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Abstract: Remote sensing techniques offer useful tools for estimating forest biomass to large extent,
thereby contributing to the monitoring of land use and landcover dynamics and the effectiveness
of environmental policies. The main goal of this study was to investigate the potential use of
discrete return light detection and ranging (lidar) data to produce accurate aboveground biomass
(AGB) maps of mangrove forests. AGB was estimated in 34 small plots scatted over a 50 km2

mangrove forest in Rio de Janeiro, Brazil. Plot AGB was computed using either species-specific or
non-species-specific allometric models. A total of 26 descriptive lidar metrics were extracted from
the normalized height of the lidar point cloud data, and various model forms (random forest and
partial least squares regression with backward selection of predictors (Auto-PLS)) were tested to
predict the recorded AGB. The models developed using species-specific allometric models were
distinctly more accurate (R2(calibration) = 0.89, R2(validation) = 0.80, root-mean-square error (RMSE,
calibration) = 11.20 t·ha−1, and RMSE(validation) = 14.80 t·ha−1). The use of non-species-specific
allometric models yielded large errors on a landscape scale (+14% or −18% bias depending on
the allometry considered), indicating that using poor quality training data not only results in low
precision but inaccuracy at all scales. It was concluded that under suitable sampling pattern and
provided that accurate field data are used, discrete return lidar can accurately estimate and map
the AGB in mangrove forests. Conversely this study underlines the potential bias affecting the
estimates of AGB in other forested landscapes where only non-species-specific allometric equations
are available.
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1. Introduction

Forests play a crucial role in the global carbon cycle (C), capturing CO2 from the atmosphere and
storing large quantities of organic matter. Forest carbon reservoirs include aboveground biomass (AGB)
and below-ground biomass (BGB), both living and dead [1–3]. Susceptible to changes through natural
processes and human impacts, biomass monitoring can provide an indication of the sequestration,
storage, and/or emission of carbon in the atmosphere [4,5]. Tropical forests’ C stocks were estimated
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to be ~471 ± 93 PgC—that is 55% of the total C of the world’s forests [6]. This estimation included C in
live biomass (above and below ground), soil carbon, deadwood, and litter.

Mangroves are a typical coastal ecosystem occurring at the interface of land and sea in tropical
and subtropical regions; they are also highly productive and present complex physiological and
growth processes [7,8]. Mangrove communities and processes can be influenced by salinity, insolation,
nutrients, fresh water, flooding, soil anoxia, and tidal action. Mangrove forests store more carbon
than other ecosystems on an area-specific basis, with a mean carbon stock estimate of 956 t·C·.ha−1

compared with 241 t·C·ha−1 for rainforests [1,9]. Soil stocks are typically much larger than in most
other forests and are estimated to account for 49–98% of the total carbon storage [1]. Deforestation and
aquaculture are major threats to mangrove forests [10]. Mangrove areas are declining and are today
one of the most threatened environments on Earth [11]. All human threats on mangroves can impact
the mangrove carbon cycle.

Aboveground biomass, defined as all living biomass above the ground, including stem, stump,
branches, bark, seeds, and foliage [2], is used to estimate terrestrial carbon pools and carbon
sequestration from the atmosphere [4,5]. Plot AGB estimates are derived from individual tree
measurements and allometric equations derivation and extrapolated on a larger scale based on remote
sensing techniques, such as optical imagery [12], synthetic aperture radar (SAR) [13], or light detection
and ranging (lidar) surveys [14–16]. Lidar is an active system that has been used to estimate and map
forest structure, aboveground biomass, and forest carbon [15,17–24]. When developing a spatially
explicit model of biomass to be applied on a landscape scale, there are many sources of errors to
consider. The first and possibly foremost source of uncertainty stems from the limited accuracy of
the field-based estimates of AGB [25]. This is notably due to the lack of species-specific allometric
equations for the vast majority of species found in natural tropical forests. However, mangrove forests,
which have many fewer species compared to other tropical forests, provide an interesting opportunity
to explore the uncertainty accruing with the use of biome-specific rather than species-specific allometric
scaling equations. Many other sources of uncertainty can be listed. Spatial and temporal inconsistency
between lidar and field observations may stem from inaccuracies in global positioning system (GPS)
records, temporal discrepancy between different data acquisitions, disagreement between lidar and
field plots edge measurements, and calibration plots that include or exclude parts of the trees [19,26].
Furthermore, errors in biomass models can be influenced by plot sizes [26,27], forest types, and sensor
types [22]. However, the use of lidar systems for estimating forest aboveground biomass tends to
show better results than the use of optical or SAR data [22]; although, optical and SAR data provide
a greater coverage area as an advantage. Due to the numerous sources of errors that may affect the
modeling process, the evaluation of a model’s uncertainty at various spatial scales is an inherent part
of model development [19,26–28]. In particular, the estimation of the uncertainty of predictions made
over large areas from sample plots can be derived from classical sampling theory and the use of the
general regression estimator, with lidar metrics serving as auxiliary variables [29].

Lidar has already proven its ability to map AGB and to extract biophysical parameters in many
forest types, such as deciduous [24,30], coniferous [31,32], and tropical forests [17,20,33]. In the specific
case of mangrove forests, lidar has previously been used for mapping the extension of the mangrove,
detecting gaps [34], and estimating and mapping structural parameters and AGB from the integration
of lidar and other remote sensing data [15,35–38]. Lidar has been also used to detect individual
mangrove trees and estimate their structure [39–41]. One of the advantages of using airborne lidar
data is the possibility of extracting surface and terrain models and, consequently, obtaining the canopy
height model in a given forest area. Hence, it is possible to obtain a three-dimensional estimate of
the forest structure. The use of lidar and interferometric synthetic aperture radar (InSAR) derived
Shuttle Radar Topography Mission (SRTM) data for biomass estimation in large mangrove areas has
also been reported [15,37,42,43]. Ice, Cloud, and Land Elevation Satellite/Geoscience Laser Altimeter
System (ICEsat/GLAS) data were used to calibrate the SRTM elevation data and to produce a map
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of the mangrove canopy height [15]. These spaceborne sensors cover a considerable geographic area,
providing publicly available data, but at the cost of reduced accuracy of height and biomass estimates.

Given airborne lidar scanning accuracy, precision, and capacity of repeated acquisitions, it seems
particularly well-adapted for characterizing mangrove AGB over large areas. However, some
particularities of mangrove ecosystems make them specifically challenging. First, mangroves are
periodically flooded, and because conventional lidar does not penetrate water, obtaining a correct
digital terrain model can be a problem. The obvious strategy is to collect lidar data during low tide,
but this can become a strong constraint in cases where large areas must be surveyed. In the present
case, a flight duration of less than two hours and a carefully chosen flight time helped circumvent the
problem. Another specificity of the mangrove ecosystem relates to the vegetation structure. The prop
roots of the mangrove forest may account for 15–17% of the AGB in mature stands [44]. Because the
aerial prop roots are submerged in water for several hours or on a permanent basis, they have been in
some cases included in the below-ground biomass category [44] or more commonly included in the
aboveground category [45]. This lack of standard procedure affects the consistency between studies.
Discounting aerial roots from AGB also creates a discrepancy between the vegetation probed by lidar at
low tide and the vegetation contributing to the AGB measured in the field. The estimation of mangrove
biomass using lidar data has so far been restricted to a handful of studies [36,37,42,46,47], most of
which used satellite lidar only with the notable exception of the study by Fatoyinbo et al. [48]. In the
latter study, a coarse lidar metric (highest point per 10 × 10 m grid cell) was used as the sole predictor
in the AGB model. The choice of a simple height metric was made in order to allow for metrics from
current spaceborne sensors and digital elevation modeling techniques, to be used rather than relatively
costlier aerial lidar.

The demonstration of the capacity of aerial lidar scanning to deliver accurate, high-resolution
biomass maps over tens of square kilometers in a mangrove forest still remains to be made. The present
work investigates the potential of lidar point cloud data to map the aboveground biomass of a
mangrove forest with different degrees of disturbance. Our specific research objectives are: to compare
different regression methods (partial least squares regression with backward selection of predictors
(Auto-PLS) and random forest) for modeling AGB with lidar; to examine how sampling characteristics
affect the process of upscaling from plot estimates to landscape estimates of AGB; and to assess the
loss of accuracy entailed when using models relying on non-species-specific allometric equations on
local and landscape scales.

2. Materials and Methods

The main steps of the global workflow to produce the AGB map were the following: (i) individual
tree AGB was estimated from field measurements, and the values were added for each plot; (ii) lidar
metrics were extracted from the cloud of height-normalized points; (iii) the predictive models of
plot AGB were adjusted and compared for their performance; (iv) the biomass map was generated
based on the best predictive model; and (v) uncertainty of pixel-level and landscape-level predictions
was analyzed.

2.1. Study Area

The study area is located in the region of Guanabara Bay, Rio de Janeiro State, Brazil (Figure 1)
and represents the last conserved remnant of mangrove forests in a landscape subjected to strong
anthropogenic pressure. The climate is hot and humid tropical Atlantic or Aw, according to the Köppen
classification, with the rainy season in the austral summer and a drier winter. The region has a mean,
minimum, and maximum annual rainfall of 1709 mm, 1155 mm, and 2396 mm, respectively, and a
mean annual temperature of 23 ◦C [49]. The driest month is June with rainfall of 109 mm, and the most
humid month is December with a rainfall of 249 mm [50]. Tidal amplitude is less than 2 m (microtidal).

The mangrove forests of the Guanabara Bay (GB) region show a high structural diversity
as a result of direct and indirect human action, presenting different degrees of disturbance and
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regeneration stages [51]. The mangrove system studied in this work is located in two protected areas:
the Guapimirim Environmental Protection Area (APA Guapimirim) and the Guanabara Ecological
Station (ESEC Guanabara). The mangrove forests that belong to these two protected areas show a
higher structural development (mean height, live basal area, and mean diameter at breast height)
than those in the adjacent regions of the protected areas [52]. Three typical mangrove tree species are
found in the region—Avicennia schaueriana Stapf. & Leechman: Acanthacea, Laguncularia racemosa (L.)
C.F. Gaertn.: Combretaceae, and Rhizophora mangle L.: Rhizophoraceae—as well as associated species, such
as Acrostichum aureum L.: Pteridaceae (a fern) and Hibiscus pernambucensis Arruda: Malvaceae (a shrub).
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Figure 1. Study area located in (a) Brazil; (b) Rio de Janeiro State (the black box indicates the location
of the Guanabara Bay); (c) the Northeast region of the Guanabara Bay showing the Guapimirim
Environmental Protection Area (APA Guapimirim) and the Guanabara Ecological Station (ESEC
Guanabara) with the locations of the 34 ground plots in yellow (WorldView2 image (band 5 in red,
band 6 in green, and band 3 in blue) of 01 October 2012 -EPSG Projection: 32723).

2.2. Ground Data

Vegetation structure information was obtained from 34 plots scattered across the mangrove area
inside the APA Guapimirim and ESEC Guanabara, labeled C01, C02, ..., C34 (Figure 1). The plots are
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distributed along four main rivers (Guapimirim, Guaraí, Caceribu, and Guaxindiba). Their locations
were chosen so as to cover a wide range of vegetation biomass but to exclude areas dominated by
associated (non-mangrove) species. The size of each plot was adjusted to the structural characteristics
of each mangrove stand. Plot sizes varied between 121 and 560 m2, depending on the density
of individuals and their homogeneity in terms of structural features and species composition.
The following tree measures were obtained during field surveys in 2010–2011, according to the methods
proposed by [45,53] and described in [54,55]: (i) individual tree height; (ii) stem diameter at breast
height (DBH); (iii) identification of the plant at the species level; (iv) living status of the stems (alive or
dead). DBH of all stems >1 m tall were obtained using a measuring tape. The measurement of total
tree height from the base of the tree to the top of the canopy was obtained with an optical rangefinder
or a measuring pole. Mangrove biomass in the study area was calculated using two approaches:
(a) using species and local-specific allometric equations (referred to as “species-specific” throughout
the text) developed for Rio de Janeiro mangrove forests [45,54], and (b) using pantropical mangrove
equations provided by Komiyama et al. [44] and Chave et al. [56] (Table 1). Note that for all the
equations in Table 1, we used the species-specific wood density value from [45,54] (i.e, A. schaueriana =
0.6751 g·cm−3, L. racemosa = 0.5292 g·cm−3, and R. mangle = 0.6868 g·cm−3). We added the AGB of all
trees to derive the total AGB at the plot level. Live trees and standing dead trees were included in the
AGB estimation.

Table 1. Mangrove aboveground biomass (AGB) equations, using diameter at breast height (DBH) and
wood density (WD).

Equations

Species-Specific-AGB for Live Tree
A. schaueriana Ln (AGB total) = 4.8017 + 2.5282 × Ln (DBH) Estrada et al. (2014) [54]

L. racemosa Ln (AGB total) = 5.2394 + 2.2792 × Ln (DBH) Soares et al. (2005) [45]
R. mangle Ln (AGB total) = 5.2985 + 2.4810 × Ln (DBH) Soares et al. (2005) [45]

Species-Specific-AGB for Dead Tree
A. schaueriana Ln (AGB total) = 4.4117 + 2.5578 × Ln (DBH) Estrada et al. (2014) [54]

L. racemosa Ln (AGB total) = 4.9308 + 2.2951 × Ln (DBH) Soares et al. (2005) [45]
R. mangle Ln (AGB total) = 4.9851 + 2.5142 × Ln (DBH) Soares et al. (2005) [45]

Pantropical-AGB Total
AGB pantropical AGB total = 251 ×WD × (DBH 2.46) Komiyama et al. (2008) [44]
AGB pantropical AGB total = 167.6 ×WD × (DBH 2.47) Chave et al. (2005) [56]

2.3. Geolocation

The geographical coordinates of the corners of each plot were registered using a GPS Receptor
Sokkia model Stratus L1, in a static relative mode [57]. In this method of survey, two GPS Receptors
are used, and the coordinates of the points of interest are determined in relation to a referential point
with precisely known coordinates, achieving a mean precision of approximately RMS = 0.08 m of the
final positioning.

2.4. Lidar Data

Lidar data were acquired with an airborne Riegl LMSQ 560 laser scanner and pre-processed by
Hansa Geophysics and Aerial Survey. The lidar point cloud covered the entire APA Guapimirim and
ESEC Guanabara. The main specifications of the lidar data used in this work are shown in Table 2.
The lidar point cloud (in LAS format) was filtered and classified by the data provider into three main
classes: (i) ground, (ii) vegetation, and (iii) noise.
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Table 2. Light detection and ranging (Lidar) data main specifications.

Products Main Specifications

Laser Riegl LMS Q560
Lidar point cloud LAS format

Total surveyed area 90 km2

Geodesic reference system WGS84
Projection system Universal Transverse Mercator (UTM)

Point density 5 pulse m−2 (6 points m−2)
Altimetry precision 15 cm

Planimetric accuracy 50 cm
Swath angle 60◦ (±30◦)

Day and time of data acquisition
Coordinated universal time (UTC)

12 November 2012-17:20–19:02 UTC
12 December 2012-15:29–18:10 UTC

Tide height (tide gauge in GB) 12 November 2012-17:20 UTC~0.86 m, 19:02 UTC~0.34 m
12 December 2012-15:29 UTC~0.89 m, 13:53 h~1.1 m, 18:10 UTC~0.9 m

2.5. Lidar Processing

Lidar data were processed using the software package LAStools 2.1 (http://www.lastools.org/).
The main processing steps are summarized as follows: (i) extraction of normalized point cloud height
(also referred as height above ground) and (ii) derivation of lidar metrics of each corresponding plot.
In the present work, the normalized point cloud heights were derived for the whole study area from
the classified pre-processed data set, using the ground data as the bottom reference.

According to previous studies [22,26,58–60], one source of error that may influence the relationship
between the lidar- and the field-estimated AGB at different spatial resolutions is the disagreement
between the lidar and field plot measurements over which trees or parts of trees are inside the
calibration plots. In the lidar measurements, tree crowns are bisected exactly at the plot edge, while in
the field plot measurements, an individual is included in the plot if its basal area contributes to the
basal area of the plot; in other words, if the DBH trunk point of measure is inside the plot. In our
work, for each plot area, two polygons were considered. One was the original polygon area of each
plot, and the other included a 5-m buffer extension around the edges of the original plot perimeter.
Adding a buffer around the ground plots increases the total area of the lidar data, hopefully capturing
more of the plot-based data by systematically including tree crowns located at the edge of some plots.
While the area of the 34 original plots ranged from 121 to 560 m2 (mean = 270 m2), the area of the
extended plots ranged from 361 to 1053 m2 (mean = 614 m2) after adding the 5-m buffer.

The widely used area-based lidar metrics for biomass estimation are height metrics [61]. Height
metrics are usually calculated from vegetation returns, which are typically defined as returns with
a certain height, such as 0.5 m [62] above the ground surface, thus excluding the contribution of
the understory.

Based on canopy height, the following lidar metrics (Table 3) were calculated for the point clouds
(with or without the buffer) corresponding to each plot: height percentiles (01, 05, 10, 25, 50, 75, 90,
95, 99 percentile, denoted as P01, P05, . . . , P99, respectively); average (avg), minimum (min) and
maximum (max) height; several statistics describing the height distribution, such as coefficient of
skewness (ske), standard deviation (std), and coefficient of kurtosis (kur); quadratic mean height (qav);
density gap (dns-gap), defined as the number of points below the cover cutoff (50 cm) divided by the
number of all returns; and density metrics (relative height density calculated by dividing counts per
the total number of points and scaling to a percentage) of d00 (0.5–2 m), d01 (2–4 m), d02 (4–6 m),
d03 (6–8 m), d04 (8–10 m), d05 (10–12 m), d06 (12–14 m), d07 (14–16 m), and d08 (16–18 m). The same
metrics were calculated on a landscape level for the entire mangrove study area on a 25 m × 25 m
cell grid.

http://www.lastools.org/
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Table 3. Lidar metrics calculated from point clouds and used on predictive models.

Lidar Metrics Lidar Metrics

Avg Mean height std Standard deviation
d00 Density points of 0.5–2 m min Minimum height
d01 Density points of 2–4 m p01 Height percentile of 1%
d02 Density points of 4–6 m p05 Height percentile of 5%
d03 Density points of 6–8 m p10 Height percentile of 10%
d04 Density points of 8–10 m p25 Height percentile of 25%
d05 Density points of 10–12 m p50 Height percentile of 50%
d06 Density points of 12–14 m p75 Height percentile of 75%
d07 Density points of 14–16 m p90 Height percentile of 90%
d08 Density points of 16–18 m p95 Height percentile of 95%

dns_gap Density gap p99 Height percentile of 99%
kur Kurtosis qav Quadratic mean
max Maximum height ske Skewness

2.6. Biomass Models: Predicting Biomass on a Plot Level from Lidar Statistics

Different models were tested to predict biomass on a plot level from the lidar statistics (see Table 4):
(i) random forest regression (RF) [63] (randomForest Package version 4.6–12 [64] of R software
version 3.4.0 [65]), and (ii) partial least squares (PLS) regression with backward selection of predictors
(Auto-PLS) [66] (autopls Package version 1.3 [66] of R software version 3.4.0 [65]). RF is a classifier and
a regression method based on the generation of a large number of tree-structured classifiers. The RF
method is a robust and nonlinear multiple regression formed by growing trees and is a non-parametric
statistical method that optimizes predictive accuracy by fitting an ensemble of trees to stabilize model
estimates [63]. The analyses of RF results are based on mean square errors (MSE), calculated as the
sum of squared residuals divided by number of observation. The importance of the predictor variable
for RF can be estimated by a “variable of importance” measurement, calculated by the mean decrease
in accuracy, which is based on MSE, and the mean decrease in node impurity, calculated by the
residual sum of squares [63]. The RF method uses out-of-bag estimates to monitor error, strength,
and correlation. The out-of-bag estimates are based on combining one-third of a training set that
removes the need for a separate test set. The out-of-bag estimates can be computed in the same run
that constructs the bagged predictor. The result can be compared to cross-validating bagged predictors,
and these estimates are close to optimal. The PLS regression is particularly suited for cases when the
matrix of predictors has more variables than observations and when there is multicollinearity among
predictor values. PLS is a method for relating two data matrices, X and Y, in a multivariate model,
but decomposing X and Y into orthogonal scores, finding a new x variable and y variable, which are
estimates of the latent variables or their rotations [67,68]. In the PLS method, cross-validation is used
to estimate the optimal rank, analyzing the minimum predicted residual sum of squares. Auto-PLS is
a wrapper for PLS [63], which incorporates backward variable selection into standard PLS regression.
Leave-one-out cross-validation (LOO) was performed for the Auto-PLS methods.

In each case, the predicted model was tested with the lidar metrics derived from the original
polygon of each plot (without buffer, named Model 1sp) for species-specific AGB estimate, and the
extended polygons (with the 5-m buffer) for all types of AGB estimates: species-specific AGB
estimate [45,54] (Model 2sp), Komiyama et al. [44] (Model 3K), and Chave et al. [56] (Model 4C).
The accuracy of the different models was evaluated in terms of root-mean-square error (RMSE) and
coefficient of determination between prediction and observation (R2). Both quantities are reported,
for the calibration (CAL) set (Auto-PLS), as well as for the validation set (all models). Validation
statistics (R2_val and RMSE_val) use the LOO cross-validation procedure for Auto-PLS and the
bootstrapped out-of-bag error for RF. In addition, the observed (Y-axis) versus predicted (X-axis) AGB
regression line was plotted, and its departure from the 1:1 line was taken as an indicator of model
bias [69].



Remote Sens. 2018, 10, 637 8 of 21

Table 4. Designation of the regression models tested for predicting biomass on a plot level from the
lidar statistics. Model 1 species-specific (M1sp), Model 2 species-specific (M2sp), Model 3 pantropical_K
(M3K), and Model 4 pantropical_C (M4C) using 34 plots for (a) Auto-PLS, (b) and random forest (RF).

Model Auto-PLS (a) RF (b)

M1sp
species-specific

34 plots
(without buffer) M1sp.autopls M1sp.rf

M2sp
species-specific

34 plots
with 5 m buffer

(extended polygons)
M2sp.autopls M2sp.rf

M3K
pantropical_K M3K.autopls M3K.rf

M4C
pantropical_C M4C.autopls M4C.rf

2.7. Mapping Biomass on a Landscape Level from Lidar Statistics

The biomass mangrove map of APA Guapimirim and ESEC Guanabara was obtained through
the application of the best predictive model using only the lidar metrics calculated for the landscape
level in a 25 m × 25 m cell grid. The polygon and delineation of the mangrove area over which the
model was applied was taken from Arasato et al. [70]. In their study [70], spectral information (from
a high-resolution WorldView2 image) and lidar data were combined to map land use, landcover,
and mangrove types in APA Guapimirim and ESEC Guanabara on a landscape level. The authors used
an object-based image analysis (OBIA) approach using spectral, geometric, and textural attributes
derived from lidar and optical imagery data. In addition, they visited 150 geo-located points of
mangrove to help with the visual interpretation and the validation of the maps. Based on their
mangrove-type map, we excluded non-mangrove areas (water bodies, open areas, and large areas of
non-mangrove vegetation) from the final biomass mangrove map.

2.8. Sample Plot Coverage Assessment

We evaluated how well the 34 sample plots captured the mangrove structural variability in the
study area using a principal component analysis (PCA) approach, similar to [71,72]. We performed
PCA on the lidar statistical metrics dataset for the whole mangrove study area as a dimension reduction
method by finding the principal components of the input data. The lidar metric values were used
to predict the field plot coordinates that were overlaid on the space plane of principal component
1 (PC1) and principle component 2 (PC2). The result is the field plot distribution on a space plane of
PC1 versus PC2, obtained with a set of lidar statistical metrics for mangrove forest area. This type of
analysis can be helpful in identifying pixels in the predictor space that are poorly represented in the
training set and consequently, may be poorly predicted by the model.

2.9. Evaluating Uncertainty on the Landscape Level

A “design-based model assisted” inference framework was used to estimate the uncertainty of the
biomass on the landscape level [29]. The lidar data serve as auxiliary variables via the best regression
model trained on the sample plots. The standard general regression estimator (GREG) of biomass
and its variance are then used to build a population (landscape) level estimate of biomass and its
uncertainty [73].

The general regression estimators of population (landscape) biomass mean and its variance are
given by Equations (1) and (2) [29].

B̂ =
N

∑
k = 1

ŷk +
N
n ∑

kεS
yk − ŷk (1)
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V̂
(

B̂
)
= N2

(
1
n
− 1

N

)
∑
k∈S

(yk − ŷk)
2

n− 1
(2)

where N is the population size (N = 84,752, the number of 25 m× 25 m pixels grid), and n is the number

of sampling units in sampling set S (either 34 or 17). ∑k∈S
(yk−ŷk)

2

n−1 is the estimated error of prediction at
plot scale (MSE of LOO or two-fold cross-validation). GREG estimates of landscape-level mean and
variance were computed for the AGB predictions from regression models M2sp, M3K, and M4C.

We also analyzed the prediction discrepancy between models per area dominated by each
mangrove species in the APA Guapimirim and ESEC Guanabara. The mangrove species mask for that
analysis was obtained from [70]. We report the difference in the prediction of AGB maps obtained with
pantropical (M3K and M4C) and the AGB map obtained with M2sp.

In addition to the standard procedure outlined above, an alternative resampling approach was
used to estimate the uncertainty of the predictions on a landscape scale. The 34 sampling plots were
randomly divided in two subsets with each one covering most of the range of field-estimated AGB
by stratified random sampling. Plots were first ordered by increasing values of AGB. They were
then split into 17 strata of two consecutive observations. One out of two observations per stratum
was then randomly allocated either to sample 1 or sample 2, thus creating two subsets of sample
plots of equal size and balanced with regard to AGB. For each random draw, each one of the two
subsets of field plots was used to predict landscape-scale biomass (i.e., fitting the prediction model
and applying the model on a landscape level). The difference in average AGB per hectare at landscape
level, predicted by the paired models, was recorded. The entire process (random splitting, model
adjustment, and recording of the difference in landscape-level prediction) was repeated 100 times.
The distribution of the mean square difference between the paired predictions reflects the uncertainty
of prediction on a landscape level.

3. Results

The mean AGB value of all 34 field plots using species-specific equations was 125.71 t·ha−1,
ranging from a minimum of 43.56 t·ha−1 to a maximum of 186.10 t·ha−1 (Figure 2a). The median value
was 121.92 t·ha−1, and the first and third quantiles were 99.71 t·ha−1 and 150.29 t·ha−1, respectively.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 22 
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Figure 2. Histogram of aboveground biomass (ABG, t·ha−1) for: (a) species-specific equations
(AGB_ssp) and the pantropical equation of Komiyama et al. [44]; (b) (AGB_K) and Chave et al. [56];
(c) (AGB_C) of 34 field plots scattered across the mangrove area inside the APA Guapimirim and
ESEC Guanabara.
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The AGB estimates obtained with pantropical allometries (Chave et al. [56] and Komiyama et al. [44])
essentially differ from one another by a scaling factor (Table 1). However, the plot AGB predictions of both
models differ markedly from the predictions obtained using species-specific allometries (see Figure 3).
Figure 4 shows the correlation between structural parameters, AGB species-specific metrics, and lidar
metrics for 34 plots. Figure 5 shows the lidar point cloud for three mangrove field plots with contrasting
AGB values: plot 25 that presents the lower AGB_ssp value with 45.65 t·ha−1, plot 09 with AGB_ssp
value of 126.37 t·ha−1, and plot 20 the highest AGB_ssp with 186.10 t·ha−1.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 22 
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over the mangrove area inside the APA Guapimirim and ESEC Guanabara. The AGB used is computed
using species-specific allometric equations.
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Figure 5. Lidar Cloud point data for (a) Plot 25 (field AGB_ssp: 45.56 t·ha−1); (b) Plot 09 (field AGB_ssp:
126.37 t·ha−1); and (c) Plot 20 (field AGB_ssp: 186.10 t·ha−1).

The results show that for all the regression models tested for predicting biomass, the best
models (considered here with the highest R2 and the lowest RMSE) were obtained using the AGB of
species-specific equations, such as Model 1sp and Model 2sp. Model 3K and Model 4C were generated
with AGB calculated using pantropical equations and presented much lower accuracy (see Table 5)
with roughly doubled RMSE and halved R2.

The inclusion of the 5-m buffer around the polygons of the field plots improved model
performance (see Table 5). The best model (highest R2 and lowest RMSE) was the M2sp.autopls
(Auto-PLS with extended polygons) with a R2(LOO) of 0.803, R2(CAL) of 0.89, RMSE(LOO) of
14.8 t·ha−1, and RMSE(CAL) of 11.5 t·ha−1. The plot of the 1:1 line in Figure 6 indicates that model
M2sp.autopls has the lowest bias. The M2sp.rf model (RF with extended polygons) was relatively
less successful with a R2 = 0.71 and an out-of-bag error of 17.8 t·ha−1. The eight variables included
in the best performing M2sp.autopls model were as follows: avg, min, max, d02, d03, d04, d05,
and d08. Figure 4 shows the correlation of these variables. The ground AGB values were most strongly
positively correlated with avg and max and negatively with d02, while all the other variables showed
an absolute correlation coefficient lower than 0.8. The eight most important variables for the M2sp.rf
model were p99, p50, max, d06, p95, d08, avg, and qav, in that order. Including species dominance
information as an additional variable did not improve the model prediction capability (not shown);
although, wood density among mangrove species varies from 0.53 g·cm−3 (Laguncularia racemosa) to
0.68 g·cm−3 (Rhizophora mangle) [45,54]. The mangrove aboveground biomass map (Figure 7) was
generated using the best performing M2sp.autopls model. The most impacted mangrove areas with
lower AGB values were observed near urban and degraded sites (the right sector in the map).Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 22 

 

 
Figure 6. Scatter plots of predicted versus observed AGB (t·ha−1) for (a) M2sp.autopls model (Auto-
PLS); (b) M2sp.rf model (RF); (c) M3K.autopls and; (d) M4C.autopls. R2 for RF are comparable to 
R2(CAL) for Auto-PLS. R2(CAL) is the coefficient of determination in calibration. 

 

Figure 7. Mangrove aboveground biomass map (AGB in t·ha−1) of APA Guapimirim and ESEC 
Guanabara obtained using the best regression model, M2sp.autopls (Auto-PLS). Non-mangrove areas 
appear in black. The black lines delimit the APA Guapimirim (outside) and the ESEC Guanabara 
(inside). (EPSG Projection: 32723). 

Figure 6. Scatter plots of predicted versus observed AGB (t·ha−1) for (a) M2sp.autopls model
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to R2(CAL) for Auto-PLS. R2(CAL) is the coefficient of determination in calibration.
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Figure 7. Mangrove aboveground biomass map (AGB in t·ha−1) of APA Guapimirim and ESEC
Guanabara obtained using the best regression model, M2sp.autopls (Auto-PLS). Non-mangrove areas
appear in black. The black lines delimit the APA Guapimirim (outside) and the ESEC Guanabara
(inside). (EPSG Projection: 32723).

Table 5. Results of the regression models tested for predicting biomass. Model 1 species-specific
(M1sp), Model 2 species-specific (M2sp), Model 3 pantropical_K (M3K), and Model 4 pantropical_C
(M4C) using 34 plots for (a) Auto-PLS and (b) random forest. (Calibration (CAL), Leave-one-out
cross-validation (LOO), root-mean-square error (RMSE) and coefficient of determination (R2)).

Model Auto-PLS (a) Random Forest (b)

M1sp
34 plots without buffer

species-specific

RMSE(CAL) = 14.70
RMSE(LOO) = 17.30

RMSE% =11.69%
R2(CAL) = 0.80
R2(LOO) = 0.73

RMSE = 18.60
RMSE% =14.79%

R2 = 0.68

M2sp
34 plots with 5-m buffer

(extended polygons)
species-specific

RMSE(CAL) = 11.17
RMSE(LOO) = 14.80

RMSE% = 8.88%
R2(CAL) = 0.89
R2(LOO) = 0.80

RMSE = 17.86
RMSE% = 14.20%

R2 = 0.71

M3K
pantropical_K

RMSE(CAL) = 22.50
RMSE(LOO) = 24.90

RMSE% = 18.21%
R2(CAL) = 0.39
R2(LOO) = 0.25

RMSE = 25.99
RMSE% =21.04%

R2 = 0.18

M4C
pantropical_C

RMSE(CAL) = 15.50
RMSE(LOO) = 17.10

RMSE% = 18.31%
R2(CAL) = 0.39
R2(LOO) = 0.25

RMSE = 17.60
RMSE% =20.79%

R2 = 0.20
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3.1. Landscape-Level Accuracy

3.1.1. Sample Coverage Assessment

Field plot representativeness was evaluated graphically (Figure 8). The full range of structural
variability in the mangrove forest area is represented by grey circles (10,000 grid cells randomly
selected from the entire mangrove area and by black circles the 1000 cells randomly selected from
the non-mangrove area), while the field plots are represented by red circles and labels. The first two
principal components jointly explained 64% of the total variance. Field plots covered almost all of the
range of structural variability of the mangrove forest in the study area (Figure 8). The 95% confidence
ellipse (solid line) covers 88% of the mangrove structural variability, and the 98% confidence ellipse
(dashed line) covers 96% of all the field plots. The area outside the confidence ellipse (Figure 8) appears
to be mostly dominated by the non-mangrove forest, such as associated species (black points). Figure 7
shows the mangrove area and also the non-mangrove area (in black).
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The plot vegetation average return height (avg, 34 plots with 5-m buffer) was further compared
to landscape-level average return height (mangrove area covered by lidar with spatial resolution of
25 m, see Figure 9), suggesting that low mangrove was slightly under-sampled.
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3.1.2. Uncertainty at the Landscape Level

The general regression estimators of population (landscape) biomass mean and its variance are
given by Equations (1) and (2) in Section 2. In Table 6, we report the AGB estimates and uncertainty in
terms of mean per hectare over landscape (rather than the cumulated AGB) (i.e., B̂/N and standard

error

√
V̂(B̂)

N2 for M2sp.autopls, M3K.autopls, and M4C.autopls).

For the best model, M2sp.autopls, the estimate of the mean AGB from resampling is higher than
the GREG estimate (see Table 6). However, confidence intervals of both estimates largely overlap.

Table 6. Mean AGB per hectare (t·ha−1) and standard error (SE) on a landscape scale using either a
generalized regression estimator or a resampling technique. The resampling technique repeatedly fits
the model to a stratified subsample of 17 plots only. (Standard general regression estimator (GREG)).

Model Landscape
Mean (GREG)

Landscape SE
(GREG)

Landscape Mean
(Resampling)

Landscape SE
(Resampling)

M2sp.autopls 105.04 2.54 106.72 6.67
M3K.autopls 121.60 4.27 122.20 11.68
M4C.autopls 83.29 2.93 83.78 6.98

The prediction and discrepancy between the models per area dominated by each mangrove
species in the APA Guapimirim and ESEC Guanabara are shown in Table 7. Table 7 reports the
difference in the prediction of AGB maps obtained with pantropical equations (M3K.autopls and
M4C.autopls) and the AGB map obtained with M2sp.autopls.

Table 7. AGB map of error for analysis of each class of mangrove species.

Species Map
Area

Mean AGB
M2sp.autopls

Mean AGB
M3K.autopls

Mean AGB
M4C.autopls

RMSD
K

RMSD
C

Mean
Error K

Mean
Error C

Av 156,800 93.27 112.97 77.35 30.08 28.57 19.70 -15.92
Lg 606,775 93.041 118.78 81.34 33.43 25.74 26.26 -11.70
Rh 1026,500 125.13 127.94 87.67 23.75 44.408 2.81 -37.47

4. Discussion

The models trained with AGB species-specific equations (M1 and M2) vastly out-performed the
others models trained with AGB non-species-specific equations (M3 and M4). This indicates that
these species-specific equations better explained the structure and AGB of the mangrove of the study
area. Models trained with AGB estimates derived from pantropical allometric equations (M3 and M4)
appear to be quite severely biased (Figure 6).

Model M2sp.autopls presented the best performance with R2 = 0.803 and RMSE(LOO) = 14.7 t·ha−1

RMSE(CAL) = 11.2 t·ha−1 and was used to map the mangrove AGB of APA Guapimirim and ESEC
Guanabara (Figure 7). In general, the lowest biomass values were observed upstream in the rivers
near the continental borders of the mangrove forests, on more degraded areas, and with a higher
occurrence of invasive and associated species. Higher AGB values are observed in the central area
of the mangrove, which is also the best preserved area included in the ESEC Guanabara (Figure 7).
Those distribution patterns are in agreement with a previous study [52]. It is interesting to note very
low AGB values in the mangrove forests located along the coast of some rivers. This pattern is the
result of a pest of Lepdoptera caterpillars that occurred in 2009 and severely impacted the A. schaueriana
population, which was dominant in this area of the estuary.

In the present study, the maximum height (max) and average height (avg) are important variables
for mangrove biomass prediction with the M2sp.autopls and M2sp.rf models. Point density metrics
(d02, d03, d04, d05, and d08) were also influential variables for M2a. Point density metrics were also
used in the final models in [60] for predicting the vertical distribution of heights and penetration
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depths in an area-based approach. The best independent variables to estimate AGB for a boreal forest
showed by [23] were one variable related to canopy height and another one related to canopy density
(similar to point density here). A simple canopy height metric was also used to predict AGB in East
African mangroves [48].

An analysis of reported biomass accuracy estimates of terrestrial vegetation from more than
70 referenced articles using different remote sensing techniques was conducted in [22]. Studies based
on discrete return lidar (DRL) and full return lidar (FRL) had a mean R2 of 0.76 and 0.80, respectively,
with mean residual standard error (RSE) of 39.4 t·ha−1 for DRL and 50.2 t·ha−1 for FRL. The average
relative residual standard error (RSE%), calculated as the RSE standardized by mean AGB from field
measurements, was 27.0% and 22.3% for DRL and FRL, respectively [22]. For our M2sp.autopls
model, the RSE% was 8.9%. The RSE refers to the absolute model error, while RSE% expresses
model performance relative to the mean biomass from field measurements. The M2sp.autopls model
showed a good estimation of AGB, with a lower RMSE (11.17) than the mean RSE (39.4) of all the
DRL studies, and a RSE% of 8.9% lower than 20% (or ±20 t·ha−1, the greater of the two), which is
considered the accuracy requirement of a global forest biomass mapping mission for at least 80% of
grid cells [22]. Compared to other studies [22], the M2sp.autopls model showed better results than
those found for the following: coniferous forest (R2 = 0.64, RMSE = 28.5 t·ha−1 [74] and R2 = 0.75,
RMSE = 45.6 t·ha−1 [75]); deciduous forest (R2 = 0.71, RMSE = 39.3 t·ha−1) [75]; taiga forest (R2 = 0.72,
RMSE = 14.2 t·ha−1) [76]; and tropical forest (R2 = 0.36, RMSE = 22.8 t·ha−1 [77]; R2 = 0.78 [78];
and R2 = 0.72, RMSE = 40.2 t·ha−1 [33]). Other studies reported higher accuracies, such as in rainforest
(R2 = 0.90, RMSE = 38.3 t·ha−1) [79] and temperate forest (R2 = 0.89, RMSE = 50.2 t·ha−1 [80] and
R2 = 0.93, RMSE = 33.9 t·ha−1 [81]), among other results reported in the literature. In comparable
settings, the study of [48] reports relative RMSE errors of 23–33% to be compared with the calibration
RMSE(LOO) of 12%.

Spatial mismatch between inventory data and associated canopy area may be particularly large
with small plots due both to more severe border effects and the higher impact of positioning errors.
The models used here that considered the 5-m buffer extension (M2sp.autopls and M2sp.rf) showed
better results than the models that used the original plot perimeters (M1sp.autopls and M1sp.rf).
The increase in plot size enables the inclusion of tree crowns with trunks within the plot but with part
of the crown outside, while the exact boundary of the plot on the lidar data cannot include all the
tree crowns of the plot. Conversely, extending the point cloud beyond the field plot limits led to the
inclusion of trees and crowns located outside the plot. This suggests that model improvement cannot
be ascribed to a better match between the trees sampled within the field plot and the area covered by
the lidar data. Rather, the benefit of extending the lidar area (and the point cloud size) probably arose
from improving the lidar metric estimates. On average, the point cloud size was doubled, and it was
even tripled for the smallest plots. As long as the surrounding areas remained similar to the core plot
area (in terms of structure), including a buffer around the plot tended to decrease the uncertainty of
the lidar metrics and thus improve the model by the sheer effect of increasing the lidar point sample
size. Plot sampling should be designed to capture the entire range of possible structural variation
encountered by the lidar data. Our sample coverage assessment can be considered as satisfactory (see
Figures 8 and 9).

The estimated landscape-level error in the AGB prediction using the GREG estimator is
2.5% (Table 6) (i.e., about one-fifth of the plot-level error of 12% (see Table 5)). However, the GREG
estimated uncertainty might be slightly underestimated. Indeed, Figure 6a suggests that the plot-level
model may be slightly biased. Any plot-level model bias will translate into an error on the landscape
level, which is not accounted for by the GREG estimator. The resampling approach provides an
estimate of the mean biomass on a landscape scale slightly higher than the one estimated via GREG
(106.7 vs. 105.0 t·ha−1) with a higher standard deviation (6.7% vs. 2.5%). A single plot (C025)
may be responsible for the bulk of the difference between the two estimates. Plot C025, with the
lowest measured biomass (see Figure 5), is responsible for the slight apparent bias in the plot-level
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model (see Figure 6a), as AGB for this plot is overestimated by all the models, albeit only slightly by
model M2sp.autopls. The resampling technique, which compares predictions made from subsets of
training plots either including or not this outlier observation, will be sensitive to the high leverage
of this particular observation. As a matter of fact, the mean prediction for the 100 random subsets,
which include the C025 plot, is 103.1 t·ha−1, as opposed to a mean of 110.1 t·ha−1 for the 100 random
subsets without C025.

The large bias detected in Model 3K and Model 4C (see Figure 6) indicates that the assumptions
required for calculating the GREG estimator are not met, and indeed, the landscape uncertainty
estimations are irrelevant (and inconsistent with the observed prediction discrepancies between the
various models). The landscape errors in M3K and M4C appear to be on the order of +16 t·ha−1 or
+14% (M3K) and −22 t·ha−1 or −18% (M4C). The error can be even larger in areas dominated by a
particular species (see Table 7). Hence, the inaccuracy in the field data (resulting from the use of poorly
adapted allometries) yields bias in the prediction models, which translates into large errors when such
models are applied on a landscape scale. The large prediction errors reported in [48], and the bias
detected with height class (underestimation of low AGB and overestimation of high AGB values) may
also be a consequence of not using species-specific allometric equations.

Despite a reasonably good coverage (see Figure 8), the unbalanced sampling across vegetation
height classes and the notable underrepresentation of low mangrove (see Figure 6a) have probably
impaired the landscape-level estimate accuracy. A better coverage of low mangrove (predominantly
juvenile stages) could have been ascertained using a canopy height map when the field work was
conducted, thereby potentially reducing the uncertainty of AGB on a landscape scale.

While under sampling of low canopy mangrove seems to have impaired the model performance,
the small size of the plots seems not to have done so. This was not entirely expected as previous
studies have shown an inverse relationship between model errors and plot size [22,27]. The use of
large plots reduces errors in terms of RMSE [26]. Extending the area from which the lidar statistics
were derived slightly outside the plot borders improved prediction. This suggests that smaller plots
should probably be avoided. Furthermore, such small plots were adapted to the low canopy (<18 m)
characteristic of this mangrove area, which represents forests with low structural development and
may not be recommended for higher canopy forests (structurally well-developed forests).

5. Conclusions

The present study underscores the effectiveness of lidar as a means to estimate mangrove forest
AGB in areas with different degrees of disturbance. The model (M2sp.autopls) used to map the
mangrove AGB of APA Guapimirim and ESEC Guanabara presented the best performance with
R2 = 0.80% and 8.9% (RMSE CAL %) for plot-level error. The final uncertainty (RMSE LOO %) of
plot-level prediction was ~12%, whereas landscape uncertainty was reduced to 2.5–6% (depending on
the method used). This best model (M2sp.autopls) was trained with AGB obtained with species and
local-specific equations and extended plot perimeter (5-m buffer extension).

The most important factor found to affect the quality of the predictions is the quality of the field
data. Inaccuracy in the field data yields bias in the prediction models, which translates into large
errors when such models are applied on a landscape scale. In this study, the models trained with AGB
species-specific equations (M1 and M2) presented more accurate results than models trained with
pantropical specific equations. Species-specific allometric scaling equations seem to be required to
build accurate (unbiased) models. The combination of the strong degree of spatial segregation of tree
species common in mangrove forests and the small size of the sampling plots may have exacerbated
this sensitivity to inaccurate (non-species-specific) allometric scaling equations. Nonetheless, because
the uneven distribution of tree species in a terrestrial forest ecosystem is also the rule rather than the
exception, similar problems—in nature if not in amplitude—are most likely to affect AGB estimates
obtained for non-mangrove forests for which species-specific allometry are not available.
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Lidar can provide accurate maps of mangrove AGB and can be a useful tool for mangrove
monitoring, carbon stock assessments, and coastal management in general. Lidar is highly accurate
but relatively expensive. It could be used to efficiently “train” more cost-effective solutions, such as
textural analysis of high-resolution optical imagery [26]. Such imagery is available at a much lower
cost. Textural features may be further combined with multi-spectral information to produce robust
landcover maps. In this sense, future work could compare lidar-derived biomass estimates with other
remote sensing data and techniques, such as SAR and optical imagery. Lidar data can also be merged
with other remote sensing data to predict biomass and to quantify mangrove changes in terms of AGB
and carbon stock.
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