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ABSTRACT
Systems-of-Systems (SoS) often support critical domains. Theymust
be trustworthy, i.e., they must keep their operation in progress, be-
ing not subject to failures, as they can cause potential damages
and hazards to human integrity. Simulations are a recurrent ap-
proach in SoS development, as they can anticipate potential failures,
consequently increasing the level of trustworthiness and quality
exhibited by a SoS. Nevertheless, simulation is still software and
demands engineering. Moreover, many simulation formalisms are
not trivial of specifying, sometimes tangling software an hardware
details to program an executable simulation. Thus, the aim of this
paper is contributing for software engineering of SoS by exter-
nalizing two patterns for the conception of SoS simulations. We
evaluated our patterns by applying them in a case study in two dif-
ferent domains. For both, patterns were successfully applied during
automatic generation of functional code, supporting the execution
of SoS simulations and prediction of SoS behavior at design-time.
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• Software and its engineering→ Software architectures; Sim-
ulator / interpreter; Source code generation;
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1 INTRODUCTION
Systems-of-Systems1 (SoS) are an alliance of pre-existing systems
termed as constituents that cooperate to achieve global missions
[23]. They often support critical domains, such as response to dis-
aster events, e.g., forest fires and floods [29]. Thus, they must be
conceived to be trustworthy, exhibiting a high-degree of reliabil-
ity in its operation, and following well-established principles of
engineering and validation [13, 24]. Simulations are a recurrent
practice within the SoS development life cycle [12], as (i) they imi-
tate the surrounding environment and the operation of a system in
the real-world, (ii) support the observation of the effects to draw
inferences concerning the operational characteristics of the real
system [3], (iii) enable the prediction and correction of errors, and
(iv) support the observation of expected and unexpected emergent
behaviors of an SoS [9]. Nevertheless, simulation is also software.
It often relies on dozens of lines of code, demanding techniques for
its engineering. Moreover, simulations are often driven by labeled
state machines, based on discrete input and output events, such
as Discrete Event Systems Specification (DEVS) [2, 30]. However,
some of the instructions are conflicting with each other, and the
amount of lines of code can be enormous, which bring difficulties
and high costs for production and maintainability. Moreover, state
machines that represent multiples behaviors can be difficult to han-
dle with manual approaches due to large dimension issues, which
makes the production of these codes repetitive and error-prone.

Under this perspective, the identification of patterns can aid the
conception of simulations for SoS, supporting automatic generation
of these codes from specifications in high level of abstraction, such
as architectural specifications of software of SoS. Thus, the aim
of this paper is contributing for software engineering of SoS by
externalizing two patterns for the conception of simulations of SoS.
We established sets of instructions in DEVS that correspond to re-
current specifications of input and output events, avoiding conflicts
that can make a simulation not-executable or full of failures.

This paper is structured as follows: Section 2 briefly outlines the
foundations; Section 3 introduces the patterns; Section 4 reports
our results, and Section 5 brings final remarks and future work
perspectives.

1For sake of simplicity, henceforth, we use this term to express both singular and
plural.
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2 FOUNDATIONS
Constituents usually comprise physically decoupled entitities, with
software, hardware, and stakeholders involved. SoS are often devel-
oped under the framework of SoS Engineering (SoSE), a branch of
Systems Engineering that investigates specifically the engineering
of SoS. However, software has become a ubiquitous element in SoS
as constituents embed software and become smarter. Hence, the
interest in development of software for SoS has grown up, raising
a new area of investigation termed Software Engineering for SoS
(SESoS) [4, 6, 16]. Among these techniques, patterns are examples
of popular software engineering techniques that can bring produc-
tivity and quality for SESoS. They correspond to standard solutions
for recurrent problems that emerge in a domain [8]. As the reuse of
a well-succeeded experience can foster the construction of the right
product, patterns can reduce costs and time, besides contributing
to the trustworthiness expected from a SoS. And, as simulations
become increasingly dominant and broadly used by various indus-
tries, it becomes paramount to establish techniques and methods
for the effectiveness of developers [15].

Simulations are a recognized approach to deal with SoS dynam-
icity [14]. Systems engineering already exploits simulations in SoS
Engineering (SoSE). However, there is still a lack of works that
explore techniques and software engineering methods in the con-
text of SoSE. Furthermore, SoSE is a young discipline, and general
principles and patterns remain to be discovered [7]. DEVS (Dis-
crete Event System Specification) is well recognized formalism to
simulate SoS. In DEVS, constituents operations are specified via
a labeled state machine, i.e., a state machine in which transitions
occur due to data input, output events, or time elapsed. There ex-
ist many DEVS variants, including finite probabilistic (FP-DEVS),
non-deterministic, and finite deterministic. As non-determinism is
unfeasible, deterministic DEVS versions are more common on plat-
forms, such as FD-DEVS (Finite Deterministic DEVS), implemented
in platforms as MS4ME2.

DEVSmodels are structured over atomic and coupled models. An
atomic model represent a single constituent system. Such model ex-
hibits the following elements [2]: (i) a state machine that performs
transitions due to input or output events; (ii) variable initialization;
and (iii) the definition of abstract data types, global variables, ports,
and events. In turn, coupled models are composed by atomic models
and couplings connecting them, representing the entire SoS struc-
ture. In DEVS, a constituent system is driven by a state machine.
Such a state machine is specified based on a well-defined set of
primitives. A state in a DEVS state machine can either be a ‘hold
state’ or a ‘passive state’ (exclusively). A hold state is one in which
the execution flow will remain in for a certain amount of time until
automatically changing to another state (via an internal transition).
A passive state is one that the model will indefinitely remain in
(or until it receives a message that triggers an external transition).
These are the basic constructs for a state machine in DEVS:

Passivate State (PS). A state in which the execution flow will
remain until an input event causes a transition to another state.
passivate in STATENAME!

2http://www.ms4systems.com/pages/main.php

Hold State (HS). A state in which the execution flow will be
stopped for a well-defined time, such as 5 time units.
hold in STATENAME for time 5!

Initial State (IS). The initial state of a DEVS state machine. It can
be hold or passivate.
to start passivate in STATENAME!

or

to start hold in STATENAME for time 5!

Internal Transition (IT). This transition enables the execution
flow to spontaneously go to another state after a specified amount
of time. Every hold state must have one and only one internal
transition.
from FROMSTATE go to TOSTATE!

Output Transition (OT). A transition that causes the output of
a value. Any state that has an internal transition can also have
one output message. Such message is delivered before that internal
transition occurs. It is important to remark that every OT requires
an IT.
after STATENAME output OUTPUTMESSAGE!

External Transition (ET). An external transition defines an input
message that the constituent might receive when in a given state.
This input triggers a state transition. The specification involved the
current state, the expected input, and the state to which the model
should transition in reaction to that input message. Any state can
have one or more external transitions defined. The syntax for this
is:
when in FROMSTATE and receive INPUTMESSAGE go to TOSTATE!

The code of a state machine in DEVS consists of an arrangement
of such statements to guide the operation of a constituent. Essen-
tially, the code is based on inputs and outputs. However, System
Engineering guides and even DEVS textbooks usually do not teach
how to group these statements conveniently to form functional in-
put transitions and output transitions. Furthermore, some of these
statements are conflicting (for example, if you specify a state as hold
and passivate at the same time, or if you specify a hold state and
you forget to specify the following transition). These conflicts can
lead to a fail, error, or stop of the simulation. Next section details
such conflicts and the patterns that emerge from it.

3 PATTERNS FOR SIMULATION OF SOS
SOFTWARE ARCHITECTURES

DEVS represents the state of the art for simulation of SoS [2]. To
be more didactic, we base our approach on a DEVS dialect called
DEVS Natural Language (DEVSNL), [2] that enables to program
atomic and coupled models expressed as FD-DEVS in a human-like
format using tools such as MS4ME. Table 1 details the potential
conflicts that we identified:

• HS-PS: A hold state can not be a passive state at the same
time, and vice versa. This would mean to specify a state
that simultaneously (i) is expecting for a input to make a
transition and (ii) spontaneously transit to another state,
which is unfeasible;

• IT-PS: Internal transitions and passivate states are incom-
patible. This would mean to ask a state to indefinitely be
the current one , at the same time, specify that the same
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state must transit to another state (without specifying time
or any expected input);

• IT-ET: A internal transition can not be a external transition
at the same time, as this means that a transition would
simultaneously cause a state transition due to an input and
a spontaneous transition, at the same time;

• OT-PS: Technically, an output transition is an internal
transition. Since a passive state can not have an internal
transition it can not have an output transition. This would
mean to specify that a state is indefinitely the current one,
and that it must transit to another state, producing an
output, without specifying the forthcoming state;

• OT-ET: This conflict means that a same state would wait
for an input message and produce an output, what is un-
feasible.

Statement/ Statement PS HS IS IT OT ET
HS X
IS
IT X X
OT X X
Table 1: Conflicts and compatible instructions in DEVS.

As discussed, it is important to be aware of these conflicts to
design robust SoS simulations. From this need, two patterns emerge:
one to group instructions that represent input transitions and their
sub-activities involved, and another that represents output transi-
tions. We established our patterns relying on the classical Gamma’s
structure [8]: recurrent problem, context, and solution. The recur-
rent problem is the same for all situations: conception of functional
simulations of constituent systems that can form a SoS and can be
simulated in DEVS. Since DEVS is based on inputs and outputs,
we established one pattern for input (Table 2) and another one for
output (Table 3). The context is the same for both (DEVS simulation
models), and recurrent problem changes only about the purpose:
input or output. We present them as follows.

3.1 DEVS Input
DEVS Input pattern expresses that an input will cause a transition
when, at some state, it receives a data. If the passivate comes after
the input instruction when, it could cause a conflict with a hold of
a following output instruction.

Name DEVS Input
Recurrent
Problem

Specifying a set of simulation instructions that
characterizes an input event without conflicts
with other instructions.

Solution
passivate in <<fromState >>!

when in <<fromState >> and receive <<

dataReceived >> go to <<toState >>!

Table 2: Patterns for Input and Output in DEVS Simulation
Models.

DEVS Input (Figure 1) specifies a PassivateRule that passivates
in one and only one state, whose name is represented by a label.
From this state, a InputTransition occurs when a pre-determined
type of data is received, causing the transition from one state to
one and only one another state.

Figure 1: DEVS Input Pattern expressed as a class diagram
in UML.

3.2 DEVS Output
DEVS Output pattern prescribes that, once an output occurs spon-
taneously (without any triggering event), it should (i) stay in that
state of one second (this time can be specified according to conve-
nience), (ii) perform the output, and (iii) transit to the next state. If
the next state receives an input, it will be subject to a passivate
instruction; otherwise, to a new hold.

Name DEVS Output
Recurrent
Problem

Specifying a set of simulation instructions that
characterizes an output event without conflicts
with other instructions.

Solution
hold in <<fromState >> for time 1!

after <<fromState >> output <<dataType >>!

from <<fromState >> go to <<toState >>!

Table 3: Patterns for Input and Output in DEVS Simulation
Models.

Figure 2: DEVS Output Pattern expressed as class diagram in
UML.

DEVS Output (Figure 2) specifies a HoldRule that holds in one
and only one state for a pre-determined amount of time. From that
state, an output event occurs, delivering some data, and transiting
from one state to another state.
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4 EVALUATION
Aiming at gathering multiple sources of evidence, we carried out
case studies, i.e., an exploratory type of empirical method for investi-
gating a phenomena in its natural environment using data gathered
from few entities (people, organizations, and sensors) [27]. We
adopted SosADL, a novel architectural description language (ADL)
conceived for the specification of architectural descriptions for soft-
ware architecture of SoS [24]. With SosADL, it is not necessary to
know all the constituents that could join the SoS at design-time, as
it is possible to design abstract software architectures. We specified
an abstract architecture, instantiated in a concrete architecture, and
transformed via a model-based transformation written in Xtend3,
in a DEVS simulation model (written in DEVSNL, a DEVS dialect),
supported byMS4ME4 environment. We applied the patterns in two
distinct domains: a Space SoS and a Flood Monitoring SoS. We
used the patterns in a model-based transformation that takes SoS ar-
chitectural model in high-level of abstraction as input (documented
in SosADL) and automatically produces functional simulation mod-
els as outcome.

Evaluation Approach. To evaluate our approach, we adopted
GQM (Goal-Question-Metric) [33], an approach that creates an
explicit link between measured data and the goals of measuring
before data collection, avoiding misinterpretation of data [22]. The
goal of this evaluation was to determine whether our patterns sup-
port the correct generation of functional simulations of SoS software
architectures. We apply it in two different contexts, and describe
both solutions. We established the following research questions
to be applied for both domains:

RQ1. Do such patterns represent reusable solutions?
Rationale. Patterns are intended to be reusable solutions for recur-
rent problems. As such, it is important that, despite the necessary
adaptations for different domains, the same solution can be applied
for many contexts. This research question evaluates whether this
happens.
M1. Effectiveness: given by the amount of functional atomic mod-
els and state machine lines of code effectively generated, represent-
ing how many times the same patterns were applied.

RQ2. Was the transformation successful?
Rationale. Since the simulation model is automatically generated,
it is important to check the validity of the produced model. A
transformation can be considered successful if the simulation runs
without errors. As the simulation is functional, it means that the
patterns are applicable repetitively and in a large scale.
M2. Simulation failures: given by the quantity of detected fail-
ures during model simulation, such as simulation crashing or stop-
ping.

4.1 Case 1: Space SoS
A Space SoS is a SoS composed of constituents in ground and space
to fulfill missions such as telecommunication, Global Positioning

3http://www.eclipse.org/xtend/
4http://www.ms4systems.com/pages/ms4me.php

System (GPS), weather forecast, Earth and space observation, me-
teorology, resource monitoring, military observation, and many
others, as illustrated in Figure 3. Space SoS can contain around 800
constituents [34]. This type of system is usually divided into three
main segments: Space, which is the part placed in orbit (satellites,
probes, space stations); Launcher, that is used to place the space
instruments and constituents in orbit (rockets, space shuttles); and
Ground, which supervises satellite operation. The Ground con-
sists of mission control system, operation control system, ground
stations and data communication networks [1, 31]. Each segment
materializes one or more systems that have their own attributions.
Each segment can be itself a different SoS that plays the role of
constituent in the space SoS.

Figure 3: Illustration of the Brazilian Space SoS for Data Col-
lection, adapted from [20].

Satellites are the main constituents of a space SoS. Each satel-
lite is divided into several subsystems, such as onboard computer,
power system, propulsion system, attitude control and communi-
cation system. Satellites are considered in two parts: payload and
platform. The payload part assures that a system accomplishes the
mission (e.g., sensors, cameras, infrared, in case of a forest moni-
toring, for example). The platform part is responsible for leaving
the satellite in operation, such as solar panel, batteries, and reac-
tion control system. The satellite only establishes contact when
it is passing over the geographic location on which the ground
station is positioned. Launching a satellite into space has a high
cost. For instance, a CubeSat, i.e., an open source architecture with
10cm x 10cm x 10cm, for example, has cost estimated in $80,000
dollars to be launched into space. Due to the high costs and relevant
potential losses, this domain is considered a critical one. Hence,
it is important to anticipate SoS behaviors by means of simula-
tion. In the space domain, some concepts are specially important:
Telecommand, which consists of an operation sent in a remote
way to satellites in order to perform some action, such as, capturing
images or opening the solar panel (satellite uplink of missions); and
Telemetry: technical name given to information received from the
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status of the satellite. It happens during the passage of the satellites
on the ground stations (satellite downlink).

SoS Characterization. This small-scale Space SoS was designed
based on a real SoS currently in operation in Brazil. Such SoS is
composed of the following different constituents, as follows.

(1) Command and Control Center (C2): It is located in São
José dos Campos, Brazil (Point B in Figure 3), is responsible
for the generation of telecommand and telemetry packet;

(2) Satellite: It generates images of the planet in a regular
interval of days using a Wide Field Imager (WFI) with
frequency bands in the visible spectrum and Near Infrared
(NIR);

(3) Ground Station: It is located in Cuiabá, Brazil (Point A
in Figure 3), involves reception and satellite data trans-
fer(telemetry and telecommand), it temporarily stores im-
age data and satellites tracking;

(4) Remote Sensing Data Center: It accomplishes activities
of receiving, recording, processing, storage and distribution
of images and data from remote sensing.

Every mission in a Space SoS is performed according to the
following meta-process, called Meta-process for Payload missions in
Space SoS, as shown in Figure 4 and following the steps described
below:

(1) Remote Sensing Data Center requests payload data for
Command and Control Center (C2);

(2) C2 Center creates the operations(telecommand and teleme-
try) and schedules their execution;

(3) Ground Station configures antennas and rotors;
(4) Ground Station establishes link with Satellite;
(5) Ground station sends remote control;
(6) Satellite executes commands;
(7) Satellite stores payload data;
(8) Ground Station requests payload data;
(9) Satellite forwards telemetry data;
(10) Ground Station stores raw data;
(11) Remote Sensing Data Center searches for telemetry data;
(12) Remote Sensing Data Center tags and stores data
(13) Remote Sensing Data Center distributed payload data to

Mission Center.
As this is a meta-process, there are meta-activities and meta-

constituents that execute it. In this sense, the instantiation of a
concrete process consists in the identification of the constituents
and activities that replace these elements in the process, as sug-
gested by Garcés and Nakagawa [26].

Case Design. For modeling a SoS software architecture of a Space
SoS, we conducted requirements elicitation meetings with an expert
from the Brazilian National Institute of Space Research. He aided us
in the comprehension of the SoS structure, the main constituents,
and how they interoperate to achieve the main results that are
expected. We modeled a small scale SoS with only one mission
to be achieved: Amazon forest monitoring via images taken by the
satellite. Many satellites, ground stations, and data centers could be
part of a same SoS. However, for this context, only one constituent
of each type already exercises our patterns. The following mission

Figure 4: Activity Diagram illustrating the Meta-process for
Payload missions in Space SoS.

was established:

Reporting. We specified one Space SoS architecture in SosADL
with four constituents: one data center, one C2 center, one ground
station, and one satellite. Besides that, four mediators were modeled
to intermediate the constituents communication. For each one of
these elements modeled in SosADL, one equivalent model was gen-
erated in DEVS using the patterns that we established. Moreover,
a stimuli generator was automatically created as well to feed the
simulation. The simulation run on an Intel core i5-3230M 2.60GHz
(x64) processor, with 4 GB of RAM Memory, 1TB of HD, and run-
ning Ubuntu 16.04 with 64 bits.

RQ1. Do such patterns represent a reusable solution?
All of the generated code are driven by state machines specifica-
tions that were created using our approach. In total, 143 lines of
code (LoC) were created to guide the behaviors of constituent sys-
tems, mediators, and stimuli generators. As DEVS Input pattern
is expressed in two lines of code, whilst DEVS Output Pattern is
expressed with three lines of code, there is an average of 2.5 lines
per pattern. Hence, we can conclude that our patterns were used
for automation purposes almost 60 times (M1 = 57.2) to produce
constituents behaviors code as state machines for the Space SoS
produced. For all of them, no conflicting instructions occurred and
the systems run accordingly as predicted at design-time. Hence, we
claim that the pattern is reusable for this context.

RQ2. Was the transformation successful?
The simulation run accordingly with no failures. Thus, we can con-
sider that the transformation was feasible and well-succeeded for
this particular context. Further applications should be tested. For
now, M2 is equals to 0%.

4.2 Case 2: Urban Flood Monitoring SoS
We evaluated our approach in another scenario: a flood monitoring
SoS (FMSoS) intended to be part of a smart city. Rivers cross the city
and, when rains are intense, floods often occur, causing property
loss, damage, and serious danger to the population. FMSoS noti-
fies possible emergency situations to residents, businesses owners,
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Figure 5: A Flood Monitoring System-of-System (FMSoS) as part of a Smart City System [11].

pedestrians, and drivers located near of the flooding area, and also
to governmental entities and emergency systems. FMSoS is com-
posed of five different types of constituents, as illustrated in Figure
5: smart sensors, which are fixed embedded systems monitoring
flood occurrences in urban areas, located on river edges; gateways,
which gather data from constituents and share them with other
systems; crowd-sourcing systems, which are mobile applications
used by citizens for real-time communication of water level rising;
danger level is a pre-defined value (between 1 and 6, 1 being no risk,
and 6 being flood effectively occurring) that can be classified by the
human user according to what he/she observes; drones, which are
UAVs also used to complement sensors observations by monitoring
the river water level while they fly over it, sending pictures if some
change in the water level occurs; and drone bases, which are fixed
basis from where drones departure, and to where they come back
for battery recharging, and data transmission.

Moreover, FMSoS is supposed to be part of a larger SoS com-
posed of Wireless River Sensors, Telecommunication Gateways,
Unmanned Aerial Vehicles (UAVs), Vehicular Ad Hoc Networks
(VANETs), Meteorological Centers, Fire and Rescue Services, Hos-
pital Centers, Police Departments, Short Message Service Centers
and Social Networks, as described in [24]. Such SoS involves the
National Center for Natural Disaster Monitoring, which monitors
1000 cities, with 4700 sensors, including 300 hydrological sensors,
and 4400 rain gauges.

We specified one FMSoS architecture with 42 sensors, 9 crowd-
sourcing systems, and 18 drones, following the model shown in
Figure 5. Each drone has its own base (18 drone bases), and transmits
the information collected through a gateway that will be in the
vicinity. 18 gateways are spread along the river boards. Mediators
were produced as much as necessary to mediate these constituents.
FMSoS is concerned with a single behavior: flood alert.

Data used. We chose a dataset collected by sensors [19] over four
days, from November 23th 2015 to November 27th 2015. This inter-
val was important because during these days a number of floods
occurred. This enabled us to establish whether or not our simulation
results in a diversity of situations. Data that arrive are chronologi-
cally ordered in gateway, and pairs of data are analyzed. If at least
one pair has two measures equal or greater than 100 cm, a flood is
confirmed.

Reporting. We used real data as input to our DEVS code to assess
whether its behaviors correspond to those behaviors presented in
the real FMSoS during such days. Data were stored in text files
and automatically delivered to the simulation via stimuli genera-
tors that imitated the surrounding environment [10]. These stimuli
generators delivered 1,000 samples for each sensor. Timestamps rep-
resented that each data sample was sent every five minutes for each
sensor (i.e., 12 samples by hour, 288 per day, totalizing 3,47 days
of data simulated), besides also delivering data for crowdsourcing
systems, and drones.

Our approach correctly produced atomic models in DEVS for
constituent systems specified in SosADL. Behaviors of constituent
systems in SosADLwere represented, as expected, as state machines
in atomic models in DEVS. Listing 1 shows an excerpt of code
generated for a mediator in Flood Monitoring SoS case. Mediator
is an specialized type of system that composes a SoS responsible
for receiving data forwarded by other systems and forward it again
to a next system [32]. This type of system is essential for SoS
operation, since it reinforces the data being transmitted if there
is a long distance between two sensors that are collecting data
to send to a gateway. Listing 1 shows the patterns applied in an
operational mediator. In short, such behavior specifies a initial state
(IS) and respective transition (Lines 1-2, IS-IT, as explained), that
after receiving the coordinates of the constituents that it mediates
(Lines 4-8, Input Pattern), it waits for receiving data from the sensors
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(Lines 10-11, Input Pattern) and forward them towards a gateway
(Lines 13-15, Output Pattern).

Listing 1: Specification of a behavior of an atomic model
for a Mediator in DEVSNL.

1 to start hold in s0 for time 1!

2 from s0 go to s1!

3
4 passivate in s1!

5 when in s1 and receive Coordinate go to s2!

6
7 passivate in s2!

8 when in s2 and receive Coordinate go to s3!

9
10 passivate in s3!

11 when in s3 and receive Measure go to s4!

12
13 hold in s4 for time 1!

14 after s4 output Measure!

15 from s4 go to s5!

Table 4: Amount of lines of code produced using our pat-
terns for Flood Monitoring SoS.

Model # LoC per model LoC per model type
Sensor 43 24 1032
Gateway 20 18 360
Drone 18 29 522
Drone Basis 18 20 360
Crowd 9 22 198
Crowd Gate-
way

3 17 51

Transmitter 43 13 559
Drone Trans-
mitter

18 15 270

Crowd Trans-
mitter

9 15 135

TOTAL 181 173 3487

RQ1. Do the patterns represent a reusable solutions?
3487 LoC were produced, including the behaviors of constituent
systems, mediators, and stimuli generator. For all of them, no con-
flicting instructions occurred and the systems run accordingly as
predicted at design-time. Considering that the average amount of
lines for each pattern is 2.5 (2 for one pattern and 3 for the another
pattern), we conjecture that the patterns were applied around 1,400
times (M1 = 1,394.8). This shows how our patterns are effective, be-
ing reused several times in an automated solution, without creating
any error. Table 4 summarizes these data.

RQ2. Was the transformation successful?
The transformation was successful while using the externalized
patterns. Simulation run accordingly with no failures. Hence, for
this context, M2 is equals to 0%.

Our approach correctly produced atomic models in DEVS for
constituent systems specified in SosADL. Behaviors of constituent
systems in SosADL were represented, as expected, as state machine
sequence in the atomic model in DEVS. The simulation code gen-
erated allowed the SoS to transmit, coordinate, and measure data

from sensors. Hence, we claim that the code generated from our
approach is functional since it allows automatic generation and
complete simulation of a SoS with no failures.
Threats to Validity.We mention the following threats: the scale
of our evaluation, verification of correctness of the transformation
rules, and bias. We mitigated the first by developing instances with
distinct amounts of constituents. In all of these instances, the code
generated worked with no failures. Moreover, our solution requires
modest changes to scale, as the same model transformation can
be applied to generate any number of simulation code, despite the
possibility to model other constituents in SosADL. Regarding trans-
formation correctness, we established correspondences between
entities in both models and the resulting simulation model relieves
the threat, showing a solution. We intend to conduct a further eval-
uation by specifying this transformation using a formal notation.
This can enable the adoption of an automatic model checking, that
can verify the correctness of the model transformation. There is
a bias, as the same experts were responsible for specifying/imple-
menting the SoS in SosADL and run the case study. We mitigated
this threat by submitting the results to an external expert, who
attested the feasibility of our results.

5 DISCUSSION
We applied such patterns in the development of software code for
simulation of a small-scale Space SoS and a Flood Monitoring SoS
for a urban area. The automatically generated simulation was ap-
plied into the context of validation of an emergent behavior of SoS
[9]. These patterns are important because even during our first
manual code specification in DEVS, we had problems with conflict-
ing instructions. Moreover, DEVS books often do not provide this
sort of discussion. Patterns supported us to automate the genera-
tion of these simulations, encapsulating the rationale behind the
specification of a SoS software architecture.

Related work. Other proposals have explored patterns for simu-
lation in DEVS, but under distinct perspectives [5, 17, 18, 21, 28].
Shulz et al. (2000) also present a mapping involving DEVS. They
argue that the DEVS formalism is more expressive than StateCharts
and present a mapping of the two system modeling formalisms to
combine the benefits of formally well-defined models and a tool
implementation, as we do. However, they do not externalize any
pattern applied in such model transformation. Jéron et al. (2008)
investigate the problem of predicting the occurrences of patterns
in discrete-event systems [21]. They consider a pattern as a set of
event sequences modeled by a finite-state automaton. They pro-
pose an off-line algorithm for automatic identification of patterns
in DEVS simulations. However, they do not address patterns for
conception of simulations. Hamri et al. (2010) present a specific
catalog of design patterns for DEVS context. However, they do not
provide details on how to group DEVS instructions to design con-
stituents behavior, avoiding conflicts between them. Later, Hamri
et al. (2013) present a work in progress in which they report behav-
ioral design patterns to design and code DEVS behaviors in order
to enhance the structure of the corresponding code and supply
DEVS designers with software engineering techniques [17]. How-
ever, their patterns only express the state changes caused by the
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occurrence of specific behaviors. They do not present any group-
ing of instructions as a set of patterns, as we do. Cetinkaya and
Verbraeck (2011) established an approach to manage modeling and
metamodeling in simulation engineering context [5]. They list a
set of properties that model transformation rules should maintain
to produce reliable simulations. However, they do not tackle SoS
context, and they do not externalize patterns for the conception
of a simulation. Finally, Petitdemange et al. established a solution
based on patterns for reconfiguration of SoS software architectures
[25]. Despite involving SoS domain and reconfiguration, they do
not externalize patterns for simulation.

6 FINAL REMARKS
This paper presented two patterns for specifying non-conflicting
input and output instructions of constituent systems in SoS DEVS
simulations. We applied our patterns in two different domains to
support automatic generation of SoS simulations from SoS archi-
tectural descriptions documented in SosADL. If a simulation is not
reliable, the SoS produced using it will also not be. Hence, our con-
tribution is important, as our patterns support the production of
simulations with no conflicting instructions, making such simula-
tion functional and reliable. As a consequence, we also increase
the level of trustworthiness of the SoS produced based on such
simulations. These patterns represent reusable solutions that can
be applied for any SoS architecture design that adopts SosADL and
DEVS for simulations. Indeed, the conceptual pattern described in
UML can also be extended for any formalism that employs discrete
events-based formalism and relies on labeled state machines to
guide constituents behaviors. Future work include identification
of other patterns, further empirical evaluations, and application of
such patterns for other simulation formalisms.
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