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The present paper studies the problem of orbital maneuvers performed combin-
ing the passage of a spacecraft by a celestial body with an impulse applied to the 
spacecraft during the close approach. The motion of the spacecraft is assumed to 
be in the three-dimensional space, thus allowing plane change. This type of ma-
neuver can also send the spacecraft to a point far from the orbit or to end in cap-
ture or collision of the spacecraft by the celestial body. The effects of the varia-
tions in the orbital plane, energy and the angular momentum of the spacecraft 
are presented. 

INTRODUCTION 

Swing-By maneuvers are used in space missions to send a spacecraft to targets like planets, 
moons or asteroids. This technique is based in making a close approach with a celestial body, 
which gives or removes energy from the spacecraft. It can also be used to generate the capture or 
escape of a spacecraft relative to the celestial body. When a spacecraft passes near a celestial 
body and uses the gravity of this body to change its orbit, we call it "pure gravity Swing-By ma-
neuver." This change includes the modification of the velocity, energy and angular momentum of 
the spacecraft. This is a type of maneuver well known in the literature, since it was already used 
in several space missions. The goal is usually fuel economy, considering that the Swing-By is 
equivalent to the application of an impulse with zero fuel expenditure1-9. 

Several works were developed considering the motion of the spacecraft limited to the plane of 
the primaries, combining the “pure Swing maneuver” with an impulse applied in the space ve-
hicle at some point of the trajectory, in order to optimize the maneuver. Called "powered Swing-
By”, the use of this maneuver is interesting when the energy obtained from the pure gravity 
Swing-By maneuver is not enough to meet the needs of the mission10-14. Other papers present a 
study for the powered maneuver considering the primary bodies in elliptical orbits, which is a 
more realistic maneuver in several systems of primaries15-18. 
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 To expand this study to the three-dimensional space, we will use the work of Prado (2000)19, 
which presented analytical equations for a Swing-By maneuver in the three-dimensional space for 
systems with circular orbits and without the application of an impulse. Formiga and Santos 
(2015)20 and Prado and Felipe (2007)21 also performed analytical studies for systems with circular 
orbits and an impulsive maneuver applied in the periapsis of the orbit of the spacecraft. Other 
studies related to the three-dimensional Swing-By are also available22-24. Recently, Gagg Filho 
and Fernandes25 formulated an orbital transfer problem for an Earth-to-Earth mission between 
non-coplanar orbits considering the occurrence of a lunar Swing-By during the transfer orbit, with 
the goal of making an inclination change. 

 The focus of the present work is the analysis of the energy and inclination variations in the 
orbit of a spacecraft during a powered Swing-By maneuver, with the impulse applied in the pe-
riapsis of the orbit, considering the three-dimensional situation. In all the situations considered in 
the present paper, numerical simulations are made, since the restricted three-body problem is used 
and it does not have analytical solutions. 

 

DYNAMICAL SYSTEM 

The restricted circular three-body problem (RCTBP)26 is used in the present paper. It has M1 
as the body with the largest mass (1 − 𝜇𝜇) and M2 as the secondary body of the system, where  𝜇𝜇 is 
the mass parameter of the system, which is the mass of the secondary body divided by the total 
mass of the system. Both primaries are assumed to be in circular orbits around their common 
center of mass. M3 represents the spacecraft, with negligible mass, which is moving in the three-
dimensional space. 

The impulse referred to the powered part of the maneuver is applied at the time of the closest 
approach of the spacecraft with M2. Its magnitude and direction are free parameters. In the no-
menclature used here, 𝛿𝛿𝛿𝛿 is the magnitude of the impulse, 𝜔𝜔 is the angle, in the plane 𝑉𝑉𝑥𝑥 −  𝑉𝑉𝑦𝑦 , 
that defines the direction of the impulse and 𝜂𝜂 is an out-of-plane angle that completes the descrip-
tion of the direction of the impulse. Both angles are measured in the 𝑉𝑉𝑥𝑥 ,𝑉𝑉𝑦𝑦 ,𝑉𝑉𝑧𝑧  frame, originating at 
the periapsis and parallel to 𝑥𝑥,𝑦𝑦, 𝑧𝑧. The position vector at the periapsis of the orbit (𝑟𝑟𝑝𝑝 ) is defined 
by 𝛼𝛼, the angle in the 𝑥𝑥 − 𝑦𝑦 plane; 𝛽𝛽, an out-of-plane angle (−90° < 𝛽𝛽 < 90°) and  𝑟𝑟𝑝𝑝 , its magni-
tude that is measured from the center of M2 to the point 𝑃𝑃 (see Figure 1). The velocity vector at 
periapsis (𝑉𝑉�⃗𝑝𝑝 ) is given by 𝛾𝛾 (the angle between 𝑉𝑉�⃗𝑝𝑝  and the horizontal plane that passes by the pe-
riapsis) and the magnitude 𝑉𝑉𝑝𝑝 . 

The equations of motion of the spacecraft are given by: 𝑥̈𝑥 − 2𝑦̇𝑦 = Ω𝑥𝑥 , 𝑦̈𝑦 + 2𝑥̇𝑥 = Ω𝑦𝑦  and 
𝑧̈𝑧 + 𝑧𝑧 = Ω𝑧𝑧 , where Ω𝑥𝑥 ,Ω𝑦𝑦  and Ω𝑧𝑧  are the partial derivatives of Ω = 1

2
(𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) +

1
2
𝜇𝜇(1− 𝜇𝜇) + (1−𝜇𝜇 )

𝑟𝑟1
+ 𝜇𝜇

𝑟𝑟2
, with  𝑟𝑟1 = �(𝑥𝑥 + 𝜇𝜇)2 + 𝑦𝑦2 + 𝑧𝑧2 and 𝑟𝑟2 = �(𝑥𝑥 − 1 + 𝜇𝜇)2 + 𝑦𝑦2 + 𝑧𝑧2. 

They were numerically integrated to find the trajectories. 

Equations 1 and 2 give the position and velocity of the spacecraft at the time of the impulsive 
maneuver, in the periapsis of its orbit around M1, in the rotating frame. If 𝛿𝛿𝛿𝛿 = 0, there is only 
the natural motion of the spacecraft around the secondary body, which is the pure gravity Swing-
By. 
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𝑥𝑥 = (1 − 𝜇𝜇) + 𝑟𝑟𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼
𝑦𝑦 = 𝑟𝑟𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼

𝑧𝑧 = 𝑟𝑟𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽
 (1) 

𝑥̇𝑥 = −𝑉𝑉𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 − 𝑉𝑉𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 + 𝑟𝑟𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 + 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 𝜂𝜂 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 

𝑦̇𝑦 = −𝑉𝑉𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼 − 𝑉𝑉𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 − 𝑟𝑟𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 + 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 𝜂𝜂 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔 

𝑧̇𝑧 = 𝑉𝑉𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾 + 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 𝜂𝜂 

(2) 

Figure 1 shows that the spacecraft leaves point 𝐴𝐴, a point where the influence of the secondary 
body in the spacecraft can be neglected, passes by the point 𝑃𝑃, the periapsis of the trajectory of 
the spacecraft around M2, where the impulse is applied to change the trajectory instantly, and then 
it goes to point 𝐵𝐵, also a point where the effect of M2 on the spacecraft can be neglected. The 
dashed red line represents the first orbit, before the impulse. The continuous red line is the new 
trajectory, after the impulse. The velocity of the spacecraft with respect to M1 is obtained and 
used to get the two-body energy spacecraft-M1 and the angular momentum with respect to M1, as 
well. 

 

Figure 1. Three-dimensional powered Swing-By maneuver. 

The energy variation (∆𝐸𝐸) is calculated by the difference between the energy at the points 𝐴𝐴 
and 𝐵𝐵. If this difference is negative, the combination of the gravitational and impulsive part of the 
maneuver decelerate the spacecraft, reducing its velocity and, consequently, its energy. This is a 
characteristic that favors the capture or collision of the spacecraft by the secondary body. 

Another feature that helps captures and collisions is the geometry of the application of the im-
pulse. If there is a component in the direction of the secondary body, the spacecraft tends to go 
towards the body, therefore facilitating these occurrences. If there is a component in the opposite 
direction, the spacecraft moves away from the body, so minimizing the effect of its gravity. 
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From the angular momentum, it is possible to calculate the inclination of the orbit of the 
spacecraft with respect to the plane of the lunar orbit, in the points 𝐴𝐴 and 𝐵𝐵. Therefore, the varia-
tion of the inclination is given by ∆𝑖𝑖 = 𝑖𝑖𝐵𝐵 − 𝑖𝑖𝐴𝐴 = cos−1 �𝐶𝐶𝐶𝐶𝐵𝐵

|𝐶𝐶|
� − cos−1 �𝐶𝐶𝐶𝐶𝐴𝐴

|𝐶𝐶|
�, where 𝐶𝐶𝐶𝐶𝐴𝐴 and 𝐶𝐶𝐶𝐶𝐵𝐵 

are the z-components of the angular momentum at the points 𝐴𝐴 and 𝐵𝐵, respectively, and |𝐶𝐶| is the 
magnitude of the angular momentum. If we consider β , γ  and η  equal to zero, we have the two-
dimensional version of the problem. In this case the inclination is always zero and the spacecraft 
moves in the plane of the primaries ( yx − ). 

To perform some numerical simulations, maneuvers around the Moon in the Earth-Moon sys-
tem will be used. Therefore, the mass parameter of 𝑀𝑀2 is 𝜇𝜇 = 0.01214, 1.0 Moon’s radius is 
equal to 1730 km and 1.02 km/s is the velocity of the Moon around the Earth. The velocity of the 
spacecraft at the periapsis of its orbit is 2.47 km/s, equivalent to a velocity of approach of 1.0 
km/s. 

Figure 2 shows the effect of the out-of-plane component of the velocity at the periapsis in the 
variation of energy and inclination in a pure gravity maneuver, without impulse. The goal is just 
to give an idea of the effects of this angle, but, since it depends on the approach trajectory, its 
values are typically near zero. Most of the trajectories will be coming in a plane near the orbital 
plane of the primaries, which gives a zero value for this variable. According to Felipe and Prado 
(2000)27 the effects of 𝛾𝛾 depend on the initial conditions of the trajectory. 

It is clear the symmetry of  𝛾𝛾 in the energy and inclination variations, for 𝛼𝛼 equal to 90° and 
270°. In Figure 2(a) the energy variations are negative and in Figure 2(c) they are positive, but 
both with the same magnitude. The curves are almost coincident for 𝛽𝛽 = −45° and 𝛽𝛽 = 45°. In 
Figures 2(b) and 2(d) the inclination also has the same magnitude, but with opposite signs. In this 
case 𝛽𝛽 = −45° and 𝛽𝛽 = 45° are also opposite to 𝛾𝛾. When 𝛾𝛾 = 0°, the highest energy losses occur 
after the close encounter for 𝛼𝛼 = 90° and the highest gains for 𝛼𝛼 = 270°. This is also the condi-
tion, for both cases, where the maneuver has the same Δ𝑖𝑖. As expected, 𝛾𝛾 has a much stronger 
influence in the variation of inclination, compared to its effects in the variation of energy. The 
largest variation of energy occurs when 𝛾𝛾 = 0°, a planar approach. The largest variation in incli-
nation occurs when 𝛾𝛾 = ±90°. 

Regarding the effects of the periapsis geometry, a color map of the energy and inclination var-
iation for a maneuver with 𝑟𝑟𝑝𝑝 = 1.1 Moon’s radius, 𝛾𝛾 = 0° and zero impulse is presented, show-
ing the effects of gravity alone. 

     From the gravitational part of the maneuver (no impulse applied to the spacecraft) we see that 
the energy and inclination are symmetrical with respect to the line α = 180°. Since the spacecraft 
gains energy after the close encounter, for 180° < 𝛼𝛼 < 360°, its inclination decreases. The oppo-
site occurs if 0° < 𝛼𝛼 < 180, and the inclination increases. According to Broucke (1988)28, gravi-
ty removes energy (with a maximum when 𝛼𝛼 = 90°) when the spacecraft is passing in front of the 
secondary body. It gets a maximum gain of energy when 𝛼𝛼 = 270°, with the spacecraft passing 
behind the secondary body. The maximum effects in the energy variation occur when 𝛽𝛽 = 0°, a 
planar maneuver. This planar maneuver allows variations in the inclination only of ±180°.  
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a) Energy variation, for 𝛼𝛼 = 90°. b) Inclination variation, for 𝛼𝛼 = 90°. 

  
c) Energy variation, for 𝛼𝛼 = 270°. d) Inclination variation, for 𝛼𝛼 = 270°. 

Figure 2. Effect of 𝜸𝜸 in the energy and inclination variations. 
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(a) (b) 

Figure 3. Energy and inclination variation of the spacecraft. 

It is important to emphasize that the application of the impulse makes significant changes in the 
trajectory of the spacecraft, when compared with the situation where only the gravitational part of 
the maneuver is acting. For the numerical simulations, the focus is in the energy gains, so it is 
always used α = 270°. The direction of the impulse is a free parameter, varying in the 
intervals 0° < 𝜔𝜔 < 360° and −90° < 𝜂𝜂 < 90°. The magnitude 𝛿𝛿𝛿𝛿 = 0.4 km/s was adopted. An 
analysis of the energy variation and inclination variation resulting from these combinations are 
studied. 

 

ENERGY VARIATION 

The first part of the present study will look at the energy variations. For the powered maneuv-
ers, these variations come from a combination of the direct energy given by the impulse applied 
and the new variations due to the modification of the trajectory of the spacecraft, which changes 
the energy variation due to the gravity part of the maneuver. The impulse may have a component 
in the direction of 𝑀𝑀2, causing the spacecraft to approach  𝑀𝑀2 and then to intensify the gravity 
part of the maneuver; or a component against 𝑀𝑀2, pushing the spacecraft away and so decreasing 
the effect of the gravity part of the maneuver. These characteristics make the powered Swing-By 
a complex study, but valid when the pure maneuver is not enough to meet the needs of the mis-
sion.  

Figure 4 shows the energy variation when the periapsis is in the plane of the primaries, in the 
situation of maximum gains of energy (𝛼𝛼 = 270° and 𝛽𝛽 = 0°). The results are showed for three 
different periapsis velocity inclination: 𝛾𝛾 = 0°,−45°, and 𝛾𝛾 = 45°. The goal is to get some initial 
information about the behavior of the system, in particular the effects of 𝛾𝛾. The first observation 
is the presence of captures and collisions regions. The black regions represent the captures. For 
this condition the spacecraft remained around the Moon until the final integration time. The gray 
regions represent the collisions, when the spacecraft hit the surface of the Moon. Figure 4 con-
firms and quantifies the expected result that the maximum variation of energy occurs when the 
impulse is applied in the direction of motion. It also shows the occurrence of collisions around the 
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point (𝜔𝜔 = 180°, 𝜂𝜂 = 0°). It happens because this point represents a maneuver where the impulse 
is applied opposite to the motion of the spacecraft, so reducing its velocity and helping collisions. 
In Fig. 4(a) the maximum variation of energy occurs at 𝜂𝜂 = 𝜔𝜔 = 0°, because the spacecraft is 
approaching M2 from a planar maneuver (𝛾𝛾 = 0° =  𝛽𝛽). Note also that, for 0° < 𝜔𝜔 < 90°, the 
region of largest energy gains (dark red) is wider compared to the region 270° < 𝜔𝜔 < 360°. Al-
though both intervals have an impulse component in the direction of the motion of the spacecraft, 
𝜔𝜔 between 0° and 90° gives the other component in the direction of the secondary body, max-
imizing the effect of gravity. For 270° < 𝜔𝜔 < 360°, the impulse sends the spacecraft away from 
the secondary body. The cases with negative variations of energy are in the limit line for the colli-
sions. In Fig. 4(b) this maximum happens at 𝜂𝜂 = −45° and 𝜔𝜔 = 0°, because the spacecraft is 
approaching M2 from a plane that is -45° inclined with the orbital plane of the primaries. The 
region of collisions is shifted accordingly, and a region of captures appear. Figure 4(c) is symme-
tric to Fig. 4(b), because the spacecraft is approaching M2 from a plane that is 45° inclined with 
the orbital plane of the primaries. 

Regarding the magnitude of the energy variations, in Figure 4(a) they are in the range −0.13 
to 2.7 km²/s², which means that even negative numbers are possible, where the impulse is acting 
to remove energy from the spacecraft even in a maneuver with an angle of approach of 270°. The 
same happens in Figs. 4(b) and 4(c), where the interval is approximately from−0.15 to 2.72 
km²/s². 

 
 

a) 𝛾𝛾 = 0° b) 𝛾𝛾 = −45° 
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c) 𝛾𝛾 = 45° 

Figure 4. Energy variation for 𝜶𝜶 = 𝟐𝟐𝟐𝟐𝟐𝟐° and 𝜷𝜷 = 𝟎𝟎°. 

Next, the energy variations for 𝛼𝛼 = 270° and 𝛽𝛽 = −45° is presented in Figure 5. We can see that the 
conditions for the gains and losses of energy are similar to those shown in Figure 4, but the magnitude of 
Δ𝐸𝐸 and the conditions of captures and collisions have changed. 

In Figure 5(a) (𝛾𝛾 = −45°) the magnitude of Δ𝐸𝐸 are in the interval −0.7 to 2.65 km²/s². There are signifi-
cantly more collisions, which region is limited by the captures and then by the region of energy losses. The 
maximum Δ𝐸𝐸 occurs for 𝜔𝜔 = 44° and 𝜂𝜂 = −27° and the minimum for 𝜔𝜔 = 226° and 𝜂𝜂 = −18°. 

In Figure 5(b) (𝛾𝛾 = 0°) the energy variations are in the interval −0.34 to 2.25 km²/s², with a maximum at 
𝜔𝜔 = 15° and 𝜂𝜂 = 3°. In these conditions the impulse is applied making a small angle with respect to the 
plane of the primaries with components in the direction of the motion of the spacecraft and with another one 
in the direction of the secondary body, so maximizing the effect of gravity. In addition to the numerous cas-
es of collisions, a capture region appears in the center of the map, for 𝜔𝜔 around 180° and 𝜂𝜂 near zero. 

When 𝛾𝛾 = 45° (Figure 5(c), the maximum energy variation is 1.83 km²/s² an it occurs for 𝜔𝜔 = 355° and 
𝜂𝜂 = 43°.The minimum is 0.06 km²/s², for 𝜔𝜔 = 104° and 𝜂𝜂 = −75°. The conditions of the impulse that re-
sult in captures (black region) and collisions (gray region) are approximately 90 < 𝜔𝜔 < 180° and −75° <
𝜂𝜂 < 0°. It means that the impulse has one component decelerating the spacecraft and another one sending it 
to 𝑀𝑀2, therefore helping the occurrence of these cases. 

A situation where 𝛼𝛼 = 270° and 𝛽𝛽 = 45° was simulated, and the results are symmetric with respect to 
the line 𝜂𝜂 = 0°, when compared to the situation with 𝛼𝛼 = 270° and 𝛽𝛽 = −45°, shown in Figure 5. So, the 
figures are omitted.  
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a) 𝛾𝛾 = −45° b) 𝛾𝛾 = 0° 

 
c) 𝛾𝛾 = 45° 

Figure 5. Energy variation for𝜶𝜶 = 𝟐𝟐𝟐𝟐𝟐𝟐°and 𝜷𝜷 = −𝟒𝟒𝟒𝟒°. 

The next point is to study the energy variation as a function of the parameters 𝛽𝛽 and 𝜂𝜂. A typi-
cal Swing-By maneuver with the Moon will have a trajectory coming from an orbit around the 
Earth that is nearly coplanar with the orbit of the Moon, to avoid expensive out-of-plane maneuv-
ers. In this way, the best parameters to control the maneuver to get the desired balance among 
variations of energy and inclination is β, because it is easy to make very small mid-course correc-
tions to reach the Moon above or below the equator, and η, the out-of-plane direction of the im-
pulse. The same is true for any system of primaries. Figure 6 shows the energy variation for 
𝛼𝛼 = 270° and 𝜔𝜔 = 0°. This is the situation of maximum variation of energy (𝛼𝛼 = 270°) with the 
impulse applied in the direction of motion of the spacecraft (𝜔𝜔 = 0°). The first point to be noted 
is that the maximum variation of energy occurs at the point (0,0), which means a planar maneuver 
with no out-of-plane component for the impulse. This result is expected, but the quantification of 
the variations as a function of these parameters are interesting and important results. It is also 
measured the increase of the variation of energy when the values of the magnitude of the impulse 
are larger, which can be noted by the scale of the color codes for the three situations. The general 
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shapes of the plots also show an important point. The first plot (𝛿𝛿𝛿𝛿 = 0.1 km/s) has borders be-
tween the colors closer to verticals, because the out-of-plane location of the Swing-By (β) are 
stronger than the effects of the out-of-plane component of the impulse (η). It happens because the 
magnitude of the impulse is small. Increasing this magnitude to 𝛿𝛿𝛿𝛿 = 0.3 km/s those borders 
become more curved, indicating the increasing effects of the propulsive part of the maneuver. For 
the last plot, for 𝛿𝛿𝛿𝛿 = 0.5 km/s, those borders are circular, which means that the effects of both 
variables are of the same order of magnitude. A very large impulse would make those borders to 
be closer to horizontals. 

  
a) 𝛿𝛿𝛿𝛿 = 0.1 km/s b) 𝛿𝛿𝛿𝛿 = 0.3 km/s 

 
c) 𝛿𝛿𝛿𝛿 = 0.5 km/s 

Figure 6. Energy variation for 𝜶𝜶 = 𝟐𝟐𝟐𝟐𝟐𝟐° and 𝝎𝝎 = 𝟎𝟎°. 

Next, we made a study considering the effects of the variables 𝛽𝛽 and 𝜔𝜔. Figure 7 shows the results, 
which are the energy variations for 𝛼𝛼 = 270° (maximum gains of energy and 𝜂𝜂 = 0° (planar impulse). It is 
observed that the maximum variations of energy occur at the points (0,0) and (0,360°), which means a pla-
nar maneuver with the impulse applied in the direction of the motion of the spacecraft. Of course, 0 and 
360° represent the same direction. This result is also expected, but it is accurately quantified here as a func-
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tion of the variables involved. It is also showed the increase in the gains of energy due to larger magnitudes 
of the impulse, by looking at the color codes for the three magnitudes of impulse showed in Figure 7. The 
general shapes of the plots are also different. The first results made for an impulse with magnitude 𝛿𝛿𝛿𝛿 = 0.1 
km/s shows borders between colors that are closer to verticals, as observed in Figure 6. It happens for the 
same reasons already explained. The out-of-plane position of the Swing-By (β) gives stronger effects in the 
maneuver compared to the direction of (ω), since the magnitude of the impulse is small. The next results, 
for 𝛿𝛿𝛿𝛿 = 0.3 km/s, have opposite results and those borders are curved, but closer to horizontals. It happens 
because the effects of the direction of the propulsive part of the maneuver are now more important than the 
location of the periapsis of the incoming orbit. The physical phenomenon behind those facts is that giving 
larger impulses in the region of maximum variations of energy gives larger gains, but giving larger impulses 
in the regions of minimum variations of energy reduces even more these values. The last plot, for 𝛿𝛿𝛿𝛿 = 0.5 
km/s, also has borders closer to horizontals, but now a region of captures and escapes appear. This is a con-
sequence of the increase of the impulse, which now is able to reduce the velocity of the spacecraft to allow 
those captures and escapes to occur. Variations of energy are maximum for β = 0°, as expected19. 

  

a) 𝛿𝛿𝛿𝛿 = 0.1 km/s b) 𝛿𝛿𝛿𝛿 = 0.3 km/s 

 
c) 𝛿𝛿𝛿𝛿 = 0.5 km/s 

Figure 7. Energy variation for 𝜶𝜶 = 𝟐𝟐𝟐𝟐𝟐𝟐° and 𝜼𝜼 = 𝟎𝟎°. 
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Figures 8 and 9 show equivalent results for different values for the direction of the impulse, 
𝜂𝜂 = −45° and 𝜂𝜂 = −45°. The results are similar, with the same interpretations. 

  

d) 𝛿𝛿𝛿𝛿 = 0.1 km/s e) 𝛿𝛿𝛿𝛿 = 0.3 km/s 

 
f) 𝛿𝛿𝛿𝛿 = 0.5 km/s 

Figure 8. Energy variation for 𝜶𝜶 = 𝟐𝟐𝟐𝟐𝟐𝟐° and 𝜼𝜼 = −𝟒𝟒𝟒𝟒°. 
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a) 𝛿𝛿𝛿𝛿 = 0.1 km/s b) 𝛿𝛿𝛿𝛿 = 0.3 km/s 

 
c) 𝛿𝛿𝛿𝛿 = 0.5 km/s 

Figure 9. Energy variation for 𝜶𝜶 = 𝟐𝟐𝟐𝟐𝟐𝟐°and 𝜼𝜼 = 𝟒𝟒𝟒𝟒°. 

 

VARIATIONS IN THE INCLINATION  

The variation of the inclination of the orbit of the spacecraft due to the powered Swing-By 
maneuver is an important point to be observed. To change the inclination of a spacecraft is a very 
expensive maneuver when made based in fuel consumption, so the use of a Swing-By to do this 
task is very important. Therefore, the powered Swing-By can also be used with this goal. This 
variation is defined as the difference between the inclination before and after the close approach. 
This analysis completes the study made for the energy variation, so it is possible to design a ma-
neuver that changes energy and inclination at the same time. 
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Figure 10 shows the first results, when 𝛼𝛼 = 270° (maximum gain of energy) and 𝛽𝛽 = 0° (pla-
nar approach). The first plot (Figure 10(a)) is made for the situation where the velocity of the 
periapsis is in the plane. If 𝜂𝜂 = 0°, the whole maneuver is reduced to the plane of the primaries 
and the inclination of the spacecraft is zero before and after the maneuver. The range of variations 
in the inclination is not large, in particular compared to the situations where the spacecraft arrives 
with an out-of-plane component of the velocity at periapsis (Figures 10(b) and 10(c)). The reason 
is that, in this geometry, the variation in the inclination is made only by the out-of-plane impulse. 
The maximum variations reach about 5.2°, and it occur for −90° < 𝜂𝜂 < −45° and 45° <  𝜂𝜂 <
90° and for impulses near the direction of the motion of the spacecraft. There is a symmetry with 
respect to the line 𝜂𝜂 = 0°. There is also a region of collisions in the center of the plot. 

In the situations where the velocity at periapsis has an out-of-plane component, like for 
𝛾𝛾 = −45° and 𝛾𝛾 = 45°, the spacecraft always reduces its inclination after the maneuver. In these 
cases, shown in Figures 10(b) and 10(c), the inclination varies from −62° to −28.9°. For the 
lowest reduction of inclination (−28.9°), 𝜔𝜔 is between 270° and 360°, so the whole maneuver 
takes place in the plane of the primaries, the impulse has a component  in the direction of the 
motion of the spacecraft and another one opposite to the secondary body. The regions of captures 
and escapes are shifted in these situations. In Figure10(b) the impulse has another component 
in 𝑉𝑉𝑧𝑧 < 0, and in Figure10(c) the component is in 𝑉𝑉𝑧𝑧 > 0. The largest variations in inclination 
(dark blue region) occur for the conditions that are in the limit between captures and collisions.  
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a) 𝛾𝛾 = 0° b) 𝛾𝛾 = −45° 

 
c) 𝛾𝛾 = 45° 

Figure 10. Inclination variation for 𝜶𝜶 = 𝟐𝟐𝟐𝟐𝟐𝟐° and 𝜷𝜷 = 𝟎𝟎°. 

Figures 11 and 12 show the inclination variations for 𝛽𝛽 = −45° and 𝛽𝛽 = 45°, respectively.  
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a) 𝛾𝛾 = −45° b) 𝛾𝛾 = 0° 

 
c) 𝛾𝛾 = 45° 

Figure 11. Inclination variation for 𝜶𝜶 = 𝟐𝟐𝟐𝟐𝟐𝟐° and 𝜷𝜷 = −𝟒𝟒𝟒𝟒°. 

Figures 11(a) and 12(c) show larger regions of collisions, always limited by regions of cap-
ture. They occur for retrograde impulses and applied in the direction opposite to 𝑀𝑀2. For Figure 
11(a), the largest variations of the inclination start at 𝜔𝜔 and 𝜂𝜂 near zero, where the impulse is in 
the direction of the motion of the spacecraft, covers an inclined region up to 𝜔𝜔 near 180° and 𝜂𝜂 
= −45°, where the impulse is retrograde. Then it follows a symmetric region for 𝜔𝜔 > 180°. The 
largest variations are of the order of 46°. For Figure 12(a) the behavior is similar, but the largest 
variations in magnitude are around 𝜔𝜔 = 180° and 𝜂𝜂 close to 45°. The difference of the geometry 
of the maneuvers shown in these two figures is the velocity of the spacecraft at periapsis and the 
location of the periapsis, which is 𝛽𝛽 = −45° and 𝛾𝛾 = −45° in one case and 𝛽𝛽 = 45° and 𝛾𝛾 = 45° 
in the other case. 

It is also observed that, when 𝛾𝛾 = 0°, Δ𝑖𝑖 ranges from −42° to −22.6°. In Figures 11(b) and 
12(b), the minimum variations are in the boundary regions between captures and collisions, 
which occur for 𝜔𝜔 around 180° and −45° < 𝜂𝜂 < 45°. The captures occur for 𝜂𝜂 close to zero. 
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When the position and velocity of the spacecraft at the periapsis have out-of-plane compo-
nents (𝛽𝛽 and 𝛾𝛾 are not zero) and pointing in opposite quadrants (Figure 11(c) and 12(a)), there are 
a few cases where the orbits after the maneuver is more inclined than the first one, reaching a 
variation of 7.5°. The largest variations are about 42° and it happens due to the inclination of the 
orbit before the maneuver. For this case, there is a large amount of conditions ending in captures, 
located in the region of retrograde impulses and pointing to 𝑀𝑀2. 

  
a) 𝛾𝛾 = −45° b) 𝛾𝛾 = 0° 

 
c) 𝛾𝛾 = 45° 

Figure 12. Inclination variation for 𝜶𝜶 = 𝟐𝟐𝟐𝟐𝟐𝟐° and 𝜷𝜷 = 𝟒𝟒𝟒𝟒°. 

The inclusion of the impulse makes it a very complex maneuver. The impulse can dominate 
the maneuver for large values of their magnitudes, avoiding an expected behavior based in the 
analysis of the gravitational part of the maneuver. For example, the minimum energy variations 
occurred in the conditions studied have the highest inclinations for the first orbit, except for Fig-
ures 5(a), 8(a), 6(c) and 12(c). This same statement is not valid for cases of maximum energy 
variations. 
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Next, we made a study considering the effects of the variables 𝛽𝛽 and η. Figure 13 shows the 
results, which are the inclination variations for 𝛼𝛼 = 270° (maximum gains of energy) and ω = 0° 
(impulse in the direction of the motion of the spacecraft). It is noted that, in Fig 13(a), made for 
an impulse of magnitude of 0.1 km/s, the border lines between adjacent colors are nearly vertical, 
which indicates that the impulse has a small participation in the variation of the inclination. In-
creasing the magnitude of the impulse to 0.3 km/s (Fig. 13b) and to 0.5 km/s (Fig. 13c), the im-
pulse starts to take an important participation in the maneuvers, with the lines being no longer 
verticals. It is observed that the variations of inclination are zero at β =  0° and ±90°, with max-
imum in the intermediate positions. The maximum variations are also located in the regions 
where both variables have the same sign. 

  

a) 𝛿𝛿𝛿𝛿 = 0.1 km/s b) 𝛿𝛿𝛿𝛿 = 0.3 km/s 

 
c) 𝛿𝛿𝛿𝛿 = 0.5 km/s 

Figure 13. Inclination variation for 𝜶𝜶 = 𝟐𝟐𝟐𝟐𝟐𝟐° and 𝝎𝝎 = 𝟎𝟎° 
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CONCLUSIONS 

This research studied the powered Swing-By maneuver in the three-dimensional space. The 
position of the periapsis with respect to the secondary body, defined by the angle 𝛼𝛼, had a signifi-
cant influence on the behavior of the variations in the energy and inclination of the spacecraft, as 
expected. The solutions are presented for 𝛼𝛼 = 270°, the region of maximum energy gains due to 
the gravitational part of the maneuver. There is symmetry in the system and the values for energy 
and inclination variations for 𝛼𝛼 = 90° have the same magnitude of the ones obtained for 𝛼𝛼 =
270°, just with a reversal in the sign relative to the out-of-plane direction of the impulse (𝜂𝜂). 

Color maps showing the variations in the energy and inclination with respect to the primary 
body were analyzed as a function of the angles that define the impulse applied in the plane (𝜔𝜔) 
and out-of-the plane (𝜂𝜂). Initial conditions resulting in captures and collisions with respect to 𝑀𝑀2 
occur for all cases studied. The main influence of those occurrences come from the impulse, al-
ways when it has a component opposite to the motion of the spacecraft, decelerating it to remove 
energy. 

The energy and inclination variations are dependent of 𝛾𝛾, which defines the out-of-plane com-
ponent of the periapsis velocity. This variable has important influence on the results and is also 
dependent on the initial conditions adopted. In addition, considering only the gravitational part of 
the maneuver, the larger the 𝛾𝛾, the smaller the effect of the Swing-By. When we consider the 
impulse, depending on the combination with 𝛽𝛽, there is symmetry in the solutions for Δ𝐸𝐸 and Δ𝑖𝑖 
with respect to the direction of the impulse (𝜂𝜂). 

The variation of the inclination, for most of the cases studied, is negative, that is, the orbit be-
fore the maneuver is more inclined than the orbit after the maneuver. An exception occurs for 
𝛽𝛽 = 0° and 𝛾𝛾 = 0°, where the inclination depends only on the three-dimensional impulse and the 
second orbit is more inclined. 

The relation between energy and inclination, when we include the impulse, does not follow 
exactly the same behavior for the case when only gravity is acting in the system. The minimum 
energy variation, for the conditions studied, occurs for the highest inclinations of the first orbit, 
except for some cases. The inclusion of the impulse in the maneuver makes it very complex from 
a dynamical point of view. The impulse can dominate the maneuver, avoiding an expected beha-
vior made based in the analysis of only the gravitational part of the maneuver. 
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