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ABSTRACT

Urban environments are regions in which spectral and spatial variability are ex-
tremely high, with a huge range of shapes and sizes, they also demand high reso-
lution images for applications involving their study. These environments can grow
over time, applications related to their large-scale monitoring tend to rely on au-
tonomous intelligent systems that, along with high-resolution images, can help and
even predict everyday situations. In addition to the detection of these features, 3D
representations of these environments have also been object of study to assist in the
investigation of the environmental quality of very dense areas, occupational socioe-
conomic patterns, the construction of urban landscape models, building demolitions
or flood simulations for evacuation plans and strategic delimitation, among count-
less others. The main objective of this study was to explore the advantages of such
technologies, in order to present an automatic methodology for the detection and
reconstruction of urban elements, and also to understand the difficulties that still
surround the automatic mapping of these environments. Specifically we aimed: (i)
To develop a routine of automatic classification of facade features in 2D domain, us-
ing a Convolutional Neural Network (CNN); (ii) Using the same images, obtain the
facade geometry using Structure-from-Motion (SfM) and Multi-View Stereo (MVS)
techniques; (iii) Evaluate the performance of the CNN for different urban scenarios
and architectural styles; (iv) Evaluate the performance of the CNN in a real applica-
tion in Brazil, whose architecture differs from the datasets used in the neural model
training; and (v) Classify the 3D model of the extracted facade using images seg-
mented in 2D domain by the Ray-Tracing (RT) technique. In order to atempt that,
the methodology was splited into 2D analysis (detection) and 3D (reconstruction).
So in the first, a supervised CNN is used to segment terrestrial optical images of fa-
cades into six classes: roof, window, wall, door, balcony and shops. At the same time,
the facade is reconstructed using the SfM/MVS technique, obtaining the geometry of
the scene. Finally, the results of segmentation in both domains, 2D and 3D, are then
merged by the Ray-Tracing technique, finally obtaining the 3D model classified. It
is demonstrated that the proposed methodology is robust toward complex scenarios.
The inferences made with the CNN reached up to 93% accuracy, and 90% F1-score
for most of the datasets used. For scenarios not used for training, the neural model
reached lower accuracy indexes, justified by the high differentiation of architectural
styles. However, the use of deep neural models gives chances for new configurations
and use with other deep architectures to improve results, especially for unsupervised
models. Finally, the work demonstrated the autonomous capacity of a CNN against
the complexity of urban environments, in order to diversify between different styles
of facades. Although there are improvements to be made regarding 3D classification,
the methodology is consistent and allowed to combine state-of-the-art methods in
the detection and reconstruction of urban elements, as well as providing support for
new studies and projections on even more distinct scenarios.

Keywords: 3D urban mapping. facade features. deep-learning. convolutional neural
network. structure-from-motion.
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MAPEAMENTO URBANO TRIDIMENSIONAL (3D): UM ESTUDO
SOBRE DETECÇÃO E RECONSTRUÇÃO DE FACHADAS DE

EDIFICAÇÕES POR ESTRUTURA-POR-MOVIMENTO (SFM) E
REDES NEURAIS CONVOLUTIVAS (CNN)

RESUMO

Ambientes urbanos são regiões cuja variabilidade espectral e espacial é extrema-
mente alta, com uma enorme variedade de formas e tamanhos que remetem igual-
mente ao sensoriamento remoto de alta resolução em aplicações envolvendo seus
estudos. Devido ao fato de que esses ambientes podem crescer ainda mais, as apli-
cações relacionadas ao seu monitoramento em larga escala tendem a recorrer a sis-
temas autônomos que, juntamente com imagens de alta resolução, podem ajudar e
até predizer situações cotidianas. Aliado à detecção inteligente dessas feições, rep-
resentações 3D desses ambientes têm sido também objeto de estudo ao auxiliar na
investigação da qualidade ambiental de áreas muito densas, padrões socioeconômicos
de ocupação, na construção de modelos de paisagem urbanos, avaliação de efeitos
de ilhas de calor, demolições de edifícios ou simulações de inundações para planos
de evacuação e delimitação estratégica, entre inúmeros outros. Por estes aspectos,
o objetivo desta pesquisa de doutorado foi explorar as vantagens de tais tecnolo-
gias, de forma a apresentar não só uma metodologia automática para detecção e
reconstrução de elementos urbanos, como também compreender as dificuldades que
ainda cercam o mapeamento automático desses ambientes. Como objetivos especí-
ficos: (i) Desenvolver uma rotina de classificação automática de feições de fachadas
no domínio 2D, utilizando-se de uma Rede Neural Convolutiva (CNN). (ii) Com
as mesmas imagens, obter a geometria da fachada pelas técnicas de Estrutura por
Movimento (em inglês, Structure-from-Motion (SfM)) e Estéreo por Multi-Visadas
(em inglês, Multi-View Stereo (MVS)). (iii) Avaliar o desempenho do modelo neural
para diferentes cenários urbanos e estilos arquitetônicos. (iv) Avaliar o desempenho
do modelo neural em uma aplicação real no Brasil, cuja arquitetura diferencia-se
dos dados utilizados no treinamento do modelo neural. (v) Classificar o modelo 3D
da fachada extraída utilizando-se das imagens segmentadas no domínio 2D pela téc-
nica de Ray-Tracing (RT). Para tanto, a metodologia do trabalho foi dividida em
análise 2D (detecção) e 3D (reconstrução). De forma que no primeiro, uma CNN
supervisionada é utilizada para segmentar imagens ópticas terrestres de fachadas
em seis classes: telhado, janela, parede, porta, sacada e lojas. Simultaneamente, a
fachada é reconstruída pelo uso do pipeline SfM/MVS, obtendo-se a geometria da
cena. Por fim, os resultados da segmentação no domínio 2D, juntamente com 3D,
são então vinculados pela técnica de RT, obtendo-se finalmente o modelo 3D classi-
ficado. É demonstrado que a metodologia proposta é robusta em relação a cenários
complexos. As inferências realizadas com o modelo neural CNN alcançou até 93%
de acurácia, e 90% de F1-score para maioria dos conjuntos de dados utilizados. Para
cenários desconhecidos, o modelo neural atingiu índices de acurácia inferiores, jus-
tificado pela elevada diferenciação de estilos arquitetônicos. Contudo, a utilização
de modelos neurais deep, dão margem à novas configurações e uso conjunto com
outras arquiteturas deep para a melhoria dos resultados, sobretudo, aos modelos
não-supervisionados. Por fim, o trabalho demonstrou a capacidade autônoma de
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uma Rede Neural Convolutiva frente a complexidade dos ambientes urbanos, de
modo a diversificar entre diferentes estilos de fachadas. Embora haja melhorias a
serem realizadas quanto à classificação 3D, a metodologia é consistente e permitiu
aliar métodos de última geração na detecção e reconstrução de fachadas, além de
fornecer suporte à novos estudos e projeções sobre cenários ainda mais distintos.

Keywords: mapeamento 3D urbano. feições de fachadas. deep-learning. redes
neurais convolutivas. structure-from-motion.
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1 INTRODUCTION

A 3-dimensional (3D) representation of cities became a common term in the last
decade (DEMIR; BALTSAVIAS, 2012). What was once considered an alternative for
visualization and entertainment, has become a powerful instrument of urban plan-
ning (KOLBE, 2009; STOTER et al., 2011). The technology is now well-known in most
of the countries on the European continent, such as Switzerland (AGENCY, 2010),
England (ACCUCITIES LTD, 2017; VERTEX MODELLING, 2015), and Germany (vir-
tualcitySYSTEMS GmbH, 2016; ARINGER; ROSCHLAUB, 2014; KRÜGER; KOLBE, 2012;
DÖLLNER et al., 2006), also being commercially popular in North America, where
many leading companies and precursor institutions reside. However, the semantic
3D mapping with features and applicability that go beyond the visual scope, is still
considered a novelty in many other countries. In Brazil, according to the present
study (see Section 2.4), the use of volumetric information as a resource for strategic
and management planning is reduced to few cities (see Table 3.1).

According to a recent survey (BILJECKI et al., 2015b), approximately thirty real
applications with the use of 3D urban models have been reported, ranging from
environmental simulations, support of planning, cost reduction in modeling and de-
cision making (YANG et al., 2016; TRUONG-HONG; LAEFER, 2014). Understanding
the principles that establish the organization of such environment, as well as its dy-
namism, requires a structural analysis between its objects and geometry (LAFARGE,
). Therefore, reproducing the maximum of its geometry and volume allows studies
such as the estimation of solar irradiance on rooftops (BILJECKI et al., 2015a), as well
as the determination of occluded areas (EICKER et al., 2015; JOCHEM et al., 2009), in
analyzing hotspots for surveillance cameras (YAAGOUBI et al., 2015), Wi-Fi coverage
(LEE, 2015), in the urbanization and planning of green areas (TOOKE et al., 2011;
AHMAD; GADI, 2003), in evacuation plans in case of disasters (KWAN; LEE, 2005),
among others.

Representing cities digitally exactly as they look like in the real world, was consid-
ered, for many years, mostly an entertainment application, rather than Cartography.
With the appearance of LiDAR (Light Detection and Ranging) (VOSSELMAN et al.,
2001) and the Structure-from-Motion (SfM) and Multi-View Stereo (MVS) work-
flows (SNAVELY et al., 2006), brought to real the structural urban mapping. Even
though the data was extremely accurate, the campaigns in mid-2010 were mostly
made by airplanes, which fostered large-scale 3D reconstructions, in which build-
ings can be accurately represented with their rooftops, occupation, area, height or
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volume characteristics (SALEHI; MOHAMMADZADEH, 2017). With this remarkable
stage, today, new branches of research try not to faithfully represent the scene, but
to add knowledge to it, increasingly toward semantic cities1, where the nature of
object is known and the relationship among them could be investigated.

In this sense, acquiring knowledge from remotely sensed data was always a per-
manent problem for Computer Vision and Pattern Recognition communities, which
basically have the mission of interpreting huge amounts of data automatically. Until
mid-2012, extracting any kind of information from images would require method-
ologies that would certainly not fully solve the problem, in many cases, only part
of it. However, with the resurgence of Machine Learning (ML) technique in 2012
(KRIZHEVSKY et al., 2012), built on top of the original concept from 1989 (LECUN

et al., 1989), has changed the way to interpret images due its high accuracy and
robustness on complex scenarios. The respectively ML concept called Convolutional
Neural Network (CNN) has enormous potential for interpretation, specially when
dealing with large amount of data. In Remote Sensing, has also been used to detect
urban objects (ZHENG et al., 2015; BADRINARAYANAN et al., 2015; TEICHMANN et al.,
2016) with high quality inferences.

During many years, however, the use of artificial neural models to solve complex
problems such as automatic image classification was common, getting popular spe-
cially to adapt in complex situations with no human interferences. Still, the methods
or workflows available that time were too difficult to use considering the results it
could provide, making its popularity lower in mid-2000. Recently, new neural net-
works architectures brought back the interest by autonomous classifiers, especially
those for image classification. CNN has been a trend for pixelwise image segmenta-
tion, showing an extreme flexibility to detect and classify any kind of object even in
scenarios where humans could not perceive.

Identifying simple facade features such as doors, windows, balconies, and roofs might
be a tough task due to the infinite variations in shape, material compositions, and an
unpredictable possibility of occlusions. That means not only a good method would
be required, but the addition of another variable, such as geometry, should be used
to improve class separability. A new demand in the areas of Photogrammetry and
Remote Sensing is leading the research to further analysis of these urban objects, in

1The term “semantic”, in this case, consists in the interpretation of a certain unknown infor-
mation in something readable. Once this set of unknown infomation is interpreted, it could be
confront to another set of interpreted information, studying their relationship and, then, make any
kind of decision.
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which takes advantage of the aforementioned optical campaigns, such as in Bódis-
Szomorú et al. (2017), Riemenschneider et al. (2014), Teboul et al. (2011), Gadde et
al. (2017), to acquire the object geometries on a low-cost and simple-to-use manner,
which is the use of common cameras and minimal knowledge for acquiring.

Urban environments used to have high spectral and spatial variability, because they
are dynamic scenarios, which means that not only the presence of cars, vegetation,
vehicles and pedestrians are aggravating the extraction of information, but also the
constant actions of man on urban elements. But not all cities are that complex. One
city could present a better geometry when compared to another in terms of architec-
tural styles, for example, the streets of Manhattan (wide), in United States, and the
streets of Hong Kong (narrow), in China. In addition, suburbs use to have less traffic
than city-centers, and that also affects the extraction. The term “complex” in this
study refers to images where no preprocessing is performed, no cars are removed, no
trees are cut off to benefit the imaging, no house or street was chosen beforehand,
only images representing the perfect register of a real chaotic scenario were taken.

Considering these difficulties and the fact that today only a few experiments with
complex scenarios have been carried out, a methodology using ground images2 is
used, since they can provide all the facade details that aerial imagery might not be
able to (MUSIALSKI et al., 2013). The purpose here, is to delineate interest regions
of facade images and assign each of them to a particular semantic label: roof, wall,
window, balcony, door, and shop. Right after, these features are used to associate
them onto their respective geometries. In order to detect these features, 6 datasets
with distinct architectural styles are used as training samples to a CNN model.
Once trained, the artificial knowledge generated for each dataset is tested to an
unknown scene in Brazil. The facade geometry is then extracted through the use of
a SfM/MVS pipeline, which is finally labeled by ray-tracing analysis according to
each segmented image.

1.1 Hypotheses

This work is based on the following hypotheses:

• The volumetry of buildings, as well as their facade features (e.g. roof,
windows, balconies, wall and doors), can be accurately extracted through
optical images and SfM/MVS technique;

2Also referenced here as street-side images.
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• Facade features can be automatically detected with CNN even under com-
plex scenarios with no preprocessing need;

• The geometric quality of the 3D model, as well as the quality of the 3D
labeling, is a direct function of the point cloud density;

• The geometric quality point cloud by SfM/MVS technique depends on the
camera parameter estimation, image spectral and spatial characteristics.
Therefore, the targets geometry and texture are fundamental in the process
of reconstruction and classification.

1.2 Objectives

1.2.1 Main

From structural data campaigns (image-based point cloud, see Section 2.1), the
main objective of this research is to explore the extraction of geometric information
of buildings, simultaneously, to detect their facade features and, finally, relate both
information in one single 3D labeled model.

1.2.2 Specific

a) Develop a routine to classify facade elements in 2-dimensional (2D) images
using a CNN architecture;

b) Using the same images, obtain the facade geometry using SfM/MVS;

c) Evaluate the performance of the neural model for different urban scenarios
and architectural styles;

d) Evaluate a case study with an application in Brazil, whose architecture
differs from the datasets used during the neural model training;

e) Classify the 3D model of the extracted facade using the images previously
segmented in the 2D domain by the technique of Ray-Tracing.

1.2.3 Thesis’s structure

Based on this workflow, in Section 2 it is highlighted the essential urban character-
istics for the extraction of information through remote sensing, its challenges and
the evolution of techniques. In Section 3, the details of the methodology and data
adopted for the study are presented. In Section 4, it is analyzed the results in both

4



categories: on 2-dimension (quality of detection) and 3-dimension (quality of 3D
labeling), as well as the training effects between the architectural style and the in-
ference quality under an unknown one. Finally, in Section 5, our main conclusions
and future prospects.
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2 LITERATURE REVIEW

Essentially, the results in the range of alternatives to reconstruct cities vary accord-
ing to the definition of three main phases: (i) sensors and an appropriate measure-
ment of the targets, (ii) processing and classification, according to a desired level
of detail and (iii) standardization in well-established formats, such as CityGML
(KOLBE et al., 2005). The following sections introduce the main works and method-
ologies in 3D reconstruction of buildings and facades, as well as the spatial and
spectral characteristics usually found in these environments, which represent the
great challenges of the area.

2.1 Structural data

Structural data is considered here as all data that carries with it geometric informa-
tion of the scene, that after being assigned to a valid coordinate system, can represent
geometric values very close to the reality. In the following section, it is presented a
summary of current platforms and sensors for acquiring this information.

2.1.1 Common alternatives for structural data acquirement

Urban environments are easily recognized in images by its linear aspects, repetitive
patterns, with structures frequently devoid of natural elements, with a wide variety
of sizes, shapes, compositions and arrangements. Applications involving studies of
these environments equally demands a high resolution acquisition, usually performed
on a large or small scale. In Table 2.1, is shown a schema regarding conventional
types of structural data acquisition and the maximum Level of Details (LoD) that
each configuration could reach in terms of urban objects. The list makes a balance
between their respective costs, knowledge required to manage the equipment, ac-
curacy, spatial and spectral resolutions, among others. It is important to note the
respective table is a non-exhaustive list, which highlights only common forms of
acquirement. Other forms of acquisition, such as civil construction cranes, onboard
balloons, helicopters, and any other resources are not listed.

Aerial platforms, are categorized here into three segments: long, medium and close-
range. Surveys whose sensor is onboard airplanes, flying over altitudes around 1,000
meters, are usually considered as long-range surveys. They are, in fact, the most
used category over the years, allowing sophisticate imaging, sometimes, with hybrid
sensors and configurations that adequately serve the innumerable urban activities.
Although many of these products still present high costs, aerial images are still the
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Table 2.1 - Maximum Level of Detail (LoD) and quality of 3D urban models according to
the acquisition and sensor characteristics.

Plataform Spectral
region

Spatial
resol.

Sensor
view

Building parts Max.
LoD Costs OperatedPC Software Accuracy

Roof Facade Indoor

O
rb
it
al Satellite Optical •••• Multi-view X × × LoD2 fff � ? ? ? - ••••

Satellite Laser •••• Multi-view X × × LoD2 fff � X I ••••
Satellite Hybrid •••• Multi-view X × × LoD2 fff � X I ••••

A
er
ia
l
(m

u
lt
ip
le

ra
n
g
es
)

lo
ng

Airplane Optical •••• Nadir X X ? × LoD2? fff � ? ? ? - ••••
Airplane Laser •••• Nadir X X ? × LoD2? fff � X I ••••
Airplane Hybrid •••• Multi-view X X × LoD3 fff � X - ••••
Airplane Optical •••• Multi-view X X × LoD3 ff � ? ? ? - ••••

m
ed

iu
m UAV Optical •••• Multi-view X X × LoD3 f � ? ? ? - ••••

UAV Laser •••• Nadir X × × LoD2 f � X I ••••
UAV Hybrid •••• Multi-view X X × LoD3 f � X I ••••

cl
os
e UAV Optical •••• Multi-view X X × LoD3 - g ? ? ? - ••••

UAV Laser •••• Multi-view X X × LoD3 f � X I ••••

T
er
re
st
ri
al

User Optical •••• Multi-view × X ?? × LoD3 - g ? ? ? - ••••
User Laser •••• Multi-view × X ?? × LoD3 f � X I ••••
User Optical •••• Multi-view × × X LoD4 - g ? ? ? - ••••
User Laser •••• Multi-view × × X LoD4 f � X I ••••

Low, Medium, High, and Very high, respectively (••••);
Estimated cost (f) - 0 to 3; Specialist (�); Common user (g); Embedded (I).
? Parameter is a function of the sensor’s Field of View (FOV). In cases of comprehensive FOVs, it is possible to
observe not only the characteristics of roofs, but also of facades, allowing an acquisition of values above LoD2. In
cases of FOVs with narrow angles, only the building footprint are observable, consequently, only LoD1 is reachable.
?? The quality of facades images by terrestrial platforms, depends directly on the height of the building. The
imaging of buildings with a height greater than 50 meters, for instance, is affected by the acquisition geometry in
its upper part, as well as inner structures.
? ? ? Control points are required.

SOURCE: Author’s production.

most widely used in large-scale studies, since it does not require a detailed analysis.

Different imaging requires different costs, efforts and technical infrastructure. The
estimated cost shown in Table 2.1 is relative and may vary according to area cover-
age. For example, the cost of orbital laser imaging or high-resolution optical sensors
requires a high cost, but may benefit from covering an area whose terrestrial imag-
ing would cover only in parts. The estimated cost in table, therefore, is the absolute
cost.

On medium-range, the surveys are normally carried out by fixed-wing Unmanned
Aerial Vehicles (UAV) or even by airplanes, whose altitude does not exceed 1,000
meters. In this category, remote data naturally has a gain in resolution, in addition to
enabling large-scale imaging, e.g. farms, forests, neighborhoods and others. In facade
analysis, only sensors with wide FOV or multi-views gives guarantees of imaging
these areas. In Brazil, however, this category still goes through standardization
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and other bureaucratic procedures for practice, although it is regularly offered by
numerous companies (for details, see Section 2.4 and 3.1).

Finally, close-range surveys consists of small and medium-sized platforms, with tar-
get’s distance around 200 meters. This specific configuration has gained interest in
areas such as Agriculture and Cartography. Close-range devices, such as the UAV
(commonly called drones), are usually used for its flexibility, low cost and stability
in flying over narrow paths. These qualities, makes this a right alternative to image
all the faces of a particular building (e.g. roof, facades, inner gardens). Contrary to
the lasers sensors, the UAVs are not only accessible to experts, but also to common
users. These small devices are easily purchased on the market for recreational use,
but depending on their physical characteristics, they can also be adapted for scien-
tific studies. The handling of laser scanners, however, requires a certain expertise,
not just onboard UAVs, but on any other platform.

The terrestrial platforms complete the range of alternatives in close-range imaging,
where three main platforms are adopted: total-station, vehicles or even carried by
the own specialist. Although the ground survey does not require the use of an aerial
platform, this type of imaging has almost the same properties as the close-range
aerial survey. In this category, the images are taken with lateral geometry, at the
lower sight level, interesting configuration for facade analysis, but not feasible when
the purpose requires the complete coverage of the building. For example, indoor
gardens, roof, backyards among other structures are hardly observed.

The green color in table, shows the features benefited by the respective configuration,
while the yellow determines the dependence of some technical factor. In blue, the
maximum LoD reachable by the respective configuration, where the lighters denote
non-detailed 3D models, and darkers, detailed ones. In indoor surveys, measures are
taken as a complement to lower levels, for instance, LoD2 and LoD3. Of course, the
LoD4 model shown would be obtained in addition to an existing model. Measures
indoor by itself, do not support the generation of LoD1, LoD2 or LoD3.

2.1.2 Other alternatives for structural data

The generation of 3D urban models are mainly archived using remote systems, ei-
ther by active or passive sensors, embedded on a long or close-range acquisition
platforms, which is determined often by the application purposes, as presented in
the previous section. In addition, complete cities may also be reconstructed from
instruments other than those previously presented, for example, by radar (Radio
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Detection and Ranging), which by its imaging properties, normally allows studies
such as terrain variations using SAR (Synthetic Aperture Radar) Interferometry,
topography analysis under forest regions, and also cities reconstruction by the tech-
nique known as Persistent Scattered Interferometry (PSI) (FERRETTI et al., 2001),
that despite presenting accurate results, it is still expensive technology for requiring
systematic radar surveys (SCHUNERT; SOERGEL, 2016; SCHACK et al., 2012).

Beyond Photogrammetry, laser, and radar reconstruction techniques, cities can also
be generated by procedural models or even manually1. The concept of virtual and
smart cities has become even more common over the years, and has stimulated
the continuous development of standalone applications independent of the imaging
devices or platform.

2.2 Urban environments and their representations

The different categories of artificial coverage (man-made) constantly change in small
fractions of space and time, often altered by humans as well. Understanding the as-
pects of texture, geometry, material, architectural styles, coverage, among other
physical properties helps define the level of abstraction in the method to be devel-
oped (GOOL et al., 2013). The following sections briefly discuss some of the geometric
aspects of buildings and their features, in order to contextualize the main factors for
3D modeling and reconstruction of these environments. For a more comprehensive
reading, it is recommended the work of (MUSIALSKI et al., 2013).

2.2.1 Buildings

Regardless the type of imaging, artificial structures are easily distinguished from nat-
ural mostly by their linear characteristics. Areas of vegetation are generally iden-
tified by their homogeneous texture and typical spectral properties, for example,
the numerous vegetation indices, which often allow to separate adequately between
vegetation and artificial coverage (GERKE; XIAO, 2014; DEMIR; BALTSAVIAS, 2012).
However, in some cases, vegetation mixes with urban elements, such as terrace gar-
dens or vertical gardens on balconies, aspects that make it difficult to classify them
at the spectral level, but could be easily categorized as being part of a building with
the volumetry complement.

1Reconstruction is the process of creating digital representations as close as possible to the
measurement in terms of accuracy (MUSIALSKI et al., 2013). While generation consists of artificially
creating realistic representations given a set of rules or procedural mechanisms (MÜLLER et al.,
2006).
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A 3D urban model is a representation of an urban environment with 3D geometries of
common urban objects and structures, with buildings as the most prominent feature
(BILLEN, 2014; LANCELLE; FELLNER, 2010). The perception of a building through
the human visual system provides innumerable premises on which characteristics
should be considered at first. Although the methodology presented in this study
does not use spectral or geometrical properties of buildings to extract their features,
some of their characteristics are discussed in this section.

A building consists of a cubic element formed by a flat roof with one or more
faces (TUTZAUER; HAALA, 2015; HAALA; BRENNER, 1999). Some of them have dome
or arched characteristics, and may overlap each other (American type) or present
spectral variations due to their composition. In Figure 2.1, typical roofing examples
are illustrated, where it is possible to find from the simplest form (Figure 2.2(a)),
to more complex ones (Figure 2.2(e) and 2.2(f)). These characteristics are essential
when the extraction of information is carried out essentially by aerial images.

Figure 2.1 - Typical representations of roofs and building topologies. (a) Plane roof. (b)
One-face roof. (c) Two-faces roof. (d) Four-faces roof. (e) Arched and (f)
domed. (g) and (h) Parametric shape. (i) Prismatic. (j) Polyhedral. (l) Curved
and (k) free-form.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

SOURCE: Adapted from Haala and Brenner (1999) and Brenner (2000).

Brenner (2000) considers six different models of building classes: parametric, com-
bined, prismatic, polyhedral, curved and free-form (Figures 2.2(g) to 2.2(l)). Para-
metric buildings are the simplest forms, usually referring to houses or large sheds,
sometimes combining one another (Figure 2.2(h)), forming large complexes, usually
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present in industrial regions, in which buildings tend to have a sparse disposition.
The prismatic model, frequent in commercial areas, represents buildings whose roof
is flat and not necessarily in rectangular form. Polyhedral models expose the geomet-
ric details, such as chimneys, eaves, different level of roofs, among others. The curved
model, is commonly observed in churches or religious buildings. The other buildings,
whose shape does not have a defined pattern, are characterized as free forms, such
as the Gherkin building in London, England, or the famous Copan building, in São
Paulo, Brazil.

In real world, buildings are complex structures with different orientations, slopes,
shapes, textures and compositions. In addition, tasks involving the extraction of
facades features can be impaired by the presence of other objects surrounding, such
as cars, lighting poles, pedestrians, and trees (VERDIE et al., 2015; CHENG et al.,
2011). They are located too close to the walls, which could be treat either as an
occluder object or could be simply modeled as being part of the wall.

Besides to the physical properties of buildings, choosing a specific platform and sen-
sor would define, for example, which areas of the building are better imaged than the
others. The Figure 2.2 illustrated a close-range acquisition through multiple views.
The faces in gray represent the regions not observed by the respective type of acqui-
sition, while red consists the ones that totally imaged. Then, the best configuration
for buildings, according to the picture, is the multi-view and terrestrial close-range
acquisition (Figure 2.3(d)).

2.2.2 Facade features

The reconstruction of facades fulfills an important segment in inspecting and en-
forcing urban planning laws. For instance, the mapping of facade features2 could
assist whether a new building can be erected in front or at a given distance from a
reference point. Burochin et al. (2014) analyzed the facade characteristics in order to
validate building constructions in accordance to French planning laws. Not only the
geometry of buildings is important, but their semantics as well. For the validation
of urban plans, it is essential that windows and doors are not only geometrically
represented but also explicitly labeled as such (TUTZAUER; HAALA, 2015).

In this study, we focus only on the details of the building facades and, so far, there
is no better way than close-range imaging to observe those details (as exemplified

2Sometimes called openings and referenced here as facade features, such as doors, windows,
balconies, gates, etc.
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Figure 2.2 - Building’s faces benefited according to the platform. (a) Sensors with geom-
etry to nadir, allow to observe only roofs (some sensors, however, have wide
FOVs that allow the analysis of adjacent facades). (b) Sensors with multi-
view. A trend in urban mapping by aerial platforms. Oblique images provide
wide imaging coverage. (c) Ground sensors on board mobile platforms. They
allow the observation of details in high resolution. (d) Urban hybrid imaging
by terrestrial sensors and close-range UAVs. They allow the observation of all
the faces of buildings.

(a) (b) (c) (d)
Not-imaged Imaged

SOURCE: Author’s production.

in Figure 2.2). The campaigns of urban data via terrestrial platforms benefits from
the rich information collection, but it is a disadvantage as it does not allow a wide
observation of the structure, such as their internal architecture, roof and, depending
to their height, the upper part. To illustrate this issue, the diagram in the Figure 2.3
shows each of these non-imaged features. The points A and D, the high structures
that, due to the limited FOV, might only be partially observed. The point B, the
roof characteristics, which are hardly observed by terrestrial configurations. Finally,
the point C, another example of structures that could not be observed by such
imaging.

The characteristics of doors and windows are pretty much distinguishable, a rectan-
gular geometric pattern, sometimes, occluded by cars, poles, or other objects. The
structure’s texture uniformity and repeatability of such openings could be verified
by the use of radiometric statistics, Histogram of Oriented Gradient (HOG), and
Gradient Accumulation Profile (GAP), as in Burochin et al. (2014). However, the
symmetry between the openings may not favor the respective method, unless the
imaging is done by two different platforms or the architectural style be a well defined
facade layout.
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Figure 2.3 - Diagram representing a typical terrestrial campaign. In particular, points A
and D denote areas that were negatively affected. High buildings are only
partially observed in this type of acquisition. B and C, show details of charac-
teristics that can not be observed either by the type of imaging (only street-
side view), or because they are internal structures, such as winter gardens -
highlighted in C.

B
C

D

A

Not-imaged Imaged

SOURCE: Author’s production.

In terms of architectural style classification, recent works such as (MATHIAS et al.,
2011), (HENN et al., 2012), and (WEISSENBERG, 2014), has addressed the problem to
the first stage in a 3D reconstruction methodology: first, to identify what to deal with
- Is it a residential area? Is it industrial? The success of any method depends solely on
the distribution, testing and execution of micro tasks, which means in dismembering
the global task in smaller tasks, in the end, all micro tasks performed and properly
tested, will lead to a more consistent method. In this case, the classification of the
facade geometry is a micro task of 3D reconstruction, which even though is not
approached in this study, it is important to emphasize the need of this stage as a
pre-step in 3D reconstruction issue.

The methodology presented here does not include facade layouts categorization.
Instead, it is intended to segment facade features by using Machine Learning (ML)
techniques, which has proven they are robust under complex scenarios, such as
undefined architectural styles or areas occluded by obstacles. The method considers
not only multi-scale analysis, but it is also sensitive towards context, when objects
obstructing doors or walls, for example, are easily ignored by the neural model when
the obstruction does not cover the facade entirely.
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2.2.3 Architectural styles

In fact, the number of possibilities to get rid from these scenarios is wide. The range
of alternatives, however, can grow even more according to the regions in which it
is mapped in the city. Industrial sectors have more differentiated structures than
residential or commercial sectors. For example, bigger buildings, few windows, the
space in between is also bigger, straight lines geometries for walls, windows, doors,
paths, so on. These, however, are more critical because they are sectors of higher
traffic, in general, with dynamic structures, greater density that, in the end, make
difficult for both to access (at acquisition) and to apply any autonomously method
to extract the features.

Looking at the architectural styles shown in Figure 2.43, the layout of facade features
for these styles differ drastically and, in some cases, would be hardly detected by an
automatic method due to the variety of shapes, textures, non-symmetry, and other.

The Haussmanian style, in Figure 2.5(a), was the result of a French renovation during
the 1870s and represents the predominant style in France, with straight facades, with
around 4 to 5 floors, windows often together with balconies, ground floor with the
presence of shops, with clear walls and well defined textures. This style, as well as
Classicism and Historicism (Figure 2.5(b) and 2.5(c)) also present in many European
countries (e.g. Austria, Germany and Spain), is also characterized by the symmetry
among the facade features, such that by the layout of the windows and roof, would
be possible to estimate the number of floors or amount of internal luminosity of
each sector. These styles make up part of the datasets used in this study and in the
literature regarding facade feature detection and 3D reconstruction.

Figures 2.5(d) to 2.5(g), on the other hand, present examples of complex architec-
tural geometries that, in terms of autonomous methods of detection and reconstruc-
tion, require approaches different from those treated in this study. That is, it is
evident that methodologies dealing with the extraction and reconstruction of facade
features in Hausmaniann architectures would certainly fail on modern architectures.
However, these discussions are difficult to find in the literature that, in certain mo-
ments discard this question. Modern architectures have glass in abundance, not only
in windows, but also on every surface of their walls. Reflexive surfaces, for example,

3Each of them can be access in: Figure 2.5(a): RueMonge2014 dataset; Figure 2.5(b): Link;
Figure 2.5(c): Link; Figure 2.5(d): Link; Figure 2.5(e): Link; Figure 2.5(f): Link; Figure 2.5(g):
Link.
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Figure 2.4 - Examples of architectural styles according to different countries and regions
in the city. (a) Hausmaniann. (b) Neoclassic. (c) Religious. (d) Modern. (e)
Free-form. (f) Vertical-gardens. (g) Aglomerados subnormais - favelas.

(a) (b) (c) (d)

(e) (f) (g)

SOURCE: Author’s production. The images was taken from multiple sources in internet,
which authors were unknown.

have features that render the SfM/MVS method useless.

Modern architectures, as in Figure 2.5(e), demarcate another stage of reconstruction.
These structures, because they are atypical, do not require automatic methods of
reconstruction. They are usually mapped or generated artistically.

Not only vertical gardens, in Figure 2.5(f), but also terraced gardens, are becoming
common throughout the years. A sustainable practice that tries to recover the space
occupied by constructions, but which represent a difficulty in 3D reconstruction. Its
texture is confused with the undergrowth or arboreal vegetation which, for methods
that use this metric, can be easily confused. Separate one facade from another, only
using spectral information, is still a remaining problem. Although works such as the
proposed by Martinovic et al. (2015) still get good separability, the case does not
look on real situations, with the presence of any kind of object in front of it, or even
under the facade surface.
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Finally, although in Figure 2.5(g) the building does not have a defined architec-
ture, it represents one of the most important structures that, once reconstructed,
would greatly benefit 3D mapping in Brazil: the subnormal clusters (in Portuguese,
aglomerados subnormais), popularly called “favelas”. These buildings are difficult to
access, usually accessible only by walking. By aerial campaigns, they are difficult to
map by their spectral characteristics, they do not present any symmetry or pattern.
However, they have cultural centers, a large part of the population lives in these
areas, it is impossible to measure issues such as sanitation or disasters, attacks on
public safety, among others.

It is necessary to attack smaller causes, and science, as in any area, will merge each
of these branches according to their context. Although this study has approached
the analysis of different scenarios, including complex ones, it is stated that the 3D
reconstruction issue must be treated according to the city or region in which intends
to study. Urban environments are extremely dense and complex environments. The
conception of a generic model that draws attention to all these disparities is imprac-
tical. However, constant observation of these structures narrows down the range of
options and encourages future studies. Bringing a natural evolution of such routines.

2.2.4 Standardization - Level of Details (LoDs)

The Open Geospatial Consortium (OGC)4 with the purpose of standardizing the
file formats and quantifying different levels of details of 3D models, established the
CityGML language, which provides support for the declaration of physical charac-
teristics and relations between urban elements.

The language consists of a common semantic model for 3D representations of urban
environments. Developed as open-source in XML (eXtensible Markup Language)
format, the standard adopts the Geography Markup Language 3 (GML), which
represents the international standard for spatial data exchange and coding, idealized
by OGC and ISO TC211 (KRESSE; FADAIE, 2004). The standard establishes LoDs
consisting of degrees that each 3D object is represented. Objects in the same scene
may have higher or lower degrees than others.

LoDs are classified into five levels: first, LoD0, corresponds to the basic level of
detail, comprising the planimetric information. The second level, LoD1, corresponds

4Association of companies, universities and government agencies for the development of pub-
licly available geospatial interface standards to support interoperable solutions, making geospatial
services accessible and useful (OGC, 2014).
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to the 3D representation, simple extrusions, where the buildings are represented
not only by its spatial location, but also by its height. At the LoD2 level, simple
structural features such as external columns or garages are aggregated. The LoD3,
presents more refined external structural details. At this level, texture components
and openings are added to their facades, such as doors, windows and balconies.
Finally, the LoD4 represents the highest level, with information on the internal
structure, usually, acquired by indoor instruments (KOLBE et al., 2005) (Figure 2.5).

Figure 2.5 - Levels of detail (LoDs) of the standard CityGML for 3D buildings models.

LoD0 LoD1 LoD3LoD2 LoD4

SOURCE: Adapted from Kolbe et al. (2005).

Even though there are other standards such as COLLADA (COLLAborative Design
Activity) and KML (Keyhole Markup Language), the OCG CityGML standard is
particularly the most adopted. CityGML mainly describes the geometry, attributes
and semantics of different kinds of 3D urban elements. These can be supplemented
with textures or colours in order to give a better impression of their appearance.
In addition, semantic information can also be provided, where a description of the
geometry, attributes and relationship between different objects can be specified, for
example, a building can be decomposed into three parts, or has a safe or a balcony.

2.2.5 Advances in 3D urban reconstruction

The use of high resolution images has been the most effective method for systematic
monitoring in all contexts, be it forest, ocean or city. Understanding patterns of
changes over time is, however, a task that requires enormous effort when executed
manually. In addition, a human interpreter is susceptible to failure and could require
prior experience in target perception. As matter of fact, so far few works have

18



been carried out in the field of architectural style identification or facade feature
extraction and reconstruction (MARTINOVIC et al., 2015). Research has reached a
certain level of maturity today, with a variety of technologies for acquisition, high
graphics processing, storage and dissemination of information that is available for
the automatic operators to make use of.

The development of intelligent operators for image labeling can be categorized into
model-free, model-based, and procedural-models. The first, classical segmentation
methods such as Normalized Cuts (NC) (SHI; MALIK, 2000), Markov Random Fields
(MRF) (KOLMOGOROV; ZABIN, 2004), Mean Shift (MS) (COMANICIU; MEER, 2002),
Superpixel (ACHANTA et al., 2012), and Active Contours (ACon) (KASS et al., 1987),
do not consider the shape of objects or their spectral characteristics, which, in prac-
tice, means they always fail in regions where the elements of a same facade do not
share the same spectral attributes. Model-based or parametric-model operators, use
a priori knowledge base, which together with segmentation procedures, provide more
consistent results on a given region. However, this knowledge is finite and opens up
new possibilities for failures when applied in regions with different characteristics.
The third and last, procedural-models like Grammar Shape (STINY; GIPS, 1971),
comprise the group of rule-based methods, in which algorithms are applied to the
production of geometric forms (TEBOUL et al., 2011).

Image segmenters that carry some intelligence usually carry issues with them as well.
First, it is necessary to configure and train the model, then, make inferences in what
each pixel or region corresponds to. Teboul et al. (2011) proposed a Grammar-based
procedure to segment building facades, where a finite number of architectural styles
are considered. The proposed method is able to classify a wide variety of facade
layouts and its features using a Tree-based classifier, which improves the detection
with only a small percentage of false negatives.

The Grammar-based approaches, however, are normally formulated by rules which
follow common characteristics, such as the sequentiality, which is normally present
on “Manhattan-world” or European styles (WENZEL; FÖRSTNER, 2008), where the
shapes found seem to have lower geometric accuracy since the 3D model is generated,
not reconstructed. Still, the outcomes of Grammar-based approaches provide sim-
plicity and perfectly resume the real scene. Other similar works, such as (BECKER,
2009), (NAN et al., 2010), (WAN; SHARF, 2012), and (BOULCH et al., 2013), have pro-
posed equivalents solutions to the problem, but still lies on the same deficiencies
mentioned above.

19



In addition to procedural modeling, urban 3D reconstruction incorporates a new
class of research, one based on physical (structural) measurements, which comprise
measurements by laser scanners and MVS workflows (mainly). As far as it is known,
in this category lie the works that present the most consistent methodologies and
results, which take into account the geometric accuracy, where the classification of
objects can also be explored by their shapes or volume, in addition to their spectral
information.

Jampani et al. (2015) and Gadde et al. (2017), respectively proposed a 2D and 3D
segmentation based on Auto-Context (AC) classifier (TU; BAI, 2010). The facade
features are explored by their spectral attributes and then, iteratively refined until
results are acceptable. The AC classifier applied in a urban environment is a good
choice since it considers the vicinity contribution, which is essential in this particular
scenario. The downside, however, is that in this case the AC only succeeds when the
feature detection (based on spectral attributes) is good enough, otherwise, it could
demand many AC stages to get an acceptable output.

Unlike the approaches mentioned above, there are also lines of research that address
the problem of 3D reconstruction over the mesh itself, for this reason, other struc-
tural data can be explored, such as LiDAR. Lafarge and Mallet (2011), Verdie et
al. (2015), Oesau et al. (2016) present different contributions, however, with strictly
related focuses. It should be noted, therefore, that the approaches in this line of
research demand complex geometric operations, for instance, regularities using par-
allelism, coplanarity or orthogonality. These operations usually have refinement pur-
poses, and also give the 3D modeling an alternative to acquire more consistent and
simplified models.

Automatic 3D reconstruction from images using SfM/MVS workflows is challenging
due to the non-uniformity of the point cloud, and it might contains higher levels
of noise when compared to laser scanners. In addition to that, missing data is an
unavoidable problem during data acquisition due to occlusions, lighting conditions,
and the trajectory planning (LI et al., 2016). The papers mentioned in the last para-
graph, explore what it is understood as the best methodologies in 3D reconstruction,
according to our established goals: exploring the texture first, and then acquiring
the semantic 3D model (BROSTOW et al., 2008).

Martinovic et al. (2015) proposed an end-to-end facade modeling technique by com-
bining image classification and semi-dense point clouds. As seen in Riemenschneider
et al. (2014) and Bódis-Szomorú et al. (2017), the facade features are extracted and
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semantized by the analysis of its texture, not only, the informations extracted are
also associated with the geometry, extracted by the use of SfM. Both approached
have motivated this thesis in the sense that facade 2D information can be explored
more thoroughly in order to improve its volumetry reconstruction. Martinovic et
al. (2015), for instance, uses the extracted facade features to analyze the alignment
among them, where a simple discontinuity shows the boundaries between different
facades. Thereby, it could be used to pre-classify subareas, such as residential, com-
mercial, industrial, and others. Sengupta et al. (2013), Riemenschneider et al. (2014)
and Bódis-Szomorú et al. (2017), similarly, explored different spectral attributes in
order to discriminate the facade features as well as possible. Moreover, the 3D mod-
eling is later supported by these outcomes by performing a complex regularization
and refinements over the mesh faces.

2.3 3D mapping around the World

Investigating the exact number of cities that actually use 3D urban models as strate-
gic tool in their daily lives can be a difficult task. However, Biljecki et al. (2015b)
presented a consistent review of entities (industry, government agencies, schools and
others) that make or made use of 3D maps beyond the visual purpose. Hence, only
applications supported by the respective technology are, in fact, listed. Examples of
such applications are the visibility analysis for security cameras installation (MING et

al., 2002; YAAGOUBI et al., 2015), urban planning (SABRI et al., 2015; LESZEK, 2015),
air quality analysis (AMORIM et al., 2012; JANSSEN et al., 2013), evacuation plans in
emergency situations (KWAN; LEE, 2005), urban inventories with cadastral updating
(QIN, 2014), among others.

Although the number of cities adopting this tool is uncertain, some of these are
known for their technological advances and social development, an important indi-
cator in the implementation of innovative projects. Countries such as the United
States, Canada, France, Germany, Switzerland, England, China and Japan are
among the leading suppliers of Earth Observation equipment, for example, Leica
Geosystems™ (Switzerland) laser systems, FARO™ (USA), Zoller-Fröhlich™ (Ger-
many), RIEGL Laser Measurement Systems™ (Austria), Trimble Inc.™ (USA),
TOPCON™ (Japan), and countless optical sensors used in ground and airborne
surveys. It is natural, therefore, that these great providers also become reference in
conducting research in the sector.

In Germany, the so-called “city-models” were built with the basic purpose of assisting
and visualizing simple scenarios or critical situations. At that time, these models did
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not have sufficient quality for certain analyzes or permanent updating, making use
of the old 2D registers for queries. In the end, the 3D models never became part of
the register. The concept of urban 3D reconstruction has become, due to demand, a
scientific trend in Cartographic, Photogrammetry and Remote Sensing (RS) almost
everywhere in the world, especially in the aforementioned countries.

Naturally, new questions arose. How to merge information already available in 2D
databases with the ones in 3D? In certain circumstances, what is the limit on the
use of 3D information? When the 2D is already enough and when not? Biljecki et
al. (2015b) argue that all applications that require 2D information can be solved
with 3D, but that does not make it a unique feature, but an optional one. For
example, Kluijver and Stoter (2003) carried out a study of the propagation of noise
in urban environments from 2D data. Years later, in Stoter et al. (2008), the study
was complemented with 3D information, showing considerable improvement in the
estimation.

2.4 3D mapping in Brazil

In Brazil, the Geographic Service Directorate (in Portuguese, Diretoria de Serviço
Geográfico (DSG))5 is the unit of the Brazilian Army responsible for establishing
Brazilian cartographic standards for the 1: 250,000 and larger scales, which implies
standardizing the representation of urban space for basic reference mapping. Re-
cently, the National Commission of Cartography (CONCAR) has put forward the
new version of the Technical Specification for Structuring of Vector Geospatial Data
(ET-EDGV) (COMISSÃO NACIONAL DE CARTOGRAFIA, 2016), which standardizes
reference geoinformation structures from the 1:1000 scale. The data on this scale
serve as a basis for the planning and management of the urban geographic Brazilian
space. In Brazil, the demand for 3D urban mapping is still low and faces challenges
that go beyond its standardization.

As documented in this section, the state-of-art in automatic 3D urban reconstruction
covers areas with moderate modeling, whose architectural styles are very specific,
streets with large spacing, or symmetry between facade elements, which makes the
creation of automatic methods a bit more feasible (GOOL et al., 2013). In countries
where there is a high density of buildings, such as Brazil, India, or China, this factor
is aggravated by the urban geometry. Many of the Brazilian cities do not have a
specific style. In suburbs, for example, this factor can prove even more aggravating,

5Available at http://www.dsg.eb.mil.br. Accessed November 2, 2018.
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where settlement areas or subnormal settlements (in Portuguese, favelas – see Figure
2.5(g)) are all built under these circumstances, with high density and sometimes,
erected irregularly or over risky areas, which makes them even more prominent in
mapping.

Initiatives such as the TáNoMapa, by Grupo Cultural AfroReggae6, together with
the North American company Google™, consist of mapping hard-to-reach areas such
as streets with narrow paths, cliff, among others, by the own local residents. Such
areas, in addition to being geometrically complex, require not only cooperation from
the government but also from the community who lives there, which by social or
security reasons, may require some consent.

Even though it faces many obstacles, Brazilian urban mapping is moving towards
more sophisticated levels. In 2016, the National Civil Aviation Agency (in Por-
tuguese, Agência Nacional de Aviação Civil (ANAC)) regulated the use of UAVs
for recreational, corporate, commercial or experimental use (Brazilian Civil Avia-
tion Regulation, in Portuguese, Regulamentos Brasileiros da Aviação Civil (RBAC),
“portaria” E nº 94 (ANAC, 2015)). The regulation, widely discussed with society,
associations, companies and public agencies, establishes limits that still follow the
definitions established by other civil aviation entities such as the Federal Aviation
Administration (FAA), the Civil Aviation Safety Authority (CASA) and the Euro-
pean Aviation Safety Agency (EASA), regulators from the United States, Australia
and the European Union, respectively (ANAC, 2017). Thus, close-range acquisitions
through the use of UAVs became feasible and have fostered research in these fields.

2.5 Geometry extraction

2.5.1 Structure-from-Motion (SfM)

The drawbacks of 3D reconstruction by Photogrammetry are not so many when
taking in account its advantages (REMONDINO et al., 2005). In the past decades,
close and long-range Photogrammetry have become a widely used tool in 3D city
modeling (REMONDINO; EL-HAKIM, 2006; FRASER; CRONK, 2009). Its low costs and
availability in remote areas increased its demand, especially in the analysis of such
environments. The SfM technique is based on the same physical principles of Stere-
oscopy, in which a structure can be reconstructed from a series of images taken at
small positional variations and overlapping (Figure 2.6). In conventional Photogram-
metry, however, both the position and orientation of the sensor must be known. By

6Available at https://www.afroreggae.org/ta-no-mapa/. Accessed November 2, 2018.
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the SfM technique, the positional parameters can be estimated. In contrast, point
clouds generated by SfM have coordinate system in 3D local reference, or image
space, which must later be aligned to the coordinate system of the object (WEST-

OBY et al., 2012).

Figure 2.6 - Structure-from-Motion and camera projection. Instead of a single stereo pair,
the SfM technique requires multiple, overlapping images as input to feature
extraction and 3D reconstruction algorithms.

SOURCE: Adapted from Westoby et al. (2012).

The workflow to obtain the point cloud using SfM begins with the detection of cor-
ners in all input images. For every point, a descriptor based on Histogram Oriented
Gradient (HOG) is attributed. Then, a set of descriptors from one image are cor-
relate to another one. The ones remaining are called keypoints. The keypoints are
used as descriptors in a correspondence analysis among other images, also known as
Image-Matching (IM), where pairs are formed according to the level of correlation
between each descriptor (i.e., which feature points in several different images depict
the same 3D point on the original object). Once the matching has been concluded,
the camera orientation and position estimation is started. With the estimated pa-
rameters, the matching points now have depth, which together provides detailed
structural information of the entire imaged environment.

The camera position and orientation are estimated iteratively in a process called

24



Bundle Adjustment (BA) (TRIGGS et al., 1999), which in turn, requires a set of
overlapping images sharing a set of measurements of point images at “von Gru-
ber” positions (AGOURIS et al., 2004). The procedure consists of refining the 3D
coordinates based on the number of overlapping images and the intersection of the
light rays from each point image and camera projection center. The level of overlap
and alignment, therefore, determine the quality of estimation (geometric accuracy)
of the point cloud in any SfM methodology (SNAVELY et al., 2008; HOFER et al., 2016).

Different approaches for SfM pipelines have change the way how to 3D reconstruct
cities. As summarized in the Table 2.1, the main contribution for 3D reconstruction
by SfM reside in the fact that geometry can be acquired only using optical images,
specialists on image acquisitions are no more required since the pictures available on
internet could provide sufficient dataset for 3D modeling. For instance, the Bundler
(SNAVELY et al., 2008) takes an unorganized image collection as input, then it is able
to reorganize the collection in a way that each pair correspond to an overlapped
image.

This approach solves, for example, the question of the physical presence of the human
operator in the places of interest. Although it only solves the problem mostly at
touristic sites, the idea of using images from ordinary users has stimulated areas such
as Cartography, Photogrammetry and Remote Sensing since then. Another example,
the VarCity project7(RIEMENSCHNEIDER et al., 2014), which uses information from
a variety of internet sources and integrates them to reconstruct every scenario in
3D.

Keypoints are simply distinctive points denoting the image identity, areas with opti-
mal characteristics for correlating two images, free of spectral and spatial variations,
for example, sharp edges and corners. Fundamental in the areas of Computer Vision,
Photogrammetry and Remote Sensing, the concept of corner detection is old and is
based on the analysis of images in differential space. The issue, in this case, is how
to detect corners in one image and at the same time correlate it with another one,
which in turn can present variations in scale, texture or orientation? First, Harris
and Stephens (1988) proposed to find keypoints using measures based on eigenval-
ues of smoothed gradients, which allowed the detection of corners independently of
rotation, translation and brightness, but not in depth (scale). Then, in 2004, Lowe
(2004) proposed the Scale Invariant Feature Transform (SIFT) method, solving the
scale problem and also adding the image matching resolution.

7Details about the project are available at https://varcity.ethz.ch/. Accessed November 2, 2018.
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Yuan et al. (2017) categorizes the matching algorithms in two segments, the ones
based only in radiometric information and those based either on radiometric and ge-
ometric information. Respectively examples of approaches are the Normalized Cross
Correlation (NCC) (GONZALEZ; WOODS, 1992), Scale Invariant Feature Transform
(SIFT) (LOWE, 2004), and the Distinctive Order Based Self-Similarity (DOBSS)
(SEDAGHAT; EBADI, 2015), which stand in the high quality of the images. The sec-
ond group of algorithms include the Semi-global Matching (SGM) (HIRSCHMULLER,
2008), Path-based Multi-View Stereos (PMVS) (FURUKAWA; PONCE, 2007), and
Multi-photo Geometrically Constrained Matching (MGCM) (ZHANG; GRUEN, 2006).
These last algorithms take advantage not only from fine radiometric information, but
also from the predetermined geometric information, functions as a supplementary
matching constraint.

Among these, SIFT has become the most popular. SIFT is independent of scales,
variations of brightness, contrast and orientation. After identified, the matching
points are determined in pairs of images according to the correlation of local descrip-
tors in each point. A common descriptor is the use of the HOG, which considers the
magnitude and orientation of its neighbors as an identifier in the matching process.
In the case of low correlation, these are discarded by the algorithm. The size and
quantity of images are also part of the problem in the identification of keypoints,
depending, demanding days of processing. More sophisticated procedures have im-
proved SIFT by the use of GPUs (Graphic Processing Unit)8, for example, SiftGPU
(WU, 2007).

Some of the SfM stages have been improved over the years. Examples of these
transformations are the recent use of BA for the iterative adjustment of camera po-
sitioning, the use of SiftGPU (WU, 2007) for computational optimization for image-
matching and Multicore Bundle Adjustment (MBA) (WU et al., 2011a), the technique
Clustering Views for Multi-View Stereo (CMVS) (FURUKAWA et al., 2010), which
the entries are decomposed into smaller processing groups in order to enable paral-
lel processes, PMVS-2 (FURUKAWA; PONCE, 2010), an improved version of PMVS,
responsible for the automatic reconstruction of only rigid objects, pedestrians, mov-
ing cars and others. In Figure 2.7, SfM is summarized. The post-processing phase is
composed of a dense point cloud refinement, where points can be either simplified
(points reducing), filtered (noise removal), or used as input for surface reconstruction
(e.g. Poisson (HOPPE, 2008)) and texturing.

8Electronic circuit dedicated to high-performance graphics processing.
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Figure 2.7 - Most recent Structure-from-Motion pipelines. From photographs to sparse
point-clouds.
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2.6 Deep Learning (DL)

In terms of image labeling, years of advances have brought what is now considered
a gold-standard in segmentation and classification: the use of DL. The technology
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is the new way to solve old problems in Remote Sensing (AUDEBERT et al., 2017).
It is one of the branches of ML that allows computational models with multiple
processing layers to learn representations in multiple levels of abstraction. The term
“deep”, refers to the amount of processing layers that is usually used during training.

Mitchell et al. (1997) succinctly defines the learning from a ML as: “A computer
program learns from a given experience E relative to application classes T with a
performance P , if the performance on task T is better than in E ”. Widely categorized
as unsupervised or supervised, ML is defined by the type of experience that can be
applied during the learning process. Shortly, unsupervised learning does not require
samples during the training process (learning occurs with the dataset itself), while
the supervised assume its behavior according to a reference set. LeCun et al. (2015)
believe that unsupervised learning will become far more important in the longer
term, since machine learning tends to look more like human learning, which in turn
has its learning largely unsupervised: “they discover the structure of the world by
observing it, not by being told the name of every object”.

These models have made remarkable advances in the state-of-art of pattern recog-
nition, speech recognition, detection of objects, faces, and others. Shortly, DL ar-
chitectures are trained to recognize structures in a massive amount of data using,
for example, supervised learning with the concept of backpropagation9, where the
model is indicated the proportion of what must be changed in each of its layers until
“learning” occurs (error decay) (LECUN et al., 2015).

Unsupervised learning had a catalystic effect in reviving interest in DL, since then,
it has been overshadowed by the successes of supervised learning. LeCun et al.
(2015), on the other hand, believes that unsupervised learning will become far more
important in the longer term, as the technological tendency is to get closer and
closer to human behavior.

2.6.1 Convolutional Neural Network (CNN)

In 1943, the first Artificial Neural Network (ANN) appeared (MCCULLOCH; PITTS,
1943). With only a few connections, the authors were able to demonstrate how a
computer could simulate the human learning process. In 1968, (HUBEL; WIESEL,
1968) proposed an explanation for the way in which mammals visually perceive
the world using a layered architecture of neurons in their brain. Then, in 1989, a

9Backpropagation is a method commonly used in ML to calculate the error contribution of each
neuron after each training iteration.
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neural model started to get attention not only because of its results, but also for its
similarities with the biological visual system, with processing and sensation modules.

LeCun et al. (1989) presented a sophisticated neural model to recognize handwrit-
ten characters, named first LeNet, then later, Convolutional Neural Network (CNN).
Precisely, the reason for this name is due the successive mathematical operations
of image convolutions. Since then, many engineers have been inspired by the devel-
opment of similar algorithms for pattern recognition in Computer Vision. Different
models have emerged and contributed to the evolved state of neural networks in the
present days. In Figure 2.8, the LeNet neural model, developed by Yann Lecun in
1989 (LECUN et al., 1989).

Figure 2.8 - LeNet: The first version of a CNN, projected by Yann Lecun in 1989.
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SOURCE: Adapted from LeCun et al. (1989).

The CNN is structured in stages, the first ones are composed of two types of layers:
convolution and pooling (in the figure, in blue and red). Units in a convolution layer
are organized into feature maps or filters, where each unit is connected to a window
(also called patch Cx - details in the bottom figure) in the feature map of the previous
layer. The connection between the window and the feature map is given by weights
(w) and biases (b). The weighted sum of the convolution operations is followed by a
nonlinear activation function, called Rectified Linear Unit (ReLU). For many years,
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activations in neural networks were composed of smoother functions, such as the
tanh(x) or 1/(1 + e−x) sigmoids, but recent study has shown ReLU to be faster on
learning in multilayered architectures (LECUN et al., 2015). The fully-connected layer
corresponds to a traditional Multi-Layer Perceptron (MLP), with hidden layer and
logistic regression. Then, the input to the MLP layer is the set of all features maps
at the previous one.

CNN have made advances in image, video, speech and audio analysis, while Recur-
rent Networks (RR) have supported the path to sequential data such as text and
speech (LECUN et al., 2015). It was designed to recognize visual patterns directly from
pixel images with minimal preprocessing. Due to convolution over images and its
reduced versions (downsampling), they can recognize patterns with extreme variabil-
ity, scales, and with robustness to distortions and simple geometric transformations
such as handwritten characters.

Because of its robustness in image classification and segmentation over complex
environments, CNN has been a trend in many Computer Vision applications. For
example, the approach is considered gold-standard in applications such as face recog-
nition (LAWRENCE et al., 1997), speech recognition (ABDEL-HAMID et al., 2013), nat-
ural language (KALCHBRENNER et al., 2014; CIRESAN et al., 2011), and others. In
image analysis, not the first, but the reference on the use of CNNs for images can be
named to the model AlexNet (KRIZHEVSKY et al., 2012), when the technique began
to be exhaustively tested and became a practical and fast way in object classification.

With the success on ordinary image classification, neural models came to be used also
in numerous applications involving Remote Sensing (ZHU et al., 2017). Examples of
that are the analysis of orbital images (CASTELLUCCIO et al., 2015; MARMANIS et al.,
2016), radar (CHEN; WANG, 2014; CHEN et al., 2016; SUN et al., 2012), hyperspectral
(CHEN et al., 2014; ROMERO et al., 2014) and in urban 3D reconstruction (HÄNE et

al., 2013; BLAHA et al., 2016; BLÁHA et al., 2016). Although not focused specifically
on the analysis of facades, excellent results have been reported in the classification
of urban elements through the use of DL.

An example of this evolution can be observed in the annual PASCAL VOC (EV-

ERINGHAM et al., 2015) challenge that, brings together experts to solve classical
tasks in Computer Vision and related areas. The applications range from recogni-
tion (KRIZHEVSKY et al., 2012) to environment understanding, where the analysis is
focused on the relationship between the object itself. Therefore, certain constraints
could be imposed to the relation, for example, between a pedestrian and street or

30



vehicles in applications involving self-driving (BADRINARAYANAN et al., 2015; TE-

ICHMANN et al., 2016), such that a distance and speed constraints could be imposed
between these detected objects. Lettry et al. (2017) used CNN to detect repeating
features in rectified facade images, wherein the repeated patterns are verified on a
projected grid, then, it is used as a device to detect those regular characteristics and
reconstruct the scene.

2.6.1.1 Autoencoder

How humans perceive the environment around them is still a topic of recurrent re-
search and, so far, not fully understood. The human visual system consists basically
of two processes: radiation capturing and visual perception. The first, numerous
chemical and optical processes take place in the eyes of the observer. All visible ra-
diation captured is transformed into synaptic signals by photo-receptor cells, called
cones and rods. From this point, these signals representing this lapse moment are
then directed to specific regions of the brain, which through chemical reactions and
many others to be understood, allow to connect these signals to the perceptual neu-
ral senses, which then allows to see and perceive the environment, completing the
basic mechanism of the human visual system.

CNNs can assume different processing mechanisms, different numbers of layers and
how they are connected. The architecture called Autoencoders or encoder-decoder
(BADRINARAYANAN et al., 2015; TEICHMANN et al., 2016), presents similarity not only
in architecture but also in the behavior of human visual system. As described in the
previous paragraph, two basic mechanisms can be noticed in the biological system:
one for processing the radiation in synaptic signals by photo-receptor neurons; and
another, for environmental perception, mainly performed by the visual cortex.

Similarly, the encoder and decoder mechanism respectively simulate this two process.
First, the input image is subjected to numerous convolution and pooling operations.
For each pooling, the downsampling occurs, where the image resolution is reduced
and passed on as input to the subsequent convolution layer. Each convolutional
layer has a set of convolutional filters, also called filter bank, each of these looks for
specific features on image, such as horizontal lines, vertical, curved ones, faces, cars,
and others. Consequently, the filter bank learns different patterns in different scales,
orientation and location (functions similar to those of the biological lens and retina)
as it goes down on deep layers.

Signals in small dimensions are then transmitted to the decoder, which from three
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convolution layers performs the upsampling, which is simply deconvolutional oper-
ations, the transformation of signals from smaller resolutions to larger resolutions.
The result of this transformation is therefore a map of “perceptions”, the segmented
image (Figure 2.9).

Figure 2.9 - Autoencoder architecture to segment images.
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SOURCE: Adapted from Badrinarayanan et al. (2015).

Another feature of these systems and also idealized observing human behavior is
the way humans perceive space and objects in their environment. In a lapse of time,
innumerable processes are triggered instantly in the brain. In one of these, it is
possible to note the human capacity to identify distinct features of all the rest. It is
like the human visual system “would not worry” at capturing all the information on
that environment, but rather, only those that might be interesting. Permanently, the
human eyes scan the environment in very fast movements, process called Saccade
(KO et al., 2016; PIRKL et al., 2016). These very fast movements, allow the eyes to
capture fractions of images step-by-step. In the Figure 2.10, for instance, the features
highlighted by the CNN and the path of the iris when exposing a random image is
accurately close.

The semantic segmentation of images by the use of neural networks has gained ad-
herents in a wide range of applications, ranging from the recognition of objects of
different natures (KRIZHEVSKY et al., 2012), as well as the understanding of the en-
vironment, in which the analysis is also applied on the relation between the objects
themselves. Thus, certain constraints could be easily applied, for example, a pedes-
trian with the object street or automobiles in an application involving autonomous
driving (BADRINARAYANAN et al., 2015; TEICHMANN et al., 2016; LETTRY et al., 2017).
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(a)

(b)

Figure 2.10 - Analogy to the computational neural system and biological. (a) Output of
a Recurrent Neural Network (RNR), a special type of deep network. The
network is trained to translate high levels of representations into texts. In
the figure, the network’s ability to focus its attention on specific sections of
the image; (b) Eye-tracking device and the capture (gray points) of eyeball
movements - Saccade effect.

SOURCE: Adapted from LeCun et al. (2015), Pirkl et al. (2016), Dalmaijer et al. (2014).

As emphasized by Zhu et al. (2017), Remote Sensing data represent a new challenge
for DL. Their imaging nature can often be differentiated. For example, optical, laser
and radar data provide different representations, which would require analysis that
has not yet been so explored with the use of DL.

The DL as an automatic extractor of urban features is a scientific question of great
interest to the community and also covers a limited number of works. The efforts so
far, show that there is progress in identifying facade features in specific architectural
layouts, with well-defined, symmetrical, and accessible modeling facades. The use of
benchmark datasets, such as the ones used in this study, is common and provide a
wide overview about the extraction algorithms available today.

In Liu et al. (2017), for example, DL is used for the identification of facade features
on two online datasets: eTRIMS and ECP datasets, presenting similar results to
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those shown in this study. The VarCity project (RIEMENSCHNEIDER et al., 2014)10,
provides accurate perspective on 3D cities and image-based reconstruction. The
research involves not only studies in “how” to reconstruct, but how these semantic
models could automatically assist to the daily life events (e.g. traffic, pedestrians,
vehicles, green areas, among others).

10Available at https://varcity.ethz.ch/index.html. Accessed November 2, 2018.
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3 MATERIAL AND METHOD

3.1 The current brazilian 3D urban maps

The content presented in this section, represents a complementary study to the
Section 2.4, driven by the need to understand the current state of Brazilian 3D
urban mapping. The goal in this respective study was to understand more the local
mapping infrastructure among the Brazilian capitals, the availability of resources
for their urban planning, and in how an accurate 3D urban model would help in the
management of the city.

For this task, a poll was elaborated on the use of 3D maps for the strategic planning
of municipalities and sent to the secretaries of each Brazilian capital. The capi-
tals were used as reference for the research, therefore, when reporting as being a
“non-user” of any 3D information, it was considered that all cities referring to the
respective state were also considered as non-users. The questions of the poll were:

a) Does the infrastructure/planning department have urban 3D city maps?
b) If so, how did this benefit the management and urban planning service?
c) If yes, what applications are used today?
d) If not, how is urban planning currently done?
e) How could 3D urban maps contribute?

Among the 26 Brazilian capitals and 1 federal district, only 8 of them answered the
poll (Table 3.1). The details of each answer can be seen in Table B.1, in Appendix
B.

Even though only a few secretaries have replied, the answers from the largest capi-
tals have been obtained. Despite the different responses, it is believed that the vast
majority still adopt the same technologies for 3D surveys: long-range aerial surveys
through LiDAR, to roughly observe the urban structuring. Still, the datasets ac-
quired by some of these cities are out of operation for urban planning purposes. The
names and emails of those responsible for the answers can be seen in Appendix B.

3.2 Study areas and datasets

To train supervised DL methods with a good generalization, a large dataset is al-
ways required. This would contribute to both fine-tuning models and training small
networks from scratch (ZHU et al., 2017). In order to vary the building architectural
styles, the experiments in this work cover different areas. In recent years, several
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Table 3.1 - Poll answers from each Brazilian Capital regarding the use of 3D maps on
urban planning.

City Question 1 Released or
Planned? Products Sensor Platform Scale Coverage

Fortaleza × Planned – Laser Ø Large –

Vitória × Planned – Laser Ø Large –

Porto Alegre X Planned DSM, DTM Laser Ø Large Full

São Paulo X Released DSM, DTM Laser Ø Large Full

Belo Horizonte X Released – Laser Ø Large Medium

Rio de Janeiro X Released – Laser Ø Large Medium

Curitiba X Released – Laser Ø Large Medium

Recife X Released – Laser Ø Large Full

(Ø) onboard of airplane

SOURCE: Author’s production.

datasets have been shared in order to contribute in new studies, such as to train
deep neural networks, for benchmarks, or simply both.

In Table 3.2, seven different datasets are listed. The first 6 rows are online shared
datasets, mainly used for evaluation and to perform benchmarks over different ex-
traction models. They are then used in this study as diversified inputs, since each
of them presents different facade characteristics. The last row is a dataset obtained
exclusively for this work and used as test images. Eight semantic classes were de-
fined: roof, wall, window, balcony, door, shop, and finally two more, but unrelated
to the facade: sky and background. Some of the datasets listed did not provide all
eight classes and, in some cases, their annotations had to be adapted.

RueMonge2014: The RueMonge2014 dataset was acquired to provide a benchmark
for 2D and 3D facade segmentation, and inverse procedural modeling. It consists of
428 high resolution images, with street-side view (overlapped) of the facade, with
Haussmanian architecture, a street in Paris, Rue Monge. Together with the 428
images, a set of 219 annotated images with seven semantic classes are also provided.
Due to the geometry of acquisition, the dataset offers the possibility to generate a
3D reconstruction of the entire street scene. Into its evaluation framework, three
tasks are proposed: (i) image segmentation; (ii) mesh labeling; and (iii) point cloud
labeling.

Center for Machine Perception (CMP): The CMP consists of 378 rectified
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Table 3.2 - Datasets for facade analysis and benchmarks. RueMonge2014 and Graz, ETH
Zürich; CMP, Center for Machine Perception; eTRIMS, University of Bonn;
ECP, Ecole Centrale Paris; SJC, São José dos Campos.

Name Location Architecture Images Labels Rectified PC Gen-
eration Reference

RueMonge2014 France Hausmaniann 428 219 × X
(RIEMENSCHNEIDER et al.,
2014)

CMP Multiple Multiple 378 378 X × (TYLEČEK; ŠÁRA, 2013)
eTRIMS Multiple Multiple 60 60 × × (KORC; FÖRSTNER, 2009)
ENPC France Hausmaniann 79 79 X × (GADDE et al., 2017)
ECP France Hausmaniann 104 104 X × (TEBOUL et al., 2010)

Graz Austria

Classicism,
Biedermeier,
Histori-
cism, Art
Nouveau

50 50 X × (RIEMENSCHNEIDER et al.,
2012)

SJC Brazil Multiple 175 - × X -

SOURCE: Author’s production.

facade images of multiple architectural styles. Here, the annotated images have 12
semantic classes, among them, some facade features such as pillars, decoration, and
window-doors were considered as being part of the wall (for pillars and decoration)
and window (window-doors). Then, we have adapted the CMP dataset by unifying
its classes and their respective colors.

eTRIMS: The facades in this set do not have a specific architecture style and
sequence, as well as in the previous dataset. The eTRIMS provides 60 images, with
two sets of annotated images, one with 4 semantic classes (wall, sky, pavement, and
vegetation), and another with 8 (window, wall, door, sky, pavement, vegetation, car,
and road). For our project, we chose the last, but adapted it to window, wall, and
door features only. The other classes were considered as background.

ENPC Art Deco: The ENPC dataset provides 79 rectified and cropped facades
in Hausmaniann style. The annotations, however, are shared not in image format,
but in text, which also had to be adapted to the 7 classes and colors defined in this
work.

Ecole Centrale Paris (ECP): Just like RueMonge2014, the 104 facade images pro-
vided by ECP are in Hausmaniann style, but the images are rectified, with cropped
facades. In some cases, the classes windows, roof and walls were not perfectly de-
lineated, which may be considered noise by supervised neural models. The same
issue can also be found in ENPC dataset. Even though we noticed the problem, no
adaptation was performed.
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Graz: The Graz dataset consists of multiple architectural styles, selected from the
streets in Graz (Austria), rectified, with the same 7 semantic classes defined in
RueMonge2014.

São José dos Campos (SJC): The SJC dataset consists of buildings at a resi-
dential area in São José dos Campos, São Paulo, Brazil. Like most of the country,
the architectural style throughout this city is not unique, often diverging between
free-form and modern styles. This set consists of 175 sequential images, overlapped,
and taken at the same moment.

3.3 Method

The complete methodology of this case study, as shown in Figure 3.1, consists of
three stages: A supervised CNN model for semantic segmentation (blue); Scene
geometry acquirement (3D reconstruction) through SfM and MVS pipeline (red);
Post-processing procedures (yellow); and 3D labeling through ray-tracing analysis
(white). The boxes in gray represent the products, delivered in different steps of the
workflow. The following sections, therefore, are presented according to this sequence.
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Figure 3.1 - 3D facade model: Facade feature extraction and reconstruction workflow.
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3.3.1 Facade feature detection

3.3.1.1 Training dataset

Each of the 6 datasets has been divided in three different subsets: training, valida-
tion, and tests. 80% of the annotated images were used for training, and 20% for
validation. Only RueMonge2014 had a non-annotated set of images (209), which was
used as test. Due to the small number of training samples, no set of test images was
used for the other group of data. Instead, a new acquisition with similar geometry
as RueMonge2014 was performed in the city of São José dos Campos (SJC), São
Paulo, Brazil. The images will be used only for test, where each of the mentioned
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datasets are used for training.

Figure 3.2 - Example of input images for training. (a) Pair of non-rectified images (origi-
nal and annotated) from RueMonge2014 dataset. (b) Pair of rectified images
(original and annotated) from ECP dataset.

(a) (b)

SOURCE: Author’s production.

3.3.1.2 Neural model

The classic DL architectures used in visual data processing can be categorized in
Autoencoders (AE) and CNN architectures (ZHU et al., 2017) (as discussed in Section
2.6). An AE is a neural network that is trained to reconstruct its own input as an
output. It consists of three layers: input, hidden, and output. The hidden layer
takes care of all operations behind this model. The weights are iteratively adjusted
to become more and more sensitive to the input (GOODFELLOW et al., 2016).

The CNNs, on the other hand, take advantage of performing numerous convolu-
tion operations in the image domain, where a finite number of filters are repeti-
tively applied in a downsampling image strategy, which allows the analysis of the
scene at different orientations and scales. The convolution is one of the most im-
portant operations in signal and image processing, and can be applied in different
domains: 1D, in speech processing (SWIETOJANSKI et al., 2014), 2D, in image pro-
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cessing (KRIZHEVSKY et al., 2012; AUDEBERT et al., 2017; LONG et al., 2015) or 3D,
in video processing (KARPATHY et al., 2014).

Although it has been categorized by Zhu et al. (2017) as being different neural archi-
tectures, AE and CNN can be at the same architecture, so called Deep Convolutional
Encoder-Decoder, but it has only variations on the layers arrangement, not in the
concept, then, considered here simply as CNN.

The deep neural architecture adopted in this study consists of two main compo-
nents: encoder and decoder. Most recent deep architectures for segmentation have
identical encoder networks, i.e. VGG16 (SIMONYAN; ZISSERMAN, 2014), but differ
on their decoder, training and inference (BADRINARAYANAN et al., 2015). As the
goal in this study is not to test variations of neural architectures, the encoder here
corresponds to the same topological structure of the convolution layers of VGG16
(SIMONYAN; ZISSERMAN, 2014), initialized using pretrained VGG weights on Ima-
geNet (KRIZHEVSKY et al., 2012), randomly initialized using a uniform distribution
in the range (−0.1, 0.1).

The encoder is originally composed by 13 convolution layers, followed by their re-
spective Pooling and Fully Connected (FC) layers, which in total gives VGG the
name of 16. The FC layer, however, is replaced by a 1× 1 convolution layer, which
takes the output from the last pooling, and generates a low resolution segmentation
Teichmann et al. (2016), with dimension of 1x1x4096 (encoded input, see Figure
3.3). This makes the network smaller and easier to train (BADRINARAYANAN et al.,
2015).

The decoder is seen as a component that interprets chaotic signals into something
intelligible, similar to the human senses. For example, it would be like the equivalence
between a noise (signal) and a person talking in a known language (interpreted
signals by our brain), radiation (signal) and the perception of being under a garden
with flowers and animals (environment perception, which is the brain interpretation
of this same radiation), etc. The neural architecture presented by (TEICHMANN et

al., 2016), for instance, used 3 different decoders with 3 different tasks in a way
that real-time application could be performed. Multiple decoders mimics the human
multiple sense being performed simultaneously by the brain. Once the purpose here
is only the visual sense, the use of multiple decoders is not interesting due to useless
computational demand, and unnecessary processing.

Using the previous analogy, the input signals to the decoder is the final matrix
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from the encoder, which performs the upsampling operation resulting in a pixelwise
prediction. The operations performed by this component is composed by 3 deconvo-
lutional layers, so the predictions result in upsampled in the same size as the input
image. To better understand the fully path, in the Figure 3.3 is illustrated the details
of the final CNN used in this study, as just described.

Figure 3.3 - Convolutional Neural Network details used in this study. Encoder-Decoder
convolutional architecture.

Input
[256 x 256 x 3]

Conv 1
[224 x 224 x 64] [112 x 112 x 128]

Conv 2 Conv 3
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FCN Prediction

[256 x 256 x 3]

Encoder Decoder
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encoded input with 
lower dimensionality

convolution + ReLU max-pooling layer fully connected network softmax dropout 3x3 kernelstride 2

SOURCE: Author’s production.

The convolution layers sequentially perform the linear operations regarding a certain
kernel size and stride (the number of pixel jumping over the kernel slide). Each
convolution layer has also a pre-determined number of filter, their functionality is
to learn local features, such as horizontal lines, vertical, curves, so on. As soon as
the convolution layers are going further, these filter become more and more, since
the dimensionality get decreased. In green, the pooling layers take the convolution
result and downsampled it to the next convolution layers. In this transition, the
dimension get half of its original size.

When the encoded input finally encounter the softmax layer (resulting in the prob-
abilities performed by the cross-entropy function), 3 transposed layers decode the
signals (deconvolution). In other words, the decoder performs the upsampling based
on pooling indexes (from the encoder polling), finally getting the predicted map. The
dropout layer is a technique for reducing overfitting, which avoids some redundant
or complex adaptations on training data.
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3.3.2 Multi-View surface reconstruction

The input is a set of images which are initially fed to standard SfM/MVS algorithms
to produce a 3D model. To produce the 3D model using the standard SfM/MVS al-
gorithms, the set of optical images to be presented must respect some specifications.
For example, not all datasets listed in Table 3.2 have properties that could allow the
application of SfM/MVS. Random, rectified, and cropped images are not overlapped
or, at least, were not taken in the same moment. Only with RueMonge2014 it was
possible to run this experiment. A case where random images are taken at different
time was proposed by Snavely (2009), but not used in this study.

Every measure made by any photogrammetric technique would require the camera
calibration in order to obtain high accurate metric information, such as depth and
dimensional measurements from 2D domain (HE et al., 2006). Camera calibration
involves the estimation of either internal (intrinsic) and external (extrinsic) param-
eters to a certain camera. These determine the relation between the scene and the
instrument itself. The first, consists in the parameters particular to the camera,
where is determined how the image coordinate of a point is derived, given the spa-
tial position of the point with respect to the instrument (camera positioning). The
external, on the other hand, determines the geometrical relation between the camera
and the scene, or even different cameras (LLC, 2018).

The SfM, however, is a fully automatic and iteratively way to solve this need. During
the process, the intrinsic and extrinsic parameters are estimated and the outcome
point cloud is then densified by the MVS technique. In this study, the estimated
internal and external parameters are also used to ray-trace the segmented image
toward the mesh (see Section 3.3.3), where they are preserved from the reconstruct
operation to ray-tracing (Figure 3.4). The internal parameters are then given by the
distance between the lens and image sensor, called focal length (f), the principal
point offset (cx, cy), the skew coefficient (b), and the pixel size (sx, sy).

The lens distortions parameters not considered

The external are given by two parameters, R and T . They are the coordinate system
transformations from 3D world coordinates to 3D local camera coordinates system,
where R = (RX(ω), RY (φ), RZ(κ)) is the rotation matrix, and T = (TX , TY , TZ), the
translation matrix, consisting in the local camera coordinate system with origin at
the camera projection center. The Z axis points towards the viewing direction, X
axis to the right, and Y axis points down. The image coordinate system has origin
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Figure 3.4 - Facade geometry obtained from photos. (a) Street-side images of facades and
its reconstructed surface after the SfM/MVS technique. (b) The camera pa-
rameters are kept and the photos are replaced by the CNN facade features
predictions.

(a) (b)

SOURCE: Author’s production.

at the top left image pixel, with the center of the top left pixel having coordinates
(0.5, 0.5), u0 and v0, respectively (bottom-right in Figure 3.5(b)).

Summarizing, the camera can be described by a matrix notation, which is the cu-
mulative effect (Π) of all parameters (HARTLEY; ZISSERMAN, 2004):

Π = K P [R T ]


X

Y

Z

1

 , (3.1)

where K corresponds to the intrinsic parameters:

K =


fx b u0

0 fy v0

0 0 1

 , (3.2)

which can be decomposed on the three principal 2D units: principal point offset,
focal length, and skew:

K =


1 0 u0

0 1 v0

0 0 1

×

fx 0 0
0 fy 0
0 0 1

×


1 b
f

u0

0 fy v0

0 0 1

 , (3.3)
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where fx and fy correspond to f , with same value. P denote a 4× 3 matrix, which
corresponds to the projection:

P =


1 0 0 0
0 1 0 0
0 0 1 0

 . (3.4)

The rotation and translation matrices are then given by:

R =


cosκ cosφ −sinκ cosφ sinφ 0

cosκ sinω + sinκ cosω cosκ cosω − sinκ sinω sinφ −sinω cosφ 0
sinκ sinω − cosκ cosω sinφ sinκ cosω sinφ+ cosκ sinω cosω cosφ 0

0 0 0 1

 ,

(3.5)
and:

T =


1 0 0 TX

0 1 0 TY

0 0 1 TZ

0 0 0 1

 , (3.6)

and the camera position C given by:

C = −R−1T . (3.7)

All the procedures in this stage were performed through Agisoft™ PhotoScan®.
Very similar results could be reached by the use of VisualSfM (WU et al., 2011b)
or COLMAP (SCHöNBERGER; FRAHM, 2016), for instance. The respective softwares
have more flexible licenses and preserve most of the guarantees proposed by Pho-
toscan. However, it still needs some expertise to install and to use. PhotoScan in-
corporates an improved SIFT algorithm for Feature Matching across the photos; for
camera intrinsic and extrinsic orientation parameters, the software uses a greedy
algorithm to find approximate camera locations and refines them later using BA.

In addition to the camera parameters estimation, operations involving the use of SfM
require good photo-taking practices. One of these is the texture conditions of the
targets. Targets whose surface is too homogeneous or with specular properties, will
harm the method. Any instrument configuration (e.g. zoom, lens or distortions), once
configured, must be preserved until the end of the acquisition. In case of facades,
the motion between one photo and another must have orientation as constant as
possible and always perpendicular to the target. Therefore, these condictions were
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considered during the acquisition of SJC images.

The geometric accuracy in this study corresponds to the proximity between the
reconstructed model and the point cloud, not necessarily to the positional part.
In this case, it was assumed that the point cloud had previously proven positional
accuracy. It was beyond the scope of this study to analyze adjustments or positioning
issues. Then, no geometrical accuracy has been reported due to the fact that no 3D
references were modeled to compare against the 3D models reconstructed.

3.3.3 3D labeling by ray-tracing analysis

At this methodological point, two products were archived: the classified facade fea-
tures (2D image segmentation) and their respective geometry (mesh). The idea here
is to merge each feature to its respective geometry, and that can be done by analysing
the ray-tracing of each image respect to their camera projection (estimated during
the SfM pipeline) onto the mesh.

Often used in computer graphics for rendering real-world scenarios, such as lighting
and reflections, ray-tracing analysis mimics real physical processes that happen in
nature. A energy source emits radiation at different frequencies of the electromag-
netic spectrum. The small portion visible to human eyes, called the visible region,
travels straight in wave forms and it is only intercepted when it encounters a surface
in its trajectory. Such surface has specific physical, chemical and biological prop-
erties, responsible to define the radiation behavior under this specific structure. A
surface whose absorption characteristics is high, the tendency is that this object
has a dark appearance, as the radiation incident on its surface is absorbed, and a
minimal portion is reflected to the eyes.

Each facade image, in essence, is the record of the reflection of electromagnetic waves
in a tiny interval of time, captured by a sensor at a certain distance and orientation.
Once the camera’s projection parameters are known, the original images used for its
estimation during SfM are replaced by the CNN predictions. Thus, the “reverse” ray-
tracing process can then be performed.

The ray-tracing consists in the transformation from point coordinates in the local
camera coordinate system to the pixel coordinates in the image. It is essential to
consider in which context the photos were taken in order to use the right transfor-
mation from the center of projection toward the mesh. For example, if a fish-eye
model transformation is used in camera frame model, the result would certainly not

46



be the right one.

Semi-professional or even professional cameras are usually used to make these cam-
paigns. Some cameras provide several categories of parametric lens distortions, some
of them, by default, also include non-distorted configurations (RAW images), which
does not apply any transformation to the image. Therefore, both RueMonge2014
and SJC are images obtained in the camera frame model, which pixel coordinate
(u, v) from the 3D point projection are given by the following transformation. Let:

x
y

 =
X
Z
Y
Z

 (3.8)

be the homogeneous point r the squared 2D radius from the optical center:

r =
√
x2 + y2 , (3.9)

then, all the coefficients of distortions have to be considered. Then, the pixel coor-
dinate (u, v) of the 3D point projection with distortion model is given by:

u
v

 =
(w ∗ 0.5) + cx + Θxfx + Θxb1 + Θyb2

(h ∗ 0.5) + cy + Θyfy

 , (3.10)

where b1 and b2 are the skew coefficients, w and h the image width and height. The
parameter Θ denotes the radial and tangential distortions:(

Θx

Θy

)
=
(
x ∗ (1 + ξ1r2 + ξ2r4 + ξ3r6 + ξ4r8) + (1 + ζ3r2 + ζ4r4) ∗ (ζ1(r2 + 2x2) + 2ζ2xy)
y ∗ (1 + ξ1r2 + ξ2r4 + ξ3r6 + ξ4r8) + (1 + ζ3r2 + ζ4r4) ∗ (ζ2(r2 + 2y2) + 2ζ1xy)

)
, (3.11)

where ξ1, ξ2, ξ3, and ξ4 are the radial and, ζ1, ζ2, ζ3, and ζ4, the tangential distortion
coefficients. As the images used have no radial and tangential distortions, they are
null and turn Θ as being the own axis x and y.

Now, knowing the pixel class from the incident ray (Figure 3.6(a)), the mesh triangle
is finally labeled as such. It is evident, therefore, that the rays trajectory from
the images can intersect one another. Because of that, different rays can reach an
identical point on the mesh, what in fact creates questions such as “which class
should be assigned to each individual mesh facet?”. (RIEMENSCHNEIDER et al., 2014)
proposed the Reducing View Redundancy (RVR) technique, where the number of
overlapped images is reduced, which does not fit to our purpose, since the greater
the number of overlaps, better the labeling (more classes to choose).
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If more than one ray reach the same triangle (detail in Figure 3.6(a)), then, it is
labeled by the most frequent class from the Cn rays (Figure 3.6(b)).

Figure 3.5 - Ray-tracing analysis: This diagram shows the intersections of rays between
the overlapped images, where the class assignment is made by choosing the
most frequent class (mode) at the intersections. The colors on the right side
of the picture, correspond to the pixels from different images, overlapping the
same region on the mesh. To decide which class to assign, a simple mode
(most frequent class) operation is used. The labeling legend can be seen in
Figure 3.2.

(a) (b)

SOURCE: Author’s production.

The final result of 3D labeling by ray-tracing is then acquired (Figure 3.6). Regions
that have not been segmented (such as facades not perpendicular to acquisition -
adjacent streets) are also treated as such during the process (dark regions in the
figure - class background). Other regions, although they have been labeled as back-
ground, they were a consequence of the acquisition and angle of incidence of the
rays.

3.4 Experiments

Aligning with the hypotheses of this study, in this section we present details about
the analysis strategy and the validation metrics adopted throughout the tests. The
experiments were elaborated as much as possible on the conditions that were also
imposed on the objectives.
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Figure 3.6 - Ray-tracing analysis: Details of the final ray-tracing result. (Center) The most
common labels from 2D images are given to the geometric feature, which are
not always correctly label due to the acquisition view point.

SOURCE: Author’s production.

3.4.1 Strategy of analysis

The experiments in this study were divided in 2D and 3D domains. To mitigate
the influences of each dataset, or the influences of the model under each specific
architectural style, it was split the 2D experiments in three different CNN train-
ings. First, all the six online datasets listed in Table 3.2 were trained and inferred
independently. Second, each knowledge reached from the respective datasets is used
to test under SJC, which has a complete undefined architectural style. Third, all
datasets were then put together and a new training was made under SJC (see Table
3.3). The term “independent” means the inference was made using only one dataset
for training or prediction. In 3D analysis, the experiments consist of permuting the
point cloud density, allowing us to know how the number of points that affects the
3D labeling, and how many is actually necessary to acquire reliable geometry.

3.4.2 Evaluation

Only two validation metrics were adopted to measure the quality of the predictions,
accuracy and F1-score. In addition, this section also explains the objective function
defined to the neural model, Cross-Entropy.
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Table 3.3 - Experiments performed in this study.

# Domain Dataset Inferences Goal

1 2D Independent Independent Evaluate the performance of the neural model according
to each dataset

2 2D Independent SJC
Evaluate the performance of the neural model according
to SJC dataset, where the inferences are made six times,
using each dataset knowledge separately

3 2D All-together SJC
Evaluate the performance of the neural model according to
the SJC dataset, where only one inference is made, using
all-together knowledge

4 3D RueMonge2014 -
Evaluate how accurate the 3D labeling is according to the
point cloud density (sparse and dense), under a known
dataset

5 3D SJC -
Evaluate how accurate the 3D labeling is according to the
point cloud density (sparse and dense), under an unknown
dataset

SOURCE: Author’s production.

3.4.2.1 Accuracy

The accuracy is calculated according to a pixelwise analysis, in which the success
and error rates are measured through values of True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN), then, placed in a confusion
matrix1 M (more details in Annex B). Finally, the accuracy is given by:

Accuracy =
∑n
i=1,j=iMij

N
, (3.12)

where n, the number of classes, and N , the number of samples used. The numerator
consists in the sum of all elements in diagonal.

3.4.2.2 Objective function

An optimization problem seeks to minimize a loss-function. The weight-loss consists
of the error levels in which the neural network has according to an ideal of prediction
that is given by the reference images. This ideal is an optimization problem which
aims to be minimal, called then loss-function. In this case, the loss-function is given
by the cross-entropy (LONG et al., 2015), a common and effective way to calculate
the distance between multiple predicted and ground-truth classes, also known as

1Considering a matrix which ground truth is in x and predicted in y, the TP is given by
elements in diagonal, TN, sum of all elements except the diagonal, FP, the sum of elements in x
minus diagonal and, FN, the sum of elements in y minus diagonal.
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multinominal logistic classification, given by:

Lossy′(y) = −
∑
i

y′i log (yi) , (3.13)

where yi is the predicted probability value for class i, and y′i is the ground-truth
probability for that class (more about cross-entropy calculation and meaning can be
found in Annex A).

3.4.2.3 F1-Score

F1-Score expresses the harmonic mean of precision and recall. These are calculated
values to understand how aligned the prediction is in relation to the reference object.
F1-score is given by:

F1 = 2 ∗ precision ∗ recall
precision+ recall

, (3.14)

where precision = TP/(TP+FP ), and recall = TP/(TP+FN). Then, both values
reveal how good the segmentation was according to the correct object delineation
(more details in Annex B).
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4 RESULTS AND DISCUSSION

4.1 Image segmentation

4.1.1 CNN inputs

As mentioned in Section 3.3.1.1, 20% of annotated images from each dataset were
used to evaluate the model, the other 80%, for training. The set consists of pairs
of original and ground-truth images, which are not used during the training. The
experiments carried out in this study were done individually – where, the quality of
the segmentation through the use of CNN for each dataset (following the sequence
according to Table 3.2) was firstly discussed, followed by the impressions on the
detection of objects, and in which situations it might have fail or still need attention.
Then, the following section present an analysis of the geometry extraction and the
quality of the 3D labeled model.

4.1.2 CNN performance

As a supervised methodology, the DL requires reference images1. Which means the
methodology is extensible for images of any kind, but it will always require their
respective reference. On the other hand, the same neural model could fit to any
other detection issue, for instance, in the segmentation of specific tree species in a
vast forest image, as soon as a sufficient amount of training samples are presented.

All the source-code regarding DL procedures was prepared to support GPU pro-
cessing. Unfortunately, the server used during all the experiments was not equipped
with such technology, increasing training time significantly (Table 4.1).

The DL source-code was mainly developed under the Tensorflow™ library2 and
adjusted to the problem together with other Python libraries. Except for the 3D
tasks in Agisoft® Photoscan™, the source-code are freely available in a public
platform, and can be easily extended. For training and inferences, it was used an
Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz. For SfM/MVS and 3D labeling, respect
to RueMonge2014 and SJC datasets, it was used an Intel® Core™ i7-2600 CPU @
3.40GHz. Both attended our expectations, but it is strongly recommended machines
with GPU support or alternatives such as IaaS (Infrastructure as a Service).

In the Figure 4.1 is shown the neural network training results. Each line represent

1Referenced also as annotation, labels or ground-truth images.
2Available at https://www.tensorflow.org/. Accessed November 2, 2018.
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Table 4.1 - Training attributes and performance. In bold, values which have reached the
lowest performance. RueMonge2014 and SJC have larger dimensions and de-
manded a bit more time processing.

Dataset Num.
iterations

Resolution
(pixels) Training (hours) Inference (secs

per image)

RueMonge2014 50k 800x1067 172.46 5.4

CMP 50k 550x1024 135.25 4.45

eTRIMS 50k 500x780 83.57 3.52

ENPC 50k 570x720 53.47 2.01

ECP 50k 400x640 38.32 3.13

Graz 50k 450x370 29.27 2.05

SJC - 1037x691 - 6.2

SOURCE: Author’s production.

an online dataset, conducted in individual training processes, with 50 thousand
(50k) iterations each. Each graph’s row represents the metric used to analyze the
CNN performance: accuracy, weight-loss and cross-entropy. The accuracy allows to
measure how good the segmentation is according to the training progress. While the
weight-loss is the CNN’s error rate against reference images, and cross-entropy, the
objective function defined.

The evaluation is performed repeatedly, according to a certain number of iterations,
where partial inferences (prediction) is obtained and the measures are calculated
by comparing the result against the ground-truth (references). These metrics are
commonly adopted in the literature about classification using neural models.

A similar behavior for all training dataset is observed, except for the weight-loss. The
weight-loss decay is strongly related to the image dimension, which of course requires
more iterations to learn the features. The demand for the learning of all features
(generalization) is greater and varies among them. Accuracy and cross-entropy, on
the other hand, had progressed mostly from 0 to 10k iterations, stabilizing near 90%
and 0.1 thereafter, respectively. 30k iterations were sufficient to reach similar results
for all datasets (as shown later in the visual inspection). However, RueMonge2014,
ENPC, and Graz still had high error rates, which means that not all classes could
be detected or clearly delineated, even with 50k iterations.
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Figure 4.1 - Training performance for all online datasets.

10,000 20,000 30,000 40,000 50,0000

RueMonge2014 CMP eTRIMS ECP ENPC Graz

SOURCE: Author’s production.

4.1.3 Inference over the online datasets (Experiment 1 - Table 3.3)

In this section, each of the online facade sets will be evaluated in detail, according
to the Experiment 1 in Table 3.3. In this evaluation was adopted the same metric
used during the training (accuracy) with the addition of the F1-score, also described
in Section 3.4.2.

4.1.3.1 RueMonge2014 dataset classification results

The Figure 4.2 shows the inferences from RueMonge2014 over the validation set. In-
stead of showing only a few example results, they were exposed as much as possible
to allow the reader to better understand how the neural model behaves according to
different situations. Here, it is positively highlighted two aspects. First, the robust-
ness of the neural model in the detection of facade features even under shadow or
occluded areas, such as in the presence of pedestrians or cars. This aspect has been
one of the most difficult issue to overcome due to the respective obstacles being
dynamic and difficult to deal with, especially by the use of pixelwise segmenters.
The second aspect is that at 50 thousand (k) iterations, all images presented fine
class delineation. Only in a few situations the inferences were not satisfactory.
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Figure 4.2 - Results over RueMonge2014 dataset. The rows are splited respectively in orig-
inal, segmented image, and both. These segmented images are the inferences
under evaluation sets only. (a)–(j) Example of RueMonge2014 images, seg-
mented by the neural model presented in Section 3.3.1.2. In the first line, the
original image, the second line, the result of the inference (segmentation), and
the third and last line, the overlapping images.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

SOURCE: Author’s production.

During manual annotation production for RueMonge2014, the labels did not cover
the entire scene. For example, sky, street intersections or background buildings (ad-
jacent to the main facades), were partially annotated as background, sometimes,
completely. This means that when presented to the CNN during training, all those
features (sky, street intersection, etc.), are going to be trained as background as
well. Therefore, whenever an intersection or sky appears, the neural model treats it
as being background. The problem is that only half of the feature will be assigned
as background, which is not the case with the other half. The same behavior was
visible in other classes. For instance, when an facade is fully annotated and appears
only partially in the validation set, the neural model will act as it was not presented
in the image, only part of it (clear on Figures 4.3(f), 4.3(h), and 4.3(i)). Supervised
neural model is strongly related to the context it has been trained. If a feature ap-
pears in the image, but only part it is detected, the segmentation will fail because
of the incomplete context.

The confusion matrix over all validation set is presented in Table 4.2. Pretty close
to the visual inspection, the RueMonge2014 confusion matrix shows prediction over
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82% for all classes, with a tiny confusion between background and wall against
the other classes (first and forth columns). It is explained by the fact that the
respective classes are the overall classes in the entire prediction, which means it
shares boundaries with all other classes. As the object delineation is not always
clear, the evaluated pixels on the edge is predicted as been background or wall
instead the right class. Although it is minimal (0.8624 as F1-score), the prediction
over edges seems to be the bottleneck of the adopted CNN architecture for all online
datasets, as shown in the following sections. The labels in the bottom of the table,
express the classes presented in the respective dataset.

Table 4.2 - Normalized confusion matrix for RueMonge2014 predictions.

Classes Predicted Scale Evaluation
1 2 3 4 5 6 7 8

G
ro

un
d-

T
ru

th

1 ○ Background
2 ○ Roof
3 ○ Sky
4 ○ Wall
5 ○ Balcony
6 ○ Window
7 ○ Door
8 ○ Shop

Rates: Accuracy: 0.9563

F1-Score: 0.8624

SOURCE: Author’s production.

4.1.3.2 CMP dataset classification results

The CMP annotation set present labels beyond those already analyzed in this study.
In the original CMP dataset, for example, there are annotations for decoration and
pillars, which are sub-elements of the class wall and, for that reason, out of the
scope in this study. Even so, still considered as being a single class: wall. For other
sub-elements, all the labels not related to this study were equally ignored and had
their annotations adapted to the problem.

The results presented in Figure 4.3, represent the automatic segmentation reached at
50k iterations of training. Once the architectural style has straight lines and facades
whose texture is homogeneous, as presented in the CMP, the results of segmentation
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Figure 4.3 - Results over CMP dataset. (a)–(g) Example of CMP images, segmented by the
neural model presented in Section 3.3.1.2. The three different rows correspond
to the same description as in Figure 4.2.

(a) (b) (c) (d) (e) (f) (g)

SOURCE: Author’s production.

tend to be better precise due to the disturbance factors are minimal. CMP does not
have annotations for background, sky, roof, and shop, and for these classes, therefore,
the prediction is replaced by the labels wall, window, balcony or door, for example, in
Figure 4.4(d), there are stores predicted as wall. As good results, the Figures 4.4(a),
4.4(c), 4.4(e) and 4.4(g) highlight the predictions that did not get much confusion.
Facades that share different texture, as in Figure 4.4(f), presented a lot of confusion
between the classes balcony and wall, specially under building decoration regions.

Among the four classes, only wall and window got good scores (TP), reaching up
accuracy of 0.9357 for the entire prediction. Balcony and door were often confused
with wall, specially around the boundaries of the classes, what also explains the
F1-score of 0.7418.

4.1.3.3 eTRIMS dataset classification results

As in CMP, eTRIMS had more annotations than the ones adopted in this study3.
In addition to the classes not approached in this study, there were facade features
where the annotation belonged to only one class, e.g. the roof in eTRIMS is an-
notated as being wall. For that reason, images with roof had it assigned as wall

3The annotations provide by online datasets might vary on number of labels and colors. If there
are more labels (or classes) than is needed, then, it is necessary to adapt to the same colors in
Figure 3.2 or reduce the number of classes, such as in eTRIMS.
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Table 4.3 - Normalized confusion matrix for CMP predictions.

Classes Predicted Scale Evaluation
1 2 3 4 5 6 7 8

G
ro

un
d-

T
ru

th

1 A Background
2 A Roof
3 A Sky
4 ○ Wall
5 ○ Balcony
6 ○ Window
7 ○ Door
8 A Shop

Rates: Accuracy: 0.9357

F1-Score: 0.7418

SOURCE: Author’s production.

and, consequently, assumed as True Positive (TP). Among the 6 facade features of
interest, only three in eTRIMS were considered: window, door and wall.

As can be seen in Figure 4.4, the predictions over eTRIMS dataset reached the second
best score among the online datasets, good accuracy (object location), 0.9632, and
F1-score (object delineation), 0.8291. The eTRIMS consist of facade pictures of
different styles, “non-patterned”, non-rectified.

Figure 4.4 - Results over eTRIMS dataset. (a)–(h) Example of eTRIMS images, segmented
by the neural model presented in Section 3.3.1.2. The three different rows
correspond to the same description as in Figure 4.2.

(a) (b) (c) (d) (e) (f) (g) (h)

SOURCE: Author’s production.
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Considering a system of mapping of walls, windows and doors, the predictions made
on this dataset show the ability of the neural network to detect the urban elements
accurately (Figure 4.5(b)). The eTRIMS was distinguished compare to others be-
cause fewer classes were used (neural network learns more), also, the quality of an-
notations is better. In any case, objects obstructing the facade are ignored, precisely
because training data consider these objects as being another class. Here, considered
as background and therefore not part of the facade. This lack of information, for
example in Figures 4.5(c), 4.5(e) and 4.5(f), is the best scenario in the detection of
features, still, it will need an algorithm to regularize these missing informations.

The confusion matrix of eTRIMS shows a tiny confusion between window, door and
wall, with only 20% of pixels . Once again, the FN rates regarding to this prediction
are mainly related to the boundaries between one class and another.

Table 4.4 - Normalized confusion matrix for eTRIMS predictions.

Classes Predicted Scale Evaluation
1 2 3 4 5 6 7 8

G
ro

un
d-

T
ru

th

1 ○ Background
2 A Roof
3 A Sky
4 ○ Wall
5 A Balcony
6 ○ Window
7 ○ Door
8 A Shop

Rates: Accuracy: 0.9632

F1-Score: 0.8291

SOURCE: Author’s production.

4.1.3.4 ENPC dataset classification results

The level of accuracy for all datasets made the use of CNN the best of all alternatives.
However, the quality of the annotations is essential to perform a good segmenta-
tion. As noticed in eTRIMS, when a tree or car obstruct the facade, they also add
disturbances in the training phase. In case of a tree, it could be annotated as either
vegetation or part of the facade itself. For example, note the differences between
Figures 4.5(b) and 4.6(b). The tree in eTRIMS is ignored in their annotation, but
labeled as being facade in ENPC, which leads to different results.

It is understood that the lack of information in the first figure is the best inference,
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and in this case, the neural model is actually right: there is a facade with unknown
object in front of it. But in cases such as in Figure 4.6(b), the facade inference is
noisy or unreadable, which is not the case in Figure 4.6(h), where the disturbance
is minimal.

Figure 4.5 - Results over ENPC dataset. (a)–(k) Example of ENPC images, segmented
by the neural model presented in Section 3.3.1.2. The three different rows
correspond to the same description as in Figure 4.2.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

SOURCE: Author’s production.

Table 4.5 - Normalized confusion matrix for ENPC predictions.

Classes Predicted Scale Evaluation
1 2 3 4 5 6 7 8

G
ro

un
d-

T
ru

th

1 ○ Background
2 ○ Roof
3 ○ Sky
4 ○ Wall
5 ○ Balcony
6 ○ Window
7 ○ Door
8 ○ Shop

Rates: Accuracy: 0.9636

F1-Score: 0.7655

SOURCE: Author’s production.
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The confusion matrix for ENPC predictions, revealed that all classes has been as-
signed correctly (accuracy 0.9636 and F1-score 0.7655), except for background. Once
this dataset only have rectified images (facade covering the entire image), the class
background actually should not exist. Then, the respective class have not so much
presence, when predicted as such, it was incorrect. For example, in Figures 4.6(b)
and 4.6(c), is visible that the pixels in black actually corresponds to the classes wall
(yellow) and roof (blue), respectively. The high accuracy, however, is explained by
the fact all classes have been assigned correctly in general, getting 7% of errors due
to the classes boundaries.

4.1.3.5 ECP dataset classification results

All online datasets does not have any certificate of quality. When checking the
annotated images of some of them, there is a high degree of inconsistency between
the annotations. This implies incorrect segmentation (see overlapping images - detail
on the roofs) according to the real scenario – visual inspection, but not to the
validation set. It means the validation metrics might present some inconsistency,
since they are calculated according to the validation (annotated) images.

Figure 4.6 - Results over ECP dataset. (a)–(l) Example of ECP images, segmented by the
neural model presented in Section 3.3.1.2. The three different rows correspond
to the same description as in Figure 4.2.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

SOURCE: Author’s production.
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ECP also presented inconsistencies in some of its annotations. The missing roof-
parts in Figures 4.7(a) to 4.7(f) are expected behaviors since the annotations from
the training sets do not consider these objects as being part of the roof. However,
the learning happens for most of the features and should not be a problem since the
neural model will identify the main content in the image.

According to the accuracy and F1-Score metrics, ECP got the best scores among
the others, with 0.9762 and 0.8946, respectively. The lower TP was 0.841 for class
window, which is already considered a good mark since the other classes got better
scores. A tiny confusion between balcony, window, and wall, is highlighted, as well
as for door and shop.

Table 4.6 - Normalized confusion matrix for ECP predictions.

Classes Predicted Scale Evaluation
1 2 3 4 5 6 7 8

G
ro

un
d-

T
ru

th

1 A Background
2 ○ Roof
3 ○ Sky
4 ○ Wall
5 ○ Balcony
6 ○ Window
7 ○ Door
8 ○ Shop

Rates: Accuracy: 0.9762

F1-Score: 0.8946

SOURCE: Author’s production.

4.1.3.6 Graz dataset classification results

Among the inputs, Graz has the smallest number of images (50), but the spectral
variability is clearly greater when compared to the others. The symmetry between
windows, however, was pretty much the same in CMP, ECP, and ENPC. It is noticed,
then, that the results for Graz (Figure 4.7) did not change much from what was seen
in the other datasets.

Even the predictions has reached accuracy of 0.9368 and F1-score of 0.7698, a lot of
confusion involving the class wall can be notice in Table 4.7, specially for balcony
and sky, where the predictions were almost null.
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Figure 4.7 - Results over Graz dataset. (a)–(h) Example of Graz images, segmented by the
neural model presented in Section 3.3.1.2. The three different rows correspond
to the same description as in Figure 4.2.

(a) (b) (c) (d) (e) (f) (g) (h)

SOURCE: Author’s production.

Table 4.7 - Normalized confusion matrix for Graz predictions.

Classes Predicted Scale Evaluation
1 2 3 4 5 6 7 8

G
ro

un
d-

T
ru

th

1 ○ Background
2 ○ Roof
3 ○ Sky
4 ○ Wall
5 ○ Balcony
6 ○ Window
7 ○ Door
8 ○ Shop

Rates: Accuracy: 0.9368

F1-Score: 0.7698

SOURCE: Author’s production.
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In Table 4.8, it is summarized the accuracies and F1-scores for each online dataset.
ECP presented the best results among the datasets, not only the accuracy, but also
in precision (F1-score). Datasets where the accuracy is high but F1-score inferior,
demonstrated an excellent inference in which region the object was found on the
image, but not equally efficient regarding its delineation, that are the cases of CMP,
ENPC and Graz. The predictions on RueMonge2014 and eTRIMS datasets presented
better quality in both metrics.

As the evaluation was performed under multiple validation images, the columns in
red and green represent the variance and standard deviation, respectively. None of
them have reached significant variations.

Table 4.8 - Inference accuracy over the online datasets. Var. (Variance = σ2) and StD.
(Standard Deviation = σ) stands for the inferences over different images. The
values in bold, expose the best datasets according to the Accuracy and F1-
Score metrics.

Dataset Accuracy Var. StD. F1-score Var. StD.

RueMonge2014 0.9563 0.008 0.090 0.8624 0.000 0.027

CMP 0.9357 0.005 0.073 0.7418 0.001 0.043

eTRIMS 0.9632 0.000 0.027 0.8291 0.000 0.017

ENPC 0.9636 0.001 0.031 0.7655 0.000 0.009

ECP 0.9762 0.000 0.021 0.8946 0.000 0.014

Graz 0.9368 0.014 0.117 0.7698 0.000 0.023

SOURCE: Author’s production.

4.1.4 Inference over the SJC dataset (Experiments 2 and 3 - Table 3.3)

The idea behind the use of SJC dataset was simple: to observe how the neural
network reacts to an unknown architectural style after being trained with different
ones. The outcome could then provide insights on how the training set should look
like for the detection of facades of any kind. Figure 4.8 shows the results after
presenting SJC images to a different version of training data (knowledge).

The Figures 4.9(a) to 4.9(f) are the respective results from datasets listed in Ta-
ble 3.2 (online). When looking at these results as seen in the figures, it is safely
concluded that these are incorrect and inaccurate segmentations (accuracies mostly
lower than 24%). The fact is that in environments whose diversity of objects, any
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Figure 4.8 - Segmented image from SJC dataset. Inferences between individual train-
ing knowledges. (a) Result using RueMonge2014 knowledge, (b) CMP, (c)
eTRIMS, (d) ECP, (e) ENPC, (f) and Graz. (g) result using all knowledge.

(a) (b) (c) (d) (e) (f)

(g)

SOURCE: Author’s production.

other segmentation and classification methods would add a certain imprecision on it.
The operation of a CNN is not to perfectly delineate an object, but to provide hints
(as close as possible) to where a given object is located in the image. This shows us
that in order to extract precise parameters, such as height and area of a feature, a
post-processing phase should certainly be conducted on the CNN beforehand.

Going through one problem at a time, it is noticed that, firstly, there is the need to
define a background class in supervised approaches. Using RueMonge2014 knowl-
edge, the inference process was not able to segment properly even under the most
common feature: wall. Unlikely, some knowledge generalized it to sky, sidewalk and
street, especially when there is no general class that represents too many objects in
the scene (Figure 4.9(b)). When the class is annotated correctly such as sky, a proper
segmentation can be seen: that is the case with ECP (Figure 4.9(d)), ENPC (Figure
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4.9(e)), and Graz (Figure 4.9(f)). When it is not, the inference is poor or average:
which was the case with RueMonge2014 (Figure 4.9(a)). Features in RueMonge2014
were pretty much dependent on local architectural style. In general, eTRIMS is the
dataset with the most similar features for SJC. Despite being trained with only 4
classes, including background, the results have shown a certain level of intelligence
in detecting sidewalks and street as being part of the background, as well as for sky
and vegetation.

Therefore, when using a supervised neural network, it is evident that the arrange-
ment of the annotations can affect the inference, either positively or negatively. For
instance, annotations for all the sky coverage instead of only part of it, or back-
ground annotations for sidewalks and street, in cases that it is not a desired feature.
The confusion matrix of all-together knowledge applied in SJC data is shown in
Table 4.9.

The confusion can be mainly described between the classes roof, sky, balcony and
door. Only classes background, wall and window were reasonably assigned, most
influenced by the knowledge from eTRIMS and Graz (Figures 4.9(c) and 4.9(f)).

Table 4.9 - Normalized confusion matrix for SJC (all-together) predictions.

Classes Predicted Scale Evaluation
1 2 3 4 5 6 7 8

G
ro

un
d-

T
ru

th

1 ○ Background
2 ○ Roof
3 ○ Sky
4 ○ Wall
5 ○ Balcony
6 ○ Window
7 ○ Door
8 A Shop

Rates: Accuracy: 0.8591

F1-Score: 0.4706

SOURCE: Author’s production.

In Figure 4.9(g), a summarized contribution of each dataset is presented. For in-
stance, eTRIMS was the only one sensitive to sidewalk and street, balconies were
only detected in CMP, even though this was incorrectly segmented. Meanwhile, the
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results for unknown features were understandable and expected. With the addition
of more classes (e.g. gate), improvements to the annotation process and an increase
in the number of training epochs, the better the results of the inferences would be.
Table 4.10 shows the accuracy overview for each individual learned feature (knowl-
edge) over the SJC dataset.

Table 4.10 - Inference accuracy over SJC data. Last row corresponds to the accuracy with
the knowledge of all training together. The values in bold, expose the best
datasets according to the Accuracy and F1-Score metrics. When together,
the quality metrics increased due to the better generalization of the neural
network, as it has received a bigger amount of images.

Knowledge from... Accuracy Var. StD. F1-score Var. StD.

RueMonge2014 0.7009 0.003 0.054 0.1612 0.000 0.014

CMP 0.7907 0.006 0.080 0.3763 0.001 0.043

eTRIMS 0.7726 0.001 0.037 0.3915 0.000 0.017

ENPC 0.8123 0.001 0.031 0.2394 0.000 0.009

ECP 0.8610 0.012 0.016 0.2225 0.000 0.014

Graz 0.8011 0.006 0.078 0.2669 0.000 0.023

All together 0.8591 0.011 0.107 0.4706 0.000 0.020

SOURCE: Author’s production.

Both visually (Figure 4.4) and in the table, it is evident that eTRIMS was bet-
ter suited to deal with the architectural style seen in the SJC dataset. It was ex-
pected however, that the values for accuracy and precision would be low, due to the
characteristics (similarities) of the SJC dataset. eTRIMS consists of non-rectified
facades, lacks symmetry between doors and windows and presents specific archi-
tectural styles, characteristics that have similarity with the SJC images. Once the
entire online collection has been merged (all-together dataset), the accuracy was
increased, but without improvements to the correct delineation of the objects (low
F1-score).

4.2 3D labeling - Experiments 4 and 5 - Table 3.3

4.2.1 RueMonge2014

The quality of the reconstructed surface (mesh) is highly dependent on the density
of the point cloud and the method of reconstruction. Very sparse point clouds can
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generalize feature volumetry too much, while very dense point clouds can represent
it faithfully, but the associated computational cost will also increase. Therefore,
there is a limit between the quality of the 3D labeled model and the point cloud
density, which falls on the question: how many points it is needed to fairly represent
a specific feature?

Features that are segmented in 2D domain might perfectly align with their geome-
try, but imprecisions between the geometric edges and the classification may occur.
Despite of that, the segmentation alignment onto the mesh is also related to the
estimated camera parameters, which are used during ray-tracing. These impressions
are directly related to the mesh quality.

Table 4.11 shows how the ray-tracing procedure performed. It was responsible for
connecting each segmented feature onto its respective geometry. The 3D reconstruc-
tion of both scene had average performance and was not critical since the density
was not the highest. RueMonge2014 dense point cloud has around 9 million points,
reconstructed in 46.4 minutes. Using a proper computer, equipped with GPU, this
rate could certainly be optimized, as well as the other reconstructions.

Table 4.11 - Ray-tracing performance for geometry classification.

Dataset Point Cloud
density

Num. faces
(triangles)

3D reconstruction
- SfM/MVS (min) Ray-tracing (sec)

RueMonge2014 Sparse 1,072,646 21.4 12.42

RueMonge2014 Dense 9,653,679 46.4 27.13

SJC Sparse 800,000 13.6 20.89

SJC Dense 3,058,329 35.5 41.12

SOURCE: Author’s production.

In order to illustrate the influences of the point cloud density on the quality of 3D
labeling, Figure 4.9 shows the result for the RueMonge2014 dataset. Only sparse
and dense point clouds were tested. However, to explore the limits between the
number of points and the geometric accuracy is some of the issues to approach in a
future work. Also note in Figure 4.10(a) that the geometry of the whole street was
reconstructed, with few deformations caused by the SfM.

In Figures 4.10(d) and 4.10(g), it is highlighted how well the point cloud density
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Figure 4.9 - 3D labeled model of RueMonge2014. (a) Wide view of the street. (b) Details
of facade geometry by a sparse point cloud, (c) its labels after ray-tracing
analysis, and (d) close-look of 3D window labels. (e) The facade geometry by
a dense point cloud and (f) its labels, and (g) close-look of 3D window labels.

(a)

(b) (c) (d)

(e) (f) (g)

SOURCE: Author’s production.

could represent a labeled 3D model. Assuming a hypothetical situation where area
or window height information are required in a building inspection to estimate lu-
minosity (indoor and outdoor), the estimation of these parameters should be as
close as possible to reality. Therefore, the height and area obtained from the mesh,
as in the respective figures, may be inaccurate to this kind of need. Martinovic et
al. (2015) and Boulch et al. (2013) propose a post-processing procedure, in which
the facade has its features simplified by the so called Parsing, where most of the
time, Grammar-based approaches (STINY; GIPS, 1971) are used. Perhaps the post-
processing phase is essential in applications where precise geometric information is
required, but it has to ensure that the geometric accuracy does not be penalized
once the Grammar can over-generalize the facade feature shape.

In the Figure 4.10, is highlighted four details about the labeling. In “A”and “B”,
details on the bottom region of the building, where the store and door class mainly
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appear. This part of the building, as well as the top, are the critical regions during
the reconstruction.

Figure 4.10 - Zoom-in details of the 3D labeled RueMonge2014 reconstruction. (A) and (B)
Building’s bottom-part: objects that impair the reconstruction and labeling.
(C) and (D) Building’s upper-part: here, the reconstruction and labeling
are impaired by the view that the photos have been taken. On the bottom
pictures, is shown the real details.

SOURCE: Author’s production.

At the bottom, the presence of pedestrians, cars, light poles not only hinder the
reconstruction, but also become part of the incorrect classification during the pro-
jection of pixels on the mesh. In detail in “A”, however, it may be noted that, despite
the presence of vehicles, the classification of stores (in green) is not much impaired.
In the illustrations in “C” and “D”, features are highlighted at the top of the build-
ing. In this case, the classification is impaired by the projection center. In some
regions, as in “D”and “C”, the balconies and roof are often represented either by
background or partially the right class. The absence of information is a consequence
to the perspective which the photos were taken, not necessarily a poor labeling. By
terrestrial acquisition only, it is not possible to observe much about this structure
(as seen in Figure 2.2 and 2.3, Section 2.2).
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4.2.2 SJC

The 3D reconstruction performed by SfM is based on the identification of corners
and image analysis, with the purpose of checking for correspondence and acquiring
overlapping pairs of images. For this reason, the spectral properties from the urban
elements influence the reconstruction process directly. For example, surfaces where
the texture is too homogeneous or specular, these will be potential problems and
will not be detected by the algorithm. Once not detected, the 3D model will end up
with a rough representation, with gaps instead of mapped features. Similarly, the
MVS technique (responsible for dense 3D reconstruction) is equally dependent on
the homogeneity of the objects.

Unfortunately, many of these spectral properties over SJC facades can be seen.
The texture related to walls are often uniform, with windows completed in glasses.
Besides, the geometry of acquisition did not contribute in this case. As seen in
Figures 4.12(a) to 4.12(c), all over the street, there are always gaps between the
gate and the facade itself. These gaps often imposes problems during and after the
reconstruction. As a consequence, a lot of them among important artifacts that
could be determinant when trying to identify features in a semantic system. Hence,
in order to fully map buildings through the use of SfM/MVS, the imaging of these
areas, at least in Brazil, should be complemented by aerial imagery with the aim of
targeting these areas (as presented and discussed in Section 2.2.2, Figure 2.3). The
final 3D reconstruction, however, was moderate as the segmentation in 2D domain.

Figure 4.11 - 3D model of SJC. (a), (b), and (c) Example of gap between the gate and
the facade, often present in this specific architectural style. The picture (c)
represents the point of view in (b), and vice-versa.

(a) (b) (c)

SOURCE: Author’s production.
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The Figures 4.13(a) (overview), 4.13(c) (reconstruction from sparse point cloud), and
4.13(d) (reconstruction from dense point cloud), are the same residential building as
the previous picture, whose geometry is characterized by high walls and gates. Trees
and cars appear in most of the images. These objects act as obstacles, especially
in terrestrial and optical campaigns. Of course, this depends solely on the imaged
region. In case of RueMonge2014, for example, while pedestrians, cars and vegetation
act negatively in the reconstruction, the architectural style contributes positively.
This makes the final 3D model be penalized, but still, it is an acceptable product.
As can be seen in Figures 4.11 and 4.12, however, not only the texture, but also the
houses geometry and the frequent presence of obstructing objects, negatively affected
the reconstruction. In Figure 4.13(d), a different area of very poor labeling. Although
the gate has been assigned partially correct, the features here are mostly unreadable.
Two blocks of SJC were imaged, each with approximately 100 meters. The degree
of overlap between the images was about 86%, allowing a detailed reconstruction of
the frontal face of the houses.
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Figure 4.12 - 3D labeled model of SJC. On top, a wide view of the street. (a) Same view of
Figure 4.12(b), after 3D labeling procedure. (b) Region with spurious label-
ing - most of the 3D street model was spurious due to the image segmentation
quality. (c) Close-look at features details reconstructed by sparse point cloud.
(d) Example of the same area using a dense point cloud reconstruction. The
labeling legend can be seen in Figure 3.2.

(a) (b)

(c) (d)

SOURCE: Author’s production.

In Figure 4.13, some peculiarities are highlighted in the reconstruction and classifi-
cation of the SJC dataset. In the illustration, the letter “A”highlights details of the
roof geometry (high resolution reconstruction - dense cloud), however, the classifica-
tion of the roof is labeled as a wall (in yellow), and partially correct in the region of
the gate (in orange). In “B”, as previously highlighted, windows with features very
similar to the online datasets were correctly identified. However, there were very few
occurrences. The architectural style of SJC has its own style and very different from
the styles used during CNN training (In “C”, details of the gap between the gate
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and the wall itself). Even so, it is concluded that it is possible to identify features
of interest using generic training data. The highlight in D, is shown the poor clas-
sification in regions whose gates with “grid” aspects, confused the prediction with
the window feature.

Figure 4.13 - Zoom-in details of the 3D labeled SJC reconstruction. (A) Detail of the gate
partially segmented. (B) Few windows and balconies were detected, this is
an example of a properly detected feature. (C) Gaps between the gate and
house (facade). (D) Confusion under gates with “grid” characteristics. On
the bottom pictures, is shown the real details.

SOURCE: Author’s production.
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5 CONCLUSION

5.1 General conclusions

Increasingly, the research regarding the facade feature extraction from complex
structures, under a dynamic and hard-to-work environment (crowded cities) rep-
resent a new branch of research, with perspectives to the areas of technology, such
as the concept of smart cities, as well as the areas of Cartography, toward to more
detailed maps and semantized systems. In this study, an overview of the most com-
mon techniques was presented, as well as an introduction of instruments and ways
of observing structural information through remote sensing data. Besides, was also
presented a methodology to detect facade features by the use of a CNN, incorpo-
rating this detection to its respective geometry through the application of a SfM
pipeline and ray-tracing analysis.

The experiments are mainly focused in aspects such those aforementioned techniques
and their computational capability in detecting facade features, regardless of archi-
tectural style, location, scale, orientation or color variation. All the images used in
the training procedures underwent no preprocessing whatsoever, keeping the study
area as close as possible as to what would be a common-user dataset (photos taken
from the streets).

In this sense, the edges of the acquired delineated features show the robustness of the
CNN technique in segmenting any kind of material, in any level of brightness (shadow
and occluded areas), orientation, or presence of pedestrians and cars. Considering
that the values achieved for the individual datasets were above 90%, it is concluded
that the CNNs can provide good results for image segmentation in many situations.
However, being a supervised architecture, the network has to pass through a huge
training set, with no guarantees of good inputs, in order to get reliable inferences.
When applied over unknown data, such as the experiment on the SJC data, it was
noted that the neural network failed, except in regions where the facade features
share similar characteristics, though such occasions were rare.

5.1.1 Brazilian architectural styles and unreachable areas

In Section 2.4, it is shown some of the difficulties encountered specifically in Brazil.
In addition, in Chapter 4, experiments were carried out on the extraction and re-
construction of features on Brazilian facades. As mentioned before, factors such as
local culture, number of inhabitants and economy are determinant in local geometry
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issues, especially in poor regions whose civil construction is often made irregularly,
over equally irregular and difficult access areas. Not only that, but the factors can
also determine, for example, the geometry of city-centers, such as the presence of
skyscrapers (e.g. São Paulo, Brazil; Changhai, China; and New York, United States)
or commercial areas with buildings with a maximum of four floors (e.g. London, Ger-
many, and France). Thus, studies involving the measurement of these factors could
contribute as input for the development of 3D reconstruction techniques as presented
in this document.

5.2 Source-code: Usability, Licenses and Extension

References to the codes and experiments carried out in this study can be found in the
Table A.1, in Appendix A. Since the beginning of this work, libraries such as CGAL,
PCL, VisualSfM, COLMAP, OpenCV, among others, have been used for tests and
experiments throughout development. Of course, some of these libraries and software
were discarded despite having a key role in refining the final methodology. Therefore,
listing the technologies used, their sources, and other characteristics, is a way of
guiding other works and contributing with related researches.

5.2.1 Difficulties

This work was entirely carried out with the aid of Open-Source tools, for the most
part, under MIT and GPL licenses1, which includes the non-commercial extension
and free-to-use code. In the table A.1, in the Appendix A, the tools used and their
relation with the respective methodological step are presented.

In addition to the results archived in this study, every implementation was carried
out in order to be expandable, interoperable, understandable, cohesive, public and
easily accessible. Therefore, all methodological steps are available for consultation
and public use at the GitHub™ (CHARLES, 2013), where the links and respective
explanations are available in Table A.2. All the datasets used for this research were
provided with any cost. In the same way, private tools that were essential for the
development of the research were difficult to access or too expensive to acquire, most
of the technologies used in this study were free, for example, the tools mentioned in
Section 5.2.

Due to the technology approached in this study covering the state-of-the-art of clas-
sification and urban mapping solutions, the supply of training and courses is scarce.

1Licenses of a public domain that could be extended and, in case of GPL, must be shared.
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Likewise, in Brazil, there was a great difficulty in learning how to process LiDAR
data during the first phases of this study. As we progressed, the operations involving
SfM/MVS became more consistent, mainly, with the involvement and cooperation of
multiple institutions (academic, military - national and international). For example,
the DSG, in the revision of text regarding Brazilian standards and specifications
for 3D geographic mapping in Brazil. The Department of Photogrammetry (IfP), at
the University of Stuttgart, Germany, by offering disciplines of Computer Vision and
Pattern Recognition. The Federal University of Paraná (UFPR), by their methodic
assistance regarding the use of LiDAR in urban areas, among others.

5.3 Future prospects

Identifying facade features under a great variety and arrangement make up these
tasks still a scientific challenge whose tendency is to expand. The technologies to
observe cities, such as sophisticated sensors, reconstruction and classification tech-
niques, evolve as the numerous architectural styles change according to local culture
and way of life. Moreover, it is essential to think that the multiplicity of architectural
styles is not the only problem. Studies, such as those carried out at the MIT Cen-
ter for Art, Science and Technology (CAST), Massachusetts Institute of Technology
(MIT)2 and at Eidgenössische Technische Hochschule (ETH) Zürich (ADRIAENSSENS

et al., 2016), show, for example, that materials used in construction might become
dynamic and therefore do not present a single static structure of a building. Urban
occupation tends to evolve, which also demands that mapping techniques must both
to follow the current architectural structures, as well as their eminent evolution.

As future prospects, to explore aspects such as the use of non-supervised models,
separate tasks such as pre-classification of architectural styles, and mix different
DL techniques to deal with specific scenarios, such as the chaotic arrangement of
urban elements. Even it is the first study case, the methodology presented is highly
dependent of the quality and number of images for training. The power of gener-
alization in a neural network occurs as soon as the training set is large enough, as
well as their resolutions. Besides, once this study has shown the robustness of CNN
over complicated situations, we believe that efforts directed towards post-processing
techniques could make the final 3D labeled model even more accurate.

2Video available at https://www.youtube.com/watch?v=vRfNbhyPPKs. Accessed November 2,
2018.
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APPENDIX A - MATERIAL DETAILS

A.1 Tools and modules used along the study

Table A.1 - Sources-code, softwares, libraries and their public links on Github.

Name Description Type Version Purpose URL Reference

scipy Mathematics, science,
and engineering

Python
module

Image
Processing ® -

numpy Scientific computing SciPy module Image
Processing ® -

matplotlib Comprehensive 2D Plot-
ting SciPy module Image

Processing ® (HUNTER, 2007)

sklearn Machine Learning Python
module 0.18.1 Image

Processing ® -

pylsd Line Segment Detector
(LSD)

Python
Library - Image

Processing � ® -

skimage Image processing Python
module 0.14 Image

Processing ® -

quickshift Image segmentation SkImage
module - Image

Processing ®
(VEDALDI;
SOATTO, 2008)

cv2 OpenCV Image Process-
ing

Python
Library 3.2.0.8 Image

Processing � ® -

tensorflow Tensorflow Python
Library 1.5 Image

Processing � ® -

embree High Performance Ray
Tracing Kernels C++ Library 2.0 Ray-

tracing � ® -

vtk The Visualization
Toolkit C++ Library 7.1.1 Ray-

tracing � ® -

cgal Computational Geome-
try Algorithms (CGAL) C++ Library 4.10

Point
cloud

processing
� ® (PROJECT, 2017)

pcl Point Cloud Library
(PCL) C++ Library 4.7

Point
cloud

processing
� ®

(RUSU; COUSINS,
2011)

lastools LAStools C++ Module -
Point
cloud

processing
� ® (LAStools, 2014)

libigl C++ geometry process-
ing C++ Library 1.0 Visualization � ®

(JACOBSON et al.,
2016)

CloudCompare 3D point cloud and mesh
processing GUI 2.9 Visualization � ® -

MeshLab 3D point cloud and mesh
processing GUI 2016.12 Visualization � ®

(CIGNONI et al.,
2008)

SOURCE: Author’s production.
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A.2 Author’s production along this study

Table A.2 - Sources-code produced by the author throughout the study. The usability and
further explanations, can be found at the respective Github links.

Name Description Methodological
stage Language Github Type URL

Image
process-
ing

Preprocessing on images to ap-
ply the Superpixel routine. The
preprocessing procedures here
include filtering, colormap con-
version (i.e. HSV, Lab, Local
Entropy), etc

Detection C++ rodolfolotte/image - �

Superpixel

Segmentation routine with nu-
merous versions of Superpix-
els, for example, SLIC, SLICO,
LSD and SEEDS. The routine
was programmed to perform
experiments involving classifi-
cation of facades

Detection C++ rodolfolotte/gdal-
segment 0 �

Point
cloud
prepro-
cessing

Includes point cloud prepro-
cessing routines, such as sim-
plification, filtering, CRF clas-
sification, etc

Reconstruction C++ rodolfolotte/point-
cloud - �

Inputs
prepara-
tion

Preparation code for neural
network inputs. The code in-
cludes preparation of anno-
tated images and creation of
text files containing the paths
of the images

Detection Python rodolfolotte/deep-
learning - �

CNN

Routines responsible for the
Convolutional Neural Network
training, as well as the routines
for the inferences

Detection Python rodolfolotte/deep-
learning 0 �

Ray-
tracing

Read the camera parameters,
and by the configuration of
image blocks, project the seg-
mented image onto the mesh,
in a way the triangles mesh
are assigned according to each
class

Ray-Tracing C++ rodolfolotte/3d-
reconstruction - �

Evaluation

Evaluates the segmented
images against ground-truth.
Here, all evaluation metrics
and plots can be setted up

Detection Python rodolfolotte/image - �

PC
vizualiza-
tion

Routines to visualize meshes
and customized point of views,
colors, etc

Reconstruction C++ rodolfolotte/3d-
reconstruction - �

Thesis LATEXversion of this thesis Documentation LATEX rodolfolotte/doc - �

SOURCE: Author’s production.
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APPENDIX B - 3D MAPPING IN BRAZIL

B.1 Poll about the use of 3D maps in Brazil

The questionary was made by email, in some cases, was not possible to reach some
of the capitals either by email or phone. The detailed answers from Table 3.1 can
be seen in Table B.1.

The contact of each professional responsible for the answers, can be found in Table
B.2.
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Table B.1 - Poll answers from Table 3.1 in details.

Capital State Answer

Fortaleza CE a) The City Hall of Fortaleza is acquiring the 3D mapping by laser profiling. Currently, department
does not use this data for studies.
d) Planning is performed without any 3D map.
e) Studies using the Z component.

Vitória ES a) No.
d) By 2D thematic maps, with additional database information, such as occupation, use, height, feed-
back, distribution of activities, commerce and urban services, public equipment, socioeconomic char-
acteristics, among others.
e) For example, Vitória has a map on the protection of the natural heritage of the municipality and
the landscape. A 3D map would aid in reconciling territory occupation policies with the protection
policy of this heritage, as well as advanced studies such as volumetric tests, among others. It can be
an important tool in the studies of protection of the environmental patrimony, mangroves, hills and
conservation units, allowing a reading of the constructed object of the city and its relation with the
environmentally protected areas.

Porto Alegre RS a) Yes, Digital Surface Model (DSM) and Digital Terrain Model (DTM).
b) At the moment, in the identification of areas susceptible to geological, geotechnical and hydrological
risks; in the estimation of the height of the buildings, for tax purposes. GIS system in Web platform,
for internal queries.
e) Support for decision making, confronting the planned environment with the built environment,
impact and shading simulations, volumetric simulations. Volumetric studies.

São Paulo SP a) Yes. DSM and DTM. In 2017, a new campaign using LiDAR sensors was performed and new 3D
models will be produced.
b) Workings such as the Strategic Master Plan, Zoning, Drainage Plan, among others.
c) The DTM is used as a reference for other surveys, including planning and execution of some current
aerial imaging stages. However, in projects and infrastructure, the effective use of these 3D digital
technologies is still in the process of being disseminated to the technical staff.
d) Although the 3D models are available, 2D is still predominantly used in urban planning activities.
e) They incorporate technical features that are extremely useful for urban management.

Belo Horizonte MG a) Yes. The execution of 3D modeling is carried out on demand in projects or urban plans that require
analysis of modifications in the urban landscape.
b) The 3D maps help in the visualization of impacts, in the increase of the constructive density, in the
generation of obstructions of sightings, in the relations between equipment and urban infrastructures,
among others.
c) Volumetry studies are carried out for specific projects, such as regions of Urban Operations, Plans
in Areas of Social Interest, Plans of Cultural Regions.
d) Planning is already done with the eventual use of 3D modeling of the terrain and buildings.
e) The 3D maps help in diagnosing the situation before and after the implementation of projects to
evaluate the urban impacts of density and volumetry in parameters established in the plans.

Rio de Janeiro RJ a) The buildings are represented in two dimensions with possibility of elevation in 3D. Calculated
density calculations for proposed zoning alterations, urban parameters and studies of impacts on the
landscape.
b) 3D simulations allow for technical discussion, improvement of proposals and better communication
with managers, city councilors and the general population.
c) Most of urban law plans made in the last five years have included 3D maps on strategic areas.
d) In addition to the 3D studies, the urban planning uses information produced by both federal and
state bodies such as IBGE, ISPE and also municipal, produced by the municipal authorities.
e) Associating the relief with the buildings, it contributes to studies of insolation, heat islands, aimed
at the natural and cultural landscape, simulations and urban parameters such as building heights and
their distances to the other buildings and impacts on the environment.

Curitiba PR a) Yes. Partial maps, that is, not of the whole city, but of parts of it.
b) Providing visualization of occupancy scenarios (for example, using all basic building potential or
with extra potential acquisition); in studies of insolation and microclimate. Answered in the previous
question.
e) In addition to the current applications, these maps could be used, for example, in Neighborhood
Impact Studies and project detailing.

Recife PE a) Yes, the Urban Planning Dept. has georeferenced databased with vector and raster data from LiDAR
campaings. Another tool that it is used is Google Earth Pro, which has the 3D model of the entire
municipality of Recife.
b) A 3D model allows us to manipulate, take measurements, visualize any interventions already built,
and also simulate transformations from anywhere.
c) Any analysis of morphology and occupation of the territory. These activities include analyzes of
impact projects, simulation of changes in legislation and simulations, and studies of interventions.

SOURCE: Author’s production.
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Table B.2 - Responsibles for the 3D mapping poll answers, sent to the Brazilian capitals
infraestructure department (Table B.1, in Section 3.1).

Capital State Name Email

Fortaleza CE Ouvidoria ouvidoria.seuma@fortaleza.ce.gov.br

Vitória ES Clivia Leite Mendonça clivia.leite@correio1.vitoria.es.gov.br

Porto Alegre RS Rodrigo Marsillac Linn rodrigoml@smurb.prefpoa.com.br

São Paulo SP Ana Maria A. Laurenza and Silvio C.
L. Ribeiro amlaurenza@prefeitura.sp.gov.br

Belo Horizonte MG Guilherme Pereira de Vargas guilherme.vargas@pbh.gov.br

Rio de Janeiro RJ Valéria Hazan valeriahazan.pcrj@gmail.com

Curitiba PR Oscar Ricardo M. Schmeiske and
Alessandro Dias geoprocessamento@ippuc.org.br

Recife PE Tiago Henrique icps@recife.pe.gov.br

SOURCE: Author’s production.
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GLOSSARY

3D representation A digital 3D version of a real life object.
3D reconstruction A real life object that has been created digitally through an
automatic or semi-automatic computational procedure.
3D generation A real life object that has been created digitally through a manual
edition, or specialist in 3D designs.
3D model Same as 3D representation.
3D labeling The procedure of classifying a 3D representation.
Image annotation Images that carries the classified features, or, what each pixel
corresponds to. These images are used as ground-truth during CNN training.
Street-side images Photos taken from the streets, from the ground and pointed
toward the facade (perpendicular).
Facade features Individual elements essential to urban mapping. These elements
could be, for example, decisive in the application and execution of urban and super-
visory laws.
Openings Same as Facade Features. Openings are all those related to window,
door, gates, entrances, etc.
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ANNEX A - CROSS-ENTROPY

A.1 Example of cross-entropy calculation

The main goal when developing a probabilistic classificator is to map inputs to proba-
bilistic predictions, incrementally adjusting the model’s parameters as the amount of
erros are observed. Thus, that prediction get closer and closer to ground-truth prob-
abilities. One way to interpret cross-entropy is to see it as a negative log-likelihood
for the ground-truth (y′i), under their prediction (yi). Then, “get closer” means that
when distance between y′i and yi is minimal.

Taking an example from internet1, supposing a fixed model (hypothesis) that pre-
dicts for n classes 1, 2, ..., n their hypothetical occurrence probabilities y1, y2, ..., yn.
Suppose that now observing (in reality) k1 instances of class 1, k2 instances of class
2, kn instances of class n, so on. According to this model, the likelihood of this
happening is:

P [data|model] = yk1
1 yk2

2 ... ykn
n , (A.1)

taking the logarithm and changing the sign:

−log P [data|model] = −k1 log y1 − k2 log y2 ... − kn log yn (A.2)

= −
∑
i

ki log yi , (A.3)

dividing the right-hand sum by the number of observations N = k1+k2+...+kn, and
denote the empirical probabilities as y′i = ki/N , the cross-entropy is then obtained:

− 1
N
log P [data|model] = − 1

N

∑
i

ki log yi (A.4)

= −
∑
i

y′i log yi (A.5)

= Lossy′(y) . (A.6)

1Available at https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/#cross-entropy.
Accessed November 2, 2018.
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ANNEX B - 2D EVALUATION

For validation, reference and prediction images (of the same dimension and color
map) are essentially required. Once in agreement, the images are confronted so that
an N number of randomly selected samples are compared according to their color
properties. The resulting success and error count is acquired in the form of a matrix,
the confusion matrix. One of the axes denotes the reference classes, and another,
the predicted classes. The resulting matrix as well as the success and error metrics
(TP , TN , FP , and FN), therefore, is illustrated in Figure B.1.

Figure B.1 - Multiclass confusion matrix and the respective success and error rates.

(a) TP (b) FN (c) FP (d) TN

SOURCE: Author’s production.

Then, considering M as the confusion matrix, C number of classes, i (predicted)
and j (reference) as the axes, the metrics are given by:

Mij =



TP = ∀ m ∈ M : i = j,m < > 0 ,

FP = ∑C
j=1Mij − TP : j = 1, ..., C ,

FN = ∑C
i=1Mij − TP : i = 1, ..., C ,

TN = ∑C
i=1,j=1Mij − TP − FP − FN : i = 1, ..., C, j = 1, ..., C ,

(B.1)
where, in summary, TP is the diagonal elements, FP is the sum of elements in
column, except TP , FN is the sum of elements in row, except TP , and TN is the
sum of all elements execpt TP , FP , and FN . Then, the accuracy and F1-score is
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finally calculated:

Accuracy = TP + TN

n
, (B.2)

where n is the number of random samples used,

Precision = TP/(TP + FP ) , (B.3)

Recall = TP/(TP + FN) , (B.4)

finally:

F1 = 2 ∗ precision ∗ recall
precision+ recall

, (B.5)

The evaluation’s source-code described here, is shared and can be found in Github
(link available in Table A.2).

B.1 Practical example

Using synthetic images (Figure B.2), this practical example demonstrates the influ-
ence of boundary delineation over F1-score metric.

Figure B.2 - Evaluation over synthetic data. A practical example using (a) reference. (b)
object segmented out of the reference boundary (outer). (c) object segmented
out of the reference boundary (inner). (d) object partially segmented.

(a) (b) (c) (d)

SOURCE: Author’s production.
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In the Table B.1 is shown the values for the synthetic evaluation. When test over
the same reference image, the accuracy and F1-score seems correct, as there is no
changing, but when the predicted object is bigger than in reference, then the recall
is high but not the precision, leading to a low F1-score. When the predicted object
is smaller it should be, it inverts, recall is lower than precision, also leading to a
low F1-score. Finally, a predicted object intersecting only part of the reference, both
values are low, equally to F1-score.

Table B.1 - Demonstration of the Accuracy and F1-score changing according to the target
boundary and location.

Reference Predicted Accuracy Precision Recall F1-Score

1.0 1.0 1.0 1.0

0.8903 0.8101 0.9345 0.8478

0.8539 0.9252 0.5871 0.6080

0.6162 0.5134 0.5212 0.4969

SOURCE: Author’s production.
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