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ABSTRACT
Artificial neural networks (ANNs) have been successfully used in the last years to identify patterns in astronomical images. The
use of ANN in the field of asteroid dynamics has been, however, so far somewhat limited. In this work, we used for the first time
ANN for the purpose of automatically identifying the behaviour of asteroid orbits affected by the M1:2 mean-motion resonance
with Mars. Our model was able to perform well above 85 per cent levels for identifying images of asteroid resonant arguments
in term of standard metrics like accuracy, precision, and recall, allowing to identify the orbital type of all numbered asteroids in
the region. Using supervised machine learning methods, optimized through the use of genetic algorithms, we also predicted the
orbital status of all multi-opposition asteroids in the area. We confirm that the M1:2 resonance mainly affects the orbits of the
Massalia, Nysa, and Vesta asteroid families.

Key words: methods: data analysis – celestial mechanics – minor planets, asteroids: general.

1 IN T RO D U C T I O N

During the last 5 yr, machine learning and deep learning have been
more and more been used in the field of asteroid dynamics. Among
the latest application, supervised methods of machine learning have
been used to identify the population of asteroids in three-body
mean-motion resonances (Smirnov & Markov 2017), new members
of known asteroid families (Carruba et al. 2020), and asteroids
groups inside the z1 and z2 secular resonances (Carruba, Aljbaae
& Domingos 2021), among others. Deep learning in the form
of artificial neural networks (ANNs) has been recently used for
identifying members of asteroid families (Vujičić et al. 2020). While
several applications of ANNs exist in other astronomy fields for
the purpose of identifying images, like, for instance, methods to
identify different types of galaxies clusters (Su et al. 2020), to our
knowledge such methods have not yet been applied for asteroid
dynamics problems.

Here, we attempt for the first time to use ANNs for automatically
identifying the behaviour of asteroids near the two-body M1:2 mean-
motion resonance with Mars. As discussed by other authors (Gallardo
et al. 2011), three types of orbits are possible near resonance:
libration, where the resonant argument of the resonance, which we
will define in Section 2), oscillates around an equilibrium point,
circulation, where the resonant argument cover the whole range of
values from 0◦ to 360◦, and switching orbits, where the resonant
argument alternates phases of libration and circulation. In previous
works, the classification of the type of orbits on which an asteroid
resides was either performed manually, by visually inspecting the
time behaviour of the resonance argument (see, for instance, Carruba,
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Vokrouhlický & Novaković 2018, and references therein), or by using
automatic algorithms for the same purpose (Smirnov, Dovgalev &
Popova (Gallardo 2014; Gallardo, Coito & Badano 2016; Smirnov,
Dovgalev & Popova 2018). In this work, we use ANNs for classifying
an asteroid’s orbital type for all numbered asteroids in the region
affected by this resonance.

We then employed genetic algorithms to select the best performing
machine learning supervised method to predict the labels of multi-
opposition objects in the area. Multi-opposition asteroids are aster-
oids that have been observed at several oppositions to the Sun from
Earth, whose orbits are somewhat well established. Once the orbit is
confirmed, an asteroid receives an identification number and becomes
a numbered asteroid, like 2 Vesta, 4 Pallas, 10 Hygiea, among
others. Since the orbits of multi-oppositions asteroids are not as well
established as those of numbered bodies, here we used the labels of
numbered asteroids to predict those of the multi-oppositions objects.
Finally, we verified which local asteroid families are most affected
by this dynamical resonance, to see if our results are consistent with
those in the literature. We start our analysis by revising the dynamical
properties of asteroids in the region.

2 THE POPULATI ON O F A STEROI DS I N TH E
M1 :2 RESONA NCE: DYNAMI CS

The population of asteroids inside the M1:2 mean motion resonance
with Mars has been the subject of a study by Gallardo et al. (2011)
that investigated the dynamical, physical, and evolutionary properties
of these asteroids. Here, we will briefly summarize the dynamical
characteristics of this population, and distinguish between the types
of orbits possible in the orbital region affected by this resonance.
Fig. 1 displays an (a, e) projection of 9457 numbered asteroids in the
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Figure 1. Proper (a, e) distribution for asteroids in the orbital region of the
M1:2 mean-motion resonance.

range in a from 2.411 to 2.426 au. Values of synthetic proper elements
for asteroids in the region were obtained from the Asteroid Families
Portal (AFP; Radović et al. 2017, accessed on 2020 August 1).
Synthetic proper elements are constant of the motion on time-scales
of millions of years and are obtained as the outcome of numerical
simulations, using methods described in Knežević & Milani (2003).
The V-shaped region at the resonance centre is associated with the
M1:2 resonance. The higher number concentration of objects at the
edge of the V-shape is caused by the phenomenon called ‘resonance
stickiness’ (Malyshkin & Tremaine 1999). Gallardo et al. (2011)
define two main resonant arguments for this resonance. σ is given
by

σ = 2λ − λM − �, (1)

where λ = M + � + ω is the mean longitude, � = � + ω, with �

the longitude of the node, ω the argument of pericentre, and where
the suffix M identifies the planet Mars. σ 1 is defined as

σ1 = 2λ − λM − �M. (2)

The orbital behaviour of asteroids in the affected region can be
identified by studying the time dependence of these two angles. As
previously discussed, asteroids for which the critical arguments cover
the whole range of values, from 0◦ to 360◦, are on circulating orbits.
If the argument oscillates around an equilibrium point, we have a
librating orbit. Whether the argument alternates phases of libration
and circulations, or switch between different equilibrium points, we
have a switching orbit, as defined in this work. We identify the
orbital types of asteroids by performing a 100 000 yr simulation
with the Burlisch–Stoer integrator of the SWIFT package (Levison &
Duncan 1994). We use a time-step of 1 d, a tolerance (EPS) equal to
10−8, and integrated the asteroids under the influence of all planets.
None of the asteroids in our sample is a Mars-crosser or susceptible
to experience close encounters with planets, which justifies the
use of a Burlisch–Stoer integrator for this study. Fig. 2 shows the
resonant argument for three asteroids in each of the three classes.
As discussed by Gallardo et al. (2011), since the M1:2 is an external
resonance, unusual equilibrium points for the σ argument, like one at
100◦, can occur. The main equilibrium point for the σ 1 argument is
around 0◦.

Using this simulation set-up, we integrated 1000 asteroids in the
orbital region of the M1:2 mean-motion resonance. Fig. 3 shows an
(a, e) projection of these asteroids, colour coded for the behaviour
of the σ (left-hand panel), and σ 1 resonant argument. The main
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Figure 2. The resonant angles σ , as defined by equation (1) as a function of
time for asteroids on librating, switching and circulating orbits of the M1:2
resonance.

difference between the two cases is the fraction of asteroids in
pure librating states. For the case of σ , there were just 4 librators
(0.4 per cent) and 202 oscillators (20.2). For σ 1, there were 69
librators (6.9 per cent) and 185 oscillators (18.5 per cent). Pure σ

librators tend to be much rarer than pure σ 1 ones. Since in this work
we are interested in treating a multi-class problem, rather than a
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Figure 3. A proper (a, e) projection of asteroids in the region of the M1:2 resonance. The left-hand panel shows the orbital behaviour for the σ resonant
argument colour coded as follows: red full circles are librators, yellow full circles are oscillators, and black dots are circulators. The right-hand panel does the
same, but for the σ 1 resonant argument.

Figure 4. A simple architecture for an ANN. The network has three neurons
in the input layer, five in the hidden one, and two in the output layer.

binary one, from now on we will focus our study on the case of the
σ 1 resonant arguments.

3 A RT I F I C I A L N E U R A L N E T WO R K S

At the time that we carried out this study, there were 6440 numbered
and multi-opposition asteroids in the region of the M1:2 mean-
motion resonance. Analysing resonant arguments for each of the
asteroids in the region may be a very tiring and time-consuming
endeavour, if performed manually. Automatic approaches not based
on machine learning have been developed in the last years to solve
this problem (Gallardo 2014; Gallardo et al. 2016; Smirnov et al.
2018). Here, this task will be performed by using ANNs. The human
brain classifies images by converting the light received by the eye’s
retina into electrical signals that are then processed by a hierarchy of
connected neurons to identify patterns.

Artificial neuron networks mimic the neurons web in a biological
brain. Each artificial neuron can transmit a signal to other neurons.
This signal, which is usually a real number, can be processed, and the
signal coming out of each neuron is computed as a non-linear function
of the inputs. A basic architecture for ANN consists of an input and an
output layers, with the possible presence of one or more hidden layers
between them to improve the model precision. Generally speaking,
input layers will look for simpler patterns, while output layers will
search for more complex relationships. Fig. 4 shows the architecture

of a simple ANN, with three neurons in the input layer, five in the
hidden stratus, and two in the output layer. Each neuron will perform
a weighted sum, WS, given by

WS =
n∑

i=1

wiXi, (3)

where n is the number of input to process, Xi are the signals from
other neurons, and wi are the weights. ANN will optimize the values
of the weights during the learning process. On the weighted sum WS,
ANN will apply an activation function. For images classifications,
one of the most used activation function is the ‘relu’, defined as

y = max(WS, 0), (4)

which will produce as an outcome the weighted sum itself WS, if that
is a positive number, or 0, if WS has a negative value. As a next step,
the loss function must be applied to all the weights in the network
through a back-propagation algorithm. A loss function is usually
calculated by computing the differences between the predicted and
real output values. An example of a loss function is the mean squared
error, defined as

C = 1

2

n∑
j=1

(yj − yj )2, (5)

where yj is the expected value of the jth outcome. For classification
problems with multiple classes, with single classes identified by
numbers, like the problem that we will discuss in this paper,
the sparse categorical crossentropy loss function is generally used.
Interested readers can find more information on the definition and
use of this and other loss functions in the Keras documentation
(https://keras.io/; Chollet et al. 2018). Once the loss function has
been computed, the next step is to find its minimum, to optimize the
values of the weights. Optimization algorithms find the gradient of
the loss function and update the weights in the ANN based on this
result. In this work, we will use the Adam optimizer (Kingma & Ba
2015).

ANN use initial values of weights near zero. The first row of data is
provided as input and processed through the network. The prediction
of the network is compared to the real result, and the optimization of
the cost function updates the values of the weights. This procedure is
then repeated for all data, or, in some cases, for a subset, also called
batch. An epoch is completed when the training procedure is finished
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for all the observations. This whole process can then be repeated for
other epochs to improve the quality of the predictions.

Interested readers could find more information about the use
of ANN in artificial intelligence in Lecun, Bengio & Hinton
(2015), or in the recent work on the application of ANN to
the identification of asteroids belonging to asteroid families by
Vujičić et al. (2020), and references therein. In the next subsec-
tion, we will discuss applications of ANN for the classification of
images.

3.1 Applications of ANN to M1:2 resonant arguments images

Here, we used the Keras implementation of ANN, which is also based
on the Tensorflow Python software package (Chollet et al. 2018). The
process used in this work is the following:

(i) The asteroid orbits are integrated under the gravitational
influences of the planets.

(ii) We compute the resonant arguments.
(iii) Images of the time dependence of resonant arguments are

drawn.
(iv) The ANN trains on the training label image data.
(v) Predictions on the test images are obtained, and images of the

test data, with their classification are produced.

The last step of producing images for the test data, with the
proposed classification, is performed to make a visual confirmation
by the user easier. The theory behind steps (i) and (ii) was discussed
in Section 2. Here, we will focus on steps (iii), (iv), and (v).
100 × 100 pixel images of resonant arguments of the M1:2 resonance
were stored and pre-processed before applying our model in step
(iii). Each image pixel values fall in the range from 0 to 255. Before
feeding the images to our model, we normalized the pixel values to
a range between zero and one, to help the ANN to learn faster.
The choice of the image resolution was a compromise between
not exceeding the computer memory available in our machines,
while still having a resolution sufficient for the ANN to successfully
work.

To identify resonant argument images, we created a four-layer
model with a flatten, an inner, a hidden, and an output layers. The
architecture of the model is displayed in Fig. 5. The flatten layer will
transform the image matrices into arrays. The inner layer will look
for simpler patterns in the arguments images, while the hidden layer,
with half the neurons of the inner one, will search for more complex
features. The output layer, with three nodes, will perform the final
classification for the three possible classes: circulation, switching,
and librating orbits.

To quantitatively classify the outcome of ANN, it is often useful to
compute values of metrics. Some of the most commonly used metrics
for classifications problems are the accuracy, recall, and precision.
For a given class of orbits, we define True Positive (TP) as the number
of images successfully identified as belonging to that class by both the
observer and the ANN model. True Negatives (TN) are the number
of images that both methods identify as non-belonging to a given
class. False Positives (FP) are images classified as belonging to a
class just by the ANN method. Finally, False Negatives (FN) are the
images not classified to belong to a class just by the ANN approach.
Values of TP, TN, FP, and FN can be obtained by computing the
confusion matrix on the images real and predicted labels. With these
definitions, accuracy (Fawcett 2006) is given by

accuracy = TP + TN

TP + TN + FP + FN
. (6)

Figure 5. Neural network structure of the model used for classifying resonant
arguments. We used a flatten layer, an inner layer, a hidden layer, and an output
layer for final classification.

Recall, also known as Completeness in Carruba et al. (2020) is given
by

Completeness = TP

TP + FN
. (7)

Precision, also known as Purity, in Carruba et al. (2020) is defined
as

Purity = TP

TP + FP
. (8)

While accuracy can yield information on the efficiency of the
algorithm as a whole, Completeness may inform on the ability of
the method to efficiently retrieve the actual population of a given
class, while Purity is related to the ability of the model not to
include too many false positives (FP). The optimal model should
be trained to give a trade-off between values of Completeness and of
Purity. Carruba et al. (2020) recently introduced a Merit metrics that
can automatically perform this trade-off, by giving larger weight to
Purity. This new metrics is defined as

Merit = 1√
5

√
(Completeness)2 + 4 × (Purity)2. (9)

In Carruba et al. (2020), a higher weight was given to Purity with
respect to Completeness because this metric was more relevant to
that work. Different definitions of Merit can be made, depending on
the type of problem to be studied.

As discussed in Section 3, the training of ANN can be performed
for an arbitrary number of times, or epochs, to optimize the quality
of the predictions. Fig. 6 displays a plot of accuracy, as defined by
equation (6) as a function of epoch for the training of a neural network
with a training set of 1000 images and a test set of 200 images.
Values of accuracy improve as a function of time, but there may be
fluctuations from one epoch to the other, as shown in Fig. 6 for epochs
12 to 13, and 22 to 23. To avoid using non-optimal weights for the
ANN, we use a callback instruction, as implemented by Keras, during
the training to save the weights of each model, and automatically
upload for the model predictions the weights associated with the best
outcome in term of accuracy.
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Figure 6. Dependence of accuracy as a function of epoch.

As a final step, we predicted the label of each image using the best
model found with the procedures previously described. A set of 50
images with their predicted labels is shown in Fig. 7. Percentage val-
ues show the confidence level with which the model can classify the
images. For the case of this set of images, the model accurately pre-
dicted the labels of 42 images and misread 8. Five images of switch-
ing orbits were classified as circulation cases, and three circulating
orbits were labelled as switching ones. All the libration cases were
correctly identified. Values of the Merit metric for libration, switch-
ing and circulation images were 1.000, 0.755, and 0.877, respectively.

As a general rule in machine learning, the greater the size of the
training sample, the better the model performance. Classification
of images with ANN usually requires a training sample of the
order of 60 000 images (see, for instance, the example of clothes
images classification using the Fashion MNIST data set in the
Keras documentation pages Chollet et al. 2018). For the case of
the M1:2 asteroidal population, this is simply not viable, since
there are just 5700 numbered asteroids in the range of a near the
resonance (2.411 < a < 2.426 au), i.e. an order of magnitude less.
Yet, despite this fundamental limitation, our model performs quite
well. To quantitatively estimate its efficiency, we computed values
of our metrics, Completeness, Purity, and Merit, for the same set of
50 images of M1:2 resonant arguments, increasing the size of the
training set. Values of these metrics were computed for the three
different types of orbits, libration, switching, and circulation. For all
the simulations, Accuracy values were all above 0.996.

Fig. 8 displays our results. Since the results of ANN are inherently
stochastic, individual data point can change if we repeat the numerical
experiment. But the overall trends should be robust. The model Merit
improves in all cases for increasing values of the size of the training
set. The model can more easily identify images of librating asteroids,
since they are more distinguished from the other classes of orbits.
Values of Merit reach 1.00 already for a training sample of 3500
images. The lowest performance was obtained for switching orbits,
which are easier to be confused with the other two classes. However,
even for this kind of orbits, the model could achieve values of Merit
larger than 0.80, if a sample large enough (>4500 images) is used.
Overall, ANN can be used to provide a preliminary classification of
asteroids resonant arguments, with good results.

4 A P P L I C AT I O N S O F G E N E T I C A L G O R I T H M S
TO M1:2 RESONANT ARGUMENTS LABELS

The next step of our analysis would be to predict the labels of
asteroids near the M1:2 resonance based on their proper elements
distribution and the labels of an appropriate training sample. For this

purpose, we can either use a machine learning algorithm or an ANN.
As discussed in the previous section, ANN becomes competitive with
standard machine learning approaches for large sizes of the training
sample, which is not the case for our problem. A possible application
of ANN, and its limitations, will be discussed in Section 4.1. Here, we
will focus our attention on standard machine learning approaches.

Machine learning methods, either if standalone, where a single
algorithm is applied, or ensemble methods, where several algorithms
are combined, depend on several model parameters, or hyper-
parameters. For instance, Random Forest methods that use several
single Decision Trees depend on the number of trees used, which is
a hyperparameter that needs to be optimized. Identifying the optimal
machine learning method and the combination of hyperparameters
for a given problem may be a long and time-consuming process.
Here, as done in Carruba et al. (2021) for the case of asteroids near
the z1 and z2 secular resonances, we use an approach based on genetic
algorithms (Chen, Wang & Lee 2004).

Genetic algorithms use an approach based on genetic evolution.
First, several models and their related combinations of hyperpa-
rameters are created. After an iteration of the model, also called
generation, a scoring function can be used to identify the best models.
Models similar to the best ones can then be created, and the process
can be repeated until some conditions are satisfied. Interested readers
can found more details on this procedure in (Chen et al. 2004) and
(Carruba et al. 2021). As in the last paper, we used the Tpot Python
library (Trang, Weixuan & Jason 2019; Olson et al. 2016) with five
generations, a population size (the number of models to keep after
each generation) of 20, and a cross-validation cv equal to 5. We
also used three values of the random state: 42, 99, and 122, which
correspond to three different models: XGBoost, GBoost, and Random
Forest. The specifications of the best among these models will be
discussed later on in this section.

To test these models, we divided our sample of 5700 labelled
asteroids into three parts: a training set of 200 asteroids, a test set
of 200 bodies, and a pooling sample with the rest of the labelled
objects. The size of the test sample is large enough for the results to
be statistically significant (3.51 per cent of the available data), but
small enough to leave space for enough data in the initial training
and pooling sample. A random asteroid is selected in the pooling
sample, added to the training set, and the model is fitted to the test
sample. Values of the metrics are computed, and the procedure is
then repeated until there are no more objects in the pooling sample.
Fig. 9 displays the values of Completeness, Purity, and Merit for
the switching orbits class, the type of orbits that previous analysis
showed to be the most difficult to predict, obtained by the best model
among the tested ones, the Random Forest algorithm. This model
and its hyperparameters are discussed in the Appendix.

The Random Forest reaches a plateau in values of Completeness,
Purity, and Merit for a training size of � 3000. We will use this
model to predict the labels of unlabelled asteroids in Section 5.

4.1 Applications of ANN

ANN can also be applied to predict the labels of near resonance
asteroids. However, as previously discussed the training sample
available for this problem is too small for this method to be used
advantageously. We created a three-layered Keras model with an
inner layer of 200 neurons, one each for the asteroids in the test
sample, a hidden layer of 100 neurons, i.e. 50 per cent of the number
of neurons in the inner layer, as it is usually recommended, and an
outer layer of three neurons, one for each orbital-class. We choose to
work with a training sample of 5500 asteroids and a test sample of
200, to have a large training sample, with 96.5 per cent of the available
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Figure 7. A set of 50 images with the prediction from the ANN model. The percentage values identify the confidence level with which the model classifies the
images.

data. Other choices for size of the test sample are, of course, possible.
We expect, however, that the model results should be inferior for
smaller sizes of the training sample. We run this model over 100
epochs with a callback instruction, to identify the labels of the same
test sample used in Section 4. The model was not able to identify
librating asteroids, and values of Completeness, Purity, and Merit
for circulating and switching orbits were consistently below what
predicted using genetic algorithms. Given these considerations, we
will not use ANN to predict labels of unlabelled asteroids hereafter.

5 ID E N T I F I C AT I O N O F R E S O NA N T G RO U P S

Having identified the best performing supervised learning algorithm
in Section 4, here we use this method to predict the labels of 740

multi-opposition asteroids, obtained from the AFP, using the 5700
asteroids that we previously classified as a training set. Fig. 10
displays a proper (a, e) projection of 6440 asteroids for which we
obtained labels, using the same colour code as in Fig. 3. The predicted
labels are very consistent with those obtained in the preliminary
analysis, which confirms the validity of our method.

As a final check, we searched for possible dynamical clusters in the
populations of M1:2 asteroids on librating and switching orbits, to
see if our results are consistent with those in the literature. Gallardo
et al. (2011) found that the three asteroids families most affected by
the M1:2 mean-motion resonance were those of Nysa, Massalia, and
Vesta. Here, following the approach of Carruba et al. (2021), we use
learning Hierarchical Clustering Method (HCM), as implemented in
Carruba, Aljbaae & Lucchini (2019), on a domain of proper elements
for the group of M1:2 asteroids above described. The procedure
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Figure 8. Values of Completeness, Purity, and Merit for a set of 50 images of M1:2 resonant arguments for asteroids on librating, switching, and circulating
orbits. The labels in each of the nine panels identify the metric value for each figure.

Figure 9. Values of Completeness, Purity, and Merit for test labelled
asteroids on switching orbits as a function of the training sample size, obtained
with the Random Forest algorithm.
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Figure 10. A proper (a, e) projection of asteroids in the region of the M1:2
resonance. The colour code of predicted and confirmed asteroids in the region
is the same as that of Fig. 3.

used to implement this method was the same as that applied in
Carruba et al. (2021): a critical distance cut-off 1

2 d0 was obtained,
and groups were identified for values of d0 ± 5 m s−1. We then
verified if members of groups identified in this domain were listed
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Table 1. The table reports the dynamical groups with at least 10 members among the librating and
switching M1:2 population, listed from the most to the least numerous, identified with the hierarchical
clustering algorithm, at three values of the distance cut-off: (1) 22.75, (2) 27.75, and (3) 32.75 m s−1.
The fourth column reports how many of the asteroids belong to a known asteroid family.

Family Number of Number of Number of Family members
Id. members (1) members (2) members (3) with known fam. ID.

19205 (1992 PT) 8 50 84 Massalia: 28, Nysa:3
42462 (5278 T-3) 13 19 25 Massalia: 13, Nysa:1
120135 (2003 GF7) 10 17 28 Nysa: 2
95459 (2002 CF307) 8 14 18 Vesta: 2
44931 (1999 VD39) 7 10 10 Nysa: 4
73066 (2002 FV15) 8 10 40 Massalia: 8
10516 Sakurajima 6 10 15 Nysa: 5, Massalia:1

as members of a family by Milani et al. (2014) and Nesvorný, Brož
& Carruba (2015). Please note that Milani et al. (2014) reports the
Nysa family as Hertha. Our results are summarized in Table 1. We
selected groups that have at least 10 members at the critical distance
cut-off value, 5 members at the lowest distance cut-off of d0 −
5 = 22.75 m s−1, and were still identifiable at the highest distance
cut-off of d0 − 5 = 32.75 m s−1. Interested readers could find more
details on the procedures used in Carruba et al. (2019, 2021).

Our analysis produced seven possible groups, all associated with
the Massalia, Nysa, and Vesta families, so confirming the analysis of
Gallardo et al. (2011).

6 C O N C L U S I O N S

The main result of this work is the use of ANN for identifying the
behaviour of M1:2 resonant arguments images. It is the first time,
to our knowledge, that ANNs have been used for such purpose in
the field of asteroid dynamics. The use of this model allowed us
to classify the orbital type of all numbered asteroids in the orbital
region affected by this resonance, which has also been independently
confirmed by a visual analysis by all authors.

The labels for the population of numbered asteroids near the M1:2
mean-motion resonances were also used to predict the orbital status
of multi-opposition asteroids. Using genetic algorithms, we identify
the best performing supervised learning method for our data that we
used to obtain labels for asteroids, without the need to perform a
numerical simulation and an analysis of resonant angles.

The identification of clusters in the population of asteroids in
librating and switching orbits suggested that three asteroid families,
those of Massalia, Nysa, and Vesta, are the most dynamically affected
by this resonance, so confirming the analysis of previous authors
(Gallardo et al. 2011).

The methods developed in this work could be easily used for other
cases of asteroids affected by mean-motion resonance, like the ones
studied by Smirnov & Markov (2017). We consider these models as
the main result of this work.

AVA I L A B I L I T Y O F DATA A N D M AT E R I A L

All image data on numbered asteroids near the M1:2 resonance is
available at: https://drive.google.com/file/d/1RsDoMh8iMwZhD-f
nkYSs9hiWmg96SZf0/view?usp=sharing.

CODE AVAILABILITY

The code used for the numerical simulations are part of
the swiftpackage, and are publicly available at https://www.bo

ulder.swri.edu/hal/swift.html (Levison & Duncan 1994). Deep
learning codes were written in the PYTHON programming lan-
guage and are available at the GitHub software repository, at
this link: https://github.com/valeriocarruba/ANN Classification o
f M12 resonant argument images. Any other code described in this
paper can be obtained from the first author upon reasonable request.
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A P P E N D I X : G E N E T I C A L G O R I T H M S
O U T C O M E

The best performing model provided by genetic algorithm was the
Random Forest algorithm. As described in Carruba et al. (2021),
this algorithm is an ensemble method that uses several standalone
decision trees. The training data can be divided into multiple samples,

the bootstrap samples, that can be used to train an independent
classifier. The outcome of the method is based on a majority vote of
each decision tree. Important parameters of this model, as described
in Swamynathan (2017), are as follows:

(i) Bootstrap: Whether the algorithm is using bootstrap samples
(True) or not (False).

(ii) Criterion: The function to measure the quality of a split. The
supported criteria are ‘gini’ for the Gini impurity and ‘entropy’ for
the information gain.

(iii) max features: The random subset of features to use for each
splitting node.

(iv) min samples leaf: The minimum number of samples required
to be at a leaf node.

(v) min samples split: The minimum number of data points placed
in a node before the node is split.

(vi) Number of estimators: The number of decision trees algo-
rithms.

Our model used Bootstrap = True, a gini Criterion, max features
= 1.0, min samples leaf = 12, min samples split = 18, and 100
estimators.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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