
low-dimensional cubes (C1−5) than to directly query an already built data cube with
all dimensions (C0), and is the main contribution of this work. Furthermore, the shell

51

fragment size parameter shows little benefit in reducing the memory consumption
of the queries when they are performed in this manner, and should be kept at 1.

It is also important to highlight the query definitions with the help of a domain
expert: most queries are low dimensional in nature, in line with Frag-Cubing’s
strengths. These queries are non-exhaustible and meant to be samples, but show
that the common algorithmic approaches are suitable for the domain and can be
made to improve memory implementation requirements.

52

6 INTERVALFRAG

This section describes the IntervalFrag algorithm, and the proposed architecture
needed to implement the enhancements to the Frag-Cubing’s algorithm.

6.1 Using intervals in inverted indexes

In chapter 3.3.1 the Frag-Cubing algorithm was explained, as per the original imple-
mentation by Li et al. (2004). One of the key parts of the algorithm is the use of an
inverted index to query directly into the attribute values and allow for the iceberg
pruning of cells that fall below minimum support. The algorithm depends on the
intersection of TID lists to work, as that is how it can know what tuples have that
specific value and where to find them to compute the relevant measures. This part
of the algorithm is mentioned by the original work as being done naively, and the
original authors suggest some ways of compressing the index and speeding up the
intersection of the lists, as this will be one of the most frequent operations that the
algorithms needs to do to answer queries, and a speedup on this part would greatly
enhance performance.

Furthermore, as most of the data is directly loaded into memory, using some form
of compression on the inverted index would also reduce memory implementation
requirements, and hopefully also query response times. One of the strategies that
they mention is by compressing the TID list into d-gaps, in which each element
is encoded by being the sum of the current element plus the previous element.
In general, for a list of numbers 〈d1, d2, · · · , dk〉, the d-gap list would be 〈d1, d2 −
d1, · · · , dk − dk−1〉. The compression then would come from encoding the elements
into a smaller number of bits, hopefully much less than the standard of 32 for an
integer. This approach takes advantage of the ordered nature of the TID list, as it is
encoded from the tuples as they read and thus are naturally sorted non-zero positive
integers.

This approach requires heavily changing the binary operations of the inverted index,
however it is not the only one: since publication there are various different techniques
to compress an inverted index, and they are an active branch of research. More
options, and a more complex implementation of the above method can be found
into Elias-Fano encoding and the others mentioned in Pibiri and Venturini (2019).
However, most of them require the use of dictionaries or heavy bit-encoding to
achieve better results, which in general sacrifices the update operation.

53

One much simpler technique that has not been explored is the use of intervals instead
of raw numbers in the TID list. The inverted index structure is then kept, but each
TID list now instead of containing the ordered numbers, contains an ordered list of
intervals between each element. For a list of numbers 〈d1, d2, · · · , dk〉, the interval
list would be 〈[d1, d2], [d3, d4], · · · , [dk, dk+1]〉, where dk < dk+1, and the difference
between the intervals cannot be smaller than one, thus dk+1 − dk ≥ 1. Example: for
the TID list 〈1, 3, 4, 5, 7〉, the Interval List would be 〈[1, 1], [3, 5], [7, 7]〉, where we
can represent 3 and 7 that have no difference between their intervals as the singles
〈[1], [3− 5], [7]〉.

This has implications only for the intersection of the lists, and is overall a much
simpler implementation to execute. By previous experience with the data, it was
found that a great number of dimensions have attribute values that are repeated
on long sequences of the same telemetry data points, and Frag-Cubing generates a
long list of these repetitions for some dimensions. This work then seeks to answer
the question: Can the use of the Interval algorithm instead of the raw list
reduce memory requirements and query response times for long sequences
of real world satellite telemetry data?

Thus, in this chapter this implementation will be detailed, as well as an experiment
to evaluate whether there is any advantage to using these intervals over the standard
technique used by Frag-Cubing.

6.2 Algorithm

In practice, the algorithm cannot be implemented using two integers for each inter-
val, as in the case where there is not a substantial interval (difference bigger than
one) all elements will take the space of two integers when in Frag-Cubing they would
take the place of only one integer. This would lead to the worst case for the Interval
algorithm to be double the memory of Frag-Cubing, but this can be worked around
in practice by encoding the elements without an interval in the negative range of the
integer, which isn’t used in the TID list as each element indicates a unique identifier
that is positive.

In case the identifier to be inserted would be close to zero, it is necessary to add one
to each of the elements in the TID list as they are inserted into the IntervalIndex,
as checking for a negative zero is not recommended and not guaranteed to work the
same on every computer architecture (INSTITUTE OF ELECTRICAL AND ELECTRON-

ICS ENGINEERS - IEEE (last), 2019). With this, the entire integer bit space is used,

54

including the signal bit for the algorithm. For the scope of this work, and since the
experiment does not require the update of cells, only the insertion and intersection
algorithms will be detailed.

Furthermore, it is necessary to define the concept of sequentiality, as it quantifies
how much a list can be compressed by transforming it into a list of intervals. A
high sequentiality means that the data are repeated in long sequences, for example
〈1, 2, 3, 4, 5, 6, 7, 8, 9〉 can be compressed into the sequences 〈[1, 9]〉, being of high
sequentiality. However, the list 〈1, 3, 5, 6, 9〉 would have a low sequentiality, as the
resulting list interval would be only 〈[1], [3], [5, 6], [9]〉, and would consume exactly as
much space as the raw list, with the conversion to an interval list being unfavorable.

6.2.1 IntervalInsertion

Insertions to the index can be done always by appending to the current list, as the
TID are read in sequence and are naturally ordered positive integers. Supposed that
we’re inserting an element b to the list. The insertion can be done by checking if the
last element in the list is positive, if it is, then there is an interval and it is necessary
to check the penultimate element in the list. If the last element is negative c, then
we can check if c ∗ −1 + 1 = b, and if it is we flip the signal of the position c and
insert b to the list as it is. If the last element is not negative, then we check if the
element c, is c+ 1 = b and update the position c if it is true, else we flip the signal
of b and insert it at the end of the list. Else none of these we can safely append b
to the end of the list after flipping the signal to negative, and thus this algorithm is
implemented at Θ(1), shown in algoritmo 1.

55

Algoritmo 1: IntervalInsertion
Result: Element inserted into the list
b element to be inserted;
L the interval list to be inserted;
if empty(L) then

AppendList(L, b ∗ −1);
return;

end
c = LastElement(L);
if c < 0 then

if c ∗ −1 + 1 = b then
L[c] = L[c] ∗ −1 ; // Update the last to be positive
AppendList(L, b);
return;

end
else

if b+ 1 = c then
L[c] = b ; // Update last element
return;

end
end
AppendList(L, b ∗ −1) ; // None of the previous cases, just append
the element as a negative

6.2.2 IntervalIntersection

The problem of intersecting two sets of elements is a big one, and will not be fully
explored by this work, however a simple exploration of some algorithms that was a
byproduct of this work are available in Appendix A.1. However, due to the change
in how the index uses the TID list, it is necessary to adapt the Frag-Cubing set
intersection algorithm to still calculate the intersection between two intervals, and
so the IntervalIntersection algorithm is created.

In order to check if two intervals intersect: assuming two intervals Ia = 〈al, ar〉 and
Ib = 〈bl, br〉, where al is the smallest element in the interval, and ar the biggest
element in the interval. The output intersection can be defined as Io = 〈al, ar〉, and
the intersection Io = Ia

⋂
Ib can be computed by computing the biggest element be-

56

tween ar and br (function max) and the smallest element between al and bl (function
min), or algoritmo 2.

Algoritmo 2: IntersectTwoIntervals, adapted from EXCHANGE (2017)
Result: The result intersection Io, or ∅ in case there is no intersection
Ia and Ib two intervals;
if bl > ar or al > bl then

return ∅;
else

ol = max(al, bl);
or = min(ar, br);
return [ol, or];

end

Figure 6.1 shows four examples of using this algorithm to select for intersections,
including the empty case when there is no intersection. For the list interval inter-
section, it can be naively implemented using the scalar merge strategy: two pointers
walk by each interval, check if there is an intersection between then and, if there is,
create a new element in the result list with the intersection between these two inter-
vals. The algorithm to perform this is shown below, and takes the same complexity
of the parent algorithm of O(n + m), where n and m are the sizes of the interval
lists being intersected. This resulting algorithm is based on the implementations by
Li et al. (2004) and Silva (2015), shown in algoritmo 3.

Figure 6.1 - IntervalIntersection example.

3 5
2 9

3 5

[2, 9] ∩ [3, 5] = {[3, 5]}

4
3 5

9

4 5

[4, 9] ∩ [3, 5] = {[4, 5]}

Vec1
Vec2

Result

4
3 5

3 4

[2, 4] ∩ [3, 5] = {[3, 4]}

2 2
3 5

[2, 4] ∩ [3, 5] = {∅}

1

IntervalIntersection example with four operations.
SOURCE: Author.

57

Algoritmo 3: IntervalIntersection
Result: The resulting list intersection between two interval lists, or ∅ if there is

no intersection
La and Lb two input interval lists;
Lc result list, with maximum size min(length(La), length(Lb));
ai, bi, ci = 0;
while ai < length(La) and bi < length(Lb) do

A[al, ar] = interval(La[ai]) ; // Gets the interval at this position
B[bl, br] = interval(Lb[ai]);
if bl ≤ ar and al ≤ br then

IntervalInsertion(Lc, IntersectTwoIntervals(A, B)) ; // Insert into
the result list the intersection between the elements
NextIntervalPosition(ci) ; // Skips to the next available list
space

end
if ar ≤ br then

NextIntervalPosition(ai);
else

NextIntervalPosition(bi);
end

end
return Lc;

6.3 Results

Table 6.1 and Table 6.2 show the results of executing both algorithms to answer
the queries defined in section 5.2, while using the cube structure defined as C0 in
subsection 5.3.1, where all telemetries were used as a single file for each test, and
then the query was executed, measuring the memory consumption in the first and
query response time in the latter.

In order to make the comparisons easier to understand, let’s focus on only queries
Q1 and Q2, that were the highest number of dimensions and the highest number
of cardinalities respectively. Figure 6.2 shows those results, and it is clear that the
memory usage is always much lower under IntervalFrag. Q1 has four dimensions
with low cardinality and high sequentiality, and these are quickly answered by In-
tervalFrag, while Frag-Cubing takes a long time to answer the queries that involve
those dimensions.

58

Table 6.1 - IntervalFrag x Frag-Cubing, memory consumption in KiB.

Tuples
Algorithm Query 2× 106 4× 106 6× 106 8× 106 1× 107

Frag-Cubing

Q1 1.908.708 3.674.784 5.447.864 6.953.424 8.557.348
Q2 1.842.396 3.294.628 4.727.816 5.877.016 6.760.080
Q3 1.448.280 2.836.592 4.236.496 5.362.128 6.502.628
Q4 1.444.816 2.836.696 4.236.404 5.372.104 6.520.176
Q5 1.607.456 3.024.996 4.445.800 5.591.052 6.650.456

IntervalFrag

Q1 504.428 845.804 1.196.504 1.455.472 1.651.552
Q2 801.864 1.207.760 1.560.652 1.752.292 2.062.560
Q3 388.652 707.588 1.030.392 1.237.324 1.415.472
Q4 370.624 690.456 1.003.236 1.237.292 1.415.456
Q5 540.788 895.272 1.232.520 1.412.280 1.604.288

Table 6.2 - IntervalFrag x Frag-Cubing, query response times in ms.

Tuples
Algorithm Query 2× 106 4× 106 6× 106 8× 106 1× 107

Frag-Cubing

Q1 5.4691 188.634 310.455 421.409 523.772
Q2 47.391 108.405 170.515 258.585 281.877
Q3 1.557 3.089 4.637 6.497 7.597
Q4 399 817 1.193 1.573 1.990
Q5 7.138 21.668 33.483 49.590 59.428

IntervalFrag

Q1 1.946 4.712 6.981 9.198 11.508
Q2 158.050 333.838 554.111 772.125 934.793
Q3 3.570 7.064 10.655 14.812 17.714
Q4 995 2.011 2.952 3.860 4.916
Q5 4.871 11.837 18.477 26.176 32.649

However, in the case of Q2 where all dimensions have both cardinality and low
sequentiality, IntervalFrag takes 331% longer to answer the query on the worst case,
being the biggest drawback of this algorithm. This is due to the inherently slower set
intersection algorithm used by IntervalFrag, that needs to execute more comparisons
than Frag-Cubing, even when the algorithms have the same complexity and are
similar.

59

Figure 6.2 - IntervalFrag for Q1 and Q2.

0s
95s

189s
284s
379s
473s
568s
663s
757s
852s
947s

1,041s

2M 4M 6M 8M 10M
Tuples

se
co

nd
s

RuntimeA

0GB

1GB

2GB

3GB

4GB

5GB

6GB

7GB

8GB

9GB

2M 4M 6M 8M 10M
Tuples

G
B

Memory ConsumptionB

Algorithm Frag IntervalFrag Query Q1 Q2

(A) Query response times of IntervalFrag and Frag-Cubing for queries Q1 and Q2 under
the cube C0. (B) Memory consumption of IntervalFrag and Frag-Cubing for queries Q1
and Q2 under the cube C0.

SOURCE: Author.

In the case of queries Q3, Q4 and Q5, IntervalFrag is slower to answer queries Q3
and Q4, both that have a high cardinality and low sequentiality, but takes only
about 53% of the time to answer Q5, that also has a high cardinality but presents
a high sequentiality. Figure 6.3 shows those results for Q3 and Q4, Figure 6.4 for
Q5, and it is also clear that the memory usage is much lower with IntervalFrag than
with Frag-Cubing.

60

Figure 6.3 - IntervalFrag for Q3 and Q4.

13s
19s
26s
32s
39s
45s
51s
58s
64s
71s
77s

2M 4M 6M 8M 10M
Tuples

se
co

nd
s

RuntimeA

0GB

1GB

2GB

3GB

4GB

5GB

6GB

7GB

8GB

9GB

2M 4M 6M 8M 10M
Tuples

G
B

Memory ConsumptionB

Algorithm Frag IntervalFrag Query Q3 Q4

(A) Query response times of IntervalFrag and Frag-Cubing for queries Q3 and Q4 under
the cube C0. (B) Memory consumption of IntervalFrag and Frag-Cubing for queries Q3
and Q4 under the cube C0.

SOURCE: Author.

Figure 6.4 - IntervalFrag for Q5.

22s
33s
43s
54s
65s
76s
87s
98s

108s
119s
130s

2M 4M 6M 8M 10M
Tuples

se
co

nd
s

RuntimeA

0GB

1GB

2GB

3GB

4GB

5GB

6GB

7GB

8GB

9GB

2M 4M 6M 8M 10M
Tuples

G
B

Memory ConsumptionB

Algorithm Frag IntervalFrag Query Q5

(A) Query response times of IntervalFrag and Frag-Cubing for queries Q5 under the cube
C0. (B) Memory consumption of IntervalFrag and Frag-Cubing for queries Q5 under the
cube C0.

SOURCE: Author.

61

Additionally, we need to compare the time necessary to create the cube under each
of the algorithms, here called Time to Cube. If one algorithm takes too long to
transverse the cube structure and execute the minimum support pruning this would
need to be counted against it, however as Figure 6.5 shows, the difference between
IntervalFrag and Frag-Cubing is not that big, with IntervalFrag being on average
10% slower than Frag-Cubing. This however is just a simple comparison, as in that
step each subcube of the fragments would be computed and for these tests that
use F = 1 they are almost exactly the same computation, needing higher fragment
sizes to appreciate the difference. However, since this computation would involve list
intersections at higher fragment sizes, the speed of the intersection algorithm would
heavily influence this computation, being more comparable to the query response
times compared above.

Figure 6.5 - Comparison: Time to Cube.

11ms

16ms

22ms

27ms

32ms

38ms

43ms

49ms

54ms

59ms

2M 4M 6M 8M 10M
Tuples

m
ill

is
ec

on
ds

Algorithm Frag IntervalFrag

Runtime

Time necessary to compute the cube after the data is read into memory.
SOURCE: Author.

Another important metric is the baseline memory used before queries can be per-
formed on the data. Figure 6.6 shows these values for the files used in this experi-
ment, and IntervalFrag consumes on average 22% of the memory that Frag-Cubing
needs. This is important as it allows IntervalFrag to be implemented while requiring
much less computational resources.

62

Figure 6.6 - Comparison: Baseline memory.

0GB

1GB

2GB

3GB

4GB

5GB

6GB

7GB

8GB

9GB

2M 4M 6M 8M 10M
Tuples

G
B

Algorithm Frag IntervalFrag Query Baseline

Memory Consumption

Memory used by the baseline cube, when it can start to answer queries.
SOURCE: Author.

6.4 Summary

FragInterval was up to 3 times slower to answer queries on dimensions with low
sequentiality and high cardinality, but was faster to answer queries on dimensions
with high sequentiality. On all queries FragInterval used only between 20% and
24% of the memory that Frag-Cubing used, being the biggest improvement that
IntervalFrag brings. Furthermore, FragInterval also needed only on average 22% of
the memory that Frag-Cubing used to compute the baseline cube, before the queries
can be answered, while being only 10% slower to compute.

Thus, FragInterval shows to be preferred on environments with low available RAM,
as long as the slower queries with higher cardinalities are acceptable. FragInterval
achieves the objective of answering the queries with much less memory, however
fails at having comparable response times than Frag-Cubing on high dimensional-
ity queries. This slowness is due to the set intersection algorithm in IntervalFrag
having to execute more comparisons in practice than Frag-Cubing’s, and thus being
slower when the sets have the same size and the data has low sequentiality to favor
IntervalFrag’s algorithm.

63

7 ANALYSIS AND DISCUSSION

In this chapter, a critical analysis of the algorithms is presented, as well as an
overview of how useful are the results and what are their shortcomings. The results
from chapters 6 and 5 show that simple approaches can be used to enhance the query
response time for the selected queries, and can be easily ported to other domains
and styles of computation.

Table 7.1 shows the characteristics in which each algorithm has showed to excel
at. Frag-Cubing is still preferred when the data has a low degree of sequentiality,
as there’s little advantage in using the IntervalFrag scheme when the intervals are
closer to the size of the original list. On those cases, IntervalFrag is discouraged, as
the algorithm will be slower than Frag-Cubing’s by simple virtue of needing more
instructions to answer the same query, being up to 400% slower than the same query
under Frag-Cubing.

Table 7.1 - Preferred algorithm to use.

Low
Sequentiality

High
Sequentiality

High
Dimensionality

High
Cardinality

High
Skew

Comput-
ing the

base cube
IntervalFrag IntervalFrag IntervalFrag IntervalFrag Interval-

Frag

Subcube
query Frag-Cubing IntervalFrag IntervalFrag Frag-

Cubing1
FragCub-

ing
Point
query Frag-Cubing IntervalFrag IntervalFrag Frag-

Cubing1
FragCub-

ing
Low

available
RAM

IntervalFrag IntervalFrag IntervalFrag IntervalFrag Interval-
Frag

Fast
Query

Reponse
Frag-Cubing IntervalFrag Frag-Cubing1 Frag-

Cubing1
Frag-
Cubing

1If there’s high sequentiality, prefer IntervalFrag

In summary, in case the RAM available is low and the worst case query response
times can be up to 4x slower than Frag-Cubing’s, then IntervalFrag should be pre-
ferred as the main method of computing the data cube. In case the data have a
very low sequentiality, and RAM is available, then using Frag-Cubing should still be
preferred for the faster response times. IntervalFrag will excel at any dimension that
has a high sequentiality, even if it also has a high cardinality, however dimensions
that have a high cardinality will tend to have a low sequentiality in practice, and
this usage might be uncommon. The Skew parameter can influence the algorithm

65

both ways, as it does not necessarily mean that the dimension will have a higher or
lower sequentiality and cardinalities.

When the dimensions have a high degree of sequentiality, then IntervalFrag excels, as
it can not only answer the same queries much faster, but also using only a fraction
of the memory used by Frag-Cubing. Furthermore, Frag-Cubing used much less
memory to answer queries Q1, Q2 and Q5, with Q4 having a small difference and
Q3 having no difference in memory usage in the end, when compared with cubes C1
to C5. All queries executed on the C0 cube with all dimensions used only a fraction
of the memory needed to answer queries with IntervalFrag, they were however in
general slower to answer.

From the tests made using Frag-Cubing and the different cubes (C1 to C5) tailored
to specific queries, it was shown that the best algorithms can be further enhanced by
doing some simple pre-processing of the queries, and depending on the type of query
used they can drastically improve upon memory usage requirements, allowing for
some frequent queries to be optimized and even allowing for queries that could not
be answered under a C0 cube to be answered by smaller cubes. In chapter 5 it was
shown that it is faster to load a smaller subset of the data in memory as prepared files
when needed and then computing the answer from that file instead of querying a cube
that was already loaded in memory, but that used the full dimensional capability of
the data.

It is important to note IntervalFrag had faster file reading speeds (about 12% faster)
due to improvements made on the implementation, as well as a slightly more efficient
set intersection algorithm, which were not backported to Frag-Cubing. This was
done to preserve the Frag-Cubing algorithm’s performance, as the original code was
made for the C language in 2002 and the updated IntervalFrag implementation uses
C++17 standards. Nonetheless, it was possible to compile Frag-Cubing using the
same flags as IntervalFrag under the GNU C++ compiler, with minimal performance
differences.

The difference in query response times from IntervalFrag and Frag-Cubing, even
when using the same intersection algorithm, was due to IntervalFrag having to do
more comparisons to answer the same query, and this implementation could not be
further optimized without heavily skewing the response times to IntervalFrag’s side,
by using other techniques that could also be trivially ported to Frag-Cubing. Further
details on the intersection algorithms tested and their performance differences can
be found on Appendix A.1.

66

8 CONCLUSIONS

This work shows that it is possible to further optimize data cube algorithms by
gathering information from the underlying data, and how this can be made to aid
the end user’s experience by decreasing implementation requirements and improving
response times.

8.1 Main contributions

One of the stated purposes of this work was to find ways of using the data’s domain
characteristics to improve the satellite operator day to day activities, and this work
has achieved three main results:

The goal of this thesis to create a data cube base architecture to represent satel-
lite telemetry was achieved and the value distribution of the data was also used
to improve upon query response times and memory consumption. As for specific
contributions, they are as follows:

• A heuristic to discover related telemetries between satellite time series data
and how to use this with the help of an operator to validate the relevant
queries;

• Using the heuristic to enhance Frag-Cubing’s query response times and
memory by pre-partitioning the data;

• Improving upon Frag-Cubing’s Inverted Index memory model by saving
only intervals instead of the entire values, creating IntervalFrag, and thus
reducing memory and query response times for some queries;

For academia, the contribution of IntervalFrag is more important, as it showcases a
way of improving the memory consumption of an inverted index with a Θ(1) insertion
operation, even when keeping the same complexity as the traditional intersection.
This work also experimentally showed the downside of the Intervals being slower to
intersect when the sequentiality is low.

For INPE this work showcases a data cube architecture that can be implemented to
help the Satellite Engineers and operators to execute their day to day analysis, and
furthermore shows how can it be implemented as to reduce memory consumption
and query response times.

For the correlated works, this improves upon Frag-Cubing’s original implementation
and shows that other algorithms can be improved to by using the value distribution

67

of the data as a base for improvements. This change would not be too hard to
implement on other correlated works that aren’t based on bitmaps. For other satellite
operator organizations, this can be incorporated to their Big Data architecture, in
replacement for similar Data cube computation schemes.

Furthermore, Table 8.1 shows the summary of the published, and currently expecting
to be published articles that resulted either directly from this work or from the wider
master’s effort. In this table, two main conference results are shown, as well as an
article that has been submitted already, and another that is currently being written,
containing the results of the IntervalFrag algorithm.

Table 8.1 - Resulting published work.

Name QUALIS SCOPUS
Percentile Source Status

WETE 2018 Conference - (PEREIRA et
al., 2018) Published

IAC 2019 Conference - (PEREIRA et
al., 2019) Published

IEEE Latin
America

Transactions
B2 61% - Submitted

IEEE
Systems
Journal

A2 88% - Writing

8.2 Future work

The natural evolution of this work would be to test it using other data cube al-
gorithms, as there’s a great variety of them mentioned in section 3 and not all of
them might be applicable to satellite telemetry data, or showcase useful performance
metrics. On that note the use of bCubing (SILVA, 2015) will be interesting, as the
inverted index separation into blocks can further improve upon the memory usage
as described in this chapter.

The use of the gathered satellite data on other projects is also of interest, as there’s
no public reliable dataset of satellite telemetry data that contains all relevant data
and not just a subset of a subsystem, and this work showcases a volume that has
information enough for the training of Machine Learning and Artificial Intelligence
projects. Only projects that release full telemetry data are relatively simple CubeSat

68

projects, who do not generate a significant volume that is enough for the use of these
algorithms. The author plans to release the dataset in a format for the use of the
community in the near future pending liberation.

This work also has the potential of improving query execution when dealing with
multiple satellites, constellations and/or formations, it needing only the data to be
gathered and the suitable cube format defined to be tested.

The relationship algorithms mentioned in section 5.1 can be remade to use different
solutions, and combined with the shell-cubing method to generate only shells that
have relationships above a certain strength. This was also one of the ideas to be de-
veloped during this work, which however had not enough time to be fully developed.
This idea is best when paired with known "best available" techniques, like using the
project Polaris (LIBRESPACEFOUNDATION, 2021).

The Set Intersection problem defined in chapter 6 can be further optimized with
recent advances not only in computer architectures, but also in relation to com-
plexity and the validation of the algorithms in real world datasets. A preliminary
investigation was performed, as a simple but not rigorous overview of the results is
detailed in Appendix A.1.

8.3 Final thoughts

This work was developed entirely with open source software, and they will be made
available at https://github.com/Yuri-M-Dias/SCD2. Furthermore, there is a lack
of good datasets that deal with satellite telemetry data available, perhaps this work
can further contribute by allowing the usage of the dataset by making it public. The
volume available here is much bigger than what is currently used by Machine Learn-
ing competitions and other competitions, and the publication can further enhance
work in this area, like contributing to education and serving a benchmark for future
implementations of projects like CubeDesign.

69

https://github.com/Yuri-M-Dias/SCD2

REFERENCES

ADAMSKI, G. Data analytics for large constellations. In: SPACEOPS, 2016.
Proceedings... [S.l.]: American Institute of Aeronautics and Astronautics, 2016.
Proceedings... 3, 23, 24

AZEVEDO, D. N. R.; AMBRÓSIO, A. M. Dependability in satellite systems: an
architecture for satellite telemetry analysis. In: WORKSHOP EM ENGENHARIA
E TECNOLOGIA ESPACIAIS, 1. (WETE)., 30 mar. - 1 abr. 2010, São José dos
Campos. Anais... São José dos Campos: INPE, 2010. IWETE2010-1065, p. 6.
ISSN 2177-3114. Available from:
<http://urlib.net/sid.inpe.br/mtc-m19/2011/03.02.13.53>. 1

AZEVEDO, D. N. R.; AMBRÓSIO, A. M.; VIEIRA, M. Estudo sobre técnicas
de detecção automática de anomalias em satélites. São José dos Campos:
INPE, 2011. Available from:
<http://urlib.net/sid.inpe.br/mtc-m19/2011/10.16.12.43>. 25

BEYER, K.; RAMAKRISHNAN, R. Bottom-up computation of sparse and iceberg
CUBE. In: ACM SIGMOD INTERNATIONAL CONFERENCE ON
MANAGEMENT OF DATA, 1999. Proceedings... New York: ACM, 1999.
p. 359–370. ISBN 978-1-58113-084-3. 17

BIMONTE, S. Open issues in big data warehouse design. Revue des Nouvelles
Technologies de l’Information, p. 10, 2016. Available from:
<https://editions-rnti.fr/?inprocid=1002253>. 8, 9

BOUSSOUF, L.; BERGELIN, B.; SCUDELER, D.; GRAYDON, H.;
STAMMINGER, J.; ROSNET, P.; TAILLEFER, E.; BARREYRE, C. Big data
based operations for space systems. In: SPACEOPS CONFERENCE, 2018.
Proceedings... Marseille, France: American Institute of Aeronautics and
Astronautics, 2018. ISBN 978-1-62410-562-3. 8, 23, 24

CODD, E. F.; CODD, S.; SALLEY, C. Providing olap to user-analysts: an it
mandate. [S.l.]: E. F. Codd and Associates, 1998. 9

DING, B.; KÖNIG, A. C. Fast set intersection in memory. arXiv:1103.2409 [cs],
mar. 2011. Available from: <http://arxiv.org/abs/1103.2409>. 85

DISCHNER, Z.; REDFERN, J.; ROSE, D.; ROSE, R.; RUF, C.; VINCENT, M.
Meeting the challenge of constellation operations in a cost-constrained world. In:

71

http://urlib.net/sid.inpe.br/mtc-m19/2011/03.02.13.53
http://urlib.net/sid.inpe.br/mtc-m19/2011/10.16.12.43
https://editions-rnti.fr/?inprocid=1002253
http://arxiv.org/abs/1103.2409

AEROSPACE CONFERENCE, 2016. Proceedings... [S.l.]: IEEE, 2016.
p. 1–8. 24

DOKA, K.; TSOUMAKOS, D.; KOZIRIS, N. Brown Dwarf: a fully-distributed,
fault-tolerant data warehousing system. Journal of Parallel and Distributed
Computing, v. 71, n. 11, p. 1434–1446, nov. 2011. ISSN 0743-7315. 4, 28

DONG, X.; ZHENG, S.; JIAWEI, H.; HONGYAN, L. C-Cubing: efficient
computation of Closed Cubes by aggregation-based checking. In:
INTERNATIONAL CONFERENCE ON DATA ENGINEERING, 22.,
2006. Proceedings... [S.l.: s.n.], 2006. p. 4. 18

EDWARDS, T. Dealing with the big data - the challenges for modern mission
monitoring and reporting. In: INTERNATIONAL CONFERENCE ON
SPACE OPERATIONS, 15., 2018. Proceedings... [S.l.]: American Institute
of Aeronautics and Astronautics, 2018. ISBN 978-1-62410-562-3. 24

EMANI, C. K.; CULLOT, N.; NICOLLE, C. Understandable big data: a survey.
Computer Science Review, v. 17, p. 70–81, aug. 2015. ISSN 1574-0137. 2, 7

EVANS, D. J.; MARTINEZ, J.; KORTE-STAPFF, M.; VANDENBUSSCHE, B.;
ROYER, P.; RIDDER, J. D. Data mining to drastically improve spacecraft
telemetry checking: a scientist’s approach. In: SPACEOPS CONFERENCE,
2016. Proceedings... [S.l.]: American Institute of Aeronautics and Astronautics,
2016. 24

EXCHANGE, S. The easiest way to find intersection of two intervals. 2017.
Computational Science Stack Exchange. Available from:
<https://scicomp.stackexchange.com/q/26260>. 57

FEN, Z.; YANQIN, Z.; CHONG, C.; LING, S. Management and operation of
communication equipment based on big data. In: INTERNATIONAL
CONFERENCE ON ROBOTS INTELLIGENT SYSTEMS, 2016.
Proceedings... [S.l.: s.n.], 2016. p. 246–248. 24

FERNÁNDEZ, M. M.; YUE, Y.; WEBER, R. Telemetry anomaly detection
system using machine learning to streamline mission operations. In:
INTERANTIONAL CONFERENCE ON SPACE MISISON
CHALLENGES FOR INFORMATION TECHNOLOGY, 6., 2017.
Proceedings... [S.l.: s.n.], 2017. p. 70–75. 23, 24

72

https://scicomp.stackexchange.com/q/26260

GILLES, K. Flying large constellations using automation and big data. In:
SPACEOPS CONFERENCE, 2016. Proceedings... [S.l.]: American
Institute of Aeronautics and Astronautics, 2016. 24

GRAY, J.; BOSWORTH, A.; LYAMAN, A.; PIRAHESH, H. Data cube: a
relational aggregation operator generalizing GROUP-BY, CROSS-TAB, and
SUB-TOTALS. In: INTERNATIONAL CONFERENCE ON DATA
ENGINEERING, 12., 1996, Proceedings... [S.l.]: IEEE, 1996. p. 152–159.
ISBN 978-0-8186-7240-8. 3, 10, 16

HAN, J.; KAMBER, M.; PEI, J. Data mining: concepts and techniques. 3..
ed. Haryana, India; Burlington, MA: Morgan Kaufmann, 2011. ISBN
978-93-80931-91-3. 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 25

HEIDORN, P. B. Shedding light on the dark data in the long tail of science.
Library Trends, v. 57, n. 2, p. 280–299, 2008. ISSN 1559-0682. 1

HEINE, F.; ROHDE, M. PopUp-Cubing: an algorithm to efficiently use iceberg
cubes in data streams. In: INTERNATIONAL CONFERENCE ON BIG
DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, 4.,
2017. Proceedings... [S.l.]: ACM, 2017. p. 11–20. ISBN 978-1-4503-5549-0. 28

HENNION, N. Big-data for satellite yearly reports generation. In: SPACEOPS
CONFERENCE, 2018. Proceedings... [S.l.]: American Institute of
Aeronautics and Astronautics, 2018. ISBN 978-1-62410-562-3. 24

HWANG, F. K.; LIN, S. A simple algorithm for merging two disjoint linearly
ordered sets. SIAM Journal on Computing, Society for Industrial and Applied
Mathematics, v. 1, n. 1, p. 31–39, mar. 1972. ISSN 0097-5397. 81, 82

ILLINOIS, U. O. software and data repository from data mining research
group, Data and Information Systems (DAIS). 2004. Available from:
<http://illimine.cs.uiuc.edu/>. 44

INMON, W. H.; HACKATHORN, R. D. Using the data warehouse. Somerset,
NJ, USA: Wiley-QED, 1994. ISBN 978-0-471-05966-0. 8

INOUE, H.; OHARA, M.; TAURA, K. Faster set intersection with SIMD
instructions by reducing branch mispredictions. Proceedings of the VLDB
Endowment, v. 8, n. 3, p. 293–304, nov. 2014. ISSN 2150-8097. 81, 82, 84

73

http://illimine.cs.uiuc.edu/

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS - IEEE
(last). IEEE Std 754-2019: standard for floating point arithmetic. [S.l.:
s.n.], 2019. 54

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE. SCD2 mission
patch. 1998. Available from: <http://www.inpe.br/noticias/galeria/>. 32

. Framework de sistema de controle de satélites - SATCS. São José
dos Campos: INPE: [s.n.], 2015. Available from: <http://www3.inpe.br/tec/
nit/vitrine_tecnologica/pdf/SATCS-vitrine_tecnologica.pdf>. 32

JULIO, A. C. F.; AMBRÓSIO, A. M.; FERREIRA, M. G. V.; LOUREIRO, G.
The Amazonia-1 satellite’s ground segment - challenges for implementation of the
space link extension protocol services. In: INTERNATIONAL ASTRONOMICAL
CONGRESS, 68. (IAC), 25-29 Sept., Adelaide, Australia. Proceedings... [S.l.],
2017. p. 1–12. 1

KIMBALL, R.; ROSS, M. The data warehouse toolkit: the definitive guide
to dimensional modeling. 3.. ed. Indianapolis, IN: John Wiley & Sons, 2013.
ISBN 978-1-118-53080-1. 9

KRAG, H.; SERRANO, M.; BRAUN, V.; KUCHYNKA, P.; CATANIA, M.;
SIMINSKI, J.; SCHIMMEROHN, M.; MARC, X.; KUIJPER, D.; SHURMER, I.;
O’CONNELL, A.; OTTEN, M.; MUÑOZ, I.; MORALES, J.; WERMUTH, M.;
MCKISSOCK, D. A 1 cm space debris impact onto the Sentinel-1A solar array.
Acta Astronautica, v. 137, p. 434–443, aug. 2017. ISSN 0094-5765. 7

LAKSHMANAN, L. V. S.; PEI, J.; HAN, J. Quotient Cube: how to summarize the
semantics of a data cube. In: INTERNATIONAL CONFERENCE ON
VERY LARGE DATA BASES, 28., 2002. Proceedings... [S.l.]: VLDB,
2002. p. 778–789. 18

LARSON, W. J.; WERTZ, J. R. (Ed.). Space mission analysis and design. 3..
ed. El Segundo, Calif : Dordrecht ; Boston: Microcosm, 1999. ISBN
978-1-881883-10-4. 1, 7

LI, S.-E.; WANG, S. Semi-Closed cube: an effective approach to trading off data
cube size and query response time. Journal of Computer Science and
Technology, v. 20, n. 3, p. 367–372, may 2005. ISSN 1860-4749. 4

LI, X.; HAN, J.; GONZALEZ, H. High-dimensional OLAP: a minimal cubing
approach. In: INTERNATIONAL CONFERENCE ON VERY LARGE

74

http://www.inpe.br/noticias/galeria/
http://www3.inpe.br/tec/nit/vitrine_tecnologica/pdf/SATCS-vitrine_tecnologica.pdf
http://www3.inpe.br/tec/nit/vitrine_tecnologica/pdf/SATCS-vitrine_tecnologica.pdf

DATA BASES, 30., 2004. Proceedings... VLDB Endowment, 2004. p.
528–539. ISBN 978-0-12-088469-8. Available from:
<http://dl.acm.org/citation.cfm?id=1316689.1316736>. 4, 17, 25, 28, 53,
57, 83

LIBRESPACEFOUNDATION. Polaris. 2021. Available from:
<https://gitlab.com/librespacefoundation/polaris/polaris>. 69

LIMA, J. d. C. Sequential and parallel approaches to reduce the data
cube size. PhD Thesis (PhD) — Instituto Tecnológico de Aeronáutica, São José
dos Campos, 2009. 11

MAGALHÃES, R. O. de. Estudo de avalanche térmica em um sistema de
carga e descarga de bateria em satélites artificiais. PhD Thesis (PhD) —
Instituto Nacional de Pesquisas Espaciais, São José dos Campos, feb. 2012.
Available from:
<http://urlib.net/sid.inpe.br/mtc-m19/2012/01.16.14.31>. 25

MATEIK, D.; MITAL, R.; BUONAIUTO, N. L.; LOUIE, M.; KIEF, C.;
AARESTAD, J. Using big data technologies for satellite data analytics. In: AIAA
SPACE AND ASTRONAUTICS FORUM AND EXPOSITION, 2017.
Proceedings... [S.l.]: AIAA, 2017. ISBN 978-1-62410-483-1. 23, 24

MIGUEZ, R. R. B.; SILVA, M. M. Q. da; KONO, J. SCD2 operation
handbook. [S.l.], 1993. 31

MONTEIRO, D. V. A framework for trajectory data mining. Master Thesis
(Mestrado), Mestrado em Computação Aplicada - Instituto Nacional de Pesquisas
Espaciais, São José dos Campos, 2017. Available from: <http://urlib.net/rep/
8JMKD3MGP3W34P/3P8ANQ2?ibiurl.backgroundlanguage=pt-BR>. 25

MOREIRA, A. A.; LIMA, J. d. C. Full and partial data cube computation and
representation over commodity PCs. In: INTERNATIONAL CONFERENCE
ON INFORMATION REUSE INTEGRATION, 13., 2012.
Proceedings... [S.l.]: IEEE, 2012. p. 672–679. 10

OLIVEIRA, F. O brasil chega ao espaço: SCD 1 satelite de coleta de
dados. São Paulo: [s. n.], 1996. 972 p. Available from:
<http://urlib.net/rep/6qtX3pFwXQZ3r59YCT/GUJxJ>. 31

ORLANDO, V.; KUGA, H. K. Os satélites SCD1 e SCD2 da Missão Espacial
Completa Brasileira - MECB. In: WINTER, O. C.; PRADO, A. F. B. d. A. (Ed.).

75

http://dl.acm.org/citation.cfm?id=1316689.1316736
https://gitlab.com/librespacefoundation/polaris/polaris
http://urlib.net/sid.inpe.br/mtc-m19/2012/01.16.14.31
http://urlib.net/rep/8JMKD3MGP3W34P/3P8ANQ2?ibiurl.backgroundlanguage=pt-BR
http://urlib.net/rep/8JMKD3MGP3W34P/3P8ANQ2?ibiurl.backgroundlanguage=pt-BR
http://urlib.net/rep/6qtX3pFwXQZ3r59YCT/GUJxJ

A conquista do espaço: do Sputnik à Missão Centenário. São Paulo:
Livraria da F́ısica, 2007. p. . ISBN 978-85-88325-89-0. 31

PEREIRA, Y. M. D.; AMAURI, S. C.; JUNQUEIRA, B. C.; RAIMUNDI, L. R.;
GUIMARÃES, S. G.; LOUREIRO, G. Lessons learned on systems of systems
engineering: systems concurrent engineering of a constellation of cubesat
formations. In: INTERNATIONAL ASTRONAUTICAL CONGRESS,
70., 2019. Proceedings... Washington DC: [s.n.], 2019. Available from:
<https://iafastro.directory/iac/paper/id/37802/abstract-pdf/IAC-17,
D1,4A,1,x37802.brief.pdf?2017-04-11.11:19:08>. 68

PEREIRA, Y. M. D.; FERREIRA, M. G. V.; SILVA, R. R. A study for the
application of OLAP in satellite telemetry data. In: WORKSHOP DE
ENGENHARIA E TECNOLOGIA ESPACIAIS, 9., 2018. Anais... São
José dos Campos: INPE, 2018. ISSN 2177-3114. Available from:
<http://urlib.net/rep/8JMKD3MGPDW34R/3S2EM7P>. 68

PIBIRI, G. E. Fast and compact set intersection through recursive universe
partitioning. In: IEEE DATA COMPRESSION CONFERENCE, 2021.
Proceedings... [s.n.], 2021. p. 10. Available from:
<http://pages.di.unipi.it/pibiri/papers/DCC21.pdf>. 85

PIBIRI, G. E.; VENTURINI, R. Techniques for inverted index compression.
arXiv:1908.10598 [cs], aug. 2019. Available from:
<http://arxiv.org/abs/1908.10598>. 53, 85

RAMOS, M. P.; TASINAFFO, P. M.; ALMEIDA, E. S. D.; ACHITE, L. M.;
CUNHA, A. M. D.; DIAS, L. A. V. Distributed systems performance for big data.
In: LATIFI, S. (Ed.). Information technology: new generations. [S.l.]:
Springer, 2016, (Advances in Intelligent Systems and Computing). p. 733–744.
ISBN 978-3-319-32467-8. 25

SCHULSTER, J.; EVILL, R.; PHILLIPS, S.; FELDMANN, N.; ROGISSART, J.;
DYER, R.; ARGEMANDY, A. CHARTing the Future – an offline data analysis
and reporting toolkit to support automated decision-making in flight-operations.
In: INTERNATIONAL CONFERENCE ON SPACE OPERATIONS,
15., 2018. Proceedings... [S.l.]: American Institute of Aeronautics and
Astronautics, 2018. ISBN 978-1-62410-562-3. 24

SILVA, R. R. Abordagens para cubo de dados massivos com alta
dimensionalidade baseadas em memória principal e memória externa:

76

https://iafastro.directory/iac/paper/id/37802/abstract-pdf/IAC-17,D1,4A,1,x37802.brief.pdf?2017-04-11.11:19:08
https://iafastro.directory/iac/paper/id/37802/abstract-pdf/IAC-17,D1,4A,1,x37802.brief.pdf?2017-04-11.11:19:08
http://urlib.net/rep/8JMKD3MGPDW34R/3S2EM7P
http://pages.di.unipi.it/pibiri/papers/DCC21.pdf
http://arxiv.org/abs/1908.10598

HIC e BCubing. Tese (Doutorado em Engenharia Eletrônica e Computação) -
Instituto Tecnológico de Aeronáutica: São José dos Campos, 2015. 18, 19, 29, 57,
68

SILVA, R. R.; HIRATA, C. M.; LIMA, J. d. C. A hybrid memory data cube
approach for high dimension relations. In: HAMMOUDI, S.; MACIASZEK, L. A.;
TENIENTE, E. (Ed.). ICEIS 2015 - Proceedings of the 17th International
Conference on Enterprise Information Systems, Volume 1, Barcelona,
Spain, 27-30 April, 2015. [S.l.]: SciTePress, 2015. p. 139–149. ISBN
978-989-758-096-3. 28

. Computing BIG data cubes with hybrid memory. Journal of
Convergence Information Technology, v. 11, n. 1, p. 18, jan. 2016. 28, 32

SILVA, R. R.; LIMA, J. d. C.; HIRATA, C. M. qCube: efficient integration of
range query operators over a high dimension data cube. Journal of Information
and Data Management, v. 4, n. 3, p. 469–482, 2013. Available from:
<http://seer.lcc.ufmg.br/index.php/jidm/article/view/266>. 28

SIMÕES, R. E. d. O.; CAMARA, G.; QUEIROZ, G. R. de. Sits: data analysis and
machine learning using satellite image time series. In: WORKSHOP DE
COMPUTAÇÃO APLICADA, 18. (WORCAP), 21-23 ago., São José dos Campos,
SP. Resumos... [S.l.], 2018. p. 18. 25

TIAN, S.; WANG, P.; CHEN, X. Quantum algorithm for finding sets intersection.
In: NTERNATIONAL CONFERENCE ON INTELLIGENT
COMPUTING, AUTOMATION AND SYSTEMS, 2019. Proceedings...
Chongqing, China: IEEE, 2019. p. 843–847. ISBN 978-1-72816-106-8. 85

TOMINAGA, J.; FERREIRA, M. G. V.; AMBRÓSIO, A. M. Comparing satellite
telemetry against simulation parameters in a simulator model reconfiguration tool.
In: WORKSHOP EM ENGENHARIA E TECNOLOGIAS ESPACIAIS, 8.
(WETE), 9-10 ago. 2017, São José dos Campos. WORKSHOP DE
ENGENHARIA E TECNOLOGIA ESPACIAIS, 8., 2017. Anais... São
José dos Campos: Instituto Nacional de Pesquisas Espaciais (INPE), 2017. ISSN
2177-3114. Available from:
<http://urlib.net/sid.inpe.br/mtc-m16d/2018/01.03.11.32>. 25

TROLLOPE, E.; DYER, R.; FRANCISCO, T.; MILLER, J.; GRISO, M. P.;
ARGEMANDY, A. Analysis of automated techniques for routine monitoring and
contingency detection of in-flight LEO operations at EUMETSAT. In:

77

http://seer.lcc.ufmg.br/index.php/jidm/article/view/266
http://urlib.net/sid.inpe.br/mtc-m16d/2018/01.03.11.32

SPACEOPS CONFERENCE, 2018. Proceedings... [S.l.]: American
Institute of Aeronautics and Astronautics, 2018. ISBN 978-1-62410-562-3. 23, 24

UHLIG, T.; SELLMAIER, F.; SCHMIDHUBER, M. (Ed.). Spacecraft
operations. Wien: Springer-Verlag, 2015. ISBN 978-3-7091-1802-3. 3

VISWANATHAN, G.; SCHNEIDER, M. User-centric spatial data warehousing: A
survey of requirements and approaches. International Journal of Data
Mining, Modelling and Management, v. 6, n. 4, p. 369, 2014. ISSN
1759-1163, 1759-1171. 3

WANG, Z.; CHU, Y.; TAN, K.-L.; AGRAWAL, D.; ABBADI, A. E.; XU, X.
Scalable data cube analysis over big data. arXiv:1311.5663 [cs], nov. 2013.
Available from: <http://arxiv.org/abs/1311.5663>. 28

XIN, D.; HAN, J.; LI, X.; SHAO, Z.; WAH, B. W. Computing iceberg cubes by
top-down and bottom-up integration: the StarCubing approach. IEEE
Transactions on Knowledge and Data Engineering, v. 19, n. 1, p. 111–126,
jan. 2007. ISSN 1041-4347. 4

YANG, H.; HAN, C. Holistic and algebraic data cube computation using
MapReduce. In: INTERNATIONAL CONFERENCE ON INTELLIGENT
HUMAN-MACHINE SYSTEMS AND CYBERNETICS, 9., 2017.
Proceedings... [S.l.: s.n.], 2017. v. 2, p. 47–50. 28

YVERNES, A. Copernicus ground segment as a service: from data monitoring to
performance analysis. In: INTERNATIONAL CONFERENCE ON SPACE
OPERATIONS, 15., Proceedings... [S.l.]: American Institute of Aeronautics
and Astronautics, 2018. ISBN 978-1-62410-562-3. 3, 23, 24

ZHANG, J.; LU, Y.; SPAMPINATO, D. G.; FRANCHETTI, F. FESIA: a fast and
SIMD-efficient set intersection approach on modern CPUs. In:
INTERNATIONAL CONFERENCE ON DATA ENGINEERING, 36.,
2020. Proceedings... Dallas: IEEE, 2020. p. 1465–1476. ISBN 978-1-72812-903-7.
85

ZHANG, X.; WU, P.; TAN, C. A big data framework for spacecraft prognostics
and health monitoring. In: PROGNOSTICS AND SYSTEM HEALTH
MANAGEMENT CONFERENCE, 2017. Proceedings... [S.l.: s.n.], 2017.
p. 1–7. 8, 21, 22, 23, 24

78

http://arxiv.org/abs/1311.5663

ZHAO, Q.; ZHU, Y.; WAN, D.; TANG, S. A closed frag-shells cubing algorithm on
high dimensional and non-hierarchical data sets. In: INTERNATIONAL
CONFERENCE ON UBIQUITOUS INFORMATION
MANAGAMENT AND COMMUNICATION, 12., 2018. Proceedings...
New York: ACM, 2018. p. 6:1–6:8. ISBN 978-1-4503-6385-3. 28

79

APPENDIX A - INTERSECTION ALGORITHMS

A.1 Problem

This is only a simple overview to show the importance of the problem and how
different algorithms stack against each other.

The problem can be stated as follows: given sets S1 and S2, find the elements that
are present in both sets, their intersection, represented as S1∩S2. Furthermore, each
element is ordered and unique (non-repeating), as they represented index positions
and are thus always non-zero positive integers.

A.2 Algorithms

This section details the compared algorithms, giving more information on the ones
that deviate from literature further.

The UnorderedSet algorithm is an implementation of the optimum complexity algo-
rithm: iterate over all elements of one vector and use a hashing function to check for
equality, adding the elements that are equal. This is an O(n + m) operation, with
n and m the size of both lists. For this work, the UnorderedSet functions from the
C++ standard were used for brevity.

The Scalar algorithm, also called the naïve or the tape-merge algorithm, is the
standard way of computing the intersection between two lists (HWANG; LIN, 1972).
It is detailed in Algorithm 4, and works by creating two pointers for each list, then
incrementing only one of those until an matching element is found or it reaches the
end of the list.

Algorithm 5 is based on the Figure 2 algorithm by Inoue et al. (2014), and consists
on a branchless version of the scalar algorithm above. Its only aim is to reduce the
branch mispredictions during runtime, and removing the two separate ifs with a
constant operation to decide which element to advance next.

81

Algoritmo 4: Scalar intersection algorithm, adapted from Hwang and Lin
(1972)
Result: The intersection between two lists, or ∅ if there is no intersection
La and Lb two input lists;
Lc result list, with maximum size min(length(La), length(Lb));
ai, bi, ci = 0;
while ai < length(La) and bi < length(Lb) do

Adata = La[ai];
Bdata = Lb[bi];
if Adata == Bdata then

Lc[ci + +] = Adata;
ai + +; bi + +;

else
if ai ≤ bi then

ai + +;
else

bi + +;
end

end
end
return Lc;

Algoritmo 5: ScalarBranchless, adapted from Inoue et al. (2014)
Result: The intersection between two lists, or ∅ if there is no intersection
La and Lb two input lists;
Lc result list, with maximum size min(length(La), length(Lb));
ai, bi, ci = 0;
while ai < length(La) and bi < length(Lb) do

Adata = La[ai];
Bdata = Lb[bi];
if Adata == Bdata then ; // easy-to-predict branch

Lc[ci + +] = Adata;
else

ai = (Adata < Bdata);
bi = (Bdata < Adata);

end
end
return Lc;

82

The algorithm called "Li" is based on the original Frag-Cubing implementation code
(LI et al., 2004). It is based off the scalar version, however it uses a look-ahead
heuristic in which it verifies the next ten elements instead of just the next one,
advancing ten spots if the present element is still smaller. It is detailed in Algorithm
6.

Algoritmo 6: "Li" intersection algorithm, adapted from Li et al. (2004)
Result: The intersection between two lists, or ∅ if there is no intersection
La and Lb two input lists. For brevity, La is assumed as the smaller of the two;
Lc result list, with maximum size min(length(La), length(Lb));
LOOK = 10; // how many elements to look-ahead
bi, ci = 0;
for ai = 0 to length(La) do

if bi + LOOK < length(Lb) and Lb[bi + LOOK] < La[ai] then
bi+ = LOOK;

end
while Lb[bi] < La[ai] and bi < length(Lb) do

bi + +;
end
if Lb[bi] == La[ai] then

Lc[ci + +] = Adata;
bi + +;

end
if bi == length(Lb) then

break;
end

end
return Lc;

The BinaryLi algorithm is just the same as the Li algorithm mentioned earlier,
however using a binary-search based skip parameter instead of the fixed 10-elements
heuristic.

The std::set_intersect version is using C++’s language features, and has a very
good native performance due to being vectorized. This however requires that the
data uses the vector class and be in iterator format to work.

The SIMD implementation chosen here is based of the scalar implementation: one
element is put into the first lane, and then four other integers are read on the other

83

lane. The SIMD instruction used is less-than, and a mask is used to verify if all
four elements on the second data lane are -1, meaning that they are lesser than the
element on the first lane. If any of them are, then all four elements are iterated and
then ones equal to the element in the first lane are added to the resulting vector. For
brevity, this is loosely based on the algorithm used in Inoue et al. (2014), without
the adaptive parts.

A.3 Experiments

To search for the best algorithm with real world data, an experiment was performed,
much on the same framework as detailed in 5.3.1: C++ code, each test was executed
5 times and the median of the values was taken. As each technique is efficient with
the memory usage, there wasn’t much difference to be measured, so only the time
necessary to intersect each list was measured. Each list was generated in interval
from 2×106 to 1×107, and all algorithms work on randomized ordered lists with the
same size. This spread was intentional to mirror the worst cases in the Frag-Cubing
algorithm.

Table A.1 showcases a summary of the experiment’s results, these results being the
median time necessary to compute the intersection.

Table A.1 - Set Intersection Results, in milliseconds.

Algorithm - N 2× 106 4× 106 6× 106 8× 106 1× 107

SSE 11,6 23,7 35,1 53,1 58,2
SetIntersect 16,8 34,6 50,9 73,6 88,8
BinaryLi 21,0 40,6 62,7 79,3 120

ScalarBranchless 24,4 42,3 56,5 74,7 120
Li 25,2 45,8 65,9 88,3 119

Scalar 28,7 54,4 74,8 96,3 136
UnorderedSet 948 2101 3062 3993 4999

As the HashSet approach was the slowest approach, Figure A.1 showcases the com-
parison between the other algorithms, that have comparable performances and are
easier to visualize.

The SIMD approach is clearly the fastest, however it is also dependant on proces-
sor architecture and even though the used SIMD instructions (SS2) are available
on almost all modern CPUs, other newer instruction sets might not be, or might
have different implementations depending on the CPU vendor, which complicates

84

widespread implementation.

Figure A.1 - Set Intersection Algorithm results.

12ms
24ms
36ms
48ms
60ms
72ms
84ms
96ms

108ms
120ms
132ms

2M 4M 6M 8M 10M
Elements

m
ill

is
ec

on
ds

Algorithm
BinaryLi

Li

SSE

Scalar

ScalarBranchless

SetIntersect

Runtime

Set intersection algorithms response times in milliseconds, ordered by the size of the input
relation.

SOURCE: Author.

While these tests are interesting, there was not enough time to test some recent
benchmarks that found the use of different algorithms and could improve the per-
formance of each, as the use of compressed indexes in Pibiri and Venturini (2019)
show. Furthermore, the SIMD instruction set used here (SSE2) is limited even if its
support is widespread, with other instruction sets (SSE3, AVX, AVX512, etc) being
available on modern CPUs and also available for use.

Some recent results that have not been properly explored in the data cube context
as of yet: Recursive Universe Partitioning, a technique that uses the possible search
space to partition the sets and execute the intersection (PIBIRI, 2021); FESIA, which
combines the use of previous techniques with different SIMD computation techniques
and a bitmap to decide which algorithm is more suitable for use depending on the set
size (ZHANG et al., 2020), and the use of pre-processed dictionaries to greatly aid in
the computation (DING; KÖNIG, 2011). There’s even an algorithm to compute the set
intersection in Θ(1) by using a quantum computer and extending from the Bernstein-
Vazirani algorithm (TIAN et al., 2019), however due to needingO(n) quantum storage

85

space, that approach is likely not implementable for any significant dataset in the
near future.

Further testing is necessary when dealing with lists of varying sizes, that would
showcase the improvements of certain algorithms over others, and the incorporation
of these algorithms into a real-world dataset for accurate tests. Some of the cited
documents make decisions of which algorithm to use based on the ratio between the
sizes of the two input sets, and this should also be incorporated on future algorithms.

86

PUBLICAÇÕES TÉCNICO-CIENTÍFICAS EDITADAS PELO INPE

Teses e Dissertações (TDI) Manuais Técnicos (MAN)

Teses e Dissertações apresentadas nos
Cursos de Pós-Graduação do INPE.

São publicações de caráter técnico que
incluem normas, procedimentos, in-
struções e orientações.

Notas Técnico-Científicas (NTC) Relatórios de Pesquisa (RPQ)

Incluem resultados preliminares de
pesquisa, descrição de equipamentos,
descrição e ou documentação de progra-
mas de computador, descrição de sis-
temas e experimentos, apresentação de
testes, dados, atlas, e documentação de
projetos de engenharia.

Reportam resultados ou progressos de
pesquisas tanto de natureza técnica
quanto científica, cujo nível seja com-
patível com o de uma publicação em
periódico nacional ou internacional.

Propostas e Relatórios de Projetos
(PRP)

Publicações Didáticas (PUD)

São propostas de projetos técnico-
científicos e relatórios de acompan-
hamento de projetos, atividades e con-
vênios.

Incluem apostilas, notas de aula e man-
uais didáticos.

Publicações Seriadas Programas de Computador (PDC)

São os seriados técnico-científicos: bo-
letins, periódicos, anuários e anais de
eventos (simpósios e congressos). Con-
stam destas publicações o Internacional
Standard Serial Number (ISSN), que é
um código único e definitivo para iden-
tificação de títulos de seriados.

São a seqüência de instruções ou códi-
gos, expressos em uma linguagem de
programação compilada ou interpre-
tada, a ser executada por um computa-
dor para alcançar um determinado obje-
tivo. Aceitam-se tanto programas fonte
quanto os executáveis.

Pré-publicações (PRE)

Todos os artigos publicados em periódi-
cos, anais e como capítulos de livros.

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	EPIGRAPHY
	DEDICATORY
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CONTENTS
	1 INTRODUCTION
	1.1 Research objectives
	1.2 Method
	1.3 Contributions
	1.4 Document structure

	2 THEORETICAL BACKGROUND
	2.1 Satellite operations
	2.2 Big data
	2.3 Data warehouse
	2.4 OLAP
	2.5 Data cube
	2.5.1 Data cube cells
	2.5.2 Dimensional modelling
	2.5.3 Concept hierarchies
	2.5.4 Measures
	2.5.5 OLAP operations
	2.5.6 Data cube computation

	3 RELATED WORKS
	3.1 Operations data
	3.1.1 Data flow

	3.2 Data analysis by satellite operators
	3.2.1 Data analysis at INPE

	3.3 Data cube computation
	3.3.1 Frag-Cubing
	3.3.2 Other algorithms

	4 METHOD
	4.1 Objectives
	4.2 Case study: SCD2
	4.3 Proposed architecture
	4.3.1 Proposed changes

	5 QUERY PARTITION
	5.1 Algorithm
	5.1.1 Aggregation generator
	5.1.2 Relationship strength calculation

	5.2 Queries
	5.2.1 Q1
	5.2.2 Q2
	5.2.3 Q3
	5.2.4 Q4
	5.2.5 Q5
	5.2.6 Summary

	5.3 Experimental validation
	5.3.1 Dataset and method
	5.3.2 Results
	5.3.2.1 Q1
	5.3.2.2 Q2
	5.3.2.3 Q3
	5.3.2.4 Q4
	5.3.2.5 Q5

	5.4 Summary and analysis

	6 INTERVALFRAG
	6.1 Using intervals in inverted indexes
	6.2 Algorithm
	6.2.1 IntervalInsertion
	6.2.2 IntervalIntersection

	6.3 Results
	6.4 Summary

	7 ANALYSIS AND DISCUSSION
	8 CONCLUSIONS
	8.1 Main contributions
	8.2 Future work
	8.3 Final thoughts

	REFERENCES
	 APPENDIX A - INTERSECTION ALGORITHMS
	A.1 Problem
	A.2 Algorithms
	A.3 Experiments

