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ABSTRACT

In this work it is presented the Gradient Pattern Analysis (GPA), a formalism that
describes operators for analysis of spatially extended system, concerning its asym-
metry. Aiming to work with large datasets, it is proposed improvements to the most
popular version of GPA, with respect to the metric measurement and computa-
tional efficiency. We also review and explore the gradient moments, and propose
two new operators. In order to validate the implementation of the operators G1 and
G2, the following study cases are presented: (i) a dynamical study case in Coupled
Map Lattices (CML), and (ii) a static case study in Galaxy Morphology. With re-
spect to application (i), we analyze two system transitions: symmetry breaking and
synchronization. Concerning the application (ii), it is presented a system of galaxy
morphometrics named CyMorph, which has an important role on a project for study-
ing the galaxies formation and evolution. The aim of CyMorph is to classify galaxies,
between early-type and late-type using non-parametric morphometrics. G1 and G2
were integrated to CyMorph. We observe that G2 is the second-best morphometric
in a system with 10 metrics.

Keywords: Gradient Pattern Analysis. Dynamical Systems. Galaxy Morphology. Im-
age Processing.
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ANÁLISE DE PADRÕES GRADIENTES: NOVOS ASPECTOS
COMPUTACIONAIS METODOLÓGICOS E APLICAÇÕES

RESUMO

Neste trabalho é apresentado a Análise de Padrões Gradientes (no inglês GPA), um
formalismo que descreve operadores para a análise de matrizes, por meio da simetria.
Com o objetivo de analisar bases de dados extensas, neste trabalho é proposto o
refinamento da versão mais popular do GPA, a respeito da medida e da complexidade
computacional. Neste estudo é apresentado todos os momentos gradiente, e testado o
primeiro e segundo momento gradiente (respectivamente G1 e G2). A fim de testar o
refinamento das técnicas G1 e G2 é apresentado os casos de estudos: (i) um estudo de
caso dinâmicos em Grade de Mapas Acoplados (no inglês CML) e (ii) um estudo de
caso estático em Morfologia de galáxias. Em relação aplicação (i), duas transições
de estado do sistema são apresentados: quebra de simetria e sincronização. Em
relação a aplicação (ii), foi desenvolvido um pipeline de análise não paramétrica de
galáxias conhecido como CyMorph. O pipeline apresentado incorpora uma versão
aprimorada das técnicas de análise morfologica, G1 e G2. O objetivo principal do
CyMorph dentro do escopo do projeto de pesquisa é classificar galáxias entre elipticas
(early-type) e espirais (late-type). Analisando o desempenho da técnica de GPA
frente as técnicas tradicionais de morfologia, observou-se que G2 é o segundo melhor
parâmetro morfométrico no conjunto apresentado.

Palavras-chave: Análise de Padrões Gradientes. Morfometria. Cosmologia. Sistemas
Dinâmicos. Caos.
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1 INTRODUCTION

From large scales, such as galaxies, to small scales, for instance molecular struc-
tures, a diversity of bidimensional projected patterns are observed. These patterns
are intrinsically related to the processes that drive the system. Thus, the extraction
of features of these systems shall reflect its underlying pattern formation processes.
However, the analysis of these patterns, which are observed in digital images, is a
challenge since there is a constant increase of data, in terms of amount and resolu-
tion.

The analysis of patterns is a digital image processing (DIP) task. As a DIP task,
it can be detached in two branches: the images processing, and the image analysis
(PEDRINI; SCHWARTZ, 2008). The image processing includes algorithms to highlight
and simplify the information in a given image, such as image segmentation and image
enhancement. Whereas, the image analysis concerns the extraction of the informa-
tion in a given image or set of images. Notice that, the last is a multidisciplinary
task since it requires knowledge from computer science, and the data domain. In the
context of this work, we explore both branches of DIP, but we highlight the image
analysis as we intend to characterize patterns.

Several techniques attempts to characterize spatial patterns (DIGGLE, 2013). A com-
monly approach, to deal with the diversity of patterns, is to extract a set of param-
eters. For instance, the CAS systems have been employed to characterize galaxy
morphology (DRESSLER, 1980; CONSELICE, 2003). This approach gained attention
with the advent of datamining area. It has positive and negative aspects. The more
parameters, the greater set of features are detected. However, the extension of a
set of parameters increases the computation time. Also, a meaningless metric can
perturb the analysis, specially, when it is applied an automatized analysis. Thus, we
shall explore fast meaningful metrics.

In this work we explore the Gradient Pattern Analysis (GPA) an innovative tech-
nique, which have been employed in a diversity of applications. It exploits the gra-
dient symmetry breaking in order to characterize a given pattern, which no other
technique measures. GPA was proposed by Rosa et al. (1999), where it has been
shown some properties and the conjectures. Further works extended the formalism
by introducing the gradient moment concept (RAMOS et al., 2000; ROSA et al., 2008;
ASSIREU et al., 2002), which were fundamental to improve the analysis capability.
We intend in this work to review and improve GPA technique. In order to test the
improved version, we apply the proposed metric to images from chaotic systems and
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astrophysics, measuring its performance.

1.1 Motivation

GPA has been employed in a diversity of applications, such as: detection of solar
bursts (ROSA et al., 2008), characterization of diffusive-reaction phenomena(RAMOS

et al., 2000), and characterisation of nonlinear transition in Lagrangean fluctuations
(ASSIREU et al., 2002). The analysis with GPA achieved the goals. However, the
data analyzed in these applications were represented on small matrices, which size
vary between 3x3 and 128x128. With the advance of observational capacity, and
the increase of complexity of simulated data, a demand for fast and efficient algo-
rithms increased. However, in the state of the art, this metric is overly sensitive to
noise level, and the high computational cost hinder the analysis of extended systems.

1.2 Objectives

The main goal of this work is to improve the Gradient Pattern Analysis (GPA)
with respect to the metric characteristics and the computational performance. In
order to verify the presented technique, we selected a dynamic case study, and a
static case study, which are respectively: (i) Coupled Map Lattices and (ii) galaxy
morphological classification. GPA had already been employed in these applications
(RAMOS et al., 2000; STRIEDER, 2010). However, some details were not explored
in the previous works, such as: different maps (i), and larger datasets (ii). As a
secondary objective, we intend to explore the details related to those domains.
Other objectives intrinsically related to the main and secondary objectives are:

• To establish an overview of the GPA formalism, reviewing the previous
definition and expanding some steps that were defined in previous works.
• To parallelize the presented operator.
• To characterize Coupled Map Lattices (CML) state transition with classi-

cal methodologies: Phase-Space analysis and Lyapunov Exponent.
• To introduce and adapt the GPA formalism to CML, aiming to detect and

characterize the system state transitions.
• To develop an open-source pipeline for galaxy morphometry, based on

most advanced galaxy morphometrics. Adjust the proposed operator to
the galaxy morphometric analysis and compare with the current state of
the art.

2



1.3 Dissertation overview

This dissertation is structured in following chapters:

2. GRADIENT PATTERN ANALYSIS - In this chapter, we aim to overview
GPA state of the art, propose improvements to the technique, and apply
the tests well-established on literature.

3. FIRST CASE STUDY - A study of Coupled Map Lattices is presented
in this chapter. It is also presented some analysis techniques commonly
applied to this domain.

4. SECOND CASE STUDY - In this chapter we review of state of the art
on galaxy morphology. We propose improvements to the established tech-
niques, adapt the GPA formalism to this domain and compare the results.

5. CONCLUSION - The overall performance of the presented technique is
described and future works are proposed.

Additionally, it is presented in the appendix: a simple tutorial for downloading in
Github the source code of all algorithms presented, a method for obtaining galaxy
images, an approach to G2 parallelism, and the technique for measuring the Largest
Lyapunov Exponent.

3



2 GRADIENT PATTERN ANALYSIS

In this section we present Gradient Pattern Analysis (GPA), a computational oper-
ator that describes matrices in terms of gradient symmetry and alignment.

In order to understand the presented technique, consider a matrix, which is com-
posed by a set of amplitude A(x, y), being x, y the element spatial coordinates.
According to the elements spatial disposition, we may observe different patterns, as
shown in Figure 2.1.

In the GPA formalism the characterization of these patterns are given by the analysis
of local differences (gradient) and global differences (asymmetry). For example, the
patterns A and B from Figure 2.1 are symmetric, thus we may expect low values from
GPA metrics. Whereas a random matrix is an example of asymmetric pattern (for
example pattern E). Therefore, it is expected a higher magnitude of GPA metrics.

The main reason to analyze the gradient field instead of the amplitude field is the
gradient sensitivity. Small perturbations on amplitude can be difficult to detect in
the amplitude field. However, in gradient field those perturbations drastically change
the pattern.

On the other hand, it is important to distinguish small perturbed patterns from
patterns that are completely disordered. Here, we consider a disordered pattern, a
matrix with high fragmentation degree, with asymmetrical fragments. This distinc-
tion is necessary since it is commonly observed in data acquisition and data handle
small perturbations that are not related to the overall pattern. For example, the
patterns C and D from Figure 2.1 are respectively the same of pattern A and B,
with an addition of noise. Thus, the GPA metric for patterns C and D must be sim-
ilar to the response of pattern A and B, and the difference between those patterns
and pattern E must be greater.

Another important aspect of GPA operators is the distinction between asymmetric
regular patterns and irregular asymmetrical patterns. In Example 2.1.E, it is shown
a gradient image, which in gradient field correspond to a laminar flow. Although the
gradient field of patterns 2.1.E and 2.1.F are asymmetrical, both patterns are clearly
distinct. Therefore, the operator response must be different for these patterns.
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Figure 2.1 - Symmetric and asymmetric gradient pattern examples

Six sample of patterns. (a) and (b) are examples of symmetric patterns, (c) and (d) show
the same pattern of (a) and (b) contaminated by a Perlin noise, (e) show an asymmetrical
pattern known as laminar pattern, and (f) show an asymmetrical pattern composed by
Perlin noise.

SOURCE: Own author.
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Besides the metric meaning, a demand for techniques for larger bidimensional sys-
tems/images is constantly increasing with the advance of the observational capacity.
In this work we also intend to adapt GPA for larger systems, we aim to minimize
the computational cost. The bottleneck of GPA previous version is the symmetry
removal (the second step in Figure 2.6). All vectors in this step were compared with
each other, the complexity for this approach is O(W 2H2), were W and H are the
matrix width and height. To increase GPA computational efficiency, we review the
symmetry definition in section 2.1 and introduce the concentric symmetry notion,
which reduces the total number of operations. In addition, we exploit the last hy-
brid parallel technologies, it is presented a parallel version of this operator using
OpenCL in Appendix C. In our implementation the presented symmetry removal
has a computational complexity1 of O(W 2H2/P ), where P is the number of parallel
process.

This chapter is organized in the following sections: a review of symmetry definition
and the concentric symmetry proposal (section 2.1), the review of gradient moments
(section 2.2), an overview of the proposed framework (section 2.3), the tests with
noise matrices (section 2.4), and lastly some GPA conjectures (section 2.5).

2.1 Symmetry

The lack of symmetry – the asymmetry– is useful for understanding and character-
izing matrices. In this section, is discussed the general symmetry definition, and the
extension for the case of gradient field.

According to Barker e Howe (2007), an operator composed by a set p and an opera-
tion R() is said symmetrical if it is invariant to the operation (R(px) = px,∀px ∈ p).
Furthermore, the number of element with the same symmetry element (px) defines
the group order. A diversity of symmetric groups were defined in literature following
this definition. Some examples of symmetry groups are shown in Figure 2.2.

1This analysis is shown in Appendix C
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Figure 2.2 - Example of symmetry groups

SOURCE: Liu et al. (2010).

In this work we do not intend to study the differences between symmetry groups.
Instead, we aim to detect all asymmetrical elements, the set of elements that are not
in any group of symmetry. Since we are analyzing gradient fields, we shall consider
two main properties of each element: the spatial coordinates and each element local
property. The spatial position determine which set of elements are candidates for
symmetry, whereas the local property determine the equality operation.

In the gradient field, each element has a spatial coordinate, modulus, and phase.
The spatial position determines which set of elements are candidates for symmetry,
whilst the modulus and phase are local properties that define the equality operation.

Several symmetry definitions attempt to detect asymmetrical patterns. One of the
simplest spatial criterion is the bilateral symmetry. Given two elements equally dis-
tant to a separation axis, where the difference between both elements are perpendic-
ular to the axis of separation. If both elements are equal, then they are a symmetrical
pair.

It is important to note that in some systems, we may observe many axes of symmetry.
Consequently, the bilateral concept leads some issues:
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I-1 How to define the orientation from a generic image? (A galaxy image for
instance)

I-2 How many axes of symmetry should be applied?
I-3 Given N axes of symmetry, which evaluation sequence should be applied?

To solve the issues, we introduce the concentric symmetry notion. This concept is
an extension of bilateral symmetry that considers all possible axes of symmetry. The
candidates for symmetry, in this criterion, are given by every element at the same
euclidean distance. In this analysis we do not concern on the symmetry group order.
If a candidate of symmetry has at least one equal element at same distance, then it
is set as symmetrical element.

Notice that the described definition solves all issues since the operation is invari-
ant to rotation (I-1), considers always the maximum number of axes (I-2), and is
independent to the evaluation sequence, as it does not concern on the group order
(I-3).

The disadvantage of the concentric symmetry is the implementation computational
complexity of O(W 2H2), whereW and H are the input matrix sizes. In this work we
couldn’t reduce the computational complexity. However, we describe an algorithm
that reduce the number of computational operations by restricting the search area
of each element (see Appendix C).

Once defined the spatial disposition criteria, we need to define the equality operation.
For the equality operation, we follow the criteria defined by Strieder (2010). Two
vectors (for instance v1 and v2) are symmetric if both vectors have the same modulus
(|v1| = |v2| ±∆v) and opposite phase (|θ1 − θ2| = π ±∆θ). Notice that in practice,
this equality test considers a tolerance in modulus (∆v) and phase (∆θ).

In Figure 2.3, it is presented the symmetry removal on a 2D Gaussian sample. The
circled vectors are an example of symmetric group since both vectors are at same
distance to the center, have opposite phase, and same modulus. Moreover, all vectors
in this example are symmetrical with exception of the red vectors. The red vectors
describe an artificial contamination, which causes the symmetry breaking in eight
vectors. Four vectors are asymmetrical as they are in the contamination neighbor-
hood. Other four vectors in opposite side to the contamination are asymmetrical,
due to a mirroring effect.
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Figure 2.3 - Gradient Symmetry example

Gradient of a gaussian matrix contaminated. Red vectors are asymmetrical, blue circle is
an example of symmetry pair.

SOURCE: Own author.

Here we end the review of symmetry applied to gradient field. In following section
it is shown another important aspect of GPA formalism: the gradient moments.

2.2 Gradient Moments

In this section we present a set of metrics that characterize a gradient pattern. These
metrics concerns on gradient alignment, gradient disposition, and variety of modulus,
which are standardized according to the gradient moment. Ramos et al. (2000)
introduced the gradient moment concept, where the metric is standardized according
to the gradient notation, as shown in Figure 2.4. The first gradient moment is
measured directly on gradient field. Whereas, the second and third gradient moment
are measured respectively on the set of modulus and phases. Lastly, the fourth
gradient moment is a measurement of the gradient complex representation.
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Figure 2.4 - Gradient Moments

Four gradient moments, each gradient moment is measured from a gradient field nota-
tion.

SOURCE: Ramos et al. (2000).

Here it is presented the operators for all gradient moments. The first and fourth
gradient moment have been defined in literature (ROSA et al., 1999; ROSA et al., 2008;
ASSIREU et al., 2002; RAMOS et al., 2000). Since there was no operator for the second
and third gradient moments described in literature, we introduce the Asymmetrical
Magnitude Coefficient (G2) and Asymmetrical Phase Coefficient (G3). In following
subsections we present these operators according to the moment order.

2.2.1 Asymmetrical Gradient Coefficient

The first gradient moment describes patterns in matter of the fragmentation of
the asymmetrical gradient field. Specifically, the Asymmetrical Gradient Coefficient
(G1) exploits the Delaunay triangulation to distinguish spatially extended patterns.

It is important to note that there is a diversity of triangulation algorithms. The rea-
son to establish the Delaunay triangulation is that this triangulation maximizes the
minimal internal angle. The resultant mesh contain triangle set, which approaches
to an equilateral triangle the most as possible. In this implementation we use the
function "scipy.spatial.Delaunay" from Scipy (JONES et al., 2001).

The Asymmetrical Gradient Coefficient is measured according to the equation 2.1,
where NC is the total of Delaunay connections, and NV is the total of asymmetrical
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vectors.

G1 =


NC−NV

NV
ifNC ≥ NV

0 otherwise
(2.1)

Rosa et al. (1999) show that G1 is bound to the interval [0.0, 2.0], where 0.0 repre-
sents a totally symmetric matrix, and 2.0 represents an asymmetrical matrix with
misaligned vectors.

2.2.2 Asymmetrical Magnitude Coefficient

Here is introduced the Asymmetrical Magnitude Coefficient (G2), a GPA operator of
second order. Given the set of asymmetrical vectors (via), the number of asymmetrical
vectors VA, and the total number of vectors (V ), G2 is measured according to the
equation 2.2.

G2 = VA
V

2−

∣∣∣∣∣Va∑
i
via

∣∣∣∣∣
Va∑
i
|via|

 (2.2)

Notice that this operator concerns on the asymmetry ratio (VA/V ), and the conflu-
ence (|∑ via| /

∑ |via|). The independent analysis of both measurements is also impor-
tant in some applications since these measurements concern on different properties.

The asymmetry ratio is a simple proportion of asymmetrical vectors, which is bound
to [0, 1]. For general problems, the total of vectors (V ) is given by WH, where W
is the matrix width and H is the matrix height. However, in problems that require
a segmentation –for example the morphometry (section 4.9) – this amount is given
by the number of segmented area of the aimed object.

The confluence determines if the vectors are aligned and have the same magnitude. If
all vectors are the same (va), then the sum of all vectors is (|∑ via| =

∑ |via| = VA |va|),
thus G2 = VA/V . The described pattern is a laminar flow, an example of this pattern
is shown in Figure 2.1.F. It is important to note that G2 = 1.0 does not necessarily
mean that the pattern is a laminar flow since we can obtain the same value for G2

when V/VA = 2−|∑ via| /
∑ |via|, an example of this case is shown on synchronization

of Coupled Map Lattice (section 3.5).

Also, at limit the maximal misalignment turns the vector sum to zero (|∑ via| = 0),

11



thus G2 = 2VA/V . This case is commonly observed in random patterns, an example
is shown in Figure 2.1.F.

2.2.3 Asymmetrical Phase Coefficient

In this subsection, we introduce a new operator for the third gradient moment: the
Asymmetrical Phase Coefficient (G3). Considering the same framework applied to
G2, the proposed operator is expressed in terms of the asymmetry ratio (VA/V ) and
the confluence, as shown in equation 2.3.

G3 = VA
V

2− 1
VA(VA − 1)

VA−1∑
i=0

VA∑
j=i+1

1 + uiuj

 (2.3)

As described in Figure 2.4, the third gradient moment concerns on the asymmetrical
gradient phase. Thus, we propose a new technique for measuring the confluence, by
measuring the average of angular distance between each pair of phases (θi, θj).

In order to measure the angular distance, consider the unit vectors ui and uj, where
ui = (cos(θi), sin(θi)). The internal angle (ρ) between ui and uj is used to mea-
sure the distance. For instance, if both vectors are aligned (ρ = 0) the distance is
maximum, whereas if both vectors are opposite (ρ = π) the distance is minimum.

The internal angle can be measured from the dot product between ui and uj, since
uiuj = |ui||uj|cos(ρ) = cos(ρ). Here we measured the distance as the normalized
cosine function of the internal angle between ui and uj. In order to normalize this
distance, we resize and translate this function, leading: (uiuj + 1)/2. The Figure 2.5
shows the distance function for a given internal angle ρ.
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Figure 2.5 - Angular distance function

The internal angle (ρ) in x-axis, and the angular distance ((uiuj + 1)/2) in y-axis.
SOURCE: Own author.

Notice that the alignment is symmetrical (uiuj = ujui), thus we can reduce the
number of computational operations. The minimal number of pairs to be compared
is given by the combination: VA(VA− 1)/2, where VA is the number of asymmetrical
vectors. Finally, the confluence is measured as: 1

VA(VA−1)
∑∑ 1 + uiuj.

2.2.4 Generalized Complex Entropic Form

The Generalized complex Entropic Form (GEF) is a fourth gradient moment opera-
tor, which is deduced from a generalization of the concept of degeneracy. The general
form of GEF is given by the equation 2.4, where |vi,j| and φi,j are respectively the
modulus and the phase of the element on spatial coordinate i, j.

G4 = −
∑
i,j

|vi,j|ln(|vi,j|e−iφi,jk) (2.4)

Notice that the image from G4 is a complex number, as shown in equation 2.5. In
order to simplify the analysis and interpretation, the real and imaginary parts of G4

are usually analyzed separately (see for example Rosa et al. (2000)).

G4 = −
∑
i,j

|vi,j|ln(|vi,j|) + i
∑
i,j

|vi,j|φi,jk (2.5)

We can see that G4 has a constant value for the laminar case, when it has a constant
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modulus. However, if we change the vector modulus in laminar case, we may observe
a different a proportional response. Another important aspect to note is that G4 is
not bounded as the previous operators.

2.3 GPA Overview

In previous sections, it is described the aspects that compose the GPA formalism:
the symmetry (section 2.1) and gradient moment (section 2.2). Here, we describe
the framework of the formalism, which includes those aspects. A general scheme is
shown in Figure 2.6, which shows three stages that are applied to the input matrix
in order to measure the feature.

Figure 2.6 - GPA scheme

GPA overview, given the matrix E(i,j), three steps are applied: (i) gradient field measure-
ment (ii) symmetric vectors remotion, (iii) gradient moment measurement.

SOURCE: Own author.

In the first step the matrix gradient is obtained, the technique to measure the
gradient must consider the data type (for example image color-scale and matrix
size), and the domain of application (for example in dynamical system analysis,
image processing, or general purposes). A central finite difference (CFD) scheme
was employed in the presented framework since it is the simplest approach, besides
being implemented in previous versions of GPA (ROSA et al., 1999; STRIEDER, 2010).
The CFD scheme for the x-axis direction, in a matrix composed by elements ax,y,
where x and y are the spatial coordinates is given by fx(ax,y) = (ax+1,y − ax−1,y)/2.
Whereas, in y direction the CFD is fy(ax,y) = (ax,y+1 − ax,y−1)/2.

In the second step, vectors are removed according to an asymmetry criterion. A brief
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essay about symmetry and the extension for gradient field is presented in section
2.1. In this framework the concentric symmetry were applied.

Finally, the last step consists of measuring a scalar value from a gradient field, which
is given by the gradient moment. In the presented framework, all gradient moments
have been implemented. However, due to time limitations, only operators from first
and second gradient moment were tested. Here, we complete the overview of the
framework, in following section, we start the first test with noise matrices.

2.4 Noise Matrices

In this section we present a sensitivity test to the GPA technique. As shown by
Rosa et al. (1999), there is a correlation between the matrix size and G1 sensitivity.
The reason that should drive the methodology sensitivity is the number of possible
patterns that arises with the matrix size. A matrix with size NxM has a finite number
possible patterns for G1, since the maximum number of asymmetrical vectors isNM ,
and the maximum number of Delaunay connections 2NM . We intend to see if the
proposed operator has the same property observed in previous works (ROSA et al.,
1999; STRIEDER, 2010).

Notice, this test can be done with any kind of pattern family. There is a diversity of
patterns described literature, and some of these patterns also had been tested with
GPA (ROSA et al., 2000; VERONESE, 2011). However, here we intend to analyze the
simplest patterns.

In order to remake this test, G1 and G2 were applied to two set of noise matrices:
Random matrices and Perlin matrices. Both matrices have interesting properties.
Random matrices have maximum variability between amplitudes. Therefore, it is
expected the maximum G2 value. Whereas Perlin matrices have spatial continuity
that shows the same pattern for a given set of variables, which result in same average
value for a given frequency.

2.4.1 Random Matrices

It is presented in this subsection the review of the sensitivity test2 applied to G1,
with respect to the matrix size. In this test, the gradient moment is measured in
groups of square matrices with a fixed length. Comparing the average (µ) and stan-
dard deviation (σ) of these groups, considering the matrix length, we may expect

2Using the same test of Rosa et al. (1999)
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according to previous works µ converging the pattern characteristic value and σ

converging to 0 with the increase of matrix length.

To generate random matrices, we selected matrices with MxN elements
(0, 1, ...,MN), and randomly permuted its position. Then, we obtain a matrix, which
has no spatial correlation. Some examples of these matrices are shown in Figure
2.7. The library numpy were employed to apply the permutation, which used the
Mersenne Twister random number generator (RNG). There is a diversity of RNG
algorithms, which would be interesting to test, however, due to time limitations it
is not explored in this work.

Figure 2.7 - Random matrices

Sample of random matrices, rows ordered according to the matrix size: 8x8, 32x32,
512x512

SOURCE: Own author.

The results of this test are shown in Table 2.1. All elements in these matrices are
different. However, as we increase the size of this matrix small changes are not
detectable normalized gradient. The higher probability of finding similar gradients
in larger matrices explains the decrease on G2 with the matrix size.
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Table 2.1 - G2 for Random matrices

(i) Without tolerance (ii) With tolerance
Matrix size Average Standard Deviation Average Standard Deviation

4x4 1.6665 0.1826 1.6034 0.2068
8x8 1.883 0.0578 1.8622 0.0674
16x16 1.9546 0.0239 1.9516 0.0248
32x32 1.9824 0.0099 1.9795 0.0104
64x64 1.994 0.0031 1.9876 0.0042
128x128 1.9978 0.0014 1.9835 0.0024
256x256 1.9992 0.0006 1.9707 0.0023
512x512 1.9999 0.0003 1.9421 0.0023

2.4.2 Perlin Matrices

Interesting solutions and algorithms were developed with the advance of computer
graphic subareas. The random generation of textures and terrains is a challenge,
as it requires the generation of spatially related random amplitudes. A remarkable
algorithm to generate spatially related random amplitudes is the Perlin noise(EBERT
et al., 1998). Besides graphical computing application, with some adaptations, Perlin
noise is a good description for spiral galaxies dust (see for example the models
generated by Groeneboom e Dahle (2014)). The analysis of the pattern generated
by Perlin noise is essential for a better understanding of GPA results in galaxy
morphology.

Here we name the matrices which are only filled with Perlin noise as Perlin matrices.
These matrices were built using a component from library Pyglet (HOLKNER, 2008).
The procedure for generating Perlin matrices is composed by three steps: Grid defi-
nition, Dot product, and interpolation. In the first step it set a sparse grid of vectors
(the red dots in Figure 2.8), and the final grid of elements (blue dots in Figure 2.8).
Each vector in sparse matrix is randomly selected from a list of predefined directions,
in order to avoid defects(EBERT et al., 1998).
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Figure 2.8 - Perlin noise scheme

Red dots are the sparse grid elements, with vector in black. Blue dots are the Perlin
matrix elements, and the blue arrows are the distance vector.

SOURCE: Own author.

In the follow steps, each element in the final grid associate a value to each nearby
sparse grid element. This value is given by the dot product between the distance to
the sparse grid element (blue vector in Figure 2.8) and the corresponding vector in
the sparse element (black vector in Figure 2.8). The final value is measured as the
interpolation between each element and the measured dot product. Some examples
of Perlin matrices (generated using Pyglet component) are shown in Figure 2.9.
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Figure 2.9 - Perlin matrices

Sample of Perlin matrices, rows ordered according to the matrix size: 8x8,32x32,512x512
SOURCE: Own author.

We observe different patterns according to the sparse matrix size, as we increase
the sparse matrix size, the amplitudes of higher frequencies grows. We tested G1

and G2, in a set of 100 matrices varying the size of the sparse matrix and the final
matrix. The presented test considered two analysis: (i) without phase and module
tolerance, (ii) with 0.1% of module tolerance and 0.01 rad of phase tolerance.

In table 2.2, is observed the typical values for G2 in Perlin matrices. Notice that G2

converges3 to the approximate value 1.91 ∼ 1.95 when no tolerance is established,
which cannot be distinguished from a totally random pattern. However, when it is
considered a tolerance the typical value for G2 in Perlin matrices is 1.78 ∼ 1.88,
which is distinct in most of cases to the random matrices. Thus, the tolerance is
required for measuring patterns.

3Considering a range of one standard deviation
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Table 2.2 - G2 for Perlin matrices

(i) Without tolerance (ii) With tolerance
Matrix size Average Standard Deviation Average Standard Deviation

4x4 1.629 0.2081 1.629 0.2081
8x8 1.7876 0.1026 1.7876 0.1026
16x16 1.8395 0.0799 1.8388 0.0806
32x32 1.8786 0.0612 1.8755 0.0609
64x64 1.8797 0.0527 1.8738 0.0525
128x128 1.8897 0.0561 1.8759 0.0565
256x256 1.9045 0.0485 1.8716 0.0499
512x512 1.9104 0.0451 1.8295 0.0459

2.5 Conjectures

Since the first work related to GPA(ROSA et al., 1999), a set of conjectures related
to this metric has been proposed. Here, we do not intend to prove these conjectures
since it demands a detailed mathematical analysis. However, it is important to men-
tion these conjectures since some of these conjectures are observed in practice, and
may explain the results in presented applications. In order to showcase some exam-
ples of matrices in Figure 2.10, which show four samples of matrices that exemplify
the conjectures.

As described by Rosa et al. (1999), the insurgence of a central structure reduces
every operator magnitude. The matrix (a) is the basis for this test, a two-dimensional
symmetric structure with a random noise. When added a central structure4 to matrix
(a), we obtain the matrix (b). Notice that vectors near the central structure are
conduced in direction of the center, thus some of these vectors become symmetrical.

Another important conjecture is the central misalignment, if a central structure is
drifted from its position, then we observe an increase of asymmetrical vectors. This
is observed in matrix (c), where the central structure from matrix (a) is replaced by
the nearby elements. Notice that the number of asymmetrical vector increases when
the central structure is drifted.

4A gaussian matrix with low standard deviation
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Figure 2.10 - Conjecture samples

Four pattern inspired on the examples of Rosa et al. (1999). The first column represents
the amplitude, the second column is the matrix contour lines, and the third column is the
asymmetrical gradient. In (a) it is shown a pattern with central structure contaminated.
The pattern (b) shows the pattern (a) when added a secondary central structure. Pattern
(c) shows pattern (a) with central structure drifted, and finally, pattern (d) shows pattern
(a) with a random permutation.

SOURCE: Own author.
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At last, the fragmentation from a matrix usually increases the operator magni-
tude. The last conjecture can be observed on matrix (d), where this matrix were
built by shuffling matrix (a). This last conjecture raise a question that still unre-
solved: Which matrix maximizes the GPA magnitude? We presented in example (d)
a process which increases the system fragmentation. However, it is not known the
degree of fragmentation expected on shuffling process, nor which initial condition
maximizes GPA. Additionally, a formal prove is required to determine, whether a
random matrix, or a shuffled matrix produces the highest GPA magnitude.

Considering GPA preamble consolidated, in next chapter we start the first study
case. In next chapter we view the dynamical study case, we analyze Couple Map
Lattices with GPA.
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3 FIRST CASE STUDY

In this chapter we showcase a study in Bidimensional Coupled Map Lattices (2D-
CML). This system has an important role on encryption(SUN et al., 2008), study of
chaos control(DATTA et al., 2007), and network synchronization(ZHANG et al., 2018).
In order to analyze this system, especially with respect to its behavior, usually the
Largest Lyapunov exponent (LLE) is employed, which is a metric that indicates the
chaotic behavior. However, interesting features, for example symmetry breaking,
short-time series regime, and synchronization are better described by spatial anal-
ysis, such as the GPA. Also, it is important to note that 2D-CMLs are a canonical
study case for GPA (see for example Ramos et al. (2000)).

This chapter is not directly related to a practical application. However, the analysis
of this system is important as a benchmark for dynamical system analysis. Also, some
of features are not well explored in the literature, and it have important implications
on dynamical systems and the secondary applications.

In this chapter it is presented an analysis of phase-space of this system, which
indicates the system dynamics with respect to its gradient. And finally, we introduce
an analysis with G2, in two phase transitions: symmetry breaking (section 3.4) and
synchronization of chaotic oscillators (section 3.5). Additionally, in appendix D, it
is presented an analysis with the Largest Lyapunov Exponent (LLE).

3.1 CML Overview

Coupled Map Lattice (CML) are dynamical systems discrete in space/time, and
continuous state variables(KANEKO, 1992). This system is given by a regular grid
of oscillators. Each state of a 2D-CML is represented by a lattice At composed
by amplitude elements atx,y, where x and y represent the spatial location and t the
lattice snapshot. Each element of this matrix updates the current state with the local
oscillator and the neighborhood (here denoted by ati+k,j+l) according to a transition
function (for instance the equation 3.1).

In equation 3.1, f(ani,j) is a map (usually a chaotic map), and ε is the coupling
factor, which represents the neighborhood influence, typically this parameter ranges
between 0 and 1.

an+1
i,j = (1− ε)f(ani,j) +

∑
k,l

ε

N
f(ani+k,j+l) (3.1)

Notice that the equation 3.1 is a general form of CML, which considers any type
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of neighborhood. For this work, it is established a 4-connection neighborhood that
represents a bidimensional system. From equation 3.1, the 4-connection CML is
given by equation 3.2.

an+1
i,j = (1− ε)f(ani,j) + ε

4(f(ani−1,j) + f(ani+1,j) + f(ani,j−1) + f(ani,j+1)) (3.2)

A general scheme that describes an iteration of a CML connectected in a 4x4 scheme
is shown in Figure 3.1. Notice that, a given oscillator depends only on its neighbors
to update the local state. However, the local state depends of all oscillator in a long
time iteration, as all oscillator are connected.

Figure 3.1 - CML grid in a 4x4 connection scheme

Scheme for CML transition, in grid with size (i=5,j=5). For a given element in red, the
next state depends on the local amplitude and the amplitude of its neighborhood, which
is composed by the elements in blue.

SOURCE: Own author

3.1.1 Maps

A diversity of visual patterns are also observed according to the chosen map. In this
work we highlight three maps: Logistic, Doubling and Shobu-Ose-Mori (SOM). The
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phase-space 1 for these maps are shown in Figure 3.2. We selected these maps with
the described parameters due to the different dynamic near the inflection point,
which is x ≈ 0.5 for Logistic and Dyadic map, and x ≈ 0.8 for SOM map.

Figure 3.2 - Chaotic maps

SOURCE: Own author

The leading map in which our tests were applied is the Logistic map. This map is a
model for population growth, which can show a chaotic dynamics depending on the
parameter (α). The Logistic map equation is: xt+1 = αxt(1−xt), where xt represents
the state in time t. In this work we apply the parameter α = 4.0 for all systems,
as it is known that the map dynamics with this parameter is chaotic (SMALE et al.,
2003).

The Doubling map, also known as Dyadic map, Bernoulli map, 2x mod 1, and
bitshift-map, is a chaotic map given by equation 3.3.

xt+1 =

 2x , 0.0 ≤ x < 0.5
2x− 1 , 0.5 ≤ x ≤ 1.0

(3.3)

The SOM map was proposed to study the intermittency phenomena (SHOBU et al.,
1984), in special the intermittency of type I on maps. The equation for SOM map
is shown in 3.4, where α and β are free parameters, and γ = 0.8/(1 + α). Notice
that this oscillator has two main regions: a laminar flow (0 ≤ x < 0.8), and a burst
region (x ≥ 0.8).

1The phase-space is graph that relates a state of the map (x-axis) with the next state (y-axis)
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xt+1 =


αxt + 0.2 , for xt ≤ γ

α(xt − 0.8) + 1 , for γ < xt < 0.8
(1− xt)/β , for xt ≥ 0.8

(3.4)

In this work, we apply the parameters α = 0.6 and β = 0.2. We select these param-
eters due to the presence of a saddle-node bifurcation (KOBAYASHI et al., 1989). The
equilibrium points, for the first return map, with these parameters are: x = γ = 0.5
and x = 1/(1 + β) = 5/6.

Here we complete the CML overview. At the following section we view the case
study of this work.

3.2 Case Study

Depending on the properties of the system, different patterns are observed. In this
work, we selected four cases study to describe the system dynamics. We analyze the
systems, described in Table 3.1, at the following sections.

Table 3.1 - CML study cases

A B C D
Dimension 128x128 32x32 128x128 128x128
Initial Condition Random Gaussian-2D Gaussian-2D Random
Boundary Toroidal Toroidal Toroidal Toroidal
ε 1/2 0 to 1 1/2 1/2
Map Logistic Logistic Logistic, Dyadic, SOM Logistic
Iterations 7,000 1,000(λ), 4,100(G2) 140 1,000
Observed Gradient (at center) λ,G2 G1, G2 G2

3.3 Gradient Phase Space

In this section we explore the system behavior on matter of phase-space. This anal-
ysis is one of simplest test for detection of attractors and is an important property
for understanding the dynamics of this system.

We analyzed the system A, shown in Table 3.1. Since our aim is to analyze the
spatial behavior, and GPA is a formalism that describes system based on the spatial
gradient, we measured at every time step (t) the gradient phase (θt) and modulus(rt)
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of a vector at the center of the system. As we intend to analyze the long-range
regime, the first 4,000 iterations were discarded. The gradient was measured with
finite difference (as described in section 2.3), the vector angle was measured from
gradient using the function ’atan2’. The results are shown in Figure 3.3.

Figure 3.3 - Gradient phase space

SOURCE: Own author

To inspect this system, the phase-space is plotted in Figure 3.4. Each point in this
plot represents the gradient of an element in a given state system state (in x-axis)
versus its following state (in y-axis), where each state is represented by the amplitude
in the time series.

As shown in Figure 3.4, there are two lines in θn (angular coefficient α ≈ 1) with
high density of points. It indicates that, given a system state, we expect the same
phase for the next state (θn+1 = θn). On the other hand, the dynamics of modulus
shows a different pattern, we do not expect a regular dynamic for the modulus.
Additionally, notice that the phase-space is not completely filled with points, which
means that for a random dynamic of the system all states are not equally probable,
the system is not ergodic.

27



Figure 3.4 - Gradient phase space

SOURCE: Own author

Here we end this brief analysis of the CML gradient dynamic. We infer that the first
and second gradient moments are the best technique in GPA formalism for analysis
since the gradient modulus of CML has an interesting dynamic. In the following
section, we continue to explore the CML dynamic, this time with an analysis of the
system symmetry with GPA.

3.4 Symmetry breaking

The sensitivity to initial conditions is an important property observed on dynamical
systems. In spatially extended systems the sensitivity to initial conditions (in maps)
drives system symmetry breaking. Here, we describe the spontaneous symmetry
breaking, which is a phenomenon that starts from a symmetric initial condition, in
CML with different maps.

Different visual patterns are observed on changing the map, and the system param-
eters. Here we fixed the coupling factor, type of boundary, and initial conditions
according to the column C from Table 3.1. As we can observe in Figure 3.5, starting
from a Gaussian matrix, a complex pattern arise, and eventually occurs the system
symmetry breaks.

It is important to note that the system symmetry breaking occurs in different periods
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and velocities depending on the map. Due to the intermittencyfootnoteIn this case
an intermittency of type I: a dynamic between large laminar periods and small bursts
periods in SOM map CML the system break starts in the same time of Doubling
map. However, SOM breaks the symmetry with less speed.

Figure 3.5 - Symmetry breaking samples

Snapshots at every 35 iterations, of CML dynamic, considering every map.

SOURCE: Own author

In order to visualize the transitions, we present in Figure 3.6, the symmetry breaking
observed via G1. Notice that the time series has three levels of G1. The first level
represents the initial condition, where the system is completely symmetric (G1 =
0.0), whereas the second level is only observed in logistic and doubling maps. Lastly,
the third stage represents the asymmetrical system state.

It is important to note that the intermediary state occur due to the system inter-
action with the boundaries. We observe the asymmetrical vectors are at boundary,
at the intermediary state. The effect does not occur on SOM map CML due to the
laminar phase that is state as initial condition near the boundaries.
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Another technique for visualization of the state transition is the phase-space plot
that is also shown in Figure 3.6. In phase-space we can observe two clusters of points,
where the first cluster represents the boundary effects, and the second represents
the symmetry breaking.

Figure 3.6 - G1 in symmetry breaking transition

In top side, theG1 temporal series for symmetry breaking. On bottom side, the phase-space
of the temporal series. The square represented a magnified region of clusters.

SOURCE: Own author

Analyzing the same system with G2, we obtain the time series from Figure 3.7. No-
tice that G2 6= 0.00 for CML with Logistic and Doubling maps after the symmetry
breaking. As observed in G1, this threshold is generated by small fluctuations that
appear near the boundaries. However, G2 response and fluctuation at this interme-
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diary effect is almost constant. It indicates that G2 is less sensitive than G1 to small
fluctuations.

Figure 3.7 - G2 in symmetry breaking transition

SOURCE: Own author

Following the analysis of G2, notice that, it is observed a high value of similarity
(especially for Doubling map) at beginning followed by small values of confluence.
It means that, the system first interaction with the boundaries produces asymmet-
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rical vectors with similar magnitude and direction. After the first interaction, the
asymmetrical pattern has vectors in all directions with different magnitudes.

Proceeding with the study of this phenomenon, it is proposed a secondary test
that concerns on system parametrization. Selecting the system B, we intend to
understand the coupling (ε) and the map parameter (α) effect in Symmetry breaking.
In this experiment, it was selected 32x32 maps starting with 2D-Gaussian, after
iterating 4,000 times, we measured the G2 average of the next 100 iterations. It is
presented in Figure 3.8 the results of this test.

Figure 3.8 - G2 phase space for 32x32 CMLs in Symmetry Breaking

Average of G2 measured on 100 matrices, after iterating 4,000 times. The initial condition
is a 2D-Gaussian. The grid density is: ∆ε = ∆α = 0.025.

SOURCE: Own author

The Figure 3.8 show that the symmetry breaking depends only on map parametriza-
tion. For α > 3.6, the value of G2 converges to the maximal value. In fact, we can
also observe the chaotic behavior for α > 3.57 in logistic map (see the analysis of
appendix D, in Figure D.2).
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However, there is an exception to this statement, when the coupling factor is high
enough (ε > 0.7), complex structures arises. As a consequence, with high enough
coupling factor and long iterations, the symmetry breaking also occurs.

Some studying still required to understand this phenomenon. However, we end the
analysis of this state transition here since a more detailed study of this phenomenon,
would be beyond the scope of this work. In the following section we showcase another
type of state transition, which was also analyzed with GPA.

3.5 Synchronization

It is well known that depending on the coupling parameter and the map parame-
ter(s), systems composed by oscillators can synchronize. This process is observed in
homogeneous2 and heterogeneous systems (see for example Zhang et al. (2018)). In
this section, we showcase a homogeneous synchronization of 2D-CML, which is given
by the system D in Table 3.1. The visual pattern (Figure 3.9) that arises in this pro-
cess is a groove, each oscillator with high amplitude has low amplitudes neighbors
and vice versa. There are several filaments in the observed pattern, these filaments
are produced by the interaction between regions which are locally synchronized.

In Figure 3.10, it is shown the value of G2 with angular tolerance of 0.01 rad and
0.1% of module tolerance for this CML. The data were plotted as a time-series with
1,000 observations, additionally it is shown the asymmetrical proportion and the
similarity in the time series.

Figure 3.9 - Synchronization samples

Samples at every 50 iterations in a system in Synchronization state transition
SOURCE: Own author

2Here we denote as homogeneous systems with the same map function
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Notice that the pattern has a characteristic interval for G2, the average of G2 is 0.954
and standard deviation 0.093 between the iterations 200 to 1,000. The dynamic of
this system when synchronized consists of the groove and the movement of the
filaments, it explains the high fluctuations on the observed interval.

Figure 3.10 - G2 in synchronization transition

SOURCE: Own author

In order to determine the region that the synchronization occurs, and also under-
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stand the system behavior with random initial conditions, a secondary test is pre-
sented in Figure 3.11. In this test for each set of parameters (ε, α) , it is measured
G2 average of 100 long-range iterations. The long-range iteration starts with a new
randomized matrix, in which the model iterates 4,000 times. Due to the high cost
for computing this test, the matrix of this test was reduced to 32x32.

Figure 3.11 - G2 phase-space for 32x32 random CMLs

Average of G2 of 100 random matrices, after iterating 4,000 times. The grid density is:
∆ε = ∆α = 0.025.

SOURCE: Own author

Notice that, in this test, the region that describes the groove pattern are the blue
areas (G2 ≈ 1.0), for instance the region 0.9 < ε < 1.0, 3.1 < α < 3.5.

We had shown that G2 is able to characterize CML transient behavior. In the App-
pendix D, we show the Largest Lyapunov Exponent (LLE), which phase-space (Fig-
ure D.1) can be compared to the G2 phase-space shown in Figures 3.8 and 3.11.
Observing the region 0.2 < ε < 0.6 and α > 3.57, we can conclude that G2 does
not detect long-range regimes, and it is dependent to the initial condition. However,
it detect transient phenomena, which are not explicit in the LLE phase-space. An
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example of the system at this region is shown in Figure 3.5, observe that the system
is asymmetric. However, if we start the same system with another initial condition,
we obtain the pattern from Figure 3.9. Notice that both patterns are completely
different. With respect to the system dynamic in LLE space representation, the sys-
tem has no significant unstable orbits. Thus, G2 is detecting another kind of feature,
being a complementary tool for regime characterization.

From this analysis of state transition in 2D-CML patterns, we end up the application
of GPA on a typical chaotic dynamical system. In order to refine this application, a
further analysis with other metrics is still necessary. However, for the purpose of this
work the results are able to establish the GPA performance. In the next chapter, we
perform the gradient pattern analysis on digital images of galaxies in order to study
the GPA performance for morphological analysis.
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4 SECOND CASE STUDY

A major challenge in cosmology is the environmental influence in formation and
evolution of galaxies. It is well known that early-type galaxies prevail in crowded
environments, and late-type galaxies prevail at barren environments (DRESSLER,
1980; MO et al., 2010; TEMPEL et al., 2011). However, interesting insights have been
observed in a more accurate analysis. The most recent morphology techniques al-
lowed the detection and environmental study of peculiar galaxies in high redshift,
for example spiral galaxies with high metallicity (TEMPEL et al., 2011), unusual blue
galaxies (TEMPEL et al., 2011; SHAMIR; WALLIN, 2014), and tidal-distorted morpholo-
gies (SHAMIR; WALLIN, 2014). However, the analysis of high red-shifted galaxies is
a challenge, since the image quality decrease with the aimed object distance.

There is also a demand for fast classification algorithms since there is a constant
increase of the data volume and variety. For instance, the project Sloan Digital Sky
Survey (SDSS) constantly increase the sky coverage area and meta-data. SDSS-1
released a catalog with 53 million objects (approximately 14GB), SDSS-7 cataloged
357 million objects (approximately 15TB), and 933 million objects (approximately
28TB of raw data) were released recently in SDSS-14.

A recent study from Strieder (2010) introduces the G1 to the morphological galaxy
classification, producing suitable results. In this chapter, it is presented a comparison
between G1, G2, and the improved version of classical non-parametric morphomet-
rics.

Here, we present a pipeline called CyMorph (abbreviation of Cython Morphology),
which is part of a project (N◦2014/11156-4). The main goal of this pipeline, in the
context of the project, is to pre-classify galaxies, to a more accurate analysis with
Galphat(YOON et al., 2011). Additionally, two papers related to this pipeline have
been published (ROSA et al., 2018; BARCHI et al., 2017).

This chapter contains a description of the dataset, a description of CyMorph, the
results and interpretation. This chapter is structured in the following parts: the
problem context (section 4.1), dataset description and preprocessing (sections 4.2
and 4.2.1), the objective function for parametrization (section 4.3), morphometrics
(sections 4.4 to 4.9), the system usability (section 4.10), and lastly the morphometric
distributions (section 4.11).
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4.1 Context

Galaxies are systems composed by stars held together by a gravitational force. The
galaxy morphology is a fundamental property for understanding the characteristic
of these stellar populations. Moreover, in a larger scale, the morphology is important
for understanding the universe formation.

Many schemes have been carried out to describe the diversity of structure and prop-
erties of galaxy morphology. These schemes explain from visual perspective, the
physical-chemical similarities and discrepancies between objects. It is also impor-
tant to notice that these schemes also implies in a continuity between the object
classes, which should explain eventual morphological changes.

One of the earliest scheme –and most agreed to describe nearby galaxy– is the
Hubble Tunning fork. As shown in Figure 4.1, the Hubble Tunning fork is majority
composed by four classes of galaxies: ellipticals, normal spirals, barred spirals, and
irregulars.

Figure 4.1 - Hubble Tunning fork

SOURCE: Mo et al. (2010).

Elliptical galaxies (also known as Early-type) are preponderantly composed by old
stars, with high metallicity1. Despite the physical-chemical properties, elliptical
galaxies are sub-classified according to the ratio between minor and major axis.

Spiral galaxies (also refereed as Late-type) are systems composed by a diversity of
regions, these galaxies are sub-classified in Hubble-scheme by presence or absence

1In this context, metallicity refers to the proportion chemical elements that are not Hydrogen
neither Helium.

38



of bars, and the spiral arms angle. Notice that these galaxies also have a diversity
of regions:

• Bulge - the galaxy central region that has high metallicity stars and low
stellar formation
• Spiral arm - a region with low metallicity stars and high rate of stellar

formation
• Bar - a structure formed on orbit instability of bulge stellar population,

this structure forces outside the bulge gas into the Spiral arms fueling the
formation of new stars.
• Disc - a region preponderantly composed by gas, dust and new stars
• Halo - this region has low gas and dust density, and generally contain

globular clusters

It is important to notice that Hubble system has also some unexplained galaxy
types (for example galaxies with rings), and does not characterize morphologies of
interacting galaxies (for example tidal distorted). Furthermore, new schemes such as
Hubble-de Vaucouleurs extended the Hubble scheme by including information from
other sources then visual.

Due to the objectives of this work, we evaluate a simpler model that still a challenge
for classification, when we consider the data volume and complexity. This model
organizes the galaxies in two main classes: early-type and late-type.

4.2 Dataset

We selected bright galaxies from Galaxy Zoo1 catalog (LINTOTT et al., 2008), a citizen
science project that aims to understand the galaxy formation, especially with respect
to the morphology. Galaxy Zoo1 provided a catalog with approximately 890,000
classified objects. In order to retrieve the images, we downloaded field images from
Sloan Digital Sky Survey (SDSS), the code to download the set of images is described
in Appendix A. The field images used in this study are 2048x2048 images in r-band,
since our aim in this pipeline is to detect elliptical galaxies which commonly are
brighter in r-band. An example of field image is shown in Figure 4.2, notice, this
image contains many objects. In order to filter the image, a preprocessing were
applied in Field images, as described in section 4.2.1.

We apply a criterion for large object selection, according to a relation between ar-
eas: πR2

50%(b/a) >= 40π(f.seeingr/2)2, where R50% is the radius containing 50%
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Figure 4.2 - Field image example

SOURCE: Blanton et al. (2017)

of Petrosian flux(PETROSIAN, 1976), b/a is the ratio between the fitted ellipse that
bounds the galaxy, and seeingr is the average measure of the Full Width Half Max-
imum from the fitted ellipse. In virtue of the Galaxy Zoo1 preprocessing and our
criteria, around 58,000 classified objects were analyzed. All galaxies of this analysis
are inside the redshift range: 0.03 < z < 0.1.

4.2.1 Preprocessing

Incisive image preprocessing techniques are mandatory for morphology, as it
ensures the consistency of parameters, and improves the feature extraction. For
the morphology analysis, there are two major issues are assigned to this step: the
stamp cut, and secondary objects removal.
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Figure 4.3 - Pre-processing fluxogram

Image pre-processing fluxogram, where RP is the petrosian distance, and Rb is the
minimum distance from the galaxy to the boundary.

SOURCE: Own author

The pipeline for our image preprocessing step is given by the Figure 4.3. In the first
step the aimed object is selected from the Field Image using SExtractor (BERTIN;

ARNOUTS, 1996). A stamp with maximal distance of 7.5RP around the aimed object
is produced in the clipping process. If the object is not entirely inside this image a
quality flag is set for post-processing.

In order to clean the image, the pixels from objects, which are not aimed, are replaced
by its isophotal level. Where the isophotal level is given by the ellipse, which bound-
aries have approximately the same amplitude. The isophotal level is approached
using a random value from a Gaussian distribution on the aimed object expanded
ellipse that intersects the pixel.

Finally a secondary quality test is done by verifying the convergence of the con-
centration parameter (see section 4.4). This last criteria detect whenever a small
objects footnoteHere a small object contain less than 6 pixels contaminates the im-
age. Finally, a stamp image is generated, some examples of stamps are shown in
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Figure 4.4.

Figure 4.4 - Stamp sample

Sample of galaxy stamps(magnified for easier visualization), early-type galaxies at first
and second row, late-type galaxies at the end rows.

SOURCE: Own author

4.3 Objective Function

A recurrent problem in morphological analysis is the parametrization, some morpho-
metrics receives a set of parameters, for example the smooth degree of clumpiness
(section 4.7). Usually an expert settle these parameters. However, this approach
is subjective. Moreover, we should expect a global parametrization that optimizes
the data. However, there is no unanimity in literature of which set of parameters
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should be applied. In this work we present an innovative approach to this problem:
we state a set of objective functions, which determines the best parametrization.
The proposed framework measures binomial distance, a distance between two set of
distributions.

In order to measure these metrics we randomly selected 1,000 galaxies of each type
(spirals and ellipticals), and tested with a set of parameters. Since our goal is to
separate each morphological class, we selected the parameters that maximizes the
objective functions.

There are advantages and disadvantages to this methodology, the advantages of this
methodology are:(i) it is an unbiased approach, (ii) numerically compare morpholog-
ical parameters, (iii) automatize the parameterization. However, this methodology
has some issues, we may observe different optimal solution, depending on data va-
riety, and in some cases there is no consensus between the metrics (see for example
the entropy in section 4.8).

We select three metrics with different properties: Kullback-Leibler divergence (equa-
tion 4.1)(KULLBACK, 1997), Hellinger distance (equation 4.2), and a new metric
based on the geometrical distance.

KL(P1||P2) =
∑
φ∈Φ

P1(φ)log2

(
P1(φ)
P2(φ)

)
(4.1)

DH(P1, P2) =
|∑φ∈Φ

√
P1(φ)−

√
P2(φ)|

√
2

(4.2)

The Kullback-Leibler measures the degree of divergence from a distribution P2 to P1.
Notice that KL is not a symmetric operation (∃(P1, P2)|KL(P1||P2) 6= KL(P2||P1)),
neither bounded. A common measurement that is invariant to the referential dis-
tribution is the average between KL(P1||P2) and KL(P2||P1), here denoted as
DKL(P1, P2). This solution leads us an unbounded symmetric operation that ranges
between 0 and∞, where 0 represents similar distributions and∞ represents distant
distributions. In the presented analysis, we have not considered KL(P1||P2) and
KL(P2||P1), instead our analysis uses DKL(P1, P2).

The Hellinger distance quantify the similarity degree between distributions P1 and
P2, by means of the euclidean norm. This metric is bound in the interval [0, 1], where
0 represent similar distributions and 1 represents distant distributions.

43



In addition, we claim for a new metric that depends on the Geometric Histogram
Separation (GHS). The GHS metric(δGHS) considers the area of separation (δBCA)
and the length distance (δBCL). The features measured in each distribution is shown
in Figure 4.5, where features of two distributions(R and B) and the intersection(RB)
are measured.

Figure 4.5 - Example of binomial distribution and the GHS features

Example of binomial distance between a distribution in red (R), and another distribution
in blue(B). The intersection between both distribution is in gray(RB). The values AR,
AB, and ARB are the distribution areas. The values hR, hB, and hRB are the distribution
heights.

SOURCE: Own author

Considering the distribution areas AR, AB, and ARB, the area of separation is mea-
sured as the equation 4.3. Notice that the lower intersection area, the greater is δBCA,
also notice that this feature is normalized according to the total area(AR+AB+ARB).
As canonical examples, when both distribution are equal then, AR = AB = 0
and ARB = 1, therefore δBCA = 0. Whereas, if both distribution are detach, then
ARB = 0 and δBCA = 1.
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δBCA = 1− ARB
AR + AB + ARB

(4.3)

The length separation is measured according to equation 4.4,where hR, hB, and hRB
are the distribution lengths. Notice that δBCL is also normalized, and the extreme
values are the same of δBCA.

δBCL = hR + hB − 2hRB
hR + hB

(4.4)

Finally, the GHS is measured as according to equation 4.5. Since we are comparing
an one dimensional metric with a bidimensional metric, it is applied the square root
of δBCA to measure δGHS.

δGHS =
√
δBCA + δBCL

2 (4.5)

Since we are dealing with three metrics, and in some cases there is no unanimity in
which is the optimal parameter, we established the average as criteria. As DKL is
not bounded, we normalized DKL according to the maximal value of DKL measured.

4.4 Concentration

An accumulated flux profile relates the relative flux from a given galaxy to the dis-
tance. This index explores properties of galaxies shape that are intrinsically related
to it’s accumulated flux profile. For example, steeper profiles are usually observed
in bulge systems whereas smoothed profiles are observed in bulge+disk systems.
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Figure 4.6 - Flux profile estimated in a synthetic galaxy

Flux profile from a simulated galaxy using Sérsic profile, n = 6.0, and half-light radius 10.
Absolute accumulated flux profile in left side, and normalized accumulated flux profile on
right side.

SOURCE: Own author.

Morgan (1958) proposed the first concentration index, which is given by the ratio
of the distance that contains 80% brigthness2(R80%) of the observed galaxy, and the
distance that contains 20% brightness (R20%) of the observed galaxy, as shown in
the equation 4.6. Notice that fixing the brightness value, the ratio between these
distances indicate the galaxy profile slope.

C1 = log10

(
R80%

R20%

)
(4.6)

Further improvement in this index associate other ratios of brightness proportion
radius since the distance measurement is affected by the image sky, and seeing effects
in the center of the galaxies (FERRARI et al., 2015). In order to avoid the smoothing
effect from galactic center, Kent (1985) proposed another concentration index (C2),
changing to the ratio between R90% and R50%.

In this work we intend to define which ratio of brightness proportion radius pro-
duces a better characterization in the observed galaxies. To analyze the best ratio,
we show in section a new methodology for setting parameters. As result, the op-
timal concentration index (C3) is given by the ratio between R65% and R35%, the

2A galaxy image brightness is the integrated flux in a given region
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concentration index using this ratio were compared using the classifier.

Table 4.1 - Concentration radius ratio test

R1 R2 DKL(L,E) DH(L,E) GHS(L,E) Average
0.55 0.15 0.626 0.681 0.813 0.692
0.55 0.25 0.873 0.744 0.874 0.810
0.55 0.35 0.947 0.783 0.877 0.847
0.55 0.45 0.66 0.823 0.892 0.776
0.65 0.15 0.644 0.712 0.872 0.728
0.65 0.25 0.653 0.769 0.869 0.748
0.65 0.35 1.075 0.779 0.902 0.894
0.65 0.45 0.727 0.8135 0.876 0.789
0.75 0.15 0.49 0.775 0.88 0.704
0.75 0.25 0.28 0.845 0.895 0.667
0.75 0.35 0.841 0.849 0.902 0.844
0.75 0.45 0.975 0.854 0.9 0.887

4.5 Estimating the accumulated flux profile

In literature empirical techniques are usually applied for the accumulated flux pro-
file estimation (e.g. Ferrari et al. (2015), Conselice (2003)), another approach is to
associate to a galaxy parametric model, as the Sérsic index (GRAHAM, 2001). Both
techniques have issues, for instance empirical techniques have issues associated to
seeing effects (FERRARI et al., 2015), whereas parametric models are inaccurate for
late-type galaxies (GRAHAM, 2001).

Here we present a new empirical analysis process for the profile estimation. Our
approach estimates the accumulated flux in a set of distances, and interpolates the
profile to provide a distance for a given desired fraction of accumulated flux. The pro-
cess to estimate a profile is composed by the steps: estimating the sky/background,
sampling, estimating the galaxy total flux, interpolating the desired luminosity dis-
tance.

In order to estimate the background value we adopted the σ-clip technique from
SExtractor (BERTIN; ARNOUTS, 1996). The main advantage of this solution is the
invariance to the local noise, in this method the background of each pixel is given by
the mean of local selected pixels. This selection is an iterative process where pixels
inside a kernel that are not inside an interval around the local median are discard.
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Figure 4.7 - Sampling process, and flux derivative profile

Error estimated in the sampling process versus distance, considering three densities. In
right side, the derivative from the flux profile converging to 0

SOURCE: Own author.

In the sampling step, the total brightness profile is estimated (for example the pro-
file A from image 4.6). Given a distance d, for each pixel n pixels are sampled in
order to estimate the flux contribution for this distance. The total brightness of the
distance d is given by the weighted sum of each pixel. The sampling density drives
the calculation error, if a small density is used, the precision of this method decay,
whereas if a high density is used, the computational cost increases. This leads us a
question: Which sampling density achieves an acceptable error, and has a suitable
computational cost?

First of all an error equation is presented: consider an image composed by the
constant 1, if we estimate the brigthness inside an aperture with radius d, then the
real total brightness in this aperture (B(d)) is the circle area (πd2). Using the circle
true area, the error equation 4.7 is proposed. The error was measured with three
different pixels density, and shown in figure 4.7. Notice that with the density 100
samples/pixel, the error stabilizes since this is the minimal distance that the error
converges.

E(d) = |πd
2 −B(d)|
πd2 (4.7)

For the total flux estimation, in literature usually is set an empirical aperture (see
for example Ferrari et al. (2015), Conselice (2003)), and then is calculated the sum-
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mation of the flux inside this aperture. However, this technique may lead some
issues, as the detection of problems in background estimation process. Analyzing
the brightness profile derivative with respect the distance, as shown in Figure 4.7,
the derivative approaches to zero as the distance from the galaxy center increases.

To accurately determine total flux in a given a profile, a technique similar to the sky
σ-clipping is presented. Firstly, we measure the median flux (f̃) and its standard
deviation(σf ) from a set starting from a distance where the flux derivate with respect
the distance is less than 10% is measured. Given f̃ , and σf , the total flux from the
source is measured as a mean of points that satisfies the inequation |f − f̃ | < kσf . If
there is no derivative less than 10% or less than five points satisfies the inequality,
the flux profile is said non-convergent, the error flag is set 2, and the total flux is
calculated as the sum of every pixel in image.

4.6 Asymmetry

The asymmetry is a typical basis on morphometric systems (see for exam-
ple(ABRAHAM et al., 1996; FERRARI et al., 2015)). Since this metric is commonly
applied to characterize high-redshift galaxies (CONSELICE, 2003), a diversity of equa-
tions and enhancing processes were proposed to improve this method.

A popular version of asymmetry (ABRAHAM et al., 1996) is given by the equation 4.8.
In this equation, Idi,j is the (i, j) pixel intensity after subtracting the background,
and d is the angle of rotation in radians. Notice that each term of sum is weighted
by |I0

i,j|. This weight enhances the spiral disk region since the galaxy central region
usually has the higher intensity value than the disk. However, notice the sky is also
enhanced in this process since it has a low flux intensity, as result one of the main
tasks is how to segmented the images. In this version, we may expect higher values
of asymmetry for late-type galaxies.

A1 =
∑
i,j

|I0
i,j − Iπi,j|
|I0
i,j|

(4.8)

In the state of the art, the asymmetry index is measured using correlation coeffi-
cients, as described by the equations 4.9, and 4.10. The functions r() and s(), are
respectively the Pearson rank and the Spearman rank. The advantage of the corre-
lation coefficients are the robustness to seeing effects (FERRARI et al., 2015) and the
robustness to the sky interference on the measurement.
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A2 = 1− r(I0, Iπ) (4.9)

A3 = 1− s(I0, Iπ) (4.10)

In our approach, we also introduce an enhancement process by weighting each pixel
intensity according to the filtered gradient geometric mean (see section 4.7.1).

4.7 Clumpiness

The clumpiness describes the local flux dispersion from an image, which is mea-
sured as the correlation between the original image and its smoothed counterpart.
Traditionally this process is done convolving a smoothing kernel with a fixed-size
kernel (ABRAHAM et al., 1996),or according to the aimed object size (CONSELICE,
2003; FERRARI et al., 2015). However, in literature there is a lack of explanation/tests
about the defined kernel size, and the kernel parameters. A new approach for image
smoothing is presented, using the Butterworth filtering (subsection 4.15). The ad-
vantage of this method is a continuous adaptive control to the image smooth degree.
In order to improve this parameter characterization, we also introduce an enhancing
step using the Sobel filter (see section 4.7.1).

Originally, the clumpiness is measured as the weighted difference between the image
(composed by elements Ii,j) and its smoothed version(composed by elements Isi,j),
according to the equation 4.11.

In further works (CONSELICE, 2003; HAMBLETON et al., 2011) the sum operation
was replaced by the maximum operation. This modification improves the acuity
(see histograms from Hambleton et al. (2011)). However, it increased the method
sensitivity.

S1 =
∑
i,j

|Ii,j − Isi,j|
|Ii,j|

(4.11)

In recent works, this parameter has been improved by adopting correlation coeffi-
cient(FERRARI et al., 2015). The advantages to this approach are the characterization
of the flux intensity levels with respect to the linearity of the flux distribution, and
the robustness to local noise. The smoothness parameters are measured according
to the equations 4.12, and 4.13, where I is the flux intensity in the original image,
and Is is the flux intensity in the smoothed image.
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S2 = 1− r(I, Is) (4.12)

S3 = 1− s(I, Is) (4.13)

Aiming to determine the best smoothing degree, three objective functions based on
empirical histograms distance/divergence were applied (details to these measure-
ments are shown in section 4.3). In Table 4.2 is shown the objective function for a
set of smoothing parameters (deg(S3)). The ratio of 0.6 is the best parametrization
since it produce the highest separation ratio.

Table 4.2 - Smoothing degradation degree test

deg(S3) DKL(L,E) DH(L,E) GHS(L,E) Average
0.3 0.656 0.838 0.655 0.573
0.4 1.429 0.796 0.594 0.627
0.5 1.923 0.805 0.527 0.665
0.6 2.905 0.778 0.541 0.773
0.7 2.361 0.737 0.679 0.743

4.7.1 Sobel filter

The Sobel filter is a 2D-gradient filter that emphasizes high-spatial frequencies (??).
The kernel for horizontal gradient (dh), vertical gradient(dv), and both diagonals
gradient are given by the kernels from figure 4.7.1.

Figure 4.8 - 3x3 Sobel filters
-1 0 1
-2 0 2
-1 0 1

1 2 1
0 0 0
-1 -2 -1

0 1 2
-1 0 1
-2 -1 0

-2 -1 0
-1 0 1
0 1 2

In order to enhance the galaxy image, a set of weights are built from the filtered
gradient geometric mean. The weights (wi,j) are measured according to the equa-
tion 4.14, where i, j are matrix coordinates dh, dv, dp, and ds are respectively the
gradients of: the horizontal, vertical, principal diagonal, and secondary diagonal.
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wi,j =

√
dh2

i,j + dv2
i,j + dp2

i,j + ds2
i,j

max(
√
dh2 + dv2 + dp2 + ds2)

(4.14)

Each weight(wi,j) is directly multiplied to the correspondent matrix element(Ii,j),
in order to obtain the enhanced matrix.

4.7.2 Butterworth filter

The Butterworth filter (KASZYNSKI; PISKOROWSKI, 2006; ??) associated weights to
spatial frequencies domain, in order to filter high frequencies. This filter is given
by the equation 4.15, where ω is the amplitude from a spatial frequency d(ω). Two
control parameters determine the cutoff3 frequency (d0), and the filter order (n).

G(ω) = 1
1 +

(
d(ω)
d0

)2n (4.15)

In Figure 4.9 is presented the frequency profile with four orders, and cutoff distance.
Notice that increasing the order the profile approaches to a threshold function,
where it is observed the formation of artifacts in the image. In this pipeline, we
reparametrized d0 as the cmax(W,H), were W,H are the matrix sizes. With the
reparametrization c turns into a control parameter that ranges between 0 and 1. We
fixed the filter order to 2.

3A frequency with weight 0.5
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Figure 4.9 - Butterworth filter for a set of frequencies

Frequency weights given by the Butterworth filter, with d0 = 50, and varying order.
SOURCE: Own author.

4.8 Entropy

The entropy is a measurement of a random variable uncertainty. Here, we adopted
the Shannon entropy (shown equation 4.16), as this approach were already applied
to morphology providing reliable results(FERRARI et al., 2015).

Assuming the galaxy flux as the random variable, this measurement shows the het-
erogeneity degree in pixel distribution.

H = −

K∑
k
p(Ik)log(p(Ik))

log(K) (4.16)

Notice that in equation 4.16, the flux intensity (Ik) is discretized in a set of K bins.
As described in other morphological parameters, we apply an objective function to
determine the best number of sets (K). Although different from other methods, there
was no concordance between on the optimal value for K. To solve this problem, we
selected the average of best K for each objective function, which is K = 130 bins.
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Table 4.3 - Entropy bins

Bins DKL(L,E) DH(L,E) GHS(L,E) Average
100 0.683 0.753 0.873 0.764
130 1.027 0.715 0.891 0.869
160 0.549 0.743 0.856 0.711
190 0.729 0.76 0.866 0.779
220 0.818 0.743 0.879 0.806

4.9 Gradient Pattern Analysis

Concerning on GPA performance for characterizing galaxy images, a small change on
G1 and G2 is proposed. The equations for these metrics are the described in sections
2.2.1 and 2.2.2. However, the operator has been adapted to work with segmentation
masks. In symmetry detection step, if a pixel in a position (x, y) is detected as sky
by SExtractor, then the gradient at position (x, y) is ignored.

In last step, for G2, each a pixel that belongs to the sky decreases the total number
of vectors (N), and the vectors at those positions are not considered on confluence
summation. In G1 all vector, which belongs to the sky, are enforced to symmetrical
since G1 depends only on the ratio between the number of Delaunay connections
and the number of asymmetrical vectors.

An example of analysis is shown in Figure 4.10. The presented example shows two
standard galaxies: an elliptical, and a spiral. Notice that, vectors with highest mod-
ulus are inside the galaxy disk, which are the vectors at galaxy boundary. Also, the
central vectors -that belongs to the galaxy bulge- are symmetric.
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Figure 4.10 - G1 and G2 applied to galaxy morphology

On left side is shown an example of spiral galaxy, on right side is shown an example of
elliptical galaxy. The first row is the original image, the second row is the asymmetrical
gradient field, and the third row is the Delaunay triangulation.

SOURCE: Own author.

Notice, the elliptical galaxy in Figure 4.10 has a large bulge, and the vectors at
boundary are regularly distributed with all possible directions. In contrast, spiral
galaxies have more asymmetrical vectors in proportion, and the perturbations ob-
served at the disk increases the number of Delaunay triangulations. Thus, we may
expect a higher value of G1 and G2 for spiral galaxies.
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4.10 Usability

CyMorph is a pipeline in command-line interface that uses a configuration script as
input. This pipeline was developed in Cython, a library that translates part of code
in Python into C. It also allows the exchange between flexibility (from Python) and
performance (from C). We can exchange the flexibility by: specifying the variable
types, coding using imperative paradigm, and compiling the code (as shown in Code
4.1). Additionally, the components of this code are accessible by Python scripts.

Code 4.1 - Command for locally compile CyMorph

python compi le . py bui ld_ext −−i np l a c e

The input script is ordered in three categories: File, Output, and Indexes. In the first
configuration category the file path, indexes, and the clipping process are specify. In
output, is specified if the pipeline should save the figures in each step (for example the
flux profile, the smoothed galaxy image, or the correlation points), and if the pipeline
should print in terminal the current step and eventual problems (for instance the
concentration convergence). The Indexes category is specified each morphological
parametrization (for example the smooth degree). An example of configuration file
is shown Code 4.2. There are three execution modes, the user can: run a simple
galaxy image (Code 4.3), run a set of images with MPI (Code 4.4), or optimize the
morphological parameters.
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Code 4.2 - CyMorph configuration file example

[File_Configuration]

Path: benchmark/

Filename: 587722952230240617.fit

Indexes: Ga,S,A3,C, H

Clip: True

[Output_Configuration]

Verbose: True

SaveFigure: True

[Indexes_Configuration]

Entropy_Bins: 180

Ga_Tolerance: 0.02

Ga_Angular_Tolerance: 0.03

Ga_Position_Tolerance: 0.01

Concentration_Density: 100

Concentration_Distances: 0.65, 0.35

butterworth_order: 2

smooth_degree: 0.5

Notice that in Code 4.4 the configuration file is not specified in the pipeline call.
Instead, we use the file list as input. In this execution mode, the configuration is
specified in "ParallelConfig.ini", a configuration file which does not specify the path,
neither the filename.

Code 4.3 - Running CyMorph for a single galaxy images

python main . py con f i g . i n i

Code 4.4 - Running CyMorph for a a set of galaxy images

mpirun −np 3 PCyMorph . sh t e s t 500 / s p i r a l s . csv

The optimization process is the script "optimizeIndexes.py", that generates configu-
ration files for a distributed execution. This process requires more control than other
execution modes, we should define precisely the parameter space to analyze since
every execution has a high computational cost. Thus, the script must be rewrite for
each parameter optimization.
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4.11 Morphometric Histograms

The result for each parameter, with the optimal parametrization, is exposed in this
section. For each morphological parameter, it is plotted a histogram for early-type
galaxies (in red) and a histogram for late-type (in blue). The histograms shown in
Figure 4.11 shows the best distribution of each morphometric type. The goal is to
separate the galaxy distribution as much as possible.

Figure 4.11 - Histograms of galaxies

Each graph displays the distribution of a galaxy morphometric. The histogram have nor-
malized area, since the dataset is imbalanced. Elliptical galaxy distribution is in red. Spiral
galaxy distribution is in blue.

SOURCE: Own author.
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It is also presented the final distance between the distributions is shown on Table 4.4.
Notice, the final histogram distances are different to the optimal parametrization
distances since the final distances are measured in the whole dataset.

In order to build a reliable classifier we must consider a set composed by the most
significant metrics. According to δGHS, the best morphometrics are respectively: S3,
G2, and H. Notice, the difference between separation ratio of these metrics are not
significant. For instance, the difference between δGHS(C3) and δGHS(G2) is 0.01.

Also, it is important to note, the more diverse is the set of metric, the better is the
classifier. As demonstrated, GPA retains the signature of the asymmetric gradient
field, which is a unique feature. Since G2 is one of the bests morphometrics with
respect to the separation ratio, and it is a unique feature, we can conclude that
we achieved our goal. We adapted G2 to the galaxy morphometry, and we obtain a
suitable galaxy separation ratio. A further study of classifiers with these metrics is
required. However, due to time limitations and the goals of this work, here, we have
not explored this topic.

Table 4.4 - Final histogram distances of the best morphometrics

C3 A3 S3 H G1 G2
DKL 2.957 2.274 2.828 2.632 1.500 2.056
DH 0.747 0.667 0.744 0.737 0.585 0.723
δGHS 0.81 0.834 0.900 0.873 0.802 0.890

With this last statement, we consolidate the static study case. In the following chap-
ter, we conclude this dissertation, reviewing the application and important topics of
this work, and suggesting future works.
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5 CONCLUDING REMARKS

The aim of this work has been the Gradient Pattern Analysis (GPA) adjustment
to large datasets especially datasets with large matrices. These adjustments are
required, as it have been observed that in the state of the art, all operators of
GPA have a high computational cost, and are not effective in large matrices. The
secondary objective of this work has been the dynamical system analysis and the
galaxy morphological analysis, comparing with the commonly applied techniques in
these applications.

5.1 Conclusion overview

At chapter 2 the GPA formalism and the classical technique (G1) were presented,
it were also proposed some improvements. The proposed improvements include the
establishment of concentric symmetry, the definition of a second gradient order oper-
ator (G2), and the code parallelization. We review the test basis for GPA, composed
by: canonical matrices (Laminar, Bessel, and Gaussian) and Random matrices. It
is introduced a secondary type of basic test: the Perlin Matrices, were the objective
is to distinguish spatial noise to random noise. We observed that G2 has a similar
result to G1 with respect to the Random matrices. However, unlike G2, G1 were not
able to distinguish Random matrices to the Perlin matrices.

In chapter 3 it is presented the Coupled Map Lattice(CML), a spatially extended
system that is a template for complex systems. It is presented two interesting system
transitions: symmetry breaking and synchronization. It is presented a test with a
simple case in each system transition, and a global test varying the system parame-
ters. Additionally, in symmetry breaking it is presented a test with different maps,
in this test it is observed a unique time and velocity for system transition. With the
improvements to GPA technique, we are able to observe these transitions.

Lastly, in chapter 4 it is presented the static application: the galaxy morphology.
The aim of this chapter has been the evaluation of a reliable galaxy morphometric
system, based on classical techniques and the proposed operator. It is proposed some
improvements that include: the preprocessing, the replacement of some basic image
operations1, and a criteria for rating each morphometric. After some adaptations, it
is also introduced G1 and G2 in the morphometric set. We observed that, G2 has a
similar classification capability to entropy (H) and clumpiness (S3), were according
to the proposed criterion (δGHS), G2 is the second best morphometric.

1Such as the smoothing process, and the structure enhancement
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5.2 Future works

The presented work demonstrated the GPA potential to characterize spatially ex-
tended systems. We achieved the primary and secondary goals, however, some im-
portant topics emerged during this work. Due to time limitations, these topics should
be pursued in future works.

Firstly, with respect to the metric, some improvements to the computational perfor-
mance still required. We intend to explore different approaches to the GPA bottle-
neck2 in future works. Also, in theory field, some proprieties and important questions
about GPA still unsolved, such as the maximal fragmentation.

Concerning the dynamical application, it would be interesting to see if GPA is a
good descriptor of other dynamical systems, for example graph dynamical systems
and 3D-systems. We would also like to explore a possible scaling free (L) universality
class, G(L) ∝ Lµ, to characterize different underlying physical process in the pattern
formation phenomena. This is an innovative and complementary approach in the
field of spatiotemporal nonlinear dynamics that deserves future systematic research
using GPA.

With respect to the galaxy morphology application, it is important to see if the
presented results still valid for image-datasets with lower/higher resolutions. Another
important topic, which we are researching, is the classification. We expect intriguing
result in an unsupervised morphological analysis.

2The symmetry removal step
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APPENDIX A - DOWNLOADING SDSS IMAGES

To download SDSS field images, it is necessary a catalog specifying each object
proprieties. For this work, it was downloaded images from Galaxy Zoo 1 catalog,
which can be downloaded directly by the project website. The table A.1 is an example
of catalog.

The table must have the proprieties: ra,dec, run, rerun, camcol, and the filename. An
Uniform Resource Locator (URL) is build to download the compressed field image.
The following code recieves a catalog in ".csv" format, build the URL, download
each compressed image, and descompress it.

Code A.1 - Download SDSS field images
import numpy
import csv
import sys
import os

ga l = l i s t ( csv . reader (open( sys . argv [ 1 ] , " rb " ) , d e l im i t e r=’ , ’ ) )
ndata = len ( ga l )
header = numpy . array ( ga l [ 0 ] )
ga l [ 1 : ] = sorted ( ga l [ 1 : ] , key=lambda l : l [ numpy . where ( header == " image " ) [ 0 ] [ 0 ] ] )
path = " F ie ld / "

for l i n e in range (1 , ndata ) :
imgIndex = numpy . where ( header == " image " ) [ 0 ] [ 0 ]
f ie ldName = path+ga l [ l i n e ] [ imgIndex ]
f i leName = ga l [ l i n e ] [ imgIndex ] . r ep l a c e ( " . gz " , " " )
i f not ( os . path . i s f i l e ( f ie ldName ) or os . path . i s f i l e ( path+fi leName ) ) :

print ( " Downloading " , l i n e )
ra = ga l [ l i n e ] [ numpy . where ( header == " ra " ) [ 0 ] [ 0 ] ]
dec = ga l [ l i n e ] [ numpy . where ( header == " dec " ) [ 0 ] [ 0 ] ]
run = ga l [ l i n e ] [ numpy . where ( header == " run " ) [ 0 ] [ 0 ] ]
rerun = ga l [ l i n e ] [ numpy . where ( header == " rerun " ) [ 0 ] [ 0 ] ]
camcol = ga l [ l i n e ] [ numpy . where ( header == " camcol " ) [ 0 ] [ 0 ] ]
#f i e l d = g a l [ l i n e ] [ numpy . where ( h e a d e r == " f i e l d " ) [ 0 ] [ 0 ] ]
dr7 id = ga l [ l i n e ] [ numpy . where ( header == " dr7ob j id " ) [ 0 ] [ 0 ] ]

cmd = "wget␣−−inet4−only ␣−r ␣−nd␣−−d i r e c to ry−p r e f i x=Fie ld ␣http :// das . sds s . org /raw/ "
cmd += str ( run ) + " / "
cmd += str ( rerun ) + " / co r r / "
cmd += str ( camcol ) + " / "
cmd += fi leName + " . gz "
print (cmd)
pr = os . popen (cmd)
print ( pr . read ( ) )
# u n z i p t h e image
cmd = " gz ip ␣−d␣ " + path + fi leName + " . gz "
pr = os . popen (cmd)
pr . read ( )

else :
print ( "Found" , fieldName , l i n e )

print ( "Done " )

Table A.1 - Example of catalog table
dr7objid ra dec run camcol rerun field Zoo1 image
587739647819513943 169.0302 31.7175 4632 4 40 178 S fpC-004632-r4-0178.fit.gz
587734862142963879 146.195 7.232444 3518 2 40 37 S fpC-003518-r2-0037.fit.gz
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APPENDIX B - DOWNLOADING SOURCE CODE

The source code of the presented systems are public, under GNU Licensce 3.0.
A version of CyMorph code is available at: https://github.com/rsautter/
CyMorph, and the CML system is also available at: https://github.com/rsautter/
CML-CoupledMapLattice. And finally, the GPA source code is available at: https:
//github.com/rsautter/Concentric_GPA.

Alternatively, the code can be downloaded, if installed the the application ’git’, via
command line:

Code B.1 - CyMorph source code download

g i t c l one https : // github . com/ r s au t t e r /CyMorph

Code B.2 - CML source code download

g i t c l one https : // github . com/ r s au t t e r /CML−CoupledMapLattice

Code B.3 - CML source code download

g i t c l one https : // github . com/ r s au t t e r /Concentric_GPA
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APPENDIX C - PARALLELIZATION

In order to take advantage from hybrid parallel components, a version of this metric
was implemented using the library pyOpenCL (KLÖCKNER et al., 2012). OpenCL is
not the fastest GPGPU library (see the for example the tests from Su et al. (2012)),
however an important propriety of this library is portability, considering GPUs and
other coprocessor units.

In every step of the technique an improvement to the performance were observed,
in Table C.1 is shown a comparison1 between the time in every step and the input
matrix size.

Table C.1 - Execution time in seconds of each operator step

Matrix Size Step 1 Step 2 Step 3
16x16 0.00005 0.00105 0.00003
32x32 0.00004 0.00303 0.00002
64x64 0.00004 0.01670 0.00002
128x128 0.00011 0.21659 0.00006
256x256 0.00039 2.76907 0.00016

Notice that the second step is the step which spends more computational time, which
is explained by the computational complexity described in the following subsection.

C.1 Implementation and complexity analysis

In order to measure G2, a kernel for each step were developed. Every kernel is ex-
ecuted by WH threads, which is associated to a local and global index. For the
gradient approximation (Figure 2.6.a), the central finite difference method were ap-
plied. In this method, each matrix component is compared to its neighborhood value.
This operation has no recursion/loop in each thread, therefore the computational
complexity for each thread is O(1).

Vectors with same distance must be compared at the second step (Figure 2.6.b).
In order to select the data according to the distance,a smaller square is defined as
search-space. The bounding points are given by (cx− r, cy+ r) and (cx− r, cy− r),
where cx and cy are the center coordinates and r is the distance of the evaluated

1Tested on a desktop with the configuration:Ubuntu 16.04, intel core i7-4500U , 16GB of RAM,
AMD Radeon 86000M
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point. This process is summarized on code C.1, where the function ’isSymmetric’
determines whether two given vectors have same absolute value and opposite phase.
As result, the computational cost for each thread in the second step is O(WH),
where W and H are respectively the matrix width and height.

Code C.1 - Kernel for second step of GPA
__kernel void asymmetry_r (

__global double ∗phases , __global double ∗mods ,
__global int ∗ tableau , const double mtol , const double f t o l

){
int2 p1 = ( int2 ) ( get_global_id ( 0 ) , get_global_id ( 1 ) ) ;
int2 dim = ( int2 ) ( get_g loba l_s i ze ( 0 ) , ge t_g loba l_s i ze ( 1 ) ) ;
double2 cente r ;
double l d i s t ;
c en t e r=(double2 ) ( convert_double (dim . x ) , convert_double (dim . y ) ) ;
c en t e r = cente r / 2 . 0 ;
double myDist = euc l i d_d i s tance ( center , convert_double2 ( p1 ) ) ;
int2 p3 = ( int2 ) ( 0 ) ;
int x , y , x in i , x f in , y in i , y f i n ;

tab leau [ getIndex (p1 , dim ) ] = 0 ;

i f ( mods [ getIndex (p1 , dim ) ] < mtol /2){
tab leau [ getIndex (p1 , dim ) ] = 1 ;

return ;
}
i f ( i s I n s i d eMat r i x (p1 , dim)!=1){

tab leau [ getIndex (p1 , dim ) ] = 1 ;
return ;

}
x i n i = max(0 , convert_int ( c en te r . x−myDist )−2);
x f i n = min (dim . x , convert_int ( c en te r . x+myDist )+2);
y i n i = max(0 , convert_int ( c en te r . y−myDist )−2);
y f i n = min (dim . y , convert_int ( c en te r . y+myDist )+2);

// l a z y search
for ( x= x i n i ; x < x f i n ; x++){

for ( y=y i n i ; y < y f i n ; y++){
p3 = ( int2 ) ( x , y ) ;
l d i s t=fabs ( euc l i d_d i s tance ( convert_double2 ( p3 ) , c en t e r )−myDist ) ;
i f ( l d i s t <1.0){

i f ( isSymmetric (p3 ,mods , phases , mtol , f t o l )==1){
tab leau [ getIndex (p1 , dim ) ] = 1 ;
return ;

}
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}
}

}
}

In the case of G2, the final step consists on a summation of vectors and magnitude.
An efficient solution for this step is the reduce method (Figure C.1).

Figure C.1 - Reduction tree

Parallel reduction tree applied to sum asymmetrical vectors.
SOURCE: Adapted from Catanzaro (2010)

The reduce method consists on recursively split the data and apply the desired oper-
ation. In this case the operation consists on accumulate the number of asymmetrical
vectors, sum the partial vector coordinates, and sum the vector magnitude. To avoid
the concurrency problems, a barrier is placed at the end of each loop iteration, as
shown in code C.2. This method can be represented as a tree (Figure C.1), which
the number of splitting sets (S) determine the tree order. As result this method has
O(logS(WH)) parallel time in each thread2.

Code C.2 - Kernel for measuring G2

__kernel void getG2 (
__global double ∗gx , __global double ∗ gy ,
__global double ∗mods ,__global int ∗ tableau ,
__global double ∗part ia lX , __global double ∗part ia lY ,
__global double ∗partialMS , __global int∗ countAsym ,
__local double ∗ tpar t ia lX , __local double ∗ tpar t ia lY ,

2O(log2(WH)) in this case
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__local double ∗ tpart ialMS , __local int∗ tcountAsym
){

int g id = get_global_id ( 0 ) ;
int l i d = get_loca l_id ( 0 ) ;
int g s i z e = get_g loba l_s i ze ( 0 ) ;
int l s i z e = ge t_ loca l_s i z e ( 0 ) ;

// every element v e r i f y i f i t i s a symmetric v e c t o r
i f ( tab leau [ g id ] > 0){

tpa r t i a lX [ l i d ] = 0 . 0 ;
tpa r t i a lY [ l i d ] = 0 . 0 ;
tpart ia lMS [ l i d ] = 0 . 0 ;
tcountAsym [ l i d ] = 0 ;

} else {
tpa r t i a lX [ l i d ] = gx [ g id ] ;
t pa r t i a lY [ l i d ] = gy [ g id ] ;
tpart ia lMS [ l i d ] = mods [ g id ] ;
tcountAsym [ l i d ] = 1 ;

}

int o l dS t r i d e = l s i z e ;
// measuring d i v e r s i t y , us ing p a r t i a l sum method
for ( int s t r i d e = l s i z e /2 ; s t r i d e >0; s t r i d e = s t r i d e /2){

b a r r i e r (CLK_LOCAL_MEM_FENCE) ; // wai t everyone update
i f ( l i d < s t r i d e ){

tpa r t i a lX [ l i d ] += tpa r t i a lX [ l i d+s t r i d e ] ;
t pa r t i a lY [ l i d ] += tpa r t i a lY [ l i d+s t r i d e ] ;
tpart ia lMS [ l i d ] += tpart ia lMS [ l i d+s t r i d e ] ;
tcountAsym [ l i d ] += tcountAsym [ l i d+s t r i d e ] ;

}
i f ( o l dS t r i d e%2 != 0 && l i d == s t r i d e −1){

tpa r t i a lX [ l i d ] += tpa r t i a lX [ l i d+s t r i d e +1] ;
tpa r t i a lY [ l i d ] += tpa r t i a lY [ l i d+s t r i d e +1] ;
tpart ia lMS [ l i d ] += tpart ia lMS [ l i d+s t r i d e +1] ;
tcountAsym [ l i d ] += tcountAsym [ l i d+s t r i d e +1] ;

}
o l dS t r i d e = s t r i d e ;

}
b a r r i e r (CLK_LOCAL_MEM_FENCE) ; // wai t everyone update
//merge each l o c a l sum in an array
i f ( l i d == 0){

par t i a lX [ get_group_id ( 0 ) ] = tpa r t i a lX [ l i d ] ;
par t i a lY [ get_group_id ( 0 ) ] = tpa r t i a lY [ l i d ] ;
partialMS [ get_group_id ( 0 ) ] = tpart ia lMS [ l i d ] ;
countAsym [ get_group_id ( 0 ) ] = tcountAsym [ l i d ] ;
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}
}
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APPENDIX D - Largest Lyapunov Exponent

Here, we showcase an analysis with the Largest Lyapunov Exponent(LLE). From
the geometrical perspective, the LLE measures the maximal separation rate between
nearby points. In particular to CML, this analysis considers the variation on nearby
points, which implies on gradient dynamics. A diversity of proof for chaotic be-
haviour in 1D-CML are presented in the literature (RUAN, 2006; DATTA et al., 2007).
Part of this proof is given by the Global Largest Lyapunov Exponent measure. We
adapt the analytical solution, into a local (empirical) solution for measuring the
LLE in 2D-CML. Notice that this extension is not sufficient to characterize chaos,
but is a good indicator of sensitivity to initial conditions. In order to measure LLE,
consider the study case B, shown in table 3.1.

The LLE is given by λ = ∑ 1
N
ln|Λ(J2D)|, where Λ(J2D) is the largest eigenvalue of

the Jacobian matrix (equation D.1), and N is the total of iterations. The Jacobian
can be deduced by deriving CML general (shown in equation 3.2) with respect to
each state (ani,j). To ensure that LLE is not biased by the initial condition, this value
must be large. In this tests we apply N = 1, 000 iterations. The presented analysis
measures the eigenvalues from matrix D.1, using the method ’ eigs’ from the library
Scipy.

J2D = CA =



C1 C2 0 ... C2

C2 C1 C2 ... 0
0 C2 C1 C2

...
... ... ... ...
0 ... C2 C1 C2

C2 ... 0 C2 C1


A (D.1)

Notice that the Jacobian (equation D.1) is composed by multiplying the connection
matrix (C) with the local derivative matrix (A). In this equation, the matrix A is
expressed as: diag(α−2ani,jα), where α is the map parameter, and ani,j is the oscillator
state.

The matrix of connections is composed by block-circulant matrices C1 and C2, shown
in D.2 and D.3.
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C1 =



1− ε ε 0 ... ε

ε 1− ε ε ... 0
0 ε 1− ε ... 0
... ...
ε 0 ... ε 1− ε


(D.2)

C2 =



ε 0 0 ... 0
0 ε 0 ... 0
0 0 ε ... 0
... ...
0 0 ... 0 ε


(D.3)

In this analysis, we represent the CML state as a space, which each axis is the state
of an oscillator. In this representation, the signal of the Lyapunov exponent indicates
if the system has unstable orbits. If λ > 0.0, then the system has unstable orbits. In
a given orbit, if a small perturbation is added in a certain direction, which locally
is given by the corresponding eigenvector, then the difference between the original
orbit and the perturbed orbit has a tendency to increase.

On the other hand, if λ = 0.0 the system is stable. Finally, if λ < 0.0 then the system
is asymptotically stable, considering an orbit and a small perturbation, the difference
between a perturbed orbit and the original orbit has a tendency to decrease.

The result of this test is presented in Figure D.1. The central region of the phase-
space has negative LLE, which indicates a region where the parameters result in a
system with stable orbits. Whereas the region in black has positive LLE, indicating
set of parameters that produces unstable orbits.
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Figure D.1 - Lyapunov exponent phase space for 32x32 CMLs

Largest Lyapunov exponent (LLE) measured in a series of CMLs, from experiment B
shown in Table 3.1. Each point coordinate in this matrix represents a CML configuration,
whereas the color-scaling represents the LLE. The grid density is: ∆ε = ∆α = 0.025.

SOURCE: Own author

Notice that the system has unstable orbits for low(ε < 0.2) and high(ε > 0.8)
coupling factor. With respect to the map parameter, when the coupling factor is low
or high, it is observed a similar behavior to a single map.

For instance, consider the bifurcation diagram of Logistic map (Figure D.2). This
diagram associates each parameterization from a model (in x-axis) with the states
of the system in a long-range iteration (in y-axis). To build this diagram a set of
random initial conditions are iterated N times, then each element is plotted on the
coordinates that correspond to the model parameter (in x-axis), and the iterated
result (in y-axis).
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Figure D.2 - Bifurcation diagram of Logistic map

SOURCE: Smale et al. (2003)

The bifurcation diagram shows periodic orbits, which are orbits that after K iter-
ations return to the original state, being K the period. Observe that, the period
depends on the map parametrization: at 3.0 < α < 3.4 the system has period-2
orbits, at 3.45 < α < 3.54 it is observed orbits with period-4, and so on. The period
duplicate as the parameter increases, from α > 3.57, it is observed periodic orbits
of all periods, which indicates chaos(SMALE et al., 2003).

Also notice that in the orbit diagram there is a blank area at α ≈ 3.83. If magnified
this region, it is observed a similar bifurcation diagram when 3.0 < α < 3.57.
However, this time starting with period-3 orbit, duplicating the number of stable
points as α increases.

The same pattern is observed for CML with large and low coupling factors. As shown
in Figure D.1, with α < 3.6 the Largest Lyapunov exponent is negative. Whereas for
α > 3.6 the Largest Lyapunov exponent is positive. Additionally, it is also observed
a window with stable orbits at α ≈ 3.83 in Figure D.1.
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