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ABSTRACT

The main objective of this work was to validate the satellite-based sunshine duration
(SDU) product developed at the Satellite and Environmental System Division on the
Center for Weather Forecast and Climate Studies/National Institute for Space Research
(DSA/CPTEC/INPE) for the period from from September 2013 to December 2017. In
addition, it was sought to propose and assess potential improvements in the model in ques-
tion. To achieve these objectives, this study had three steps. Firstly, data from Campbell-
Stokes recorders and automatic sensors, provided by the National Institute of Meteorology
(INMET) and the Brazilian Environmental Data Organization System (SONDA), respec-
tively, were collected. Afterward, the quality analysis of these databases in the period
of interest was performed. Given the results, the INMET data were selected to be the
reference SDU data for the validation process. Later, the CPTEC daily SDU estimates
were validated, through comparisons to the "ground truth" and the satellite-derived SDU
estimates from the Satellite Application Facility on Climate Monitoring (CMSAF). To pro-
vide a condensed and more robust analysis, the stations were grouped by climate zones,
and the statistical parameters were evaluated in terms of these regions for each month.
Both products demonstrated an overall good performance. The best results were obtained
for the stations south of 15°S, encompassed by the Tropical Central Brazil (Warm and
Mesothermic) and Humid Temperate regions. The satellites products exhibited small over-
estimation tendencies for these locations (approximately 0.5h), whereupon the CPTEC
product showed smaller bias for the former region and the CMSAF dataset for the lat-
ter. For the Equatorial region, overestimation was also found. Concerning this location
the bias of the CPTEC product was on average 1 hour higher than the aforementioned
regions, while the results for the CMSAF estimates lie close to the previous ones. The
Northeast Brazil showed a seasonal underestimation tendency for the CPTEC dataset,
that was mainly attributed to the cloudiness parameterization. For this region, the CM-
SAF presented high positive bias that might be related to misrepresentation of low-warm
cloud fields. The root mean squared error (RMSE) and correlation coefficient (r) for these
products varied within regions and evaluated month. The RMSE values lied between 1.01
and 2.55h and the r values were in general over 0.7, indicating strong positive correlation.
These results are in agreement with previous reports on satellite-derived SDU estimates
presented in literature. Lastly, some aspects of the CPTEC model were analyzed, aiming
to provide meaningful insights on potential improvements: the treatment regarding the
beginning and end of the day; the impact of the amount of available images on the esti-
mation quality, and the importance of a proper clear sky reflectance assessment. It was
suggested considerations on the sunrise and sunset to prevent estimates greater than the
maximum day length; quality flags concerning the number of available images for the SDU
estimate should be provided to the data user as ancillary data; and the implementation of
a variable clear sky reflectance field along daytime, season and location to better represent
this parameter. The results obtained showed that the CPTEC SDU estimates present a
good performance over Brazil, being a reliable alternative to provide information for many
applications.

Keywords: Gridded SDU dataset. Campbell-Stokes recorders. Inter-comparison. Satellite-
based modeling. GOES satellite. Brazilian radiometric network.
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ESTIMATIVA DA INSOLAÇÃO SOBRE O BRASIL ATRAVÉS DE
DADOS DE SATÉLITE GEOESTACIONÁRIO: VALIDAÇÃO E

APERFEIÇOAMENTO DO MODELO DO CPTEC/INPE
RESUMO

O presente trabalho teve como objetivo avaliar o desempenho das estimativas de insolação
(n) por satélite desenvolvido pelo INPE sobre o Brasil. Adicionalmente, procurou-se pro-
por e testar potencias melhorias no modelo em questão. O período analisado compreende
de setembro de 2013 a dezembro de 2017. Para alcançar esses objetivos a pesquisa teve
três etapas. Primeiramente, dados de heliógrados e sensores automáticos, fornecidos pelo
Instituto Nacional de Meteorologia (INMET) e pelo Sistema de Organização Nacional de
Dados Ambientais (SONDA), respectivamente, foram coletados. A qualidade dos dados
no período de interesse foram investigadas. Após análise da qualidade dos dados, a base
de dados do INMET foi selecionada para servir como dado de referência para as etapas de
validação do presente trabalho. Na segunda parte, produto de n do CPTEC foi validado,
através da comparação com dados de superfície e estimativas de n derivadas de dados de
satélite da Instalação de Aplicação de Satélites no Monitoramento Climático (CMSAF).
Para proporcionar uma análise condensada e robusta, as estações foram agrupadas em
zonas climáticas, e os parâmetros estatísticos foram obtidos em termos desta regionaliza-
ção para cada mês. Ambos os produtos demonstraram um bom desempenho no geral. Os
melhores resultados foram obtidos para as estações ao sul de 15°S, compreendidas pelas
regiões Tropical Brasil Central (Quente e Mesotérmico) e Temperado Úmido. Os produ-
tos exibiram pequenas tendências de superestimativa para esses locais (aproximadamente
0.5h), enquanto o CPTEC apresentou menor bias para a primeira região e o CMSAF para
a última. Para a região Equatorial, também foi encontrada tendência de superestimativa.
O bias do produto do CPTEC foi em média 1 hora maior do que para as regiões anterior-
mente citadas, enquanto os resultados para as estimativas do CMSAF foram similares às
regiões ao sul. O Nordeste do Brasil apresentou uma tendência de subestimativa sazonal
para os dados do CPTEC, que foi atribuída principalmente à parametrização da nebulo-
sidade. Para esta região, o CMSAF apresentou altos valores de bias positivo, que podem
estar relacionados à representação inadequada de cobertura de nuvens quentes e baixas. A
raiz do erro quadrático médio (REMQ) e o coeficiente de correlação (r) para esses produ-
tos variaram de acordo com a região e mês avaliado. Os valores de REMQ variaram entre
1.01 e 2.55h e os valores de r estiverem em geral acima de 0.7, indicando forte correlação
positiva. Os resultados obtidos estiveram em conformidade com os relatados anteriormente
na literatura de estimativas de n por satélite. Na última etapa, alguns aspectos do modelo
do CPTEC foram investigados: o tratamento no início e no final do dia; o impacto da
quantidade de imagens disponíveis na qualidade da estimativa e a importância da avalia-
ção adequada da refletância de céu claro. Foram sugeridas possíveis considerações acerca
do nascer e pôr-do-sol para evitar estimativas maiores que a duração máxima do dia; o
fornecimento de sinalizadores de qualidade relativos ao número de imagens disponíveis
para a estimativa da n ao usuário; e a implementação de um campo variável de reflectân-
cia de céu claro ao longo do dia, estação e local para melhor representar este parâmetro.
Os resultados obtidos mostraram que as estimativas de n do CPTEC apresentam bom
desempenho para o Brasil, sendo uma alternativa confiável para fornecer informações para
diversas aplicações.

Palavras-chave: Dados de insolação em grade. Heliógrafos. Inter-comparação. Modelagem
baseada em dados satelitais. Satélite GOES. Rede radiométrica Brasileira.
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1 INTRODUCTION

This study aims to explore the performance of the sunshine duration model ran
operationally at the Satellite and Environmental System Division on the Center
for Weather Forecast and Climate Studies/National Institute for Space Research
(DSA/CPTEC/INPE). This chapter describes briefly the background, and the goals
of this research, followed by an outline of the dissertation.

1.1 Background and motivation

Conceptually, sunshine duration (SDU) is the total of hours that sunlight reaches the
Earth’s surface directly from the sun. With the advance of the technology and the
measurement instruments, it was formally defined as the sum of the periods in which
direct solar irradiance reaches or exceeds 120 W/m2 (WORLD METEOROLOGICAL

ORGANIZATION - WMO, 2008). Along with precipitation and surface air tempera-
ture, it is one of the most important parameters in climate monitoring (KOTHE

et al., 2013). In a given area, the amount of sunshine received is the major factor
determining the local climate (BERTRAND et al., 2013).

The SDU importance has been known for a long time and its first measurements
date back to the 19th century. In fact, there are time series as long as 100 years
of SDU measurements accumulated at networks all over the world. SDU data is
relevant for a number applications, such as yield planning in agriculture (RAO et al.,
1998; XUE et al., 2011; HUANG et al., 2012; WANG et al., 2015), analysis of the thermal
loads and sunshine duration on buildings (SHAO, 1990), input parameter in soil
water balance models (WARNANT et al., 1994), and even research on human’s health
(MCGRATH et al., 2002; NASTOS; MATZARAKIS, 2006; KELLER et al., 2019). Akinoglu
(2008) stated that SDU data is the best long term, trustworthy, and readily available
measurement to estimate the surface solar irradiation, due to the linear relationship
between these variables, described by Angstrom (1924). These data, achieved by
means of Campbell-Stokes (CS) type recorders, the most common instrument used
to measure SDU, are simple to collect. Although some issues, e.g. overburning due
to intermittent sunshine, non-standard paper cards use, could reduce its reliability,
which would interfere with the quality of solar irradiation estimates. Some of this
aspects on SDU measurements are described on Chapter 3.

Based on that, it is clear the necessity of SDU records. However, there is a relatively
small number of stations that measure it. Overall, networks of SDU are sparse
and insufficient to cover large areas (KANDIRMAZ; KABA, 2014). In Brazil, the
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National Institute of Meteorology (INMET) currently operates a network with 245
stations, besides that, it provides SDU time series from other 85 sites, that are no
longer operational. The effort to maintain this network is essential to provide reliable
SDU records for climate studies. Nonetheless, comparatively to the temperature
or precipitation networks with thousand stations, the SDU current network seems
inadequate to cover the Brazilian large extent territory.

Along with that, once that meteorological station measurements are point-based
observations (ZHU et al., 2020), SDU in the vicinity has to be obtained through inter-
polation techiniques. Therefore the accuracy of the method strongly relies primarily
upon the number and spatial distribution of meteorological stations. Generally, the
station’s distribution is heterogeneous, with most of them near cities, and for several
reasons, extensive areas remain without records. For instance, it can be observed in
Brazil, where some regions as the Northern have very few stations, while in the
South and Southeast regions present a denser network. Consequently, the resulting
interpolated field is usually poor for representing the temporal and spatial SDU
variability characteristics (WU et al., 2016).

Geostationary satellites perform measurements with high spatial and temporal res-
olution and cover large areas, so their data can be used as an alternative to estimate
SDU. Literature on the subject provides some proposed methods to accomplishes
it. Given the fact that clouds are the primary responsible for SDU changes, several
methods to derive SDU rely on it. Different techniques have been considered, such
as SDU estimate based on cloud cover index (KANDIRMAZ, 2006; CEBALLOS; RO-

DRIGUES, 2008; SHAMIM et al., 2012) and from satellite-derived cloud-type products
(GOOD et al., 2010; WU et al., 2016; ZHU et al., 2020). Another approach is given by
Kothe et al. (2017), in which SDU is calculated based on direct normal radiation
threshold, using data from the Meteorological Satellite (Meteosat) series operated by
European Organization for the Exploitation of Meteorological Satellites (EUMET-
SAT). This approach has been considered one of the most advanced remote sensing
tool to estimate the SDU, being operational at the Satellite Application Facility on
Climate Monitoring (CMSAF).

Ceballos and Rodrigues (2008) proposed a SDU method based on Geostation-
ary Operational Environmental Satellite (GOES) data. It is operational at the
DSA/CPTEC/INPE. This method (hereafter CPTEC method) was validated by
the authors using in situ measurements from São Paulo and Fortaleza, and their
results indicated a good agreement between the estimates and the observed data.
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Thereafter, Porfirio (2012) extended the validation of CPTEC method for the North-
east Brazil, using records from 53 stations for 2008, showing a good performance
of the method. Furthermore, the author investigated the model’s deficiencies and
showed that by adjusting the parameter related to the clear sky reflectance for the
region, better estimates were achieved. Notwithstanding, the climatic characteristics
of that region are not representative of the whole country.

In addition, the satellite-derived SDU data set from CMSAF also provides estimates
over Brazilian territory. However, the accuracy of the product was only evaluated
for the monthly sums, and regarding few stations. Therefore, it is still needed a deep
validation of daily SDU estimates based on satellite data over Brazil, in order to
provide reliable SDU data.

1.2 Objectives

Given the great importance of good, trustworthy SDU data for many applications,
the main purpose of this study was to validate and provide improvements to the
CPTEC method for SDU estimate over Brazil for the period of September 2013 to
December 2017.

To achieve that, the following specific objectives were proposed:

• Survey the available in situ SDU observations and propose a simplified
quality control methodology for heliographic data;

• Evaluate the SDU datasets to select the most appropriate one to be used
as reference in the validation process;

• Assess the quality of the CPTEC method for the Brazilian territory
through the comparison of the estimates with the reference data set. Sta-
tistical analyses will be performed for daily SDU.

• Perform an intercomparison of the CPTEC and the CMSAF product
(Kothe et al. (2017) method). The main aim here is twofold: first to verify if
the CPTEC product is coherent with other satellite-derived estimates and
second to seek the satellite-based estimates limitations and advantages.

• Investigate the considerations used in the CPTEC method, in order to
provide suggestions on potential improvements.
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1.3 Dissertation outline

This chapter described briefly the main topics associated to this dissertation, other
chapters will give more details on the subject, mainly in terms of the SDU satellite-
based methods and measurements.

The dissertation is organized as follows:

Chapter 2 provides a literature review focused on physical concepts of SDU, the
instruments commonly employed for its records and previous remote sensing ap-
proaches for assessing it. At the end of the chapter, an overview of the subject
over Brazil, regarding SDU’s networks, and efforts to estimate and characterize it is
performed.

Chapter 3 presents the readily available ground measurements sources for SDU
studies, the employed quality control measures and the analysis on this data that
led to the reference data set selection.

Chapter 4 introduces the satellite-derived SDU estimates algorithms evaluated in
this research, presents the methodology used to the validation and inter-comparison,
and displays the results obtained in this step.

Chapter 5 explores the deficiencies of the model and discusses potential improve-
ments on the CPTEC method.

Chapter 6 gives a summary of the main results and conclusions, and recommen-
dations for future work.
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2 LITERATURE REVIEW

This chapter aims to describe some physical concepts of SDU and the main liter-
ature on observation and estimation methods. Concerning estimation methods it
focuses mainly on those based on satellite. At the end of the chapter,it is presented
an overview of the SDU’s network, the efforts to provide reliable datasets, and to
characterize this variable over Brazil.

2.1 Sunshine duration

2.1.1 Definition

SDU is defined as the total of hours in a day that the solar disc is not blocked so
that direct normal radiation reaches the Earth’s surface (WU et al., 2016). SDU
has a maximum possible value that corresponds to the day length, which depends
on solar declination angle and the latitude of the location, and can be computed as
(DUFFIE; BECKMAN, 1991):

N = 2
15 arccos(−tan(ψ) tan(δ)) (2.1)

Where ψ is the site’s latitude and δ is the solar declination (angles in degrees), given
by

δ = 23, 45 sin( 360
365 (284 + n)) (2.2)

where n is the julian day.

The amount of sunshine hours depends on astronomical factors (i.e. sun’s elevation
and azimuth; the sun-Earth distance) and atmospheric constituents (i.e. the chemical
abundance in the earth’s atmosphere of gases and aerosols are responsible for solar
radiation absorption and scattering). Clouds, consisting of liquid water droplets or
ice particles, are the primarily responsible for preventing incoming solar rays from
reaching the Earth’s surface (KANDIRMAZ; KABA, 2014).

2.1.2 Records

There are different methods for measuring SDU, one of the most commonly used is
the CS recorder. The instrument that was introduced in 1880, detects sunshine if the
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solar radiation beam concentrated by a glass sphere burns a trace on a graduated
paper card (HINSSEN; KNAP, 2007). This instrument is widespread all over the
world, with time-series longer than 100 years. Despite that, it has some weaknesses
as pointed out by Painter (1981) as followed: on days of strong and intermittent
sunshine, the burn spreads on paper card, leading to an SDU overestimate. Different
locations may require different amounts of energy to burn the paper, e.g. when
conditions are cold and wet, more energy is required to burn a trace in the card
than when it is warm and dry. Around the dawn period, dew may cover the sphere,
reducing the intensity of sunlight passing through. These aspects have been known
since it was earliest deployed, so that observers were instructed to take them into
account when analyzing the card (KERR; TABONY, 2004). Even so, the flaws are
not easily surpassed and have led to a non-negligible degree of subjectivity, affecting
sunshine measurements.

Automatic sensors appear to be a more reliable approach to measure SDU. The
World Meteorological Organization (WMO) replaced the CS recorders for the pyrhe-
liometer, and redefined SDU as the number of hours for which the direct solar irra-
diance is reaches or exceeds 120 W/m2, since investigations have shown that this is
the mean threshold irradiance for burning the cards (WORLD METEOROLOGICAL

ORGANIZATION - WMO, 2008). The pyrheliometer measures the direct beam solar
irradiance, as the sunlight enters the instrument through a aperture and is directed
onto a thermopile, converting heat to an electrical signal that can be recorded. The
instrument is mounted on a solar track so it can follow the apparent sun position
along its path through the sky (BLANC et al., 2014). Although this method is more
accurate for measuring SDU, it is also more expensive and requires continuous main-
tenance, therefore there is a relatively low number of stations with this instrument.
In Brazil, for instance, there are less than ten stations equipped with pyrheliometers
measuring continuously.

Another automatic method is the pyranometric. It consists in the use of two pyra-
nometers, one measuring global solar irradiance and another with a shadow-ring,
to block the direct irradiance, measuring diffuse solar irradiance. From these mea-
surements, the direct solar radiation is calculated. Thereafter, SDU is given by the
number of hours that it is above the WMO threshold. There are yet other methods,
such as the contrast and the scanning methods, however they are less employed. The
SDU measurement networks, mainly those used in the present study are presented
and analysed in Chapter 3.
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2.1.3 Satellite-derived SDU estimates

SDU’s networks are quite sparse and insufficient, due mostly, to geographic and
financial reasons, especially on developing countries. Even that the best means of
gathering any meteorological data is to record the data directly at meteorological sta-
tions, these are point measurements (ZHU et al., 2020), which imply that the recorded
data have high temporal resolution but low spatial resolution (KANDIRMAZ; KABA,
2014). To obtain a regional SDU, interpolation methods are required. Due to the
number of stations and its heterogeneous distribution, the resulting maps present
relatively high uncertainty, especially in locations where there are no observations
(GOOD et al., 2010), and are often deficient in representing the complex climate
characteristics of geographic sunshine hours at a regional scale (WU et al., 2016).
Alternatively, satellite measurements with higher spatial resolution and frequency
appears as an useful tool to estimate SDU.

Using geostationary images from the visible band of the Meteosat, Kandirmaz
(2006) proposed a simple model for estimation of daily global SDU based on the
statistical relation between cloud coverage and SDU, that he found to be linear. To
derive an equation that describes this relation, the author starts with the function
between the cloud cover index and the total atmospheric transmission factor (i.e.
the ratio of global radiation on the ground on a horizontal surface to the horizontal
irradiance outside the atmosphere) that can be written as:

Tt = Tc + nt(T0 − Tc) (2.3)

where TTt, Tc and To corresponds to the total, clear and overcast sky transmission
factors, respectively. It is convenient to propose the total atmospheric transmission
factor as a linear function of cloud cover index, nt, i.e.:

Tt = a− ntb (2.4)

where a and b give a measure of clear sky and cloudiness atmospheric transmissivity,
respectively (DIABATÉ et al., 1989), that can be derived from regression equations.
Daily transmission factor Td can also be written as a linear function of daily mean
cloud cover index, nm, as (KANDIRMAZ et al., 2004):
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Td = a− nmb (2.5)

However, the relation between daily transmittance factor and daily fractional bright
sunshine hours, n/N, can be written by using the well-known Angström–Prescott
relation (ANGSTROM, 1924; PRESCOTT, 1940):

Td = d− n

N
c (2.6)

wherein c and d are regression parameters which related to location, season, and
state of the atmosphere. Combining the two latter equations, the following relation
for s/S can be obtained:

n

N
= e− nm f (2.7)

This implies that the daily mean cloud cover index, nm, must be directly proportional
to n/N . The author used the aforementioned equation to estimate SDU. Primarily,
cloud cover index was calculated for each image. To do it, it was used the well-known
relation proposed by Cano et al. (1986):

nt = ρt − ρga
ρcm − ρga

(2.8)

where ρt, ρga and ρcm are the albedo of the pixel in time t, albedo of free-cloud
pixels and albedo of compact cloud cover on the same area, respectively. Than
taking average of all cloud indices for a day, mean daily cloud cover index was
obtained, which ranges from 0 to 1. If daily mean cloud cover index is equal to 0
this means that the pixel had no cloud cover all day long, and if it is equal to 1, than
is totally covered by clouds all day long. Thereafter Equation 2.7 with coefficients
fitted by linear regression was employed to calculate SDU over Turkey. To validation,
mean biased error (MBE) and root mean square error (RMSE) values of monthly
mean SDU for eight randomly chosen meteorological stations for each month were
calculated, RMSE and MBE values vary between 0.54 h/d (for Diyarbakir station
for August 1997) and 2.79 h/d (for Rize station for August 1997) and between -
1.82 h/d (for Malatya station for October 1997) and 1.93 h/d (for Rize station for
August 1997), respectively. The results suggest that the model performs better on
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the stations that exhibits less cloudiness. In this study, the author had only 4 images
per day with a resolution of 7 km x 7 km, so he suggests that with a finer resolution
the errors would considerably decrease.

Good et al. (2010) developed a method to estimate SDU based on cloud classi-
fication data from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI)
on board the Meteosat Second Generation (MSG) satellite, which is geostationary
above 0° longitude, 0° latitude, provided by Satellite Applications Facility on Now-
casting. The cloud-type data consist of 21 classifications made using a multi-spectral
threshold, and provided at full pixel resolution for each 15-minute observation (slot).
A pixel can be assigned as bright sunshine or no sunshine according to the cloud
type observed. When no cloud is detected, bright sunshine is assumed. Similarly,
where opaque cloud is observed, the slot is referred as ‘no sunshine’. In cases where
semi-transparent or fractional (sub-pixel) cloud types are detected, it is possible that
some bright sunshine may be recorded by the in-situ sensors. Therefore, to ensure
that the satellite estimates are consistent with the station observations, there is a dif-
ferent approach to these situations: for pixels classified as fractional, a contribution
of 0.5 for that slot is assumed, as opposed to a value of 1.0 for other bright sunshine
assignments; for pixels classified as semi-transparent clouds, the sun elevation an-
gle (SEA) is taken into account, because as the SEA decreases, the optical path of
the sunshine through the cloud increases, which has the effect of attenuating more
solar radiation than if the sun were directly overhead. Using the Fu-Liou radiation
code, SEA thresholds were determined as 12.0º, 13.8º and 15.3º for very thin, thin
and thick cirrus, respectively. And where the SEA is above this threshold, bright
sunshine is assumed. For SEA below this threshold, the observation is assigned ‘no
sunshine’. The estimation of SDU is calculated as the fraction of daytime observa-
tions slots that were assigned ‘bright sunshine’ per total number of available daytime
observation slots, multiplied by the number of hours of daylight for that pixel. This
calculation is made only when there is a least 90% of all available 15-minute day-
time observation slots for a pixel. The validation of the estimates was assessed by
comparing the daily pixel-based values with collocated daily station totals obtained
over four months in 2008 over the United Kingdom. Since there are differences in
observations from CS and Kipp & Zonen instruments, the evaluation was performed
separately for each one of the instruments. The results showed that accounting for
some bright sunshine for cirrus and fractional cloud types enhanced the accuracy of
the estimates. Also, the results are notably better for the Kipp & Zonen compared
with the traditional CS instruments. Nevertheless, overall agreement between the
satellite and in-situ data is good, the high correlation of the satellite estimate with
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the station observations suggests that the spatial pattern of SDU is captured by the
satellite data.

Shamim et al. (2012) presented an improved model for global SDU estimation based
on the one presented by Kandirmaz (2006). The study was focused on the Brue
Catchment, in the southwest of England. They used hourly Meteosat geostationary
images in visible band, with a spatial resolution of 2.5 km x 2.5 km, and station
data from the Hidrology Radar Experiment (HYREX) project in year of 1994 for
training and the year of 1995 for validation. The method suggested by this study
distinguishes from the one developed by Kandirmaz (2006), mainly because its
approach uses external snow cover information and accounts for the sun-satellite
angle effects individually for each pixel in the calculation of the cloud index, also, it
uses a finer resolution for the estimates. The validation of the proposed method was
performed, and compared with the performance of Kandirmaz (2006) model. Results
show an improvement over its predecessor, with the coefficient of determination (r2)
going up from 0.68 to 0.83, and RMSE and MBE coming down to 1.19 h and 0.081
h from 2.37 h and 0.21 h, respectively. The authors highlighted the fact that the
method must be studied in other regions, because of the regional dependency of
regression parameters.

Kothe et al. (2013) investigated two methods to derive daily and monthly SDU.
They extended the Good et al. (2010) method to the wider region of Europe, and
considered another one in that the SDU is computed using solar incoming direct
radiation (SID) and the WMO threshold for sunshine of 120 W/m2. Both, cloud-
type (used in Good et al. (2010)) and SID datasets are provided by the European
Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Cli-
mate Monitoring Satellite Application Facility (CMSAF) and their retrievals are
based on data from SEVIRI instrument on board Meteosat-8 and Meteosat-9. In
the application of the cloud-type method, the authors used hourly data and made a
modification in the approach of the semi-transparent clouds so it could cover a wider
variety of cirrus clouds. So, in this study, the SEA thresholds to assign the pixel as
bright sunshine were derived using hourly data and linear regression between the
solar elevation angle and the normalized SID. The method based on SID product is
very straightforward. The satellite-based SID product assumes a horizontal plane,
and therefore to ensure consistency with in situ observations it was normalized by
the solar zenith angle. SDU is then computed whenever the normalized SID exceeds
120 W/m2. The two methods were compared to each other and to ground measure-
ments focusing on the year 2008. The products intercomparison showed that they
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present similar spatial patterns, but that the SDU-cloud-type product typically ex-
hibit lower values than SDU-SID, especially over ocean areas. The comparison with
ground measurements showed that for daily estimates, the cloud-type method ex-
hibits an underestimation tendency while the SID method tends to overestimate.
The results also indicate that the agreement between the SDU-SID and station data
is more stable than for the one based on cloud-type, which is indicated by lower
standard deviations and higher Pearson correlation coefficient. On the other hand,
the SID method presents a higher bias (+0.8h) compared to the SDU-cloud-type
data (-0.1h). The authors investigated the effects of zenith angle on the satellite-
based SDU. They found a relationship between the satellite-based SDU and the
zenith angle, as both products present negative bias with increasing zenith angle,
with increased variance during the summer months. For the monthly SDU estimates,
as for the daily evaluation, SDU-SID product performs better than SDU-cloud-type
in terms of standard deviation and correlation, but has a bias of larger magnitude.
As SDU-SID, performed better than SDU-cloud-type, it was selected to become an
operational product within the Regional Climate Centre on Climate Monitoring.

Bertrand et al. (2013) attempted to estimate the SDU over Belgium by exploiting
both in situ SDU measurements and data from MSG satellites. In their study, they
proposed two approaches to combine these data: The first one consists in fitting
regression models (in this case, a linear model) based on the satellite-derived pa-
rameters to bright sunshine hours recorded at the station level. They considered five
regression models, in four of them, only one parameter from the Meteosat was used,
among daily clearness index, daily beam ratio, daily effective albedo and SDU. The
fifth one uses the daily clearness index and daily beam ratio combined. Thereafter
the site-dependent regression coefficients are spatially interpolated to allow the em-
pirical regression models to be applied to each pixel of the satellite data. The second
approach was based on kriging with external drift (KED), that is capable of handle
densely sampled ancillary variables highly correlated with the parameter of interest.
In this study, KED was used with one of the four MSG-based parameters as a drift,
and also with two drifts (i.e. clearness index and beam ratio). The validation was
performed using 1 year (i.e. 2011) of daily in situ observation from the Belgian sta-
tion network in a cross-validation framework. In general, the KED approach with
one drift presented the best results, irrespective of the input parameters. The best
performance is reached when the satellite-based daily global surface solar radiation
estimations were corrected using in situ measurements before the computation of
the MSG-based clearness index, and the aftermath is used as input for the KED.
Furthermore, the authors showed that the use of this method enhanced the ability
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of reproducing the local and regional SDU patterns over Belgium.

Kandirmaz and Kaba (2014) used images from Moderate Resolution Imaging Spec-
troradiometer (MODIS) on board the polar orbiting satellites Aqua and Terra to
estimate daily global SDU in Turkey. The method used was the same described in
his previous work (KANDIRMAZ; KABA, 2014), but with a better spatial resolution
(250m). Besides the linear regression that was previously employed, the authors pro-
posed a quadratic regression, once that in the mentioned study was concluded that
the linear formulation was not adequate for the days of winter in which generally the
sky was fully overcast. Data from nine stations were used to find a unique correlation
for Turkey, and data from another sixteen stations were used for testing the success
of the derived correlations. The analysis of the statistical indicators shows that for
months with a high number of overcast days, the quadratic correlation indicates a
better statistical relation between the satellite-derived data and the measured one
than linear correlation. Whereas if this is not the case, both quadratic and linear
models exhibit similar behavior. The overall RMSE and MBE values are consistent
with those of previous satellite-based studies in the literature, which shows that
although the MODIS data is obtained only twice in a day, the resulting accuracy is
comparable with those obtained with geostationary satellite data, that offer many
observations in a day. Therefore, daily SDU values can be estimated using images
of a polar orbiting satellite for regions where there is no possibility of having any
related data.

Wu et al. (2016) tried to obtain SDU by means of FY-2D geostationary meteoro-
logical satellite data. The method proposed is based on hourly cloud classification
product, and the Shuffled Complex Evolution Algorithm (SCE-UA) was used to
calibrate sunshine factors related to different coverage types according to ground
measurement data from the Heihe River Basin in 2007. The estimated SDU was
validated with ground observation data from 2008 and the spatial distribution was
compared with the results of interpolation methods. With the exception of the sta-
tions in the mountains, the whole area of study presented a r2 greater than 0.89,
the index of agreement was higher than 0.990, suggesting a good performance. The
results of the mean absolute error (MAE) and RMSE implied the presence of out-
liers. The authors also concluded that the satellite-based product was better able to
capture the spatial distribution variation of SDU than the interpolated methods.

Kothe et al. (2017) combined the aforementioned SID product and the cloud index
obtained from the Effective Cloud Albedo to estimate SDU. As in Kothe et al.
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(2013), direct normalized irradiance (DNI) is derived from SID by normalization
with the cosine of the solar zenith angle (SZA). Daily SDU is calculated as the
ratio of satellite observations exceeding 120 W/m2 (sunny slots) to all slots during
daylight. The dataset is provided at 30 minutes resolution, and therefore each sunny
slots corresponds to 30 minutes of sunlight, however there is a probability that
not the whole 30 min are sunny, so the authors proposed weighting the slots using
the information of the 24 surrounding grid points. The validation of daily SDU
estimates over Europe (although not for all countries in it) showed good agreement,
with small uncertainty and high correlation. The evaluation of monthly satellite-
derived SDU was performed for all Meteosat disk. It was shown that there is a
slight overestimate of SDU, with a bias of 7.5h, mean absolute difference (MAD)
of 18.4h, and correlation of 0.91. Besides the high accuracy of SDU, no trend was
identified on the normalized bias suggesting that the time series is very stable.
Nevertheless, some deficiencies were identified, such as cases of a misinterpretation
of snow coverage as clouds, issues with low clouds in West Africa, or a few artifacts
in some scenes, that should be further investigated. The success of the results took
this method to be implemented operationally in CMSAF, providing a dataset from
1983 to near real time. Bartoszek (2018) used this dataset to extend the validation
for Poland, once that it has not been done in the above-mentioned study. The results
obtained, endorsed the good performance of the estimates.

2.2 Sunshine duration over Brazil – an overview

The aforementioned worldwide lack of radiation data is also a reality in Brazil. The
National Institute of Meteorology (INMET) currently provides both global radia-
tion and SDU data. However, the first started to be measured only recently (for
climatological purposes), with its longest time series beginning in 2000, and just for
a small number of stations (five sites). Nowadays, INMET provides data of global
radiation from 589 stations, nevertheless, continuous recording series are scarce. In
order to reduce the absence of information regarding the solar resource, the Im-
pacts, Adaptation and Vulnerabilities Division at Brazilian Institute for Space Re-
search (DIIAV/INPE) began the Brazilian Environmental Data Organization Sys-
tem (SONDA) network, as a research program designed to deliver trustworthy mete-
orological and solarimetric data to support the Brazilian energy sector (SILVA et al.,
2014). The network has 20 measurement stations distributed throughout Brazilian
territory. Despite the efforts to provide reliable data, the distribution of these net-
works is uneven, with regions, such as the Midwest and Northern Brazil, having very
few stations with series no longer than 15 years (XAVIER et al., 2016), which make
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their use very restrict to agrometeorological studies (BATTISTI et al., 2019). As an
alternative, SDU is widely used to estimate this variable, since it is highly correlated
with solar radiation, and is registered in many climatological stations (ALMOROX et

al., 2020).

Although its most commonly used as proxy for solar radiation (BURIOL et al., 2012;
LYRA et al., 2016; SOUZA et al., 2016; RIBEIRO et al., 2018), the SDU has many other
applications. It is essential for evapotranspiration estimates (MOURA et al., 2013)
and as input parameter for crop simulations (BATTISTI, 2016), key components in
agricultural yielding. For this reason, it is a fundamental aspect for a country where
agriculture plays such important role as in Brazil (ANDERSON et al., 2016).

SDU was also correlated with several effects on human health, e.g., Benedito-Silva
et al. (2007) studied the association between bright sunshine hours and suicide rates
and Santos et al. (2020) evaluated the influence of the photoperiod exposure at birth
and the chronotype. SDU is also a crucial aspect in the civil construction, as it is
related to thermal comfort, hence it is usually used for thermal loads analysis on
buildings (BASSO et al., 2015a). Its impact on tourism was also scope of research:
Perch-Nielsen (2010) analysed the vulnerability of the beach tourism sector under
climate change on a country level, as the attractiveness of a region for touristic
activities depends strongly on the local weather and climate.

As previously stated, there is a greater amount of SDU records than other solar
radiation data. Notwithstanding, its network presents a very irregular distribution
of stations. Due to the continental dimension of Brazil and the difficult access to cer-
tain regions, the meteorological network does not have adequate density despite the
recognised efforts of the responsible entities (FUNARI; TARIFA, 2017). To overcome
this lack of data it is common to adopt techniques to perform spatial interpolations.
In this context there are studies focused on both, regional and continental scales.

Funari (1983) aimed to characterize the spatial and temporal SDU distribution in
Brazil. To accomplish that, the author used data for the period of 1931-1960 from
204 stations and produced monthly charts using a base map from the Brazilian Insti-
tute of Geography and Statistics (IBGE), with a scale of 1: 5.000.000, in azimuthal
conformal projection. The relief, natural vegetation, hydrography, geomorphology,
cloudiness and rain were considered to trace the isocontour maps of bright sunshine.
The author pointed out some key regional features observed in his results. In the
Northern region of Brazil the sunshine distribution was very similar to the rain
chart, overall, the SDU values were lower in regions with greater amount of rain,
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and occurred in the first semester of the year, when precipitation is higher. Over the
Northeast region, the observed values were high, mainly due to the low cloudiness. In
this region the relief plays a important role in the SDU spatial variability. A strong
influence of the orography was observed in the South and Southeast regions; along
with the frequent occurrence of frontal cloudiness, with the smallest SDU values
observed in the region of Rio Doce Valley and the Serra do Mar.

Tiba et al. (2000) presented a great effort to gather and summarize the information
regarding solar resources. Concerning the SDU, the data used are from CS recorders
measurements collated from different sources. Since there was no previously knowl-
edge on data quality, it was assumed that the errors did not surpassed 10%. In
some cases, the SDU values were extrapolated till 200 km. The authors saliented
the macro scale of the project: it was intended to express the relevant aspects of
the global distribution of the resource, putting aside particularities typical of the
small and regional scales (TIBA et al., 1999). The resultant Brazilian Solar Radiation
Atlas consists of a volume on the existing solar radiation data in the country, in
a standardized format, with 26 charts of daily solar radiation and sunshine hours,
at monthly and annual basis. Besides that, the Atlas also assembled the relevant
literature in the theme, with over 50 publications.

New et al. (2002) proposed a global high-resolution data set of monthly averages of
relevant climate variables. The author gathered data from several sources. Regard-
ing the measurements of sunshine, 4792 stations were used worldwide. The data
were interpolated from networks of station observations using thin plate smooth-
ing splines, with latitude, longitude and elevation as independent predictors. The
resulting dataset has a spatial resolution of 10’ lat/lon (approximately 18 km ×
18 km at the equator). The authors noticed that large interpolations errors were
found over the tropics due to the sparse station networks. They also pointed out
that in regions with data scarcity, the stations used to create the datasets were un-
able to capture local features, and that the interpolated fields represented only of
large-scales regimes.

Medeiros et al. (2018) used a Krigging method to evaluate the average SDU in Piaui
state. The authors utilized data from 6 stations, comprising the period from 1962 to
2017. They highlight the absence of a fairly dense network to reasonable cover the
state area. From their results, they were able to characterize the main features of
SDU in Piaui. The annual SDU average observed was 2803.9 hours, with a minimum
registered in February (156 hours) and a maximum in August (304.5 hours), that
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were related to the cloud cover conditions.

Kozmhinsky et al. (2018) also employed the Krigging technique to characterize the
climatic conditions of SDU in the State of Pernambuco. The period analyzed ranged
from 1962 to 2016, and data from eight stations were used. Their results indicated
lowest SDU values for the coastal and forest areas and high incidence of bright
sunshine in the hinterlands and high sertão, mainly conditioned by low cloud cover.

Even though interpolations methods are usually employed to obtain the regional
SDU, the accuracy of this techniques rely strongly on the number and spatial distri-
bution of the available meteorological stations. Further, the unequal distribution of
the stations, with locations with a large number of stations,e.g., near cities, and areas
without any station, makes the resultant interpolation inadequate for representing
complex characteristics at regional scale (WU et al., 2016).

With the development and advance of orbital remote sensing technology, this de-
ficiency can be overcame since the satellites can provide observations per hour, or
even shorter time intervals, over a wide spatial range with high resolution. Exploiting
this advantage, Ceballos and Rodrigues (2008) proposed a simplified, but physically
consistent, model to estimate the daily SDU (hereafter named as CPTEC method)
based on the linear relationship between cloud cover and pixel reflectance in GOES
visible channel. To validate their algorithm, the satellite-based estimates were com-
pared to in situ measurements taken at the Institute of Astronomy, Geophysics and
Atmospheric Sciences (IAG) in São Paulo and at Univesity of Ceara in Fortaleza, for
2007. The results indicate that the estimates were accurate within 10% of systematic
deviation.

Extending the validation for the Northeastern Brazil, Porfirio (2012) evaluated the
CPTEC method considering 53 stations fairly distributed over Piaui, Ceará, Rio
Grande do Norte, Paraíba, Pernambuco and Alagoas states, equipped with CS
recorders, for 2008. The scatterplots results showed that the satellite-derived es-
timates underestimate the ground records for clear sky conditions (over 8 hours)
and tend to overestimate for overcast sky (less than 2 hours). The spatial distribu-
tion of the r2 and the mean bias error showed an overall good agreement between
the estimated and the observed SDU, with values lying within 0.64 and 0.91 for the
r2, and -1.92 and 1.03 for the bias. From the total analysed stations, only 3 of them
presented r2 smaller than 0.75. Furthermore, the author evaluated the cloudiness
estimate by changing the surface albedo from 0.09 (as stated in the method) to 0.05
(found using the mean annual value of the visible channel obtained by the MODIS
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sensor) for the station located in Natal-RN, which provided a significant improve-
ment to the SDU estimate, showing the importance of a good representativeness of
the clear sky reflectance for accurate estimates.

The model of Kothe et al. (2017) was developed for Europe and Africa, nonetheless,
the product provides SDU estimates for the entire Meteosat disk. Over the Southern
America, only the monthly sums were validated, using less than 40 stations, for the
period from 1983 to 2015. The found bias lies between -18 and 24 hours, with a site
dependent performance.

The Brazilian territory has an area of about 8, 4 × 106 km2, with extensive regions
with low-density population and difficult access (CEBALLOS et al., 2004). Despite
the efforts of the responsible entities, the current network is insufficient to cover
the entire territory given its size, along with the fact that most of the stations are
concentrated in urban regions, it is not enough to comprise the whole country with
accuracy. The interpolation methods, although relevant to provide information in
areas with few records, proved to be inadequate to supply information on regional
scales. The employment of satellite-derived data seems to be the way to overpass
this issue. The literature about SDU estimates by satellite means over Brazil is still
small. The mentioned models that provide SDU estimates over the country were
under validated, with extensive information on the performance of the daily SDU
estimates only for the Northeast Brazil, for the CPTEC model, and just for a few
stations, regarding the monthly sums for the CMSAF method. Therefore, there is
still a need to extended this validation for the Brazilian territory.
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3 GROUND STATION DATA

A crucial component in the validation process is the consistency check (i.e. compari-
son) of the remote sensing product with reference measurements which are presumed
to be representative of the truth, within their own uncertainties. The choice of the
reference data is often based on practicality or on what is considered to be most
suitable for the validation procedure (LOEW et al., 2017). Nevertheless, this selection
usually regards the following inquiries:

a) Do the database provide scientifically meaningful estimates of the investi-
gated variable?

b) Do these data adequately cover the parameter field?

c) Are the data accurate enough to be able to draw insightful conclusions
from the validation process?

d) Are the data publicly available and accessible?

This chapter intends to address these questions aiming to select the appropriate
dataset to progress to validation procedure.

3.1 Campbell-Stokes records

The traditional source of SDU data is the CS sunshine recorder. It consists of a
spherical glass lens that focuses the Sun’s rays onto a treated card placed in a metal
holder at the base of the recorder, that burns when direct radiation’s intensity over-
comes the burning threshold of the recording surface (WOOD; HARRISON, 2011). The
WMO specified this threshold as 120 W/m2 (WORLD METEOROLOGICAL ORGANI-

ZATION - WMO, 2008). When the WMO recommended procedures are adhered to,
the SDU measurements resolution and uncertainty is 0.1 hour (STANHILL, 2003).

This instrument is widespread all over the world, with time-series longer than 100
years, and it is the most viable and feasible instruments for measuring sunshine
hours in developing countries (ALMOROX et al., 2020). Despite that, it has some
known flaws:

• On days of strong and intermittent sunshine, the burn spreads on the paper
card, leading to an SDU overestimation (LEGG, 2014);
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• Measurements have a relatively high subjectivity degree, since they rely
upon the observer’s reading (KERR; TABONY, 2004);

• The energy necessary to produce an observable burn in the paper band
may vary from the threshold defined by WMO (i.e. 120 W/m2). Litera-
ture presents values ranging from 70 to 285 W/m2 (BAUMGARTNER, 1979;
PAINTER, 1981), because the paper strip responds in different ways accord-
ing to the atmospheric conditions such as humidity and temperature;

• Eventually, a value of zero is returned when it is almost certain that there
was sunshine, as it has been determined that missing data were often re-
ported as zero. A missing data can arise for several reasons, e.g., glass
sphere has been removed, inappropriate card to the time of year or instru-
ment not set to the correct latitude so that the sun is not focused on the
card, among others (ABBOT, 1986).

In Brazil, the INMET maintains a network with approximately 330 stations mea-
suring SDU with CS recorders (INSTITUTO NACIONAL DE METEOROLOGIA, INMET,
). However during the present work’s period of interest (September 2013 - December
2017), only 293 stations have data records available. To keep the long-term consis-
tency, only stations with less than 20% of missing observations over the study period
were selected. Because of gaps in the heliographic time-series, just 194 stations will
proceed for further data quality analysis. These stations are shown in Figure 3.1,
and their information is listed in Table A.1 in the appendix. INMET’s data are
publicly available at https://bdmep.inmet.gov.br/.

3.2 INMET’s stations - quality control

Unfortunately, the INMET’s network does not adopt any measurement data quality
control, to ensure the reliability of the records, some quality checks are required.
Currently, there is no well established method for SDU quality control, but several
attempts are reported in literature. The following two steps are commonly used to
SDU data (FENG et al., 2004; REEK et al., 1992; SANCHEZ-LORENZO et al., 2007), and
are adapted here:

(i) Extreme possible values: the low extreme was set as zero and the high
extreme is obtained using the day length equation, which corresponds to
the maximum possible duration of a day (Equation 2.1).

20

https://bdmep.inmet.gov.br/


Figure 3.1 - INMET (dots) and SONDA (crosses) stations distribution.

(ii) ’Flatline’ check: identifies data intervals with the same value for several
consecutive days.

The steps were applied in the presented order. Those records that exceeds the ex-
treme possible values or were identified by the ’flatline’ check, were tagged as suspi-
cious and excluded from the following stages. The suitability of the procedure was
accessed through visual inspection of the time-series for each individual station data
plotted along with the satellite-derived data.

3.2.1 Quality control’s conformity analysis

It was not intended in this work to develop a quality control methodology for the
heliographic data. Nevertheless, the lack of any quality indicator forced an effort to
objective analyse the records with at least minimum requirements to exclude from
the following procedures gross erroneous data and assure a fairly reliable reference
data.

The first criteria (i) regarded unphysical values, i.e. data with negative values and
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data higher than the maximum possible duration of the day, given by Equation 2.1,
and very few data were discarded in this step.

The second criteria (ii) was the ’flatline’ check: as suggested by Feng et al. (2004),
the occurrence of the same variable value for several days is very unlikely to happen,
therefore it can be considered suspicious.

This approach, however, present different time intervals for the ’flatline’. In this study
5, 7, and 10 days were tested. The time-series of the data with the correspondent
flags were plotted along with the satellite-derived SDU data to verify the conformity
of the criteria (not shown).

To clarify the selection of the day interval selected, Figures 3.2 and 3.3 presented.
For the southern stations, the use of 5 days for the ’flatline’ check misclassified some
valid data (that show conformity with the satellite data, i.e. with small differences
between the satellite-derived and the observed measures) as can be seen in Figure
3.2a, for June, September and October. This probably occurs due the high frequency
of frontal systems in that region, being usually responsible for overcast sky and
persist for a few days. The use of 7 days criteria minimize these glitches. Extending
the period for 10 days did not show improvements, and even presented cases where
the 7 days criteria classified as suspicious correctly, and the 10 days did not, as can
be observed in April 2016 (Figure 3.2c).

In stations far northern, the 5 days ’flatline’ criteria exhibits some false alarms for
events of clear sky, as suggested by satellite data (Figure 3.3a). It is observed in
regions where the day length does not present great changes over the year and
seasons that clear sky is predominant over day for several days (e.g. semiarid),
considering the instrument resolution (6 minutes) it can result in the same SDU
value. The use of 7 days criteria eliminated this misclassifications (Figure 3.3b).

The analysis indicated that the 7 days interval presented the best overall perfor-
mance between the intervals tested. Since the quality control steps proposed aimed
to achieve an objective procedure, the 7 days interval displayed a better capability
to be employed in different climate conditions, therefore it was selected. Further
analysis will use only data that were not tagged as suspicious by the (i) extreme
possible value and the (ii) 7 days ’flatline’ check.

Although, the application of these 2 criteria enhanced the confiability of the result-
ing time series, it was noticed that some observations still present some question-
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Figure 3.2 - Uruguaiana’s station (RS, 83927) time-series: example of the periods flagged
with the ’flatline’ check method. (a) Top, (b) middle and (c) bottom plot
presents, respectively, 5, 7 and 10 days intervals. Heliographic data were plot-
ted as dots, CMSAF’s SDU data as circles, and CPTEC’s SDU data as crosses.
The colors represents the correspondent flag: blue is for "approved" data, green
for "suspicious" data. The grey line represent the maximum possible SDU
value.

Figure 3.3 - Remanso’s station (BA, 82979) time-series: example of the periods flagged
with the ’flatline’ check method. (a) Top and (b) bottom plot presents, re-
spectively, 5 and 7 days intervals. Heliographic data were plotted as dots,
CMSAF’s SDU data as circles, and CPTEC’s SDU data as crosses. The col-
ors represents the correspondent flag: blue is for "approved" data, green for
"suspicious" data. The grey line represent the maximum possible SDU value.
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able behavior (e.g. zero values recorded in station observation, while the satellite
products report over 9 hours of sunshine). This indicates the need for even deeper
investigations to develop a robust quality control methodology, mainly for helio-
graphic records. Some aspects of the ground observations were investigated and are
presented in Section 3.4.

3.3 Pyrheliometer and pyranometer data

The SDU can also be registered by means of pyrheliometers. These instruments
measure the DNI as they track the apparent sun position along its path through
the sky. Using the threshold established by WMO the SDU can be calculated as the
sum of observations that DNI ≥ 120W/m2.

Alternatively, pyranometer can also be employed to obtain DNI, coupling two in-
struments: one measuring global solar irradiance and another with a shadow-ring
to block the direct irradiance, then measuring diffuse solar irradiance. From these
measurements, the DNI is estimated using the formula:

DNI = G−D
cos(SZA) (3.1)

Where G is the global solar irradiance, D is the diffuse solar irradiance and SZA is
the solar zenith angle.

There are insufficient stations that use automatic instruments in Brazil to cover
its large area, mostly due its costs. Unfortunately, not all stations that record this
data make it freely available. The few stations that report data in the period of
interest are shown in Figure 3.1, as crosses. Their information is listed in Table A.2
in appendix, along with the available instrument (Pyranomenter or Pyrheliometer).
These stations are part of the SONDA project, that includes stations of their own
and those that belong to partners. More information about this network can be
found at http://sonda.ccst.inpe.br/index.html.

SONDA project adopts a validation process through their stations, which is based on
the data quality control strategy employed by Baseline Surface Radiation Network
(BSRN) and is provided as ancillary data. This consists in a three steps algorithm
that verifies:

• Physically possible limits;
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• Extremely rare limits;

• Instrument comparisons.

The criteria adopted are shown in Figure 3.4.

Figure 3.4 - SONDA’s data quality control process.

Similarly to the stations from INMET, the selection of SONDA data was based
on availability: the present study used only those stations that presented more than
80% of available data not flagged as suspect (during daytime) in the selected period.

3.3.1 Sunshine duration calculation

Daily SDU values are calculated by summing up the time intervals that DNI obser-
vations exceed the 120 W/m2 within a day. Nonetheless, to overcome small gaps in
the daily data, the 1-minute observation was averaged out over 10-minutes intervals.
The intervals mean, however, was calculated only if at least 60% of the interval’s ob-
servations have been approved by the quality control process, and the correspondent
interval was set as approved. Afterwards, for every interval in a day that DNI10min

≥ 120W/m2, 10 minutes were summed up to the daily total. Daily SDU values were
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considered valid, if 85% of the 10 minutes intervals within the day were approved.
This approach was carried out to guarantee consistency within the intervals, and to
exclude days with gaps longer than 2 hours.

For the stations that had pyranometric data, instead of pyrheliometric, the global
and diffuse data were used to calculate DNI by means of the Equation 3.1. Subse-
quently, the procedure followed the method explained above.

Figure 3.5 presents the above process’s flowchart.

Figure 3.5 - Flowchart of SDU calculation from DNI’s observation.

3.4 Ground measurements comparison

One of the major concerns related to the worldwide crescent employment of auto-
matic instruments as replacement for the CS recorder regards the sensitivity thresh-
old. Diverse sets of thresholds for the heliograph can be found in literature, ranging
from 70 to 285W/m2 (BAUMGARTNER, 1979; PAINTER, 1981), the later much larger
than the established 120W/m2. This leads to an increasing attention to comparison
of sunshine records obtained with different observing system devices.
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To investigate the consonance of the WMO 120W/m2 criteria and the CS sensitivity
threshold in Brazil, it was selected stations that are nearby. However, as highlighted
by Baumgartner et al. (2018), parallel records of automated and traditional SDU
recording systems are rare. Simultaneous CS and automatic measurements of SDU
were available for only 6 sites. The locations and distances between stations are
displayed in Table 3.1. The ideal would be that measurements were made at same
location; but unfortunately such data was not available.

Table 3.1 - Near stations information. The SONDA’s stations that use the pyrheliometer
to acquire the data is marked with asterisks.

Site Distance INMET’s stations SONDA’s stations
No Latitude Longitude ID Latitude Longitude

Brasília 30.22 km 83377 -15.78 -47.93 10* -15.6008 -47.7131
Florianópolis 3.82 km 83897 -27.58 -48.56 01* -27.6017 -48.5178

Natal 7.81 km 82598 -5.91 -35.20 17 -5.8397 -35.2064
Palmas 6.92 km 83033 -10.19 -48.30 19 -10.1778 -48.3619
Petrolina 38.36 km 82983 -9.38 -40.48 11* -9.0689 -40.3157
São Luis 7.00 km 82280 -2.53 -44.21 16 -2.5933 -44.2122

For these stations, scatterplots were made along with the calculation of the mean dif-
ference (MD), the root mean squared difference (RMSD), the correlation coefficient
(r) by means of the following equations:

MD = 1
n

n∑
i=1

(SDUAi
− SDUCSi

) (3.2)

RMSD =
√√√√ 1
n

n∑
i=1

(SDUAi
− SDUCSi

)2 (3.3)

Where SDUA corresponds to the automatic measurements, i.e. pyrheliometric or
pyranometric data, and SDUCS represents the heliographic data.

r =
∑n
i=1(SDUAi

− SDUA)(SDUCSi
− SDUCS)√∑n

i=1(SDUAi
− SDUA)2

√
(SDUCSi

− SDUCS)2
(3.4)

Figure 3.6 presents the scatterplots of daily sunshine amount of CS recorder against
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automatic sensors and Table 3.2 displays the statistics results.

Figure 3.6 - Scatterplot of daily sunshine totals obtained from Campbell–Stokes (CS)
against automatic (A) recorders.
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Table 3.2 - Statistics of the comparison of daily SDU ground measurements. Locations
where the SONDA’s stations use the pyrheliometer to acquire the data is
marked with asterisks.

Site MD (h) RMSD (h) r
Brasília - DF * 0.81 1.55 0.92

Florianópolis - SC * -0.14 1.11 0.96
Natal - RN -0.12 2.23 0.76
Palmas - TO 0.77 1.67 0.88

Petrolina - PE * -0.55 1.71 0.86
São Luís - MA -4.35 5.81 0.23

The Natal and São Luis (Figure 3.6c,d) plots display a very distinctive behavior,
with CS records presenting over 10 hours of sunshine, while the automatic system
indicates zero. This leads to a deeper investigation of the data from these stations.
The time-series of São Luis’s station records are shown in Figure 3.7. As can be
seen, the automatic data presents systematic zeros, with few exceptions as those in
September 2013, 2014 and 2015. The time-series plot of Natal station (not shown)
exhibits less erratic behavior, but also presented systematic zeros for extended pe-
riods. The SONDA’s network do not supply metadata of the stations, so the error
can not be assuredly traced back to its origin. Notwithstanding, it can be noticed
that, for these sites, the SDU was derived from the DNI estimated by means of
pyranometers. It is possible that the inadequate positioning of the shadow ring, at
these stations, provide erroneous diffuse irradiance data, that would not be tagged as
suspicious, since it would not trigger any of the criteria used for quality control. The
DNI estimated from this data would be inaccurate, consequently, the SDU would
also be faulty. Given the above, these stations were excluded from further analysis.

Petrolina’s station also exhibits suspicious behavior. During winter, for instance, this
location presents predominantly clear sky conditions, considering that it corresponds
to the dry season at this site. However, the automatic data frequently reported
low values of SDU, e.g. less than 2 hours, while the CS measurements displayed
up to 8 hours, in some cases (Figure 3.6e). Given the expected SDU behavior for
this season (high values due to the lack of cloudiness), it was concluded that the
automatic data of this station is questionable. High differences between the SDU
measurements from the automatic and the CS recorder are also observed for other
seasons. Unfortunately, as exposed above, SONDA project do not provide metadata
on the of the station, therefore the error can not be traced back to its source. Further
analysis may consider it.
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For the other stations, the records are overall, in agreement. Depending on the loca-
tion some SDU over or underestimate can be observed. As previously mentioned, the
threshold sensitivity is a function mainly of temperature and humidity (PAINTER,
1981): when conditions are cold and damp, more energy is required to burn a trace
in the card, than when it is warm and dry.

Figure 3.7 - Time series of daily sunshine totals obtained from CS (orange dots), automatic
recorders (red crosses) and satellite-derived estimates (circles) for São Luis -
MA. The grey line represent the maximum possible SDU value.

In general, Florianópolis showed the best agreement among the heliographic records
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and the automatic data (Figure 3.6b). The station presented the lower MD (-0.14h)
e RMSD (1.11h), and the highest coefficient of correlation (0.96).

Brasília and Palmas exhibits similar results with mean differences of 0.81 and 0.77h,
respectively (Figure 3.6a,d). The slightly higher values of RMSD (1.55 and 1.67h,
respectively) indicates a larger spread compared to Florianópolis. Figure 3.8 presents
the box-and-whiskers plot of the differences for these stations separated by season.

Figure 3.8 - Box-and-whiskers plot of daily ground measurements differences. The
“whiskers” (lines extending parallel from the boxes) indicate variability out-
side the upper and lower quartiles. Outliers are plotted as individual crosses.
The red line indicates the median and the blue ’x’ the mean.

In Brasília, during summer, the scatterplot shows great dispersion, with occurrence
of both positive and negative deviations (Figure 3.8a). The other seasons present
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similar behavior, with overall overestimate.

For Palmas, a small overestimate is observed through the whole year, with exception
of the winter, when underestimate prevail. For this season, it can be seen that the ob-
servations concentrates mostly under the 1:1 line, which indicates that the sensitivity
threshold is lower than the WMO’s threshold during this season. It was expected
that during winter and spring, when this location presents driest and hottest peri-
ods, the sensitivity threshold would be lower compared to other seasons, but this
was observed only for winter.

Petrolina shows higher spread than the other stations considered (RMSD of 1.71h),
and in opposite to them, it presented SDU underestimations with MD of -0.55h.
The box-and-whiskers plot showed that the underestimate is predominant over the
year, but is smaller during summer. Which is consistent with the results obtained
in the scatterplot (Figure 3.6e) and above described.

3.4.1 Conclusions

These results show that on average the threshold of 120 W/m2 is appropriate, but,
as expected, the sensitivity threshold can largely change with location, and even
season (LEGG, 2014). This is explained for several reasons. The sensitivity depends
mainly on the atmospheric conditions, such as air temperature and humidity (KERR;

TABONY, 2004). Nonetheless, other factors are also very important, and may influ-
ence the necessary energy amount to burn the card, e.g. the type of recording cards
used (paper type, colour, quality of printed scale), the properties of the glass used to
make the sphere (transparency, colour, scratches), and others (MATUSZKO, 2012).
Unfortunately, comparisons between CS and automatic records are limited to a few
locations that have overlapping measurements. For a deep investigation of the fit-
ting of the 120 W/m2 threshold in Brazil, and consequent conformity between the
SDU data obtained from the automatic sensor and the CS recorder, it would be
necessary detailed information on the maintenance and operation of the stations,
but this information is not provided by the analyzed networks.

Regarding the questions stated in the beginning of this chapter, both analyzed
datasets brought meaningful information on SDU, being the most common source
of SDU records (i.e. data achieved through CS recorders or based on DNI acquire by
automatic sensors). The results presented in the Section 3.4 indicated that although
the automatic acquired data pass through quality control procedures, the resultant
sunshine amount for the analyzed period is questionable. Some studies investigated,
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the BSRN criteria for quality check. Urraca et al. (2017) showed that this crite-
ria is very permissive, and their analysis found several error occurrences that were
previously approved by the BSRN methodology. For the proposed research, the em-
ployment of SONDA data containing faulty records could compromise the results.
The employment of erroneous data as "ground truth" in the validation procedure
leads to unreliable results, as glitches in the reference dataset can be mistaken as
defects of the product (LOEW et al., 2017). Therefore, to the following validation of
the satellite-based SDU datasets, the measures from the CS recorder were employed
as reference. Besides it has shown more reliability than SONDA records, it also pre-
sented a higher number of stations, providing a greater amount of data, allowing a
larger Brazilian territory coverage.
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4 SATELLITE-BASED SUNSHINE DURATION ESTIMATES VALI-
DATION

Despite the great importance of SDU for many applications (e.g. yield planning
in agriculture (RAO et al., 1998; XUE et al., 2011; HUANG et al., 2012; WANG et al.,
2015), analysis of the thermal loads on buildings (SHAO, 1990; BASSO et al., 2015b),
input parameter in soil water balance models (WARNANT et al., 1994), proxy for solar
irradiation (AKINOGLU, 2008), among others), worldwide the network that records
SDU is often sparse and insufficient to capture complex climate characteristics (WU

et al., 2016).

Due to its wide spatial and temporal coverage, geostationary satellite data presents
a unique opportunity for fill the lack of information in locations that has few or
none data. Many authors suggested methods for estimating SDU from satellite data
(KANDIRMAZ, 2006; CEBALLOS; RODRIGUES, 2008; GOOD et al., 2010; SHAMIM et al.,
2012; WU et al., 2016; KOTHE et al., 2017; ZHU et al., 2020). Among the mentioned
studies, only Ceballos and Rodrigues (2008) and Kothe et al. (2017) provide SDU
estimates to Brazil. Regarding Brazilian territory, however, little effort was made to
furnish information on the performance of satellite-based estimates.

The reliable utilization of data obtained from satellite remote sensing depends on
careful validation of the products to ensure its quality (LOEW et al., 2017). Therefore,
this chapter aims to validate the CPTEC product for daily SDU estimates by means
of comparison with reference ground-measurements over Brazil and inter-compare
its results with the CMSAF SDU data for the period 2013-2017. In the first section
of this chapter both algorithms for daily SDU estimates (i.e. CPTEC and CMSAF)
are described. The Section 4.2 presents the methods used for the validation process,
Section 4.3 depicts the validation and inter-comparison results and the last one
(Section 4.4) displays the conclusions and the main finds of the chapter.

4.1 Satellite-based SDU estimation algorithms

4.1.1 DSA/CPTEC’s method

The CPTEC is part of the INPE and has the mission to produce high quality satel-
lite products and thus to offer relevant information for different Brazilian sectors.
Currently, the CPTEC is the most advanced center for weather and climate pre-
diction in the Latin America and develop several kinds of products, from numerical
weather models to satellite-derived products. The currently Satellite and Meteoro-

35



logical Sensors Divison (DISSM) is the responsible for the latter. The DISSM was
instituted in 2020, and incorporated the former DSA. The DSA was created in 1986,
and through the time established itself as a reference in satellite-derived products
generation. Among their products are sea surface temperature, severe weather mon-
itoring, precipitation estimation, sunshine duration and several others (COSTA et al.,
2018).

To estimate SDU, visible imagery acquired with GOES processed by the DSA are
used. From time to time the GOES platforms are replaced, during the analysed
period in this study (2013-2017), GOES-13 was operational and carried the IM-
AGER sensor on board. The IMAGER visible channel is centered at 0,65 µm, with
a bandwidth of 0,2 µm.

The sensor measures the spectral radiance Lλ (W.m2.sr−1.µm−1), that represents
the mean value at the pixel area. The spectral irradiance at the top of atmosphere is
Eo = µSλ, where Sλ is the solar irradiance at normal incidence in this same spectral
interval, and µ = cos(SZA) is the cosine of the solar zenith angle. Assuming that
the reflected radiance is isotropic, the emergent spectral irradiance at the top of
atmosphere is E ↑= πLλ and the reflectance is R = E↑

Eo
. Operationally, from the

satellite visible imagery the reflectance factor (F) and the planetary reflectance (R)
are defined as showed in Equation 4.1 (CEBALLOS; RODRIGUES, 2008):

F = π
Lλ
Sλ

;R = f
F

µ
(4.1)

where the factor f is a function correcting the effects of anisotropic reflection (LUBIN;

WEBER, 1995), for the following purposes, f is considered 1 (CEBALLOS et al., 2004).
The R is provided by DSA as a by-product of the operational processing of the
GL1.2 shortwave model (CEBALLOS et al., 2004).

It is usual to regard the reflectance as a mean value between the cloud reflectance
(Rmax) and the clear sky reflectance (Rmin) weighted by the fraction of the pixel
covered by clouds (C) as showed in Equation 4.2 (CEBALLOS et al., 2004).

R = C.Rmax + (1− C).Rmin (4.2)

which leads to an estimate of cloudiness (C) as:
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C = R−Rmin

Rmax −Rmin

(4.3)

Ceballos et al. (2004) defined the value of Rmax as 0.465, which corresponds to the
transition between a cumuliform and a stratiform cloud field and the Rmin as 0.09,
a reasonable value for continental surface. In the case of R < Rmin, C is set as 0,
and if R > Rmax, C=1. In case of R = 0 or marked as "invalid" (i.e. R = −99), C is
also tagged as invalid.

Next, assuming that the average cloud cover assessed by C is also representative of
the relative time of cloud passage over a site inside the pixel (PORFIRIO; CEBALLOS,
2017), 1-C corresponds to the relative time of clear sky. The daily SDU is achieved
through the Equation 5.1, that is similar to the integration via trapezoidal rule
(which consists of a numerical method to approximate the integral value):

SDU = (1− C1) + ∆t
2 [(1− C1) + 2(1− C2) + 2(1− C3)+

+ ...+ 2(1− Ck−1) + (1− Ck)] + (1− Ck) (4.4)

where C is the cloudiness parameter (described in Equation 4.3), C1 corresponds
to the first "valid" observation for the pixel, the subscript index corresponds to the
number of the image within a day, k is the last valid image of the day, and ∆t is
the time interval between two consecutive images (for the period analyzed, usually
30 minutes).

On average, for a given pixel, 30 images are available for the daily SDU estimate.
However, this value can be smaller and the interval between two consecutive images
can be larger than 30 minutes. The daily SDU for a given day is considered invalid,
therefore, discarded, if there is a interval greater than three hours: i) between the
first image of the day and the sunrise; ii) between consecutive images; and iii) the
last image of the day and the sunset and if less then 5 images were available for the
estimation.

The spatial resolution of the DSA/CPTEC SDU dataset is 0.04◦ on a regular
latitude-longitude grid of 1800x1800 pixels within latitudes 50°S to 21.96°N and
longitudes 100°W to 28.04°W, and cover the time period from February 2007 to
near real time.
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4.1.2 CMSAF’s method

The EUMETSAT’s CMSAF was established to contribute to the operational moni-
toring of the climate and the detection of global climatic changes. With this aim CM-
SAF’s products follow the highest standards and guidelines as lined out by Global
Climate Observing System (GCOS) for the satellite data processing.

The SDU is one of the several products of CMSAF based on Surface Radiation
Data Set - Heliosat (SARAH) - Edition 2.1 (PFEIFROTH et al., 2019). The data record
covers the time period from 1983 to near real time with a spatial resolution of 0.05◦×
0.05◦. In order to derive the SARAH-2 surface parameters, the Heliosat algorithm
is used (HAMMER et al., 2003). The Heliosat method presents the opportunity to
get a continuous dataset of Effective Cloud Albedo from a combination of Meteosat
Visible and InfraRed Imager (MVIRI) and Spinning Enhanced Visible and Infrared
Imager (SEVIRI) measurements. To minimizes the impacts of satellite changes and
artificial trends due to degradation of satellite instruments, Heliosat includes an
integrated self-calibration parameter (MUELLER et al., 2011).

At first, the Effective Cloud Albedo is retrieved by the normalized relation between
all sky and clear sky reflection in the visible channel of the Meteosat instruments.
This parameter is used to derive cloud index, a measure of the impact of the clouds
on the clear sky irradiance. The SPECMAGIC model is used to estimate clear sky
irradiance, and then from the combination of cloud index and clear sky irradiance,
Surface Incoming Shortwave radiation (SIS) is achieved. Thereafter using the diffuse
radiation model of Skartveit et al. (1998) and the cloud index, Surface Incoming
Direct radiation (SID) is calculated. By normalizing it with the cosine of the solar
zenith angle, the DNI is obtained. The SID and DNI are the basis for the retrieval
of SDU (KOTHE et al., 2017).

To the retrieval of the satellite-based SDU, the SARAH-2 30 minutes instantaneous
DNI data and the WMO threshold are used (DNI ≥ 120 W/m2). Daily SDU is
calculated as the ratio of slots (Meteosat observations) exceeding the DNI threshold,
considered as sunny slots, to all slots during daylight (Equation 4.5).

SDU = daylength×
∑daylightslots
i=1 Wi

daylightslots
(4.5)

The day length is calculated depending on the date, longitude and latitude and is
restricted by a threshold of the solar elevation angle of 2.5° (KOTHE et al., 2013).
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Wi is a weight that varies between 0 and 1, and indicates the influence of a single
slot depending on the number of surrounding cloudy and sunny grid points.

A grid point at a time slot i is accounted as sunny if DNI is 120 W/m2 or larger
(Equation 4.6). Since SARAH-2 provides instantaneous DNI data every 30 minutes,
without weighting, one sunny slot would correspond to a 30 min time window. This
is not the case unless it is a bright weather situation. If there are clouds in the
vicinity of a grid point, probably not the whole 30 minutes are sunny. The opposite
case is also valid. To account this fact, the information of the 24 surrounding grid
points (Figure 4.1) and two successive time steps are used.

SIni =

1 if DNI(x, y) ≥ 120W/m2

0 if DNI(x, y) < 120W/m2 (4.6)

Figure 4.1 - Demonstration for accounting for surrounding grid points. The target grid
point is marked in the center.

SOURCE: Kothe et al. (2017).

For each grid point, the number of sunny points in the 24 grid points in the vicinity
plus the center cell grid of interest is summed up (Equation 4.7).

#SIni(x, y) =
m = y+2∑
m = y−2

n = x+2∑
n = x−2

SIni(m,n) (4.7)

First, for each daytime slot i this is done. Then to also incorporate the temporal
shift of clouds, the number of each time step is combined with the number of the
previous time step for each pixel (Equation 4.8).
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N1 = #SIn1 × 0.04
Ni = (#SIni + #SIni−1) × 0.02

(4.8)

The factor 0.04 is used for the first time slot of the day, for i > 1, 0.02 is used, thus
if all 25 grid points are sunny the resulting number N is 1, and 0 in the case that
no grid point is sunny.

Thereafter the impact of sunny and cloudy grid points on the temporal length of
one time slot is estimated. The fraction of time, which slot i accounts to the daily
SDU is derived by Equation 4.9.

Wi =

 max(Ni, C1) if DNI(Cgp) ≥ 120 W/m2

Ni · C2 if DNI(Cgp) < 120 W/m2 (4.9)

If the center grid point (Cgp) DNI≥ 120W/m2, the grid point is taken as sunny, and
the weight (Wi) is equal to Ni, but not smaller than C1. Otherwise (Cgp DNI < 120
W/m2), Wi is the product of Wi and C2. These constants were derived empirically
through sensitivity tests, by minimizing the bias compared to reference station data
in Germany. They are set as C1 = 0.4, that indicates the minimum fraction that
a sunny slot can contribute, and C2 = 0.05, the weight for the contribution of a
non-sunny slot.

The daily SDU in hours is then derived by Equation 4.5.

4.2 Evaluation methods

To evaluate the satellite products for the period of September 2013 to December
2017, data from INMET’s network were used as ground "truth". Detailed informa-
tion on stations selection, as well as quality control procedures are provided in the
previous chapter.

Due to the considerable extension of the Brazilian territory, as well as the great
variety of biomes and climates within it, the stations were grouped by climate zones,
as suggested in Raichijk (2012). This classification was developed by the IBGE and
takes into account the average air temperature and precipitation regimes. The five
main regions are illustrated in Figure 4.2. The characteristics of the regions are
described below, indicating inside parentheses the number of stations included in
each one:
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• Equatorial region (27 1): has Af/Am climate according to the Köppen-
Geiger classification, it presents average annual temperatures between 24
and 27°C, and average annual precipitation of 2300mm. Presents no dry
season, or a short dry season, lasting under 3 months.

Figure 4.2 - Spatial distribution of INMET’s stations.

• Tropical Equatorial region (43): with Aw/BSh climate according to the
Köppen-Geiger classification. Hot, semi-arid with a prolonged dry season
(over 8 months). This region comprises the northeast Brazilian Sertão,
going south until approximately 10°S (RAICHIJK, 2012).

• Tropical Northeast Oriental region (21): Mainly Aw/BSh climate according
to the Köppen-Geiger classification. With average annual temperatures

1For the CMSAF evaluation, 22 stations were used, since 5 of the listed stations are out of the
METEOSAT disk.
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ranging from 24 to 26°C and with maximum precipitation occurring in the
late autumn-winter period (PALHARINI; VILA, 2017).

• Tropical Central Brazil region: This main region was sub-divided in a)
Warm and b) Mesothermal/Subwarm (hereinafter, Mesothermal), partic-
ularly owed to its different precipitation regimes.

a) Warm (49): Aw climate according to the Köppen-Geiger classifica-
tion. This region comprises the Brazilian Central Plain. Semi-humid,
marked by rainy summer and dry winter (CAVALCANTI, 2009).

b) Mesothermal (29): Classified as Cw climate, conform to the Köppen-
Geiger classification (RAICHIJK, 2012). This region exhibits average
annual temperatures between 10 and 18ºC, with dry winter. It in-
cludes part of Brazil’s Southeast and north of Paraná.

• Humid Temperate region (25): It is defined as Cfa by the Köppen-Geiger
classification. This region presents a well distributed precipitation regime
(without a dry season), with mild temperatures between 10 and 15°C.

This regionalization of stations allows for a condensed and more robust regional
analysis.

In order to compare the satellite-based gridded SDU estimates with the in situ
records, the satellite data was extracted at the station sites, by selecting the satellite
pixel in which the station is located. Therefore, the monthly MBE, RMSE and the
correlation coefficient (r) of the daily SDU were calculated for each station, and
then, for each region.

The definitions of the statistical measures are presented below (WILKS, 2011):

MBE = 1
n

k∑
i=1

(Zi −Oi)

RMSE =

√√√√ 1
n

k∑
i=1

(Zi −Oi)2

r =
∑k
i=1(Zi − Z̄)(Oi − Ō)√∑k

i=1(Zi − Z̄)2
√∑k

i=1(Oi − Ō)2

Thereby, the variable z describes the dataset to be validated (e.g. CPTEC SDU)
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and o denotes the reference dataset (i.e. in situ measurements). The individual time
step is marked with i and k is the total number of time steps.

4.3 Validation and inter-comparison results

The MBE spatial distribution of daily SDU for the CPTEC product evaluated for
each month is displayed in Figures 4.3. On average the difference between the bias
evaluated for these regions for the month with its highest and smallest values lies
close to 0.6 hours (Tables 4.1-4.3). Most stations south of 15°S, presented small
MBE values (overall, ranging from -1 to 1 hour), with no significant variation in
magnitude over the year.

Table 4.1 - Mean bias error (MBE), root mean squared error (RMSE), and correlation co-
efficient (r) for the comparison of daily SDU estimates (derived from satellite
data) and INMET’s records for the time period 2013–2017, for the Tropi-
cal Central Brazil – Warm region. The number of compared daily values is
presented in the #obs column. The values in parenthesis correspond to the
standard deviation (SD) of the statistical parameters within the region.

MBE (h) RMSE (h) r #obs
CPTEC CMSAF CPTEC CMSAF CPTEC CMSAF

JAN 0.34 (1.0) 0.62 (0.61) 1.89 (0.65) 1.71 (0.56) 0.81 (0.09) 0.82 (0.09) 5835
FEB 0.21 (1.03) 0.69 (0.52) 1.84 (0.44) 1.69 (0.41) 0.78 (0.09) 0.79 (0.1) 5502
MAR -0.07 (1.02) 0.73 (0.54) 1.75 (0.45) 1.67 (0.42) 0.75 (0.09) 0.76 (0.11) 5962
APR 0.02 (0.93) 0.49 (0.62) 1.69 (0.49) 1.52 (0.47) 0.73 (0.09) 0.77 (0.09) 5877
MAY 0.16 (0.68) 0.46 (0.49) 1.5 (0.29) 1.32 (0.37) 0.76 (0.11) 0.82 (0.1) 6119
JUN 0.19 (0.88) 0.54 (0.7) 1.6 (0.36) 1.38 (0.47) 0.66 (0.14) 0.76 (0.12) 5882
JUL 0.07 (0.86) 0.4 (0.64) 1.54 (0.33) 1.24 (0.43) 0.65 (0.17) 0.78 (0.12) 5966
AUG 0.08 (0.95) 0.27 (0.59) 1.54 (0.44) 1.22 (0.46) 0.65 (0.2) 0.71 (0.19) 6006
SEP 0.05 (0.98) 0.15 (0.57) 1.69 (0.47) 1.33 (0.4) 0.72 (0.12) 0.79 (0.1) 7267
OCT -0.1 (0.98) 0.17 (0.57) 1.74 (0.4) 1.56 (0.36) 0.78 (0.09) 0.79 (0.09) 7501
NOV 0.07 (0.83) 0.36 (0.52) 1.68 (0.3) 1.51 (0.34) 0.83 (0.05) 0.84 (0.07) 7235
DEC 0.55 (0.95) 0.82 (0.64) 1.88 (0.49) 1.85 (0.51) 0.8 (0.08) 0.8 (0.11) 7451
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Table 4.2 - Mean bias error (MBE), root mean squared error (RMSE), and correlation
coefficient (r) for the comparison of daily SDU estimates (derived from satellite
data) and INMET’s records for the time period 2013–2017, for the Tropical
Central Brazil – Mesothermic region. The number of compared daily values
is presented in the #obs column. The values in parenthesis correspond to the
standard deviation (SD) of the statistical parameters within the region.

MBE (h) RMSE (h) r #obs
CPTEC CMSAF CPTEC CMSAF CPTEC CMSAF

JAN 0.49 (0.74) 0.89 (0.76) 1.77 (0.46) 1.86 (0.6) 0.84 (0.08) 0.83 (0.08) 3504
FEB 0.16 (0.87) 0.76 (0.86) 1.75 (0.49) 1.78 (0.65) 0.8 (0.06) 0.82 (0.07) 3132
MAR -0.04 (0.72) 0.89 (0.77) 1.65 (0.36) 1.83 (0.56) 0.79 (0.07) 0.8 (0.08) 3458
APR 0.03 (0.57) 0.56 (0.67) 1.5 (0.32) 1.52 (0.43) 0.8 (0.07) 0.84 (0.07) 3340
MAY 0.19 (0.45) 0.5 (0.48) 1.44 (0.3) 1.39 (0.35) 0.81 (0.08) 0.86 (0.08) 3483
JUN 0.3 (0.59) 0.55 (0.6) 1.44 (0.37) 1.42 (0.45) 0.77 (0.1) 0.82 (0.1) 3342
JUL 0.21 (0.56) 0.46 (0.52) 1.36 (0.35) 1.26 (0.37) 0.82 (0.1) 0.87 (0.08) 3375
AUG 0.32 (0.67) 0.45 (0.57) 1.38 (0.4) 1.28 (0.4) 0.82 (0.11) 0.84 (0.13) 3469
SEP 0.36 (0.71) 0.33 (0.67) 1.55 (0.41) 1.36 (0.39) 0.85 (0.06) 0.88 (0.06) 4222
OCT 0.2 (0.84) 0.34 (0.84) 1.76 (0.47) 1.61 (0.54) 0.81 (0.06) 0.86 (0.06) 4331
NOV 0.17 (0.71) 0.47 (0.75) 1.71 (0.47) 1.6 (0.58) 0.83 (0.07) 0.87 (0.07) 4249
DEC 0.57 (0.8) 1.0 (0.81) 1.82 (0.52) 1.98 (0.66) 0.81 (0.09) 0.81 (0.09) 4269

Table 4.3 - Mean bias error (MBE), root mean squared error (RMSE), and correlation
coefficient (r) for the comparison of daily SDU estimates (derived from satellite
data) and INMET’s records for the time period 2013–2017, for the Humid
Temperate region. The number of compared daily values is presented in the
#obs column. The values in parenthesis correspond to the standard deviation
(SD) of the statistical parameters within the region.

MBE (h) RMSE (h) r #obs
CPTEC CMSAF CTEC CMSAF CPTEC CMSAF

JAN 0.61 (0.6) 0.55 (0.38) 1.69 (0.44) 1.56 (0.33) 0.86 (0.07) 0.87 (0.06) 3058
FEB 0.37 (0.63) 0.37 (0.48) 1.64 (0.45) 1.54 (0.37) 0.84 (0.07) 0.85 (0.06) 2757
MAR 0.2 (0.54) 0.41 (0.38) 1.47 (0.32) 1.33 (0.29) 0.85 (0.08) 0.88 (0.05) 3037
APR 0.22 (0.47) 0.38 (0.38) 1.46 (0.29) 1.33 (0.33) 0.85 (0.06) 0.89 (0.06) 2914
MAY 0.36 (0.45) 0.3 (0.44) 1.33 (0.37) 1.2 (0.39) 0.86 (0.08) 0.89 (0.08) 2972
JUN 0.55 (0.61) 0.41 (0.59) 1.43 (0.6) 1.26 (0.57) 0.86 (0.1) 0.89 (0.1) 2841
JUL 0.59 (0.63) 0.32 (0.67) 1.43 (0.57) 1.27 (0.6) 0.87 (0.09) 0.89 (0.1) 2925
AUG 0.72 (0.57) 0.17 (0.54) 1.48 (0.46) 1.24 (0.35) 0.88 (0.05) 0.9 (0.05) 2884
SEP 0.78 (0.57) 0.12 (0.43) 1.61 (0.46) 1.25 (0.32) 0.89 (0.05) 0.91 (0.05) 3563
OCT 0.66 (0.53) 0.21 (0.41) 1.72 (0.52) 1.46 (0.4) 0.86 (0.08) 0.88 (0.06) 3605
NOV 0.51 (0.55) 0.2 (0.38) 1.57 (0.34) 1.4 (0.32) 0.9 (0.04) 0.9 (0.05) 3526
DEC 0.7 (0.58) 0.59 (0.49) 1.69 (0.44) 1.64 (0.4) 0.88 (0.07) 0.86 (0.07) 3645
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Figure 4.3 - Spatial distribution of monthly MBE (h) between daily SDU estimated
through CPTEC’s method and INMET’s data for the time period 2013-2017.
Shades of red correspond to overestimation, while shades of blue correspond
to underestimation.
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The stations in the north of the country, in general, have higher values of MBE
with different tendencies depending on the region. Table 4.4 displays the MBE val-
ues for the Equatorial region. It presents positive bias (MBE ranging from 1.16 in
October to 1.61 in December), which indicates that on average the CPTEC product
overestimates the in situ measurements. The overestimation occurs for most of the
stations comprised in this region, and like the southernmost stations, they do not
show variations throughout the year (difference between the months with the higher
and lowest bias is 0.45h).

Table 4.4 - Mean bias error (MBE), root mean squared error (RMSE), and correlation
coefficient (r) for the comparison of daily SDU estimates (derived from satellite
data) and INMET’s records for the time period 2013–2017, for the Equatorial
region. The number of compared daily values is presented in the #obs column.
The values in parenthesis correspond to the standard deviation (SD) of the
statistical parameters within the region.

MBE (h) RMSE (h) r # obs
CPTEC CMSAF CPTEC CMSAF CPTEC CMSAF

JAN 1.42 (0.76) 0.69 (0.43) 2.23(0.59) 1.66 (0.34) 0.71 (0.09) 0.76 (0.09) 3179 (2616)
FEB 1.27 (0.77) 0.72 (0.41) 2.2 (0.67) 1.79 (0.52) 0.68 (0.16) 0.71 (0.17) 2832 (2337)
MAR 1.21 (0.76) 0.74 (0.61) 2.02 (0.62) 1.87 (0.51) 0.7 (0.11) 0.66 (0.13) 3170 (2615)
APR 1.28 (0.86) 0.58 (0.64) 2.2 (0.73) 1.78 (0.55) 0.65 (0.13) 0.67 (0.15) 3089 (2615)
MAY 1.35 (0.83) 0.48 (0.61) 2.22 (0.66) 1.74 (0.49) 0.67 (0.13) 0.7 (0.13) 3146 (2584)
JUN 1.37 (0.93) 0.37 (0.56) 2.2 (0.73) 1.51 (0.53) 0.62 (0.14) 0.69 (0.16) 3005 (2480)
JUL 1.47 (0.84) 0.35 (0.6) 2.17 (0.72) 1.42 (0.61) 0.58 (0.17) 0.65 (0.18) 2986 (2449)
AUG 1.47 (0.87) 0.35 (0.57) 2.17 (0.75) 1.42 (0.54) 0.54 (0.19) 0.55 (0.2) 3040 (2527)
SEP 1.39 (1.03) 0.3 (0.76) 2.26 (0.87) 1.65 (0.66) 0.53 (0.2) 0.52 (0.22) 3705 (3062)
OCT 1.16 (0.89) 0.38 (0.61) 2.12 (0.64) 1.83 (0.46) 0.61 (0.16) 0.53 (0.15) 3826 (3062)
NOV 1.34 (0.85) 0.7 (0.57) 2.23 (0.6) 1.84 (0.4) 0.62 (0.14) 0.61 (0.11) 3791 (3100)
DEC 1.61 (0.82) 0.95 (0.7) 2.32 (0.69) 2.01 (0.58) 0.7 (0.13) 0.65 (0.15) 3872 (3168)

The stations placed in the Northeastern Brazil, contrary to other regions, mainly
show negative bias. A distinct pattern found in those regions is that the bias values
present a decrease towards the winter months, approaching zero. Tables 4.5 and
4.6 present the statistical parameters for these regions. For the Tropical Equatorial
region, the highest MBE value found (in magnitude) was -0.86h in October, and the
lowest was -0.08h in May, indicating an overall underestimation tendency. Nonethe-
less, from Figure 4.3, it can be seen that there is a mixed behavior in this region.
Stations located in the Maranhão and Piaui states displayed MBE values close to
zero. A contrasting result is found in Guaramiranga-CE: for this stations the bias
indicates overestimation, in general over 2h. This is in agreement with the results
of Porfirio (2012), that found MBE values of 1.03h, being the exception of the un-
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derestimation pattern found by the author for the Northeast Brazil. Regarding the
Tropical Northeast Oriental region, the highest bias is registered in March, with a
MBE value of -0.94h and the lowest value reported is 0.1h in July.

The seasonality found in these regions may be due to the regional cloudiness regime,
since the late autumn-winter period corresponds to the rainy season (PALHARINI;

VILA, 2017). Holanda et al. (2017) investigated the SDU and cloudiness patterns in
Pernambuco, and they showed that the period from May to July exhibits the highest
values of cloud fraction. This interval corresponds to the smallest MBE found for
both regions. This suggests that the CPTEC algorithm performance, in this region,
is highly related to the cloudiness conditions.

Table 4.5 - Mean bias error (MBE), root mean squared error (RMSE), and correlation
coefficient (r) for the comparison of daily SDU estimates (derived from satellite
data) and INMET’s records for the time period 2013–2017, for the Tropical
Equatorial region. The number of compared daily values is presented in the
#obs column. The values in parenthesis correspond to the standard deviation
(SD) of the statistical parameters within the region.

MBE (h) RMSE (h) r #obs
CPTEC CMSAF CPTEC CMSAF CPTEC CMSAF

JAN -0.39 (1.16) 0.54 (0.76) 1.97 (0.73) 1.58 (0.59) 0.76 (0.08) 0.83 (0.06) 4853
FEB -0.37 (1.07) 0.75 (0.41) 1.87 (0.44) 1.58 (0.32) 0.76(0.08) 0.81 (0.06) 4498
MAR -0.57 (1.0) 0.68 (0.55) 1.78 (0.52) 1.57 (0.45) 0.72 (0.08) 0.74 (0.09) 4987
APR -0.28 (1.05) 0.46 (0.56) 1.72 (0.59) 1.44 (0.41) 0.71 (0.09) 0.76 (0.09) 4929
MAY -0.08 (0.93) 0.51 (0.5) 1.64 (0.47) 1.38 (0.35) 0.7 (0.08) 0.78 (0.06) 5167
JUN -0.12 (0.96) 0.46 (0.58) 1.64 (0.49) 1.28 (0.35) 0.61 (0.12) 0.75 (0.11) 4946
JUL -0.12 (0.89) 0.38 (0.53) 1.57 (0.45) 1.2 (0.33) 0.63 (0.17) 0.78 (0.12) 4967
AUG -0.19 (1.04) 0.44 (0.54) 1.51 (0.49) 1.01 (0.43) 0.47 (0.15) 0.63 (0.17) 5083
SEP -0.62 (1.09) 0.28 (0.46) 1.78 (0.5) 1.05 (0.37) 0.53 (0.15) 0.68 (0.18) 6078
OCT -0.86 (1.2) 0.3 (0.44) 1.92 (0.57) 1.33 (0.34) 0.59 (0.15) 0.64 (0.15) 6362
NOV -0.71 (1.18) 0.44 (0.48) 2.0 (0.54) 1.33 (0.37) 0.64 (0.16) 0.78 (0.1) 6066
DEC -0.5 (1.13) 0.65 (0.43) 1.94 (0.44) 1.48 (0.36) 0.75 (0.08) 0.82 (0.06) 6053
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Table 4.6 - Mean bias error (MBE), root mean squared error (RMSE), and correlation
coefficient (r) for the comparison of daily SDU estimates (derived from satellite
data) and INMET’s records for the time period 2013–2017, for the Tropical
Northeast Oriental region. The number of compared daily values is presented
in the #obs column. The values in parenthesis correspond to the standard
deviation (SD) of the statistical parameters within the region.

MBE (h) RMSE (h) r # obs
CPTEC CMSAF CPTEC CMSAF CPTEC CMSAF

JAN -0.62 (1.17) 1.48 (1.17) 2.26 (0.48) 2.23 (0.99) 0.61 (0.13) 0.73 (0.11) 2506
FEB -0.89 (1.22) 1.37 (1.14) 2.32 (0.44) 2.17 (1.0) 0.61 (0.14) 0.7 (0.15) 2193
MAR -0.94 (1.19) 1.46 (1.1) 2.25 (0.37) 2.21 (0.92) 0.62 (0.1) 0.69 (0.1) 2498
APR -0.73 (1.09) 1.04 (0.8) 2.07 (0.4) 1.87 (0.63) 0.67 (0.1) 0.74 (0.11) 2429
MAY -0.16 (0.77) 1.02 (0.64) 1.72 (0.3) 1.74 (0.45) 0.77 (0.08) 0.83 (0.05) 2551
JUN 0.12 (0.94) 1.08 (0.78) 1.85 (0.45) 1.87 (0.65) 0.71 (0.12) 0.79 (0.12) 2460
JUL 0.1 (0.91) 0.98 (0.81) 1.84 (0.4) 1.81 (0.62) 0.72 (0.11) 0.79 (0.12) 2520
AUG -0.31 (1.15) 0.97 (0.98) 2.01 (0.48) 1.87 (0.81) 0.65 (0.14) 0.74 (0.14) 2500
SEP -0.42 (1.55) 1.12 (1.36) 2.33 (0.57) 1.98 (1.17) 0.58 (0.14) 0.73 (0.15) 3077
OCT -0.73 (1.68) 1.25 (1.61) 2.55 (0.6) 2.24 (1.34) 0.52 (0.17) 0.64 (0.18) 3161
NOV -0.53 (1.56) 1.38 (1.51) 2.4 (0.59) 2.21 (1.33) 0.5 (0.18) 0.64 (0.17) 3033
DEC -0.32 (1.4) 1.75 (1.25) 2.31 (0.58) 2.49 (1.17) 0.63 (0.13) 0.7 (0.14) 3062

The Figure 4.4 shows the spatial distribution of the MBE of daily SDU for the CM-
SAF product. With the exception of the Brazilian Northeast region, the CMSAF
product has a similar performance to that of CPTEC. Although for the Equatorial
region the CMSAF product also exhibits positive bias values, this overestimation
tendency is lower when compared to that of CPTEC. Overall, the bias of the CM-
SAF presents values close to 1 hour smaller than those for the CPTEC. For the
Tropical Northeast Oriental region, the CMSAF product shows positive bias with
considerably high values, generally over 1 hour. The highest MBE values were found
during summer (1.75h in December), while the smallest were observed during winter
(0.97h in August).

The CMSAF bias values for most of the regions in Brazil are similar for those
reported by Kothe et al. (2017) for continental Europe, with the exception of the
Tropical Northeast Oriental Region, where the bias is on average at least 1h higher
than for the other regions. A similar behavior was found by the author for the
Canary Islands (Northwestern Africa), in the daily evaluation (MBE values close
to 2h) and for the West coast of Africa, in the monthly sums analysis (bias values
up to 50h were found). The author attributed these uncertainties to two causes:
the frequently low cloud fields, predominant cloud types in these regions, causes
a systematically underestimation of the Effective Cloud Albedo by the Heliosat
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algorithm because of the self-calibrating method (HANNAK et al., 2017), leading to
an overestimation of SDU; and to the constants used during the SDU estimates.
They were derived empirically using data from Germany to take into account the
contribution of different sky conditions to the SDU. Consequently, the presence of
low warm clouds, that are most frequent over the ocean and subtropical subsidence
regions (HUANG et al., 2015) may not be well represented by these constants. This
might be the case of the Northeast Brazil, since low clouds with relatively warm
tops are the prevailing cloud type due to subsidence in the area associated with the
Walker cell (MACHADO et al., 2014).

Figure 4.5 shows the regional MBE values. This figure condensates some of the
abovementioned features. Tropical Central Brazil (Warm and Mesothermal) and Hu-
mid Temperate regions express low bias values, with CPTEC (CMSAF) displaying
lower values for the first (latter). It can also be noted that for the CMSAF product,
with exception of the Tropical Northeast Oriental Region, the bias throughout the
year lies around 0.5h, whereas the CPTEC MBE exhibits greater variations. The
better performance of CMSAF regarding the CPTEC product in the Equatorial re-
gion is well marked by, at least, 1h of difference in the bias values for these products.
To Northeastern Brazil, the opposite bias sign is evident, and the seasonality in the
CPTEC bias is pronounced.

Tables 4.1-4.6 summarize the regional statistical parameters. Regarding the RMSE,
both satellites datasets show similar results. For the Equatorial and Tropical Equa-
torial regions, the RMSE of the CPTEC estimates were higher than those from
CMSAF. For the other regions analyzed, the RMSE results present similar magni-
tudes ranging from 1.2 to 2.55h.

Concerning the correlation coefficient, the southern regions presented the highest
values of r, just like the bias, which in these locations had the best results. Neverthe-
less, on average, all regions showed good agreement between satellite-based datasets
and ground measurements. In general, the r exhibits high values, indicating a strong
positive correlation.

These results are in agreement with those previously reported in the literature.
Using data from Meteosat, Kandirmaz (2006) obtained RMSE varying from 0.54
to 2.79h, and coefficient of determination (r2) of 0.78. Good et al. (2010) applied
cloud classification data from SEVIRI to estimate SDU for the United Kingdom
and achieved a r of 0.82. The estimate method explored by Shamim et al. (2012),
obtained RMSE values from 0.66 to 2.31h, the authors found an average r2 of 0.83.
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Figure 4.4 - Spatial distribution of monthly MBE (h) between daily SDU estimated
through CMSAF’s method and INMET’s data for the time period 2013-2017.
Shades of red correspond to overestimation, while shades of blue correspond
to underestimation.
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Figure 4.5 - Monthly MBE (h) of daily SDU per region, evaluated as the average of all
stations within it. Continuous (dotted) lines presents CPTEC’s (CMSAF’s)
MBE.

The Equatorial and Tropical Northeast Oriental regions presented the highest
CPTEC MBE values. For the first, the bias indicated overestimation, to the lat-
ter, underestimation. Considering the main features of these regions and the results
previously obtained, the deficiency in represent the SDU in these locations seems to
be related to the definition of the Rmin (the clear sky reflectance). To better analyze
this situation, bivariate kernel density estimation (KDE) plots were generated.

Figure 4.6 exhibits the KDE plot for the Equatorial region. The precipitation regime,
highly correlated to SDU (FUNARI, 1983), is evident: from June to October, the high-
est densities are located above 8 hours of SDU, corresponding to predominantly clear
sky conditions. During the wet season, when partially cover and overcast sky are
frequent, there is a more balanced distribution due to a greater range of observed
SDU. Regardless the regime, under all sky conditions, it is observed an overestima-
tion tendency. It is noteworthy that, both for CPTEC and CMSAF estimates, there
is a non-negligible frequency of high values estimates when the ground measurement
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indicates zero SDU. This might not be a deficiency of the satellite-derived models,
instead it can be due to false zeros that were not flagged in the quality control
procedure. Emphasizing the importance of rigorous criteria for assure the records
reliability.

Figure 4.7 shows the KDE plot for the Tropical Northeast Oriental region. It can
be seen a very distinct pattern between the CPTEC and the CMSAF plots. In the
CPTEC plot, for all months, for values 0 and 6 hours of SDU, the higher densi-
ties observed (greenish colors) are positioned very close to the 1:1 line (red line).
Indicating that, in the case of a high cloudiness amount, the algorithm performs
fairly well. Also, as previously stated, the winter months present an almost perfect
distribution along the 1:1 line. This happens because these months have greater
cloud cover values, therefore, exhibits a higher frequency of day with partly covered
or overcast sky. This result suggests that higher cloud cover amounts mitigate the
effect of inadequate representation of Rmin.

Porfirio et al. (2020) investigated the seasonal Rmin values for the year 2016, based
on images from the 15:00 UTC. They showed that over the Brazilian territory, there
is a vast range of Rmin values (from 0.04 in some parts of Amazonia to 0.10/0.11 in
parts of Northeastern Brazil) and also that these values change temporally.

The results presented in this study are coherent with those reported by Porfirio et al.
(2020). The overestimation (underestimation) in the Equatorial (Tropical Northeast
Oriental) region can be explained by the misrepresentativeness of the Rmin. Since
that the prevailing values of Rmin in this region is lower (higher) than the defined
0.09, the algorithm frequently considers clear sky (cloudiness) in regions that may
not present this condition.
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4.4 Conclusions

Within this chapter, the daily satellite-based SDU developed by DSA/CPTEC was
evaluated against ground measurements. Its results were compared with the ones
obtained from CMSAF SDU estimates. This product was previously validated for
Europe regarding the daily values, but for South America, only the monthly sums
were considered. Therefore, this study also brings insightful information on the per-
formance of CMSAF product over Brasil.

The MBE results indicated that both products had a good performance for most of
the regions. The best performance for both datasets was on the southern locations:
CPTEC dataset obtained lower MBE than CMSAF for the Tropical Central Brazil
(Warm and Mesothermal). The opposite was found for the Equatorial and Humid
Temperate regions. Northeastern Brazil displayed the worse results with higher MBE
values for both products, although with contrary signs. For the Tropical Northeast
Oriental region, CPTEC product exhibits MBE values ranging from -0.94h for March
to 0.1h for July, while the CMSAF presented bias within 0.97h in August and 1.75h
in December. For the Tropical Equatorial region, the bias ranged from -0.08 to -
0.86h for the CPTEC dataset, and from 0.28 to 0.75h for the CMSAF. The CPTEC
showed an underestimation tendency with seasonal variation, where approaching
winter months the bias is reduced, probably related to the cloudiness parameter-
ization. Whereas the CMSAF presented an overestimation behavior, which might
be due to the combined effects of misrepresentation by the constants used in the
estimation and the systematically underestimation of the Effective Cloud Albedo by
the Heliosat method in regions with frequent low warm clouds.

The RMSE and r results varied within the regions. The RMSE results of both
satellite-derived datasets were very similar, except for the Equatorial and Tropical
Equatorial regions, in which RMSE of CPTEC estimates were higher than those from
CMSAF. On average, the rs indicated a strong positive correlation between the SDU
estimates and the ground measurements. The results obtained were in agreement
with the previous reports for satellite-based SDU estimates in the literature.

The bivariate KDE plots for the Tropical Northeast Oriental region suggested that
for Northeastern Brazil the CPTEC estimates were close to the observations for
days with low SDU values, which indicates that under partly cover and overcast
sky, the CPTEC method performs better in this region. For the Equatorial region,
the method showed a tendency to overestimate the ground measurements under all
sky conditions. These results indicate that the value of Rmin of 0.09 is inadequate for
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these regions. Which suggests that by better representing the clear sky reflectance,
the SDU estimate method performance could be improved. This is also in agreement
with Porfirio et al. (2020), that reported that the Rmin over Brazil varies both spatial
and temporally. The Rmin issue on SDU estimative will be explored in the next
chapter.
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5 POTENTIAL IMPROVEMENTS ON THE SDU CPTEC MODEL

In the previous chapter, the CPTEC model for estimating SDU was evaluated
against in situ measurements. The results suggested an overall good performance
over Brazil, with MBE and RMSE similar to those reported in the literature.
Nonetheless, some regions presented larger bias, with both under- and overestimation
tendencies. This behavior can be partially attributed to the inadequate representa-
tion of the Rmin value in these locations. This misrepresentation is in agreement
with the results founded by Porfirio et al. (2020). The authors evaluated the Global
Solar Irradiance estimates from the GLobal radiation (GL) 1.2 satellite-based model
over Brazil. This model was also developed at DSA, and currently ran operationally
at CPTEC/INPE. The GL 1.2 adopts the same parameterization for assessing cloud
cover as the CPTEC SDU estimation model. Their results indicated that for South-
ern regions in Brazil, the model exhibits its best performance. It also presents an
east-west gradient in the MBE values, with positive bias in the Western part (mostly
in North and Midwest) and negative bias in the Eastern. They discussed the error
sources, and pointed out that constant value of the Rmin equal 0,09 is one of the main
reason to leading downward solar radiation at surface uncertainties. Since a constant
value misleads the strong spatial-temporal variation of the clear sky reflectance over
the Brazilian territory. Motivated by their results, this study also investigate the
effect of Rmin on the SDU estimate.

This chapter aims to explore some of the main deficiencies and limitations of the
current satellite-based SDU model, with suggestions for further improvement. In the
first section, the treatment regarding the beginning and end of the day is investi-
gated. Section 5.2, provides an analysis of the influence of the number of images used
in the SDU estimate on the model’s quality. In Section 5.3, an attempt to better
represent the clear sky reflectance is carried out, and the impact on the model per-
formance is evaluated. The last section summarizes the main results of this chapter.

5.1 Sunrise-sunset constraints

To estimate SDU, the CPTEC model uses a cloudiness parameter (C) to assess the
cloud cover, achieved based on the visible imagery for a given time. It is assumed
that the average cloud cover assessed by this index represents the relative time of
cloud passage over a location inside the pixel area, therefore, 1-C gives the relative
time of clear sky. The SDU is then calculated as the sum of clear sky periods. It
is accomplished by means of the trapezoidal rule, that is a numerical method for
approximating the definite integral. The method is illustrated in Figure 5.1.
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Figure 5.1 - The trapezoidal rule: (a) area to be estimated and (b) approximate area using
trapezoids.

SOURCE: Pacheco (2011).

Given the formulation of C, it can only be inferred for the instants that have ob-
servations. Data obtained in the visible channel corresponds to the sun irradiance
reflected by the Earth system, which implies that it is available only in the diurnal
period.

As a consequence, with the exception of observations that coincide with the sun-
rise/sunset, the first image in a day is available after the sunrise, and the last image
of the day would be before the sunset. Therefore, the interval between the sunrise
and the first image, as well as the last image and the sunset, is not accounted in the
integration via the trapezoid rule.

To work around this issue, the current method adds the relative time of clear sky
for the first and last image to the total SDU. Nonetheless, this may lead to errors,
because the interval that has no data is not properly accounted in the estimation.
For instance, if the interval between the image and the sunrise/sunset corresponds
to less than 1 hour, this approach shall overestimate the SDU, mainly in sites with
overall clear sky conditions within the day. In fact, this can even estimate SDU
values greater than the maximum possible day length. Figure 5.2a exemplify this
occurrence, it can be seen that some locations in the state of Maranhão present
estimations up to approximately 48 minutes beyond the maximum possible day
length. Figure 5.2b shows the average C to the correspondent day, the areas with
more pronounced overestimation are in general locations that exhibits small values
of C, indicating low cloud occurrence.
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Figure 5.2 - SDU estimates greater than the maximum possible day length: (a) Difference
between the CPTEC SDU estimate and the maximum possible day length for
15/07/2017; (b) Average cloudiness fraction to the correspondent day.
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Figure 5.3 illustrates the SDU estimation for 15/07/2017 at Imperatriz-MA station.
It was selected because it was located in a region with high SDU overestimation. As
shown in the Figure 5.3, the integration of 1-C in the interval between 10 and 20.5
UTC is consistent with the trapezoid rule. The treatment regarding the beginning
and the end of the day, however, adds unrealistic contributions to the total SDU.
Since the maximum SDU between 9.4 and 10 UTC is 0.6h, instead of the 1 hour
added value. The same occurs in the end of the day: the last valid image in the
diurnal period is taken at 20.5 UTC, and the sun goes down at 21.1 UTC, therefore,
this interval should be the upper limit to the contribution for the total daily SDU.

Figure 5.3 - Example of the SDU estimate for 15/07/2017 at station of Imperatriz - MA
(5.53 °S, 47.48 °W).

To overcome this issue, some considerations regarding the sky condition at the sun-
rise and sunset can be made, to proper account the contribution of the intervals
between the first (last) image and the sunrise (sunset) to the total SDU. The two
simplest possibilities to it are:
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a)

SDU = (1− C1)∆t+ ∆t
2 [(1− C1) + 2(1− C2) + 2(1− C3)+

+ ...+ 2(1− Ck−1) + (1− Ck)] + (1− Ck)∆t (5.1)

b)

SDU =
k∑
i=1

(1− Ci)∆t (5.2)

The first one corresponds to consider that the sky condition at the sunrise (sunset)
is similar to the moment of the first (last) image. Considering the usual interval
between images (30 minutes) this is a reasonable assumption. The second one would
assume that the clear sky fraction is zero at the sunrise/sunset. Both considerations
can yet lead to errors, since the sky condition in the moments that do not have
images, may not be correctly represented by these assumptions, and the quantitative
advantages of these approaches must be further investigated. Nevertheless, adding
time constraints will prevent estimates greater than the maximum day length, and
account for the intervals without data being consistent with the trapezoid rule.

5.2 Amount of images in the SDU estimation

Due to the formulation of the algorithm for SDU estimation, the interval between
consecutive images has great impact in the model performance. It assumes that
the cloud cover in a given moment assessed through the C (cloudiness parameter)
is also representative of the relative time of cloud passage over a site inside the
pixel. This is a reasonable assumption over the usual 30 minutes interval between
images because the lifetime of a fair-weather cumulus cloud is less than a half-hour
and its life cycle would be completed within a small displacement (less than 12
km) (PORFIRIO; CEBALLOS, 2017). However, as this interval increases, this premise
becomes less plausible.

There are several reasons for the interval between images to get larger than the usual
30 minutes. It can occur due to maintenance, failure of the satellite instrument,
data storage issues, or during GOES rapid scan operation, when scanning of the
Southern Hemisphere is curtailed sharply, and an image is available only every 3
hours (BOEING, 2006; COSTA et al., 2018).

To assess the impact of the number of available images in the final estimation, the
data was grouped into 4 categories: between (i) 5-10, (ii) 11-20, (iii) 21-30, and (iv)
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over 30 images used. Afterwards, it was calculated the absolute deviation between
the CPTEC dataset and the ground measurements for each region, considering the
aforementioned categories. For this step, it was used the same period considered
in previous analysis, i.e. from September 2013 to December 2017. The results are
shown in the box-and-whisker plot in Figure 5.4.

It can be seen that, with exception of the Equatorial region, when the number of
available images for the estimation is reduced, the absolute difference becomes higher
and with greater dispersion, as expected. For the Equatorial region the MAD does
not presents significant variation, neither the spread (indicated by the whiskers)
shows fluctuations related to the number of images in the estimation. The Tropical
Northeast Oriental region exhibits in general the highest MAD for all categories, as
well as higher spread. The difference between MAD for the category with over 30
images and the one with the smallest number of observations is approximately 0.5h.
For the remaining regions, the MAD ranges from approximately 1.2h for the "over
30 images" category to close to 2h for the category with the smallest number of
observations. Figure 5.4 also shows that estimations made with 5-10 images are less
frequent that other amounts and days with over 30 images available are the more
frequent.

These results indicate that the uncertainty of SDU product increases with decreasing
number of available images. It is suggested, then, to provide quality flags with the
satellite-based SDU data indicating the number of observations available for the
calculation. This is a commonly implemented measure, providing useful information
to the data users and enabling judgment on the fitness-for-purpose of the data for
their specific applications (NIGHTINGALE et al., 2018).
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5.3 Clear sky reflectance assessment

In Chapter 2 a spatial variation in the MBE values was found, with an east-west
gradient. This feature is coherent with the results obtained by Porfirio et al. (2020),
during the evaluation of the global solar irradiance estimated from GL1.2. It was ex-
pected since the global irradiance and SDU are highly correlated (STANHILL, 2003).
Besides that, the reflectance used in the SDU estimate is a GL1.2 model subproduct,
and the cloud cover is assessed in the same fashion in both estimation models.

Porfirio et al. (2020) analyzed the main errors sources in estimating the global irra-
diance, among them, they highlighted the importance of a proper assessment of the
clear sky reflectance to the estimation of the cloud cover. The authors noticed that
an underestimation of Rmin leads to an overestimation of cloud cover, implying an
underestimation of ground solar irradiance by the GL model, and vice versa. The
effects to the SDU estimation are similar.

Previously, Porfirio (2012) and Porfirio and Ceballos (2017) investigated, respec-
tively, the CPTEC SDU and DNI estimates over Northeast Brazil. Porfirio (2012)
stated that the constant value for Rmin can especially affect the SDU estimates re-
sults, since it varies geographically. Porfirio and Ceballos (2017) suggested that to
proper account for cloud cover, it is convenient to adapt Rmin to the environment,
since it exhibits changes spatial and temporally. The authors obtained seasonal Rmin

fields, and used it to the DNI estimates, achieving overall good performance.

Several attempts to properly assess the clear sky reflectance are reported in litera-
ture, e.g. Perez et al. (2002) defines the lower reflectance as the average of the 10
lowest pixels in a sliding time window of 18 days in summer and 5 days during win-
ter. Rigollier et al. (2004) uses an iterative process to filter out the minimum values
that can be result of cloud shadows, which is the approach used by the CMSAF.

To investigate the Rmin fluctuations and its effects in the model results, the cen-
tral months of each season were selected (i.e. January, April, July, October), and
monthly Rmin fields were generated for the analyzed period, i.e. from October 2013
to October 2017. The methodology performed was based in the one described by
Porfirio and Ceballos (2017): Rmin fields were achieved by taking the minimum
(not null) reflectance values for each pixel considering the available images in the
interval between 14 and 16 UTC, within the target month. Thereafter, the fields
were smoothed by performing 3x3 pixel means. The time window of one month was
chosen following the consideration of Rigollier et al. (2004). They stated that this
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window should be long enough to filter out cloud contamination but short enough
to consider seasonal changes in the albedo surface. Seventeen monthly Rmin fields
were obtained, i.e. one Rmin field to October 2013, one to January 2014, and so on.

To illustrate the resulting fields, Figure 5.5 displays the average Rmin for each con-
sidered month in the analyzed period, e.g. Figure 5.5a presents the mean Rmin field
for January within the period of 2014-2017. The above mentioned characteristics
can be observed: the fields present great variability within the country. Over Brazil,
higher reflectance values are observed in Northeast Brazil and lower values in the
Amazon region for all seasons. Most of the regions display seasonal variations in
reflectance.

These monthly Rmin fields were used as input to the CPTEC SDU model, and new
estimates were performed following the same steps of the original model (Section
4.1.1). For each pixel, the Rmin value was defined by the correspondent pixel in the
Rmin monthly field, e.g., for the estimates for January 2014, the monthly Rmin field
for the respective year and month was used.

From the previous analysis, it could be seen that the worst performance obtained
with the original product regarded the Equatorial and Northeastern regions with
higher MBE values, although with opposite tendencies. To verify if the modification
brought improvements to the model’s performance, the SDU estimates from the
modified product were evaluated for these regions by calculating the MBE, RMSE
and r for the new dataset for each considered month for the above mentioned period
(following the definitions from Section 4.2). Then, the results were compared to the
ones from the original product.

Figure 5.6 presents the comparison of the spatial distribution of the MBE obtained
for the original and the modified product. It is shown that the bias for the most of the
stations in the Equatorial region was significantly reduced for all considered months,
with some stations presenting bias even 1 hour smaller. For the Tropical Equatorial
and Tropical Northeast Oriental regions, it can be seen that the modification in the
Rmin does not have much effect on the bias. Stations in Maranhão and Piauí states,
presented low bias both in the original and the modified product. The seasonality
in the bias, with smaller underestimation tendencies towards the winter are still
present after the modifications.

The obtained results showed that the modifications in the Rmin field presented a
more significant impact in the estimates for the stations in the Equatorial Region
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than in the ones from Northeastern locations. It may be due to the greater magnitude
of the difference between the "true" clear sky reflectance and the previous constant
value (i.e., 0.09) for the Amazon region in comparison for Northeast Brazil.

Figure 5.5 - Average Rmin obtained for each analysed month for the period from Oct/2013
to Oct/2017. Blueish (Redish) colors corresponds to low (high) reflectance
values.
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Figures 5.7-5.9 shows the KDE for INMET’s measurements and the evaluated prod-
ucts for Equatorial, Tropical Equatorial and Tropical Northeast Oriental regions,
respectively. For both regions it can be seen that the modification in the Rmin field
induced a slight reduction in the spread.

For the Equatorial region, Figure 5.7 shows that the higher concentration of obser-
vations (yellowish colors) are closer to the 1:1 line for the modified product than for
the original one, as expected due to the reduction observed on the MBE.

The plot for the Tropical Equatorial region shows that for January, under clear sky
conditions the underestimation observed in the original product seems to be reduced,
although for other skies conditions it does not show a significant impact. The other
months considered have not shown meaningful changes.

The Tropical Northeast Oriental region has not presented great modifications in
the estimates for the overcast and partially covered sky (between 0 and 6 hours,
approximately). For clear sky conditions, however, it seems that the change in the
Rmin field introduced a slightly stronger underestimation tendency.

Table 5.1 presents the statistical parameters obtained per region for the considered
months. Although not all stations within a region exhibit identical patterns, this
grouping was considered useful for summarizes the analysis throughout the Brazilian
territory.

The previously pointed reduction in the spread is illustrated by smaller RMSE val-
ues, although it is more significant for the Equatorial region than for the other
evaluated ones. The MBE values for the this region reinforce the overall smaller
overestimation tendency of the modified product. The other regions showed a re-
gional tendency to underestimation a little higher for the modified product than for
the original one, which was also previously noticed in the KDE plots. The correlation
coefficient results did not show significant improvements.
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Figure 5.7 - Bivariate kernel density estimates (KDE) for INMET’s measurements and the
original product (left panel), and the modified product (right panel) plotted
for each considered month for the Equatorial Region. Yellowish values cor-
responds to greater probability of occurrence, and bluish values to smaller
probability of occurrence.
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Figure 5.8 - Bivariate kernel density estimates (KDE) for INMET’s measurements and the
original product (left panel) and the modified product (right panel) plotted for
each considered month for the Tropical Equatorial Region. Yellowish values
corresponds to greater probability of occurrence, and bluish values to smaller
probability of occurrence.
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Figure 5.9 - Bivariate kernel density estimates (KDE) for INMET’s measurements and the
original product (left panel) and the modified product (right panel) plotted for
each considered month for the Tropical Northeast Oriental Region. Yellowish
values corresponds to greater probability of occurrence, and bluish values to
smaller probability of occurrence.
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Table 5.1 - Mean bias error (MBE), root mean squared error (RMSE) and correlation co-
eficient (r) for the comparison of daily SDU estimates (derived from satellite
data) and INMET’s records for the time period 2013–2017. "CPTEC" corre-
sponds to the original product and "CPTEC-Modified" stands for the dataset
with Rmin modified. The statistic parameters were evaluated per region by
averaging all stations within the region. The number of compared daily values
are is the same that for Tables 4.1-4.6.

MBE (h) RMSE (h) r
Equatorial Region

CPTEC CPTEC-Modified CPTEC CPTEC-Modified CPTEC CPTEC-Modified
JAN 1.42 (0.76) 1.07 (0.62) 2.23(0.59) 1.94 (0.44) 0.71 (0.09) 0.73 (0.09)
APR 1.28 (0.86) 0.92 (0.76) 2.2 (0.73) 1.98 (0.58) 0.65 (0.13) 0.65 (0.13)
JUL 1.47 (0.84) 0.81 (0.79) 2.17 (0.72) 1.75 (0.56) 0.58 (0.17) 0.61 (0.17)
OCT 1.16 (0.89) 0.75 (0.7) 2.12 (0.64) 1.84 (0.5) 0.61 (0.16) 0.62 (0.16)
Tropical Equatorial Region

CPTEC CPTEC-Modified CPTEC CPTEC-Modified CPTEC CPTEC-Modified
JAN -0.39 (1.16) -0.6 (1.09) 1.97 (0.73) 1.9 (0.75) 0.76 (0.08) 0.78 (0.07)
APR -0.28 (1.05) -0.61 (0.98) 1.72 (0.59) 1.75 (0.53) 0.71 (0.09) 0.71 (0.09)
JUL -0.12 (0.89) -0.48 (0.76) 1.57 (0.45) 1.53 (0.43) 0.63 (0.17) 0.64 (0.17)
OCT -0.86 (1.2) -0.9 (0.99) 1.92 (0.57) 1.8 (0.48) 0.59 (0.15) 0.61 (0.15)
Tropical Northeast Oriental Region

CPTEC CPTEC-Modified CPTEC CPTEC-Modified CPTEC CPTEC-Modified
JAN -0.62 (1.17) -0.79 (1.13) 2.26 (0.48) 2.21 (0.45) 0.61 (0.13) 0.65 (0.13)
APR -0.73 (1.09) -0.83 (1.0) 2.07 (0.4) 2.05 (0.4) 0.67 (0.1) 0.67 (0.1)
JUL 0.1 (0.91) -0.13 (0.88) 1.84 (0.4) 1.8 (0.38) 0.72 (0.11) 0.73 (0.11)
OCT -0.73 (1.68) -0.85 (1.67) 2.55 (0.6) 2.51 (0.61) 0.52 (0.17) 0.54 (0.17)

To provide a closer understanding on the results of the modified product obtained
for the Tropical Equatorial and Tropical Northeast Oriental regions, analysis of the
diurnal cycle of the reflectance under clear sky conditions was carried out. Porfirio
and Ceballos (2017), when evaluating the DNI estimates from the CPTEC model
over Northeastern Brazil, noticed that consider a constant Rmin value through the
day, without accounting for diurnal variations, could lead to non-negligible errors.

To find clear sky days, the relative SDU was used. It is defined as the actual sunshine
duration, and the maximum possible sunshine duration (ANIS et al., 2019). Values
close to the unit represent days without or with a low frequency of clouds. So, for
the stations localized within the mentioned regions, the time series of the relative
SDU was generated, and days with relative SDU greater than 0.95 were selected.
Thereafter, the diurnal cycle of the reflectance for each station was plotted.
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As examples, Figures 5.10 and 5.11 exhibit the diurnal cycle of reflectance for two
stations (Petrolina-PE and Apodi-RN).

Figure 5.10 - Diurnal cycle of reflectance for Petrolina-PE (9.38°S, 40.48°W) station for
(a) January, (b) April, (c) July and (d) October. Each line correponds to a
day indicated in the legend. The Rmin for each month and year for the pixel
correspondent to the station site is indicated in each plot.

Firstly, is important to elucidate that not all plotted days consist of perfectly cloud-
less days. Despite of that, the results for both stations show lower reflectance values
in the time interval between approximately 10 and 15 UTC, compared to other pe-
riods of the day. In fact, in some cases, the reflectance values close to the end of
the day are almost twice the observed for the first half of the day, i.e., the plot for
26/10/2013 at Petrolina-PE, around 12 UTC the observed reflectance is about 0.11,
however at 19 UTC it is close to 0.2. The amplitude of this difference, however,
seems to be site and seasonal dependent.
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Figure 5.11 - Diurnal cycle of reflectance for Apodi-RN (5.61°S, 37.81°W) station for (a)
January, (b) April, (c) July and (d) October. Each line correponds to a day
indicated in the legend. The Rmin for each month and year for the pixel
correspondent to the station site is indicated in each plot.

These findings may explain the results obtained for the modified product. The proper
assessment of the Rmin proved to be essential to provide good SDU estimates.
Nonetheless, the diurnal variation of the clear sky reflectance was not considered
in the SDU estimates. Previous studies demonstrated that the reflectance is influ-
enced not only by surface properties and environmental factors, but also by the solar
illumination angle in relation to the scene Kollenkark et al. (1982), Ranson et al.
(1985), Deering and Eck (1987), and in some cases, it can present variations over
140% within a day.

The simplified approach used, i.e. Rmin constant in a given day, may induce SDU
underestimation, principally under clear sky conditions, as the minimum reflectance
for some periods, even if it corresponds to clear sky, will not be as low as the values
found around the first half of the day.
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These results indicate that diurnal cycles of Rmin on a seasonal basis could provide
better SDU estimates. This proved to be useful by Porfirio and Ceballos (2017),
that obtained improved DNI estimates by considering variable Rmin values during
the diurnal period.

Besides, although the reflectance diurnal cycle have been only examined in the
Northeastern regions, similar results are also expected for other locations. There-
fore, the contribution of using variable Rmin values during the day, adjusted for
the location and the season, to the improvement of the model, should be further
investigated.

5.4 Summary

During the validation process, it is important to acknowledge the main source of
errors and the limitations of the proposed method. After providing quantitative
measures of the CPTEC model performance, this chapter intended to carefully ad-
dress these features, and then give alternatives to overcome these issues.

Firstly, the lack of time constraints was investigated. It showed that the current
method for accounting for the intervals that do not have observations leads to er-
rors. For instance, in cases that the interval between the sunrise and the first valid
image or/and the last image and the sunset is lower than one hour induces overes-
timates. This is more pronounced in locations with lower frequency of clouds along
the day, which can even generate estimates higher than the maximum duration of
the day. Regarding this topic, two possible solutions were suggested. Nonetheless,
the potential of providing better estimates of each of the suggested equations must
be investigated.

Section 5.2 examined the impact of the number of observations used in the estima-
tions in the model performance. It was presented the absolute deviation per region
for different amounts of images available for employment in the estimation. It could
be observed that the estimates generated with fewer observations within a day (e.g.
5-10 images) exhibited higher absolute differences and larger spread, with exception
of the Equatorial region, where the absolute difference does not show fluctuations
related to the number of images. Therefore, it was suggested that this information
be furnished with the estimates. This is a common practice in the remote sensing
(NIGHTINGALE et al., 2018), as in most of cases the uncertainty of the estimation
increases with decreasing number of available observations.
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Last, the importance of the proper assessment of the Rmin was analyzed. A new
dataset with monthly Rmin fields were generated for the central month of each
season. The statistical parameters were obtained for the regions that the original
product has shown its worse performance. Then, the results of the modified and
the original product were compared. It could be seen that the modification of the
Rmin brought improvements for the Equatorial region, although has not exhibited
a significant impact in the Tropical Equatorial and Tropical Northeast Oriental
regions. The diurnal cycle of the reflectance indicated that to correctly consider
the clear sky reflectance in the cloudiness parameterization, a variable Rmin along
the day must be considered beyond the location and season. Notwithstanding, the
analysis of the diurnal cycle was performed only for the Northeastern Brazil, similar
results are expected for other locations. Therefore the consideration of a variable
Rmin along the diurnal period, derived for a specific location and season should
be extended to other regions, and the potential of this in improving the model’s
performance must be further examined.
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6 MAIN CONCLUSIONS AND FUTURE WORK

This work has investigated the performance of the CPTEC model for SDU estimates
over Brazil. To accomplish that, an analysis on the readily available SDU datasets
was performed. After the proper selection of the reference dataset, the validation and
inter-comparison of the CPTEC and CMSAF daily SDU estimates considering the
period from September 2013 to December 2017 was carried out. Given the results, the
main deficiencies of the CPTEC method were explored, and potential improvements
were suggested. Section 6.1 gives a summary of the main results and conclusions
of this work, regarding the specific objectives outlined in Chapter 1. In addition,
Section 6.2 proposes future studies based on concerns that have been raised during
this study.

6.1 Summary and conclusions

SDU is one of the most important parameters in climate monitoring (KOTHE et al.,
2013). Given its relevance, long SDU time-series are accumulated at networks all over
the world. Concerning the Brazilian territory, there are two networks that provide
freely available relevant data for SDU studies: the INMET’s network, which encom-
passes approximately 330 stations that assemble SDU records from CS recorders;
and SONDA’s network, that provides solar radiation data measured with automatic
sensors at 20 stations. These data are further employed to derive SDU using the
threshold defined by WMO, i.e. DNI ≥ 120 W/m2 (WORLD METEOROLOGICAL OR-

GANIZATION - WMO, 2008). The commitment to maintain these networks is funda-
mental to deliver trustworthy information on SDU for climate studies. Notwithstand-
ing, the distribution of these stations is uneven with regions, such as the Midwest
and Northern Brazil, having very few stations. Besides, ground measurements are
point-based observations, then to gather information in the vicinity, some authors
proposed different methods of interpolation to provide information to locations with
no records. Despite their efforts, unfortunately, the resultant data has high interpo-
lations errors in regions with few stations available, being inadequate to characterize
the SDU’s high spatial variability.

Alternatively, methods based on remote sensing data have been proposed for SDU
estimate. Ceballos and Rodrigues (2008) proposed a simplified method to estimate
SDU leveraging the high spatial and temporal resolutions of GOES. The perfomance
of the model was previously assessed by Porfirio (2012) for the Brazilian Northeast.
The results indicated that the model has an overall good performance. Kothe et
al. (2017) proposed a method based on the DNI achieved through Meteosat for
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SDU estimation. The CMSAF product also delivers SDU estimates over Brazil,
nonetheless, the accuracy of this model regarding the country was only assessed for
the monthly sums. Therefore, the present study intended to extend the validation
of CPTEC daily SDU estimates for the entire Brazilian territory, inter-compare its
results with the ones obtained from the CMSAF method, and explore the model’s
deficiencies aiming to provide potential improvements.

Considering the primary requirements to select the reference dataset for the valida-
tion process presented in Chapter 3, the readily available data on SDU was gathered.
For the analyzed period, applying the criteria proposed, INMET’s network provided
records for 194 stations, and SONDA’s network presented solar radiation time-series
at 10 stations. With the former dataset, quality flags are delivered as ancillary data,
thus no additional quality control was employed. Regarding the INMET’s records,
some quality control procedures were utilized to discard gross errors. Afterwards,
the measurements for locations with stations from both networks were compared.
The results showed that the SDU records obtained from the SONDA’s network
for São Luis-MA and Natal-RN contained faulty data. Besides that, the results for
Petrolina-PE were suspicious for the winter period. This indicated that although the
automatic acquired data pass through quality checks, the resultant SDU dataset for
the analyzed period may contain erroneous data. Hence, for the purpose of this work,
the SONDA dataset was considered inappropriate for the present study, because the
employment of faulty records could compromise the validation procedure. Therefore,
to the following procedures, the measurements from INMET’s network was used as
reference. This dataset displayed more reliability than SONDA records, and also
provided a greater amount of data, allowing a larger coverage of the country.

For the validation, the period from September 2013 to December 2017 was selected.
It was chosen because it corresponds to the operation of the same platform (i.e.
GOES-13) and provides a reasonable time interval for statistical analysis. The avail-
able stations were grouped into climate zones, this regionalization allowed a conden-
sate and more robust assessment. The daily satellite-based SDU datasets, i.e. the
CPTEC and CMSAF estimates, were evaluated against the reference measurements
regarding the individual stations and the proposed regions, for each month. The
results were analyzed by means of the MBE, the RMSE and the r for the climate
zones, and the spatial distribution of the MBE.

The assessment showed that both products exhibit an overall good performance.
The best results were obtained for the stations south of 15°S, encompassed by the
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Tropical Central Brazil (Warm and Mesothermic) and Humid Temperate regions,
where the CPTEC dataset exhibited lower MBE for the first, and the CMSAF for
the latter. These stations presented MBE ranging from -1 to 1h for the individual
assessment, and from -0.1 to 1h for the regional one. The Equatorial region also
presented, in general, an overestimation tendency. For the CPTEC method, the
regional MBE stayed between 1.16 and 1.61h, and for the CMSAF model, between
0.3 to 0.95h, indicating that for this region CMSAF method performs better.

The CPTEC product presented a tendency to underestimate the SDU records for
the regions located in Northeast Brazil. The Tropical Equatorial region presented a
mixed behavior, the stations located in Maranhão and Piaui states exhibited bias
close to zero, the other stations presented negative bias for most of the year. The
regional MBE ranged between -0.08 to -0.86h. The MBE for the Tropical Northeast
Oriental region presented the highest bias, in magnitude, in March (-0.94h) and the
lowest in July (0.1h). These two last regions presented a distinct pattern from the
others: the bias exhibited a seasonal variation, approaching zero, towards the win-
ter. This feature was attributed mainly to the cloudiness regime of these locations.
Regarding these regions, the CMSAF estimates presented higher positive bias than
for the aforementioned ones. Similar behavior was found by Kothe et al. (2017) for
areas with frequent low warm clouds, such as the Brazilian Northeast. The authors
credited these errors to the combined effect of misrepresentation by the constants
used in the estimation and the systematically underestimation of the Effective Cloud
Albedo by the Heliosat method in locations with persistent low cloud fields.

Concerning the RMSE and r results, as for the MBE, these parameters varied within
regions. The RMSE for both satellite-derived datasets were similar, with exception
for the Equatorial and Tropical Equatorial regions, in which RMSE of CPTEC
estimates were higher than those from CMSAF. In general, the r indicated a strong
positive correlation between SDU estimated and the reference dataset. The obtained
results were in agreement with those previously reported in literature.

To further examine the results for the regions with the worst CPTEC model’s per-
formance, bivariate KDE plots were generated. The results suggested that for the
Tropical Northeast Oriental region, the CPTEC estimates were close to the obser-
vations for days with low SDU values, which indicates that under partly cover and
overcast sky, the CPTEC method performs better. Reassuring that for this region,
the model’s performance is related to the cloudiness regime. For the Equatorial
region, the overestimation tendency were present under all sky conditions.
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Given the results, some aspects of the CPTEC method were investigated, aiming
to provide meaningful insights on potential improvements. Firstly, the treatment
regarding the periods without observations, i.e. interval between sunrise-first image
and last image-sunset, was analyzed. It could be seen, that the current model ap-
proach to account for these intervals may lead to errors. Which are more pronounced
in sites with low cloud frequency within the day, in some cases generating estimates
higher than the maximum duration of the day. Two simple suggestions are pro-
vided, although the considerations might yet lead to errors, adding time constraints
will at least prevent estimates greater than the maximum day length. Quantitative
advantages of the proposed approaches must be further explored.

The second aspect analyzed was the impact of the number of available images in
the SDU estimates. It was shown that decreasing the number of available images,
the uncertainty of the SDU product increases. In fact, this is frequent in remote
sensing products. To circumvent this issue, a commonly employed measure is to
inform data users of the amount of observations available for the estimate as quality
flags, enabling judgment on the fitness-for-purpose of the data for their specific
applications (NIGHTINGALE et al., 2018).

Lastly, an attempt to better represent the clear sky reflectance was performed. To
ascertain its potential on improving the model, SDU estimates were generated for the
central month of each season, using monthly Rmin fields. These fields were achieved
by taking the minimum (not null) reflectance values in the interval between 14 and
16 UTC, within the target month. The resultant SDU estimates were compared to
the reference dataset for the regions that presented the worst results in the previ-
ous assessment of the model. The modification of Rmin brought improvements for
the Equatorial region, but did not presented a significant impact in the Tropical
Equatorial and Tropical Northeast Oriental regions. Afterwards the diurnal cycle
of Rmin for days with predominantly clear sky was analyzed. The results suggested
that to proper consider the clear sky reflectance in the cloudiness parameterization,
a variable Rmin within daytime must be considered beyond the location and season.

The results obtained in this study showed that the CPTEC method presents a
good performance over Brazilian territory, being an reliable alternative to provide
information to different applications. Notwithstanding, further investigation on the
main deficiencies of the method must be carried out to provide further improvements.
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6.2 Future work

Although the results of the CPTEC model’s performance has shown an overall good
performance, additional analysis must be accomplished:

Regarding the validation, periods correspondent to other GOES platforms should be
evaluated and compared to the results obtained in the present work, to assure that
the SDU time-series is sufficiently homogeneous and stable, which are fundamental
requirements for application on climate research (GLOBAL CLIMATE OBSERVING

SYSTEM, GCOS, 2016).

Given the high resolution of the CPTEC SDU estimates, generate annual and sea-
sonal maps to update the previous assessed knowledge, and provide further charac-
terization of its variability on regional and local scales.

Perform experiments implementing the proposed suggestions for the beginning and
end of the day treatment to quantitatively assess the potential of these considerations
in improving the model’s performance.

Extend the analysis on the impact of the available observations in the estimation.
For subsequently, on an operational basis, provide the user with quality flags based
on these results.

Investigate the diurnal cycle of Rmin for different regions of Brazil, and evaluate
SDU estimates generated with variable Rmin along the diurnal period, derived for a
specific location and season, against ground measurements.

Considering the importance of reliable ground measurements for model’s validation,
this work showed that the employment of the BSRN criteria for quality check on
the SONDA data was insufficient to assure the data quality. Regarding the data
obtained through CS recorders, there is no widely accepted methodology for quality
control. Therefore, it is suggested to conduct studies to develop rigorous criteria for
quality control concerning the relevant data for SDU research.
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Table A.1 - INMET’s weather stations with less than 20% missing data during the ana-
lyzed period, i.e., September 2013 to December 2017.

No Site Latitude Longitude Altitude
Equatorial

82212 FONTE BOA - AM -2.53 -66.16 55.57
82915 RIO BRANCO - AC -9.96 -67.80 160.00
82336 ITACOATIARA - AM -3.13 -58.43 40.0
82188 BREVES - PA -1.68 -50.48 14.74
82145 TRACUATEUA - PA -1.06 -46.9 36.00
82178 OBIDOS - PA -1.91 -55.51 37.00
82353 ALTAMIRA - PA -3.21 -52.21 74.04
83214 MATUPA - MT -10.25 -54.91 285.00
82317 TEFE - AM -3.83 -64.70 47.00
82326 CODAJAS - AM -3.83 -62.08 48.00
82361 TUCURUI - PA -3.76 -49.66 40.00
82067 IAUARETE - AM 0.61 -69.18 120.00
82562 MARABA - PA -5.36 -49.13 95.00
82141 SOURE - PA -0.73 -48.51 10.49
82113 BARCELOS - AM -0.96 -62.91 40.00
82445 ITAITUBA - PA -4.28 -55.99 45.00
82263 CAMETA - PA -2.25 -49.50 23.90
82181 MONTE ALEGRE - PA -2.00 -54.10 145.85
82246 BELTERRA - PA -2.63 -54.95 175.74
82184 PORTO DE MOZ - PA -1.73 -52.23 15.93
82861 CONCEICAO DO ARAGUAIA - PA -8.26 -49.26 156.85
82610 EIRUNEPE - AM -6.66 -69.86 104.00
82191 BELEM - PA -1.43 -48.43 10.00
82331 MANAUS - AM -3.10 -60.01 61.25
82098 MACAPA - AP -0.05 -51.11 14.46
82024 BOA VISTA - RR 2.82 -60.66 83.00
82106 S G DA CACHOEIRA UAUPES - AM -0.11 -67.00 90.00

Tropical Equatorial
82882 PAULISTANA - PI -8.13 -41.13 374.22
82590 APODI - RN -5.61 -37.81 150.00
82588 MORADA NOVA - CE -5.11 -38.36 43.62
82480 PIRIPIRI - PI -4.28 -41.78 161.12
82970 ALTO PARNAIBA - MA -9.10 -45.93 285.05
82578 TERESINA - PI -5.08 -42.81 74.36

(Continue)
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82791 PATOS - PB -7.01 -37.26 249.09
82690 SERIDO CAICO - RN -6.46 -37.08 169.85
82198 TURIACU - MA -1.56 -45.36 44.06
82493 JAGUARUANA - CE -4.78 -37.76 11.71
82298 ESPERANTINA - PI -3.90 -42.25 87.05
82693 CRUZETA - RN -6.43 -36.58 226.46
82686 IGUATU - CE -6.36 -39.29 217.67
82382 CHAPADINHA - MA -3.73 -43.35 103.50
82784 BARBALHA - CE -7.31 -39.30 409.03
82487 GUARAMIRANGA - CE -4.26 -39.00 870.67
82287 PARNAIBA - PI -3.08 -41.76 79.50
82768 BALSAS - MA -7.53 -46.03 259.38
82296 LUZILANDIA - PI -3.41 -42.28 49.00
82586 QUIXERAMOBIM - CE -5.16 -39.28 79.50
82564 IMPERATRIZ - MA -5.53 -47.48 123.30
82583 CRATEUS - CE -5.16 -40.66 296.82
82780 PICOS - PI -7.03 -41.48 207.93
82376 ZE DOCA - MA -3.26 -45.65 45.28
82571 BARRA DO CORDA - MA -5.50 -45.23 153.00
82280 SAO LUIS - MA -2.53 -44.21 50.86
82879 SAO JOAO DO PIAUI - PI -8.35 -42.25 235.33
82659 ARAGUAINA - TO -7.20 -48.20 228.52
82886 CABROBO - PE -8.51 -39.33 341.46
82689 SAO GONCALO - PB -6.75 -38.21 233.06
82789 TRIUNFO - PE -7.81 -38.11 1105.0
82777 CAMPOS SALES - CE -7.00 -40.38 583.50
82870 VALE DO GURGUEIA - PI -8.41 -43.71 265.00
82983 PETROLINA - PE -9.38 -40.48 370.46
82392 SOBRAL - CE -3.73 -40.33 109.62
82678 FLORIANO - PI -6.76 -43.01 123.27
82753 OURICURI - PE -7.90 -40.04 459.28
82460 BACABAL - MA -4.22 -44.76 25.07
82676 COLINAS - MA -6.03 -44.25 179.75
82397 FORTALEZA - CE -3.81 -38.53 26.45
82863 PEDRO AFONSO - TO -8.96 -48.18 187.00
82765 CAROLINA - MA -7.33 -47.46 192.83
82594 MACAU - RN -5.15 -36.57 17.34

Tropical Northeast Oriental
(Continue)
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82596 CEARA MIRIM - RN -5.65 -35.65 61.35
83096 ARACAJU - SE -10.95 -37.04 4.72
82900 RECIFE CURADO - PE -8.05 -34.95 10.00
83192 CIPO - BA -11.08 -38.51 145.31
82795 CAMPINA GRANDE - PB -7.22 -35.88 547.56
82890 ARCOVERDE - PE -8.41 -37.08 680.70
82797 SURUBIM - PE -7.83 -35.71 418.32
83221 FEIRA DE SANTANA - BA -12.18 -38.96 230.68
82798 JOAO PESSOA - PB -7.10 -34.86 7.43
83097 PROPRIA - SE -10.21 -36.84 19.92
82989 AGUA BRANCA - AL -9.28 -37.90 605.34
83229 SALVADOR ONDINA - BA -13.01 -38.53 51.41
83195 ITABAIANINHA - SE -11.11 -37.81 208.00
82990 PAO DE ACUCAR - AL -9.75 -37.43 19.10
82893 GARANHUNS - PE -8.88 -36.51 822.76
82696 AREIA - PB -6.97 -35.68 574.62
82996 PORTO DE PEDRAS - AL -9.18 -35.43 50.02
82992 PALMEIRA DOS INDIOS - AL -9.44 -36.70 274.90
83398 CANAVIEIRAS - BA -15.66 -38.95 3.87
82598 NATAL - RN -5.91 -35.20 48.60
82994 MACEIO - AL -9.55 -35.77 84.12

Tropical Central Brazil – Warm
83179 BARRA - BA -11.08 -43.16 401.58
83364 PADRE RICARDO REMETTER - MT -15.78 -56.06 140.00
83374 GOIAS - GO -15.91 -50.13 512.22
83244 ITABERABA - BA -12.51 -40.28 249.89
83377 BRASILIA - DF -15.78 -47.92 1159.54
83286 CORRENTINA - BA -13.33 -44.61 549.47
83441 SALINAS - MG -16.15 -42.28 471.32
83379 FORMOSA - GO -15.54 -47.33 935.19
83076 STa R DE CASSIA IBIPETUBA - BA -11.01 -44.51 450.30
83190 SERRINHA - BA -11.63 -38.96 359.63
83648 VITORIA - ES -20.31 -40.31 36.20
83483 PIRAPORA - MG -17.35 -44.91 505.24
83236 BARREIRAS - BA -12.15 -45.00 439.29
83270 CANARANA - MT -13.47 -52.27 430.00
83033 PALMAS - TO -10.19 -48.30 280.00
83064 PORTO NACIONAL - TO -10.71 -48.41 239.20

(Continue)
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83339 CAETITE - BA -14.06 -42.48 882.47
83319 NOVA XAVANTINA - MT -14.70 -52.35 316.00
83338 ESPINOSA - MG -14.91 -42.80 569.64
83358 POXOREO - MT -15.83 -54.38 450.00
83446 GUARATINGA - BA -16.73 -39.54 194.67
83361 CUIABA - MT -15.61 -56.10 145.00
83479 PARACATU - MG -17.24 -46.88 712.00
83186 JACOBINA - BA -11.18 -40.46 484.74
83368 ARAGARCAS - GO -15.90 -52.23 345.00
83228 PEIXE - TO -12.01 -48.35 242.49
83550 SAO MATEUS - ES -18.70 -39.85 25.04
83182 IRECE - BA -11.30 -41.86 747.16
83513 NHUMIRIM - MS -18.98 -56.62 89.00
83242 LENCOIS - BA -12.56 -41.38 438.74
83464 JATAI - GO -17.91 -51.71 662.86
83437 MONTES CLAROS - MG -16.68 -43.84 652.00
83452 JURAMENTO - MG -16.77 -43.66 648.00
83334 FORMOSO - MG -14.93 -46.25 840.00
83090 MONTE SANTO - BA -10.43 -39.29 464.60
83393 PEDRA AZUL - MG -16.00 -41.28 648.91
83565 PARANAIBA - MS -19.75 -51.18 331.25
83344 VITORIA DA CONQUISTA - BA -14.88 -40.79 874.81
83386 JANUARIA - MG -15.45 -44.00 473.71
83376 PIRENOPOLIS - GO -15.85 -48.96 740.00
82979 REMANSO - BA -9.63 -42.10 400.51
83288 BOM JESUS DA LAPA - BA -13.26 -43.41 439.96
83470 RIO VERDE - GO -17.80 -50.91 774.62
83292 ITUACU - BA -13.81 -41.30 531.43
83184 MORRO DO CHAPEU - BA -11.21 -41.21 1003.27
83492 TEOFILO OTONI - MG -17.86 -41.51 349.11
83363 SAO VICENTE - MG -15.82 -55.42 786.99
83114 IGUABA GRANDE - RJ -22.85 -42.19 5.57
82975 BOM JESUS DO PIAUI - PI -9.07 -44.37 330.60

Tropical Central Brazil – Mesothermic
83538 DIAMANTINA - MG -18.23 -43.64 1296.12
83669 SAO SIMAO - SP -21.48 -47.55 617.39
83531 PATOS DE MINAS - MG -18.51 -46.43 940.28
83579 ARAXA - MG -19.60 -46.94 1023.61
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83851 SOROCABA - SP -23.48 -47.43 645.00
83577 UBERABA - MG -19.73 -47.95 737.00
83738 RESENDE - RJ -22.45 -44.44 439.89
83639 CAPARAO - MG -20.51 -41.90 843.18
83630 FRANCA - SP -20.58 -47.36 1026.20
83736 SAO LOURENCO - MG -22.10 -45.01 953.20
83676 CATANDUVA - SP -21.11 -48.93 570.00
83587 BELO HORIZONTE - MG -19.93 -43.93 915.00
83687 LAVRAS - MG -21.75 -45.00 918.84
83781 SAO PAULO MIR de SANTANA - SP -23.50 -46.61 792.06
83592 CARATINGA - MG -19.73 -42.13 609.65
83767 MARINGA - PR -23.40 -51.91 542.00
83695 ITAPERUNA - RJ -21.20 -41.90 123.59
83692 JUIZ DE FORA - MG -21.76 -43.36 939.96
83766 LONDRINA - PR -23.31 -51.13 566.00
83718 CORDEIRO - RJ -22.02 -42.36 505.92
83514 CAPINOPOLIS - MG -18.71 -49.55 620.60
83689 BARBACENA - MG -21.25 -43.76 1126.00
83683 MACHADO - MG -21.68 -45.94 873.35
83726 SAO CARLOS - SP -21.96 -47.86 856.00
83635 DIVINOPOLIS - MG -20.17 -44.87 788.35
83642 VICOSA - MG -20.76 -42.86 712.20
83582 BAMBUI - MG -20.03 -45.00 661.27
83533 BOM DESPACHO - MG -19.68 -45.36 695.00
83557 BOA ESPERANÇA - MG -18.54 -40.27 128.95

Humid Temperate
83927 URUGUAIANA - RS -29.75 -57.08 62.31
83811 IVAI - PR -25.00 -50.86 808.00
83948 TORRES - RS -29.35 -49.73 4.66
83872 INDAIAL - SC -26.90 -49.21 86.13
83897 FLORIANOPOLIS - SC -27.58 -48.56 1.84
83914 PASSO FUNDO - RS -28.21 -52.40 684.05
83985 PELOTAS - RS -31.78 -52.41 13.00
83919 BOM JESUS - RS -28.66 -50.43 1047.50
83836 IRATI - PR -25.46 -50.63 836.95
83923 URUSSANGA - SC -28.51 -49.31 48.17
83907 SAO LUIZ GONZAGA - RS -28.40 -55.01 245.11
83936 SANTA MARIA - RS -29.70 -53.70 95.00

(Continue)
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83891 LAGES - SC -27.81 -50.33 936.83
83967 PORTO ALEGRE - RS -30.05 -51.16 46.97
83980 BAGE - RS -31.33 -54.10 242.31
83842 CURITIBA - PR -25.43 -49.26 923.50
83997 SANTA VITORIA DO PALMAR - RS -33.51 -53.35 24.01
83942 CAXIAS DO SUL - RS -29.16 -51.20 759.60
83912 CRUZ ALTA - RS -28.63 -53.60 472.50
83920 SAO JOAQUIM - SC -28.30 -49.93 1415.00
83813 CASTRO - PR -24.78 -50.00 1008.80
83964 ENCRUZILHADA DO SUL - RS -30.53 -52.51 427.75
83916 LAGOA VERMELHA - RS -28.21 -51.50 840.00
83887 CAMPOS NOVOS - SC -27.38 -51.20 946.67
83883 CHAPECO - SC -27.11 -52.61 679.01

(Conclusion.)
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Table A.2 - SONDA’s stations with less than 20% missing data during the analyzed period,
i.e., September 2013 to December 2017.

ID Site Latitude Longitude Altitude Instrument
10 Brasília - DF -15.6008 -47.7131 1023 Pyrheliometer
13 Cachoeira Paulista - SP -22.6896 -45.0062 574 Pyrheliometer
01 Florianópolis - SC -27.6017 -48.5178 31 Pyrheliometer
04 Joinville - SC -26.2525 -48.8578 48 Pyranometers
17 Natal - RN -5.8397 -35.2064 58 Pyranometers
19 Palmas - TO -10.1778 -48.3619 216 Pyranometers
11 Petrolina - PE -9.0689 -40.3197 387 Pyrheliometer
16 São Luiz - MA -2.5933 -44.2122 40 Pyranometers
08 São Martinho da Serra - RS -29.4428 -53.8231 489 Pyrheliometer
05 Sombrio - SC -26.0956 -49.8133 15 Pyranometers
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