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Almost four decades ago, Gacs, Kurdyumov, and Levin introduced three different cellular automata to
investigate whether one-dimensional nonequilibrium interacting particle systems are capable of displaying phase
transitions, and, as a byproduct, they introduced the density classification problem (the ability to classify arrays of
symbols according to their initial density) in the cellular automata literature. Their model II became a well-known
model in theoretical computer science and statistical mechanics. The other two models, however, did not receive
much attention. Here we characterize the density classification performance of Gacs, Kurdyumov, and Levin’s
model IV, a four-state cellular automaton with three absorbing states—only two of which are attractive—by
numerical simulations. We show that model IV compares well with its sibling model II in the density classification
task: the additional states slow down the convergence to the majority state but confer a slight advantage in
classification performance. We also show that, unexpectedly, initial states diluted in one of the nonclassifiable
states are more easily classified. The performance of model IV under the influence of noise was also investigated,
and we found signs of an ergodic-nonergodic phase transition at some small finite positive level of noise, although
the evidence is not entirely conclusive. We set an upper bound on the critical point for the transition, if any.
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I. INTRODUCTION

In 1978, Gacs, Kurdyumov, and Levin (GKL) introduced
three different cellular automata (CA), which they called
models II, IV, and VI, together with their probabilistic versions
(PCA) to investigate whether nonequilibrium interacting par-
ticle systems are capable of displaying phase transitions [1,2].
Their goal was to examine the so-called “positive probabilities
conjecture,” according to which one-dimensional systems
with short-range interactions and positive transition proba-
bilities are always ergodic [3–11]. This conjecture has been
disproved—much to the awe of the practising community—
many times since then, with the introduction of several models
that have become archetypal models in theoretical computer
science and nonequilibrium statistical mechanics [12–29].

As a byproduct of their investigations, GKL introduced the
density classification problem in the cellular automata litera-
ture. The density classification problem consists in classifying
arrays of symbols according to their initial density using local
rules, and it is completed successfully if a correct verdict as
to which was the initial majority state is obtained in time at
most linear in the size of the input array. Density classification
is a nontrivial task for CA in which cells interact over finite
neighborhoods, because then the cells have to achieve a global
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consensus cooperating only locally. Ultimately, that means that
information should flow through the entire system, be pro-
cessed by the cells, and not be destroyed or become incoherent
in the process—entropy must lose to work, a relevant property
in the theoretical analysis of data processing and storage
under noise [14–16]. For one-dimensional locally interacting
systems of autonomous and memoryless cells, emergence of
collective behavior is required in these cases. In this context,
GKL model II has been scrutinized extensively as a model
system related to the concepts of emergence, communication,
efficiency, and connectivity [30–46]. The search for efficient
density classifiers is an entire subfield in the theory of cellular
automata. The usual candidates are the so-called eroders, a
class of CA to which the GKL models belong (see Sec. II).
Unfortunately, the general problem of defining or discerning
eroders is algorithmically unsolvable [12,22–24]. As such, the
proposition and analysis of particular models has always been
carried out with great interest. Current trends, advances, and
open problems related to the density classification problem are
reviewed in [47–49].

In this paper, we characterize the density classification
performance of Gacs, Kurdyumov, and Levin’s model IV, a
four-state cellular automaton with three absorbing states, by
numerical simulations. To our knowledge, the model never
received a thorough examination of its basic dynamics and
properties since its proposition. We show that GKL model
IV compares well with its sibling model II in the density
classification task, although it takes longer to converge to the
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right answer. We also investigate the performance of model IV
under the influence of noise, and we show that, most likely, it
displays an ergodic-nonergodic transition at some finite small
level of noise, although the evidence is not conclusive.

The paper is organized as follows: in Sec. II we introduce the
GKL model IV, describe its transition rules, and discuss some
of its properties. In Sec. III we describe our numerical simula-
tions and discuss the density classification performance of the
model in its deterministic version, including a comparison with
GKL model II, while in Sec. IV we examine the behavior of the
model under the influence of noise. In Sec. V we summarize
our findings and discuss our results. An Appendix displays the
complete rule table of GKL model IV.

II. GACS, KURDYUMOV, AND LEVIN’S CA MODEL IV

Gacs, Kurdyumov, and Levin’s model IV (GKL-IV for
short) is a four-state CA with state space given by �� =
{→,←,↑,↓}�, with � ⊆ Z a finite array of |�| = L � 1 cells
under periodic boundary conditions, and transition function
�IV : �� → ��, which, given the state xt = (xt

1,x
t
2, . . . ,x

t
L)

of the CA at instant t , determines the state xt+1
i = [�IV(xt )]i =

φIV(xt
i−1,x

t
i ,x

t
i+1) of the CA at instant t + 1 by the rules

φIV(→, xi, xi+1) = → if xi, xi+1 �= ←, (1a)

φIV(xi−1,→, xi+1) =
{↓ if xi−1 ∈ {←,↑},
→ otherwise,

(1b)

φIV(xi−1, xi, xi+1) = ↑ if xi ∈ {↑,↓} and rule

(1a) does not apply. (1c)

Rules (1a)–(1c) are redundant—for example, transitions
φIV(→,→,{→,↑,↓}) are defined by both rules (1a) and (1b)—
and incomplete, since they define only 42 of the 64 possible
transitions. For example, they do not define the important
transition φIV(←,←,→); see Fig. 5. The missing transitions
are determined by the supplemental reflection rule

φIV(xi−1,xi,xi+1) = φIV(x∗
i+1,x

∗
i ,x∗

i−1)∗, (2)

with →∗ = ←, ←∗ = →, ↑∗ = ↑, and ↓∗ = ↓. The reflection
rule supplements rules (1a)–(1c) in their order of appearance
and does not substitute a transition that has already been
defined. Since the GKL-IV rules are somewhat unwieldy, we
give the complete rule table of the CA in the Appendix.

The rationale behind the GKL-IV rules is that of an “eroder.”
An eroder CA is capable of erasing “errors” in the initial
configuration, which for a density classifier means to erase the
symbols of the minority phases. In GKL-IV, this is achieved
by the propagation of state → over states ↑ and ↓ from the
left, rule (1a), and of state ← over states ↑ and ↓ from the
right, reflection (2) of rule (1a). Rules (1b) and its mirrored
symmetric rule along with rule (1c) define two other processes.
The first consists in the annihilation of states ← and →
when they are adjacent; the second process consists in the
propagation of state ↑ over states → and ← from the right
and left, respectively. These processes of annihilation and
propagation occur by substitution, as they are intermediated by
state ↓, which is then converted to state ← in the next time step,
leading to the continued propagation of state ↑. Overall, these
rules promote the propagation of state ↑ over states → and ←

FIG. 1. Dynamics of GKL-IV in two schematic situations ex-
emplifying the eroder mechanism. Time flows downward. Cells are
color-coded as yellow ≡ →, purple ≡ ←, white ≡ ↑, and black ≡ ↓.
Note the difference in the propagation speed of the left and right fronts
intermediated by the ↓ arrows. The upper configuration will clearly
converge to the all ← (purple) state, while the lower configuration
will converge to the all → (yellow) state.

at half the speed of the inverse propagation of states → and ←
over state ↑, because of the intermediate step involving state
↓. The only role played by state ↓ in the dynamics of GKL-IV
is that of delaying the conversion of states → and ← into state
↑ such that the CA can erode states ↑ and ↓ within islands of
the minority phase toward the stationary configuration of the
majority state. Fig. 1 displays the eroder mechanism in action
in two schematic situations.

In [2], the authors state that the states → and ← are
attracting states for models II and IV, further noting that
“evidently [models II and IV] do not have other attracting
states.” It happens, however, that GKL-IV has three absorbing
states, as can be seen from the transitions φ(→,→,→) =
→, φ(←,←,←) = ←, and φ(↑,↑,↑) = ↑. That the states
(→,→, . . . ,→) and (←,←, . . . ,←) are attracting is a the-
orem of GKL [2], revisited in [21]. The state (↑,↑, . . . ,↑),
despite being absorbing, may not be attracting, since it may not
be true that if we disturb it in finitely many places it will recur
in finite time. In our simulations on relatively small systems,
however, we observed the convergence of the GKL-IV CA
to the state (↑,↑, . . . ,↑) many times. Rough initial estimates
indicated that for random, uncorrelated initial configurations
in which cells initially get one of the four possible states
with equal probabilities, the final configuration converges to
(↑,↑, . . . ,↑) about 1% of the times. We thus asked whether
GKL-IV can classify initial configurations with the majority
of cells in state ↑, even if it was not designed for the task. As
we will see in Sec. III, the answer is almost never.

III. GKL-IV DENSITY CLASSIFICATION PERFORMANCE

A. GKL-IV versus GKL-II performance

Let Ns be the number of cells in the state s ∈ {→,←,↑,↓},
with N→ + N← + N↑ + N↓ = L the size of the array. Given
an initial assignment of the numbers Ns , the main observables
of the CA are the empirical time-dependent number of cells in
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FIG. 2. Density classification performance of GKL-IV and GKL-II, shown for comparison, for CA of lengths L = 400, 800, 1600, and
3200. Parameter k = 1

2 (N→ − N←) represents the imbalance between the number of cells in states → and ← in the initial configuration.
Left panels: neither GKL-II nor GKL-IV is a perfect classifier, but GKL-IV performs better. Right panels: average time 〈t∗〉 to converge to
the stationary state in units of the length of the CA. In this case, GKL-IV performs worse than GKL-II. Data correspond to the performance
measured over 10 000 random initial configurations for each given k/L; error bars (±0.5% or less) are of the order of the sizes of the symbols
shown.

state s given by

Ns(t) =
L∑

i=1

δ
(
xt

i ,s
)
, (3)

where δ(·,·) is the Kronecker delta symbol. GKL argued in [2]
that in the stationary state either the state → or the state ←
completely dominates the CA, with the dominance depending
on which state, → or ←, respectively, prevails in the initial
configuration; states ↑ and ↓ are washed out by the dynamics
and do not survive to the stationary state.

We assess the density classification performance of the
GKL-IV CA by direct simulations as follows. We set the array
size L to a multiple of 4 and then assign L/4 randomly chosen
cells to each of the states ↑ and ↓, L/4 + k cells to state →,
and L/4 − k cells to state ←, with k an integer parameter
that can be varied in the range −L/4 � k � L/4. If GKL-IV
can classify density, we expect that when k > 0 the stationary
state will be the all → state while when k < 0 the stationary
state will be the all ← state. We then evolve the CA array
and track the empirical densities until at some time t∗ either
N→(t∗) = L or N←(t∗) = L. If initially k > 0 (k < 0) and the
stationary state becomes the all → (all ←) state, then GKL-IV
has classified the initial state successfully, otherwise it has
failed. We also consider that the CA failed if after 4L time steps

the array did not converge to one of those two states, but this
did not happen in our simulations. When k = 0, we compute
the performance of the GKL-IV array as the number of times
that it converges to the all → state. The choice between the
all → or the all ← states in this case is irrelevant because the
GKL-IV rules are reflection-symmetric with respect to these
states, and our array is periodic; see Table I. For each given
k, the performance of the CA is estimated as the fraction p̂

of correct classifications measured over n = 10 000 random
initial configurations, with standard deviation estimated as√

p̂(1 − p̂)/n. The results appear in Fig. 2 for CA of lengths
L = 400, 800, 1600, and 3200. At the “worst case” of k/L = 0
for a CA of L = 400 cells we measured 〈n〉 = 0.503 ± 0.005.

For comparison, results for the sibling GKL model II (GKL-
II for short) are also displayed in Fig. 2. GKL-II is a two-state
CA that evolves by the following rule [2,21]: if the state xt

i of
the cell at instant t is +1 (or, equivalently, →), then at instant
t + 1 it takes the state of the majority state of itself and the first
and third neighbors to its right, otherwise if the state of the cell
at instant t is −1 (or ←), it takes at instant t + 1 the state of
the majority state of the same neighborhood but in the opposite
direction. In symbols, xt+1

i = [�II(xt )]i = φII(xt
i , x

t
i+s , x

t
i+3s)

with

φII
(
xt

i , x
t
i+s , x

t
i+3s

) = maj
(
xt

i , x
t
i+s , x

t
i+3s

)
(4)
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and s = xt
i = ±1. The GKL-II rule is not nearest-neighbor

but observes a generalization of the reflection rule (2), to wit,
φII(xi, xj , xk) = φII(x∗

σ (i), x
∗
σ (j ), x

∗
σ (k))

∗, where x∗ = −x and σ

is any permutation of i, j , k. The GKL-II automaton achieves
81.6% performance in a test consisting of classifying some-
thing between 104 and 107 random initial configurations of an
array of L = 149 (sometimes also 599 and 999) cells close to
the “critical density” N→ = 1/2 [31,34]. Improvements of the
GKL-II rule by humans as well as by genetic and coevolution
programming techniques were able to upgrade the success
rate of GKL-II (under the same evaluation protocol) to 86.0%
[34,35]. There are other figures published for the GKL-II
and other CA (see, e.g., [32]), but the reader must be aware
that the direct comparison of CA performance numbers is not
straightforward because of the use of different array lengths,
sets of initial configurations, and evaluation/measurement
protocols. Some of these numbers and issues are reviewed in
[47–49].

Note that, since GKL-IV has four states instead of the two
states of GKL-II, one might argue that the proper quantity to
be used in the comparison of the two CA would be the relative
imbalance between the classifiable states only, which in our
case would read k/( 2

4L) = 2k/L. We have adopted, however,
the point of view of a “client application” that wants to classify
the majority between two possible states with a CA. From this
point of view, it does not matter if the CA has two or more
states.

We see from Fig. 2 that GKL-IV is not a perfect classifier:
for random initial configurations, sometimes it converges to the
wrong answer. Otherwise, when the imbalance k/L between
the → and the ← states in the initial state is larger than
∼2%, the GKL-IV classification performance exceeds 95%,
an excellent result. This performance is considerably better
than the one for GKL-II, which at k/L = 2% is only about
∼85% and reaches the 95% mark only for k/L � 3%. It
should be remarked that the density classification task cannot
be achieved without misclassifications by any single locally
interacting two-state cellular automaton. Indeed, under the
requirement that all the cells of the automaton must converge to
the same state as the majority state in the initial configuration,
no automata can achieve 100% efficiency [32,34]. These results
establish the need for probabilistic rules and imperfect quality
measurements.

The panels on the right in Fig. 2 display the time needed to
converge to the stationary state as a function of k/L. We see
that as the imbalance becomes smaller, the time to converge
grows, but it never grows more than linearly with the size of
the array. Even for large instances of the problem (large L)
in the difficult region k/L � 1, GKL-IV converges fast to the
solution. In this regard, however, GKL-II exceeds GKL-IV
almost by a factor of 3. It seems that the additional states of
GKL-IV provide more “error-correction,” while at the same
time retarding the convergence to the majority state.

B. Influence of the nonattractive state (↑,↑, . . . ,↑)

We found that GKL-IV sometimes converges to the all ↑
state, which is also one of its absorbing configurations. For
relatively small array sizes and random initial configurations
in which each cell starts in one of the four possible states with
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FIG. 3. Density classification performance of GKL-IV with re-
spect to the ↑ state for CA of lengths 80 � L � 1280 and fraction
0.25 � f � 0.975 of ↑ arrows in the initial state. Each point cor-
responds to an average over 100 000 random initial configurations;
error bars are of the order of the symbols shown or smaller (note
the logarithmic scale). The stationary state seldom converges to the
absorbing state of all ↑ states but for the smallest arrays.

equal probability 1/4, we observed that the array converges
to the state (↑,↑, . . . ,↑) approximately 1% of the time. To
quantify this behavior, we performed the following numerical
experiment: we initially assign a fraction 1

4 � f � 1 of the
L cells to state ↑ and distribute the remaining (1 − f )L cells
randomly to the other three possible states—such that N↑(0) =
f L exactly and, on average, Ns(0) = 1

3 (1 − f )L for each of
the other possible states—evolve the dynamics, and observe
the approach to stationarity. The results are summarized in
Fig. 3. As we can see from that figure, even with as much as
95% of the cells initially in the state ↑, GKL-IV cannot really
classify initial states with the majority of cells in the state ↑
except for the smallest arrays—and even in these cases, only
very badly, at a rate of ∼10%. Data suggest that as L ↗ ∞ the
stationary state is never (↑,↑, . . . ,↑) unless f = 1 exactly. The
occasional convergence to the stationary state of all ↑ arrows
is thus a feature of finite small-sized systems.

A closely related question is whether the density of states
↑ (and perhaps ↓) impacts the classification performance of
GKL-IV. We assess this impact by measuring the classification
performance of GKL-IV as follows: given an initial assignment
of f L of cells in state ↑, the remaining (1 − f )L cells are
divided between 1

3 (1 − f )L cells in state ↓, 1
3 (1 − f )L + k

cells in state →, and 1
3 (1 − f )L − k cells in state ←, with

1
4 � f � 1 such that initially N↑ � N↓. We then measure the
performance of the CA in terms of f and k/L for a fixed
L = 3192 (which is close to 3200 but is divisible by 3 and
4). The results appear in Fig. 4. We see that the impact of the
number of ↑ in the initial state is noticeable, with an unexpected
improvement in the density classification performance of
GKL-IV at higher densities of ↑ arrows in the initial state near
the “critical density” k/L = 0. For example, at k/L = 0.25%,
the performance of GKL-IV increases from ∼67% at f = 0.3
to ∼82% at f = 0.8. As the imbalance k/L becomes larger, the
performance gain tapers off, but remains measurable. The same
phenomenon was observed when the initial state is diluted in ↓
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FIG. 4. Density classification performance of GKL-IV in the
presence of a fraction f of ↑ (upper panel) or ↓ (lower panel) states in
the initial state for a CA of 3192 cells. Parameter k = 1

2 (N→ − N←)
represents the imbalance between the number of cells in states → and
← in the initial configuration. Performance increases with increasing
f . The thick solid lines display the performance of GKL-IV with
N↑ = 1

4 L (N↓ = 1
4 L), i.e., f = 0.25. Data correspond to average

performance over 10 000 random initial configurations for each given
f and k/L; error bars (±0.5% or less) are of the order of the sizes of
the symbols shown.

arrows. In both cases, the performance remains larger than the
one measured by the protocol of Sec. III A, which corresponds
to N↑ = 1

4L (i. e., f = 0.25), displayed in Fig. 4 as thick solid
black lines. One possible explanation for this improvement
is that upon dilution in a field of ↑ or ↓ arrows, extended
regions of ← and → states separated by domain walls of the
type ← ← → or → → ←—configurations that may lead to
misclassifications in the long run; see Fig. 5—hardly form.
Other GKL-IV processes certainly play a role in this behavior,
although their identification is not immediate.

IV. THE GKL-IV MODEL UNDER NOISE

A CA with rules depending on a random variable becomes
a probabilistic CA (PCA) [12]. Let us denote the probabilistic
transition function of the GKL-IV model under noise by �

(α)
IV ,

where the real parameter α ∈ [0,1] denotes the level of noise
imposed to the dynamics. If α = 0, GKL-IV becomes the

FIG. 5. Schematic configuration displaying a domain wall
← ← → (or its reflection ← → →), which may lead to misclassi-
fications in the long run. Cells are color-coded as in Fig. 1. Higher
densities of the otherwise innocuous state ↑ (white) dilute such do-
main walls, slightly improving the density classification performance
of GKL-IV.

deterministic CA given by transition rules (1)–(2), otherwise
with probability α > 0 the transition rules fail in some specific
manner, leading to an evolved state that may be at variance
with the one prescribed by the deterministic transition rules.
In their paper [2], GKL considered mainly random writing
errors: at every time step, with probability 1 − α the transition
follows rules (1)–(2) and with probability α the final state is
chosen at random with equal probabilities. In other words, for
the GKL-IV model under noise level α, at every time step
the probability of writing the new state to a cell according
to the rules is (1 − α) + 1

4α, while the probability of doing it
incorrectly is 3

4α.
A PCA is ergodic if it eventually forgets its initial state,

meaning that it has a unique invariant measure—a unique
probability distribution of states over the configuration space of
the model that does not change under the dynamics [12,50–54].
Remarkably, GKL found by means of numerical experiments
evidence that GKL-IV may be nonergodic below a certain
small level of noise α∗ ≈ 0.05 [2]. If true, this would provide
a counterexample to the positive probabilities conjecture,
according to which all one-dimensional PCA with positive
rates, short-range interactions, and finite local state space are
ergodic. This conjecture is deeply rooted in the theory of
Markov processes and has a counterpart in the well-known
statistical physics lore that one-dimensional systems do not
display phase transitions at finite (T > 0) temperature [13–17].
It took nearly three decades to disprove this conjecture in
general [22–24], while counterexamples also appeared in the
physics literature [17,25–29]. The roles played by the size
of the rule spaces, symmetries, number of absorbing states,
irreversibility, and the thermodynamic limit in the phenomenon
are still under debate.

A. Empirical stationary density

Little is known about the ergodicity of GKL-IV beyond
the loose estimate α∗ ≈ 0.05 mentioned in [2], in contrast
with the same problem for GKL-II [21–24,45]. To improve
this situation, we performed relatively large simulations of
GKL-IV under noise to verify whether there may be some
sort of ergodic-nonergodic transition upon the variation of α.
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FIG. 6. Density plot and level curves of the probability density
of the majority state in the stationary state of the GKL-IV PCA
under noise for an array of L = 400 cells. For each of the 150 levels
of noise 0 < α � 0.15 (in steps of 	α = 0.001), the probability
density histogram was obtained from 100 million samples. The letters
mark the points A (0.012,0.95), B (0.05,0.84), C (0.065,0.40), and
D (0.14,0.25).

Our simulations ran as follows. For a given level of noise
α, we initialize a PCA of length L = 400 with all cells in
the state →, relax the initial state for 4L time steps, and
start sampling the number N→ of cells in the state → in
the PCA every five time steps. We choose 4L for the initial
relaxation time because without noise GKL-IV converges to
the absorbing state from an arbitrary initial configuration in
∼2L time steps maximum; see Fig. 2. The choice of 4L time
steps for relaxation seems reasonable, since we are already
starting from an absorbing configuration. We collected 100
million samples of the stationary state for each level of noise
in the range 0 < α � 0.15 in steps of 	α = 0.001 and the
results are displayed as a probability density plot in Fig. 6.
Each vertical line (fixed α) in Fig. 6 is a histogram of bin
size 1/L and unit area. Note that the lack of points scattered
near 〈N→〉/L = 1 except for the smallest values of α in Fig. 6
corroborates ex post the choice of 4L time steps for the initial
relaxation time. In fact, the initial relaxation time is utterly
irrelevant—the worst that it can do is to contribute a couple of
hundred “bad samples” to the set of 100 million samples for
each value of α.

Figure 6 clearly displays the two extreme behaviors ex-
pected of the noisy GKL-IV. When α = 0, the distribution
of 〈N→〉/L is a zero-width distribution concentrated at 1. At
the other extreme, when the level of the noise is high, in our
case α � 0.12, all the states become equiprobable and the
density 〈N→〉/L concentrates around 1/4 with a more or less
symmetric distribution that becomes sharper as α increases.
The difficult question is whether there is a finite positive
α∗ > 0 such that the noisy GKL-IV is ergodic above α∗ and
nonergodic below it. Figure 6 indicates that the probability
distribution of 〈N→〉/L becomes bimodal at α ≈ 0.05, with
one peak concentrated near the majority of states → and the
other peak near the majority of states ←, becoming narrower

as α ↘ 0. We also see that flipping between the two majority
phases ceases completely at α ≈ 0.016, at least within the span
of 5 × 108 time steps for each given α of our simulations. These
seem to indicate that the noisy GKL-IV may be nonergodic for
some finite α � 0.016.

Figure 7 depicts typical space-time diagrams of the noisy
GKL-IV with L = 400 cells for some selected levels of noise.
In diagram A (α = 0.012, upper left corner), the state of the
PCA just fluctuates about the majority state of → to which it
would have converged if it were not for the noise. Small islands
of contiguous ↑ (white) states that form could in principle
foster the spread of the minority state ← (purple), but these
islands are too small and short-lived to make any difference.
Ergodicity at this level of noise would imply that an island of
the minority phase [or of the ↑ (white) state] large enough to
thrive in the background of the majority phase and noise can
form randomly—an exceedingly unlikely event. The overall
result is a spotted spatiotemporal pattern of the majority state
that on average occupies ∼95% of the cells.

As the noise α increases, larger islands of ↑ (white) states
form and the states → (yellow) and ← (purple) tend to coexist
for longer periods. In diagram B (α = 0.05, upper right corner
of Fig. 7), we see larger islands of ↑ (white) states allowing
← (purple) states to spread to the left until being annihilated.
Eventually, however, those sliders meet to form bigger ones,
survive for longer periods, and become the majority state. Such
an event was captured in diagram C (α = 0.065, lower left
corner of Fig. 7). Note how the majority of states → (yellow)
in the top of the diagram is superseded by the ← (purple)
states after some time; at the bottom of diagram C the ←
(purple) states occupy ∼60% of the cells. The “border” at the
picture is a remainder of the initial condition; if we followed
the evolution of the PCA for a little longer, we would see a
more homogeneous mixture of states. The PCA has flipped
between two majority phases, an indication that at α = 0.065
it is ergodic.

Finally, under the presence of strong noise, the PCA loses
almost all structure except very locally and for short times.
This can be seen in diagram D (α = 0.14, lower right corner
of Fig. 7). Although islands of the attractive states → (yellow)
and ← (purple) endure more than islands of the other two
states [and this is particularly true of the ↓ (black) states], on
average all four states are present approximately in the same
amount. Note, in Fig. 6, how the stationary probability density
at C still displays a bimodal profile, while at D it is clearly a
single-peaked distribution centered at ∼1/4.

B. Flipping times

It is possible to qualitatively spot an ergodic phase by the
analysis of the flipping times between the different stationary
configurations of the model. The idea is that this quantity
diverges as “potential barriers” grow between the metastable
configurations of the system as it gets larger, with the system
getting trapped deeper and deeper inside one configuration
until ultimately ergodicity is broken in the limit of a system
of infinite length. Based on an analogy between the flipping
time τ (L,α) between the majority phases of a PCA of L cells
subject to noise level α and the correlation length ξ‖(L,T ) of a
2D equilibrium interacting classical spin model of linear size L
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FIG. 7. Sample runs of GKL-IV (L = 400 cells) under noise in the stationary state; time flows downward. In left-to-right, top-to-bottom
order, the space-time diagrams correspond to typical configurations found around the loci A, B, C, and D indicated in Fig. 6. Color coding
reads as in Fig. 1, namely yellow ≡ →, purple ≡ ←, white ≡ ↑, and black ≡ ↓. Note how white regions of ↑ states tend to cluster, while black
regions (mostly just isolated spots) of ↓ states straggle throughout.

at temperature T (see [21,28,29,45,55] for details), we expect
that

τ (L,α) ∼ exp[u(L,α)]. (5)

A nonergodic dynamics implies that τ (L,α) diverges as L ↗
∞, while for an ergodic dynamics u(L,α) remains bounded in
L, signaling that the PCA forgets about its initial condition in
finite time, wandering over the entire configuration space and
making the invariant measure unique. Clearly, for GKL-IV,
τ (L,α) must diverge at α = 0. Based on these observations,
in a nonergodic phase we must have, to first order, u(L,α) ∼
b(L)/α for α ↘ 0 and fixed L and u(L,α) ∼ c(α)L for fixed
α and L ↗ ∞, where b(L) and c(α) are bounded functions of
their arguments.

We measured τ (L,α) for the noisy GKL-IV as follows. For
a given level of noise α, we initialize the PCA with all cells in
the state → and run the dynamics until a state with the majority
of cells in the state ← is observed (N←(τ ) > L/2), signaling
that the PCA transposed the “potential barrier.” We choose the
initial configuration with all cells in the state → because, being
an attractive and absorbing state, it provides the “worst-case

scenario” if the PCA has to reach a configuration with a
majority of ←. We then obtain the flipping time τ (L,α) for
each given L and α as an average over 1000 such hitting times.
In our simulations, 80 � L � 400 and 0.024 � α � 0.100.
We did not take measurements under α � 0.02 because it
would take several thousand hours (months, literally) of CPU
time on modern workstations to obtain one point. Note that we
write low-level C code to run the simulations, and that even
the pseudo-random-number generator was thought out to run
as fast as possible (we employ Vigna’s superbxoroshiro128+
generator [56]). The relatively small L also allows us to
investigate the flipping times without having to wait too much
to observe the flips. Our results appear in Figs. 8 and 9.

The behavior of τ (L,α) with α seems to indicate that the
PCA is nonergodic at least up to α � 0.05. Otherwise, we do
not observe any sign of divergence of τ (L,α) with increasing
L up to L = 400 and down to α = 0.025, indicating that the
PCA is likely to be ergodic in these regions of parameters.
The best that we can do with these mixed signals, then, is to
combine the bound α∗ � 0.025 provided by the behavior of
τ (L,α) with L together with the bound α∗ � 0.016 provided
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FIG. 8. The flipping times τ (L,α) (L fixed) grow exponentially
as the PCA dynamics becomes less noisy, clearly diverging as α ↘ 0.

by Fig. 6 to set an upper bound on the critical level of noise
separating the ergodic from the nonergodic phase of GKL-IV,
if any, at α∗ ≈ 0.016.

V. SUMMARY AND CONCLUSIONS

We found that the GKL-IV model performs well in the
density classification problem, with a performance comparable
with that of the more well-known model GKL-II. In fact,
GKL-IV performs slightly better at the task, even having
more states to deal with. The additional states ↑ and ↓ enable
GKL-IV to annihilate isolated ← and → states and create local
islands of majority states ↑ and ↓ that are then eroded from the
boundaries by means of transitions involving the states ← and
→ that propagate twice as fast as the former processes, thus
leading the CA to converge to the majority state among these
states. Its somewhat elaborate eroder mechanism turns out to
be very effective. Surprisingly, we also found in Sec. III B that
dilution of the state to be classified by random insertion of ↑ or
↓ states enhances the performance of GKL-IV. This suggests a
procedure to boost the performance of the CA in more difficult
situations of small imbalance between the number of states ←
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FIG. 9. Behavior of τ (L,α) with the system size L (fixed α).
While τ (L,α) clearly diverges as α ↘ 0, it does not diverge as L

grows at least down to α = 0.025.

and →: enlarge the CA array (say, by 50%) with randomly
inserted ↑ arrows, at the cost of increased time to complete
the classification. On the negative side, GKL-IV takes longer
(almost three times more; see Fig. 2) to reach consensus.
If performance is to be preferred over speed, however, than
GKL-IV is a better classifier that GKL-II at only a moderate
increase in runtime.

We also investigated the performance of GKL-IV under the
influence of noise and found signs of an ergodic-nonergodic
phase transition at some small finite positive level of noise.
Indeed, from Fig. 6 we see that the stationary density of →
states clearly becomes bimodal below α ≈ 0.05, indicating
that GKL-IV apparently becomes nonergodic for levels of
noise below this value, but the exact location of α∗ is not
very clear from that figure. The behavior of the flipping times
τ (L,α) displayed in Figs. 8 and 9 also indicates that GKL-IV
is probably nonergodic for α < 0.05, although the behavior
of this quantity with the system size L indicates that the
system is ergodic at least down to α ≈ 0.025. Combining
these somewhat conflicting pieces of information together with
the fact that flipping between the two majority phases ceases
completely about α ≈ 0.016, the best that we can do is to
set α∗ � 0.016 as an upper bound on the critical point for a
putative ergodic-nonergodic phase transition of GKL-IV. Note
that estimates of α∗ from Figs. 6, 8, and 9 are affected by the
finite size of the system and the finite time of the simulations.
Our data indicate that the noisy GKL-IV may be nonergodic,
but they are not conclusive; larger systems simulated for longer
periods could tell better.

In [2] the authors advanced the idea that the noisy GKL-IV
(as well as its siblings GKL-II and GKL-VI) is “quasinon-
ergodic,” in the sense that while the models are ergodic for
any α > 0, convergence to the unique invariant measure is ex-
tremely slow. The behavior displayed by 〈N→〉/L and τ (L,α)
in Figs. 6, 8 and 9 supports this idea. It should be remarked
that while the ergodicity of one-dimensional deterministic CA
is in general undecidable, most PCA are believed to be ergodic,
with the notable exception of Gacs’ very complicated (and still
controversial) counterexample [22–24,50–54]. We established
an upper bound on the critical level of noise of GKL-IV above
which it becomes ergodic. Whether this critical level is smaller
or zero remains an open question.

The GKL-II and, principally, GKL-IV CA and PCA deserve
more analytical studies. We believe that already at the level
of single-cell mean-field approximation [57,58], the equations
may reveal an interesting structure. In the same vein, a study
of the spreading of damage [59,60] in the GKL-II and IV PCA
may help to clarify the rate of convergence of the dynamics to
the stationary states and help to understand CA and PCA that
are able to classify density.
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TABLE I. GKL-IV rule table. When a transition is defined by more than one rule, only the first rule that defines it is listed. Transitions
defined by a reflected rule have the respective rule marked by an asterisk.

(xi−1, xi, xi+1) x ′
i Rule (xi−1, xi, xi+1) x ′

i Rule (xi−1, xi, xi+1) x ′
i Rule (xi−1, xi, xi+1) x ′

i Rule

(→,→,→) → (1a) (→,↑,→) → (1a) (→,←,→) ↓ (1b)∗ (→,↓,→) → (1a)
(→,→,↑) → (1a) (→,↑,↑) → (1a) (→,←,↑) ↓ (1b)∗ (→,↓,↑) → (1a)
(→,→,←) → (1b) (→,↑,←) ↑ (1c) (→,←,←) ← (1b)∗ (→,↓,←) ↑ (1c)
(→,→,↓) → (1a) (→,↑,↓) → (1a) (→,←,↓) ← (1b)∗ (→,↓,↓) → (1a)
(↑,→,→) ↓ (1b) (↑,↑,→) ↑ (1c) (↑,←,→) ↓ (1b)∗ (↑,↓,→) ↑ (1c)
(↑,→,↑) ↓ (1b) (↑,↑,↑) ↑ (1c) (↑,←,↑) ↓ (1b)∗ (↑,↓,↑) ↑ (1c)
(↑,→,←) ↓ (1b) (↑,↑,←) ← (1a)∗ (↑,←,←) ← (1a)∗ (↑,↓,←) ← (1a)∗

(↑,→,↓) ↓ (1b) (↑,↑,↓) ↑ (1c) (↑,←,↓) ← (1b)∗ (↑,↓,↓) ↑ (1c)
(←,→,→) ↓ (1b) (←,↑,→) ↑ (1c) (←,←,→) ↓ (1b)∗ (←,↓,→) ↑ (1c)
(←,→,↑) ↓ (1b) (←,↑,↑) ↑ (1c) (←,←,↑) ↓ (1b)∗ (←,↓,↑) ↑ (1c)
(←,→,←) ↓ (1b) (←,↑,←) ← (1a)∗ (←,←,←) ← (1a)∗ (←,↓,←) ← (1a)∗

(←,→,↓) ↓ (1b) (←,↑,↓) ↑ (1c) (←,←,↓) ← (1b)∗ (←,↓,↓) ↑ (1c)
(↓,→,→) → (1b) (↓,↑,→) ↑ (1c) (↓,←,→) ↓ (1b)∗ (↓,↓,→) ↑ (1c)
(↓,→,↑) → (1b) (↓,↑,↑) ↑ (1c) (↓,←,↑) ↓ (1b)∗ (↓,↓,↑) ↑ (1c)
(↓,→,←) → (1b) (↓,↑,←) ← (1a)∗ (↓,←,←) ← (1a)∗ (↓,↓,←) ← (1a)∗

(↓,→,↓) → (1b) (↓,↑,↓) ↑ (1c) (↓,←,↓) ← (1b)∗ (↓,↓,↓) ↑ (1c)

APPENDIX: COMPLETE GKL-IV RULE TABLE

We had to tinker a bit with GKL-IV before getting its rule table right, so we share the result of our labor here. Table I
displays all the elementary transitions of GKL-IV according to rules (1a)–(1c) supplemented by their reflections (2) as described
in Sec. II.

[1] G. L. Kurdyumov, An example of a nonergodic homogeneous
one-dimensional random medium with positive transition prob-
abilities, Sov. Math. Dokl. 19, 211 (1978).

[2] P. Gach, G. L. Kurdyumov, and L. A. Levin, One-dimensional
uniform arrays that wash out finite islands, Probl. Inf. Transm.
14, 223 (1978).

[3] N. B. Vasil’ev, R. L. Dobrushin, and I. I. Pyatetskı̆-Shapiro,
Markov processes on an infinite product of discrete spaces, in
Soviet-Japanese Symposium on Probability Theory, Khabarovsk,
USSR, 1969 (Akad. Nauk SSSR, Novosibirsk, 1969), Vol. 2:
Soviet Contributions, pp. 3–30 (in Russian).

[4] N. B. Vasil’ev, M. B. Petrovskaya, and I. I. Pyatetskii-Shapiro,
Modelling of voting with random error, Automat. Remote
Control 30, 1639 (1970).

[5] L. N. Vaserstein, Markov processes over denumerable products
of spaces, describing large systems of automata, Probl. Inf.
Transm. 5, 47 (1969).

[6] A. V. Kuznetsov, Information storage in a memory assem-
bled from unreliable components, Probl. Inf. Transm. 9, 254
(1973).

[7] O. N. Stavskaya, Gibbs invariant measures for Markov chains
on finite lattices with local interaction, Math. USSR Sbornik 21,
395 (1973).

[8] A. L. Toom, Nonergodic multidimensional system of automata,
Probl. Inf. Transm. 10, 239 (1974).

[9] O. N. Stavskaya, Sufficient conditions for the uniqueness of a
probability field and estimates for correlations, Math. Not. Acad.
Sci. USSR 18, 950 (1975).

[10] B. S. Cirel’son, Reliable storage of information in a system
of unreliable components with local interactions, in Locally

Interacting Systems and their Application in Biology, Proc.
School-Seminar on Markov Interaction Processes in Biology,
Pushchino, USSR, 1976, edited by R. L. Dobrushin, V. I.
Kryukov, and A. L. Toom, LNM 653 (Springer, New York,
1978), pp. 15–30.

[11] A. L. Toom, Stable and attractive trajectories in multicomponent
systems, in Advances in Probability Vol. 6, edited by R. L.
Dobrushin and Ya. G. Sinai (Marcel Dekker, New York, 1980),
pp. 549–576.

[12] A. L. Toom, N. B. Vasilyev, O. N. Stavskaya, L. G. Mityushin,
G. L. Kurdyumov, and S. A. Pirogov, Discrete local Markov
systems, in Stochastic Cellular Systems: Ergodicity, Memory,
Morphogenesis, edited by R. L. Dobrushin, V. I. Kryukov, and
A. L. Toom (Manchester University Press, Manchester, 1990),
pp. 1–182.

[13] R. Holley and D. W. Stroock, In one and two dimensions, every
stationary measure for a stochastic Ising model is a Gibbs state,
Commun. Math. Phys. 55, 37 (1977).

[14] C. H. Bennett and G. Grinstein, Role of Irreversibility in Stabi-
lizing Complex and Nonergodic Behavior in Locally Interacting
Discrete Systems, Phys. Rev. Lett. 55, 657 (1985).

[15] C. H. Bennett, Dissipation, anisotropy, and the stabilization of
computationally complex states of homogeneous media, Physica
A 163, 393 (1990).

[16] G. Grinstein, Can complex structures be generically stable in a
noisy world? IBM J. Res. Dev. 48, 5 (2004).

[17] J. A. Cuesta and A. Sánchez, General non-existence theorem for
phase transitions in one-dimensional systems with short range
interactions, and physical examples of such transitions, J. Stat.
Phys. 115, 869 (2004).

012135-9

https://doi.org/10.1070/SM1973v021n03ABEH002023
https://doi.org/10.1070/SM1973v021n03ABEH002023
https://doi.org/10.1070/SM1973v021n03ABEH002023
https://doi.org/10.1070/SM1973v021n03ABEH002023
https://doi.org/10.1007/BF01613147
https://doi.org/10.1007/BF01613147
https://doi.org/10.1007/BF01613147
https://doi.org/10.1007/BF01613147
https://doi.org/10.1103/PhysRevLett.55.657
https://doi.org/10.1103/PhysRevLett.55.657
https://doi.org/10.1103/PhysRevLett.55.657
https://doi.org/10.1103/PhysRevLett.55.657
https://doi.org/10.1016/0378-4371(90)90346-T
https://doi.org/10.1016/0378-4371(90)90346-T
https://doi.org/10.1016/0378-4371(90)90346-T
https://doi.org/10.1016/0378-4371(90)90346-T
https://doi.org/10.1147/rd.481.0005
https://doi.org/10.1147/rd.481.0005
https://doi.org/10.1147/rd.481.0005
https://doi.org/10.1147/rd.481.0005
https://doi.org/10.1023/B:JOSS.0000022373.63640.4e
https://doi.org/10.1023/B:JOSS.0000022373.63640.4e
https://doi.org/10.1023/B:JOSS.0000022373.63640.4e
https://doi.org/10.1023/B:JOSS.0000022373.63640.4e


J. RICARDO G. MENDONÇA AND ROLF E. O. SIMÕES PHYSICAL REVIEW E 98, 012135 (2018)

[18] G. Grinstein and C. Jayaprakash, Statistical Mechanics of
Probabilistic Cellular Automata, Phys. Rev. Lett. 55, 2527
(1985).

[19] A. Georges and P. Le Doussal, From equilibrium spin mod-
els to probabilistic cellular automata, J. Stat. Phys. 54, 1011
(1989).

[20] J. L. Lebowitz, C. Maes, and E. R. Speer, Statistical mechanics
of probabilistic cellular automata, J. Stat. Phys. 59, 117 (1990).

[21] P. Gonzaga de Sá and C. Maes, The Gacs-Kurdyumov-Levin
automaton revisited, J. Stat. Phys. 67, 507 (1992).

[22] P. Gács, Reliable computation with cellular automata, J. Comput.
Syst. Sci. 32, 15 (1986).

[23] P. Gács, Reliable cellular automata with self-organization,
J. Stat. Phys. 103, 45 (2001).

[24] L. F. Gray, A reader’s guide to Gács’s ‘positive rates’ paper,
J. Stat. Phys. 103, 1 (2001).

[25] M. R. Evans, D. P. Foster, C. Godreche, and D. Mukamel,
Spontaneous Symmetry Breaking in a One Dimensional Driven
Diffusive System, Phys. Rev. Lett. 74, 208 (1995).

[26] M. R. Evans, Y. Kafri, H. M. Koduvely, and D. Mukamel, Phase
Separation in One-Dimensional Driven Diffusive Systems,
Phys. Rev. Lett. 80, 425 (1998).

[27] M. R. Evans, Phase transitions in one-dimensional nonequilib-
rium systems, Braz. J. Phys. 30, 42 (2000).

[28] A. Rákos and M. Paessens, Ergodicity breaking in one-
dimensional reaction-diffusion systems, J. Phys. A 39, 3231
(2006).

[29] A. Rákos, M. Paessens, and G. M. Schütz, Broken ergodicity
in driven one-dimensional particle systems with short-range
interaction, Markov Proc. Rel. Fields 12, 309 (2006).

[30] M. Mitchell, P. T. Hraber, and J. P. Crutchfield, Revisiting the
edge of chaos: Evolving cellular automata to perform computa-
tions, Complex Syst. 7, 89 (1993).

[31] J. P. Crutchifeld and M. Mitchell, The evolution of emer-
gent computation, Proc. Natl. Acad. Sci. USA 92, 10742
(1995).

[32] M. Land and R. K. Belew, No Perfect Two-State Cellular
Automata for Density Classification Exists, Phys. Rev. Lett. 74,
5148 (1995).

[33] H. Fukś, Solution of the density classification problem with two
cellular automata rules, Phys. Rev. E 55, R2081 (1997).

[34] M. Sipper, M. S. Capcarrere, and E. Ronald, A simple cellular
automaton that solves the density and ordering problems, Int. J.
Mod. Phys. C 9, 899 (1998).

[35] H. Juillé and J. B. Pollack, Coevolving the “ideal” trainer: Ap-
plication to the discovery of cellular automata rules, in Genetic
Programming 1998, Proc. Third Annual Genetic Programming
Conference, 1998, University of Wisconsin, Madison, edited by
J. R. Koza, W. Banzhaf, K. Chellapilla, M. Dorigo, D. B. Fogel,
M. H. Garzon, D. E. Goldberg, H. Iba, and L. Riolo (Morgan
Kaufmann, San Francisco, 1998), pp. 519–527.

[36] B. Mesota and C. Teuscherb, Deducing local rules for solving
global tasks with random Boolean networks, Physica D 211, 88
(2005).

[37] A. A. Moreira, A. Mathur, D. Diermeier, and L. A. N. Amaral,
Efficient system-wide coordination in noisy environments, Proc.
Natl. Acad. Sci. USA 101, 12085 (2004).

[38] M. Mitchell, Computation in cellular automata: A selected
review, in Non-Standard Computation, edited by T. Gramß,

S. Bornholdt, M. Groß, M. Mitchell, and T. Pellizzari (Wiley-
VCH, Weinheim, 2005), pp. 95–140.

[39] S. M. D. Seaver, A. A. Moreira, M. Sales-Pardo, R. D. Malmgren,
D. Diermeier, and L. A. N. Amaral, Micro-bias and macro-
performance, Eur. Phys. J. B 67, 369 (2009).

[40] R. Briceño, P. M. de Espanés, A. Osses, and I. Rapaport,
Solving the density classification problem with a large diffusion
and small amplification cellular automaton, Physica D 261, 70
(2013).

[41] C. Stone and L. Bull, Evolution of cellular automata with
memory: The density classification task, BioSystems 97, 108
(2009).

[42] D. Regnault, Proof of a phase transition in probabilistic cellular
automata, in Developments in Language Theory–DLT 2013,
Proc. 17th International Conference, Marne-la-Vallée, France,
2013, edited by M.-P. Beal and O. Carton, LNCS 7907 (Springer,
Berlin, 2013), pp. 433–444.

[43] S. Taati, Restricted density classification in one dimension, in
Cellular Automata and Discrete Complex Systems–AUTOMATA
2015, Proc. 21st IFIP WG 1.5 International Workshop, Turku,
Finland, 2015, edited by J. Kari, LNCS 9099 (Springer, Berlin,
2015), pp. 238–250.

[44] J. R. G. Mendonça, Monte Carlo investigation of the criti-
cal behavior of Stavskaya’s probabilistic cellular automaton,
Phys. Rev. E 83, 012102 (2011).

[45] J. R. G. Mendonça, Sensitivity to noise and ergodicity of
an assembly line of cellular automata that classifies density,
Phys. Rev. E 83, 031112 (2011).

[46] B. Wolnik, M. Dembowski, W. Bołt, J. M. Baetens, and B. De
Baets, Density-conserving affine continuous cellular automata
solving the relaxed density classification problem, J. Phys. A
50, 345103 (2017).

[47] N. Fatès, Stochastic cellular automata solutions to the den-
sity classification problem–When randomness helps computing,
Theory Comput. Syst. 53, 223 (2013).

[48] P. P. B. de Oliveira, J. C. Bortot, and G. M. B. Oliveira, The
best currently known class of dynamically equivalent cellular
automata rules for density classification, Neurocomputing 70,
35 (2006).

[49] P. P. B. de Oliveira, On density determination with cellular
automata: Results, constructions and directions, J. Cell. Autom.
9, 357 (2014).

[50] J. Mairesse and I. Marcovici, Around probabilistic cellular
automata, Theor. Comput. Sci. 559, 42 (2014).

[51] A. Bušić, J. Mairesse, and I. Marcovici, Probabilistic cellular
automata, invariant measures, and perfect sampling, Adv. Appl.
Probab. 45, 960 (2013).

[52] I. Marcovici, Ergodicity of noisy cellular automata: The coupling
method and beyond, in Pursuit of the Universal–CiE 2016, Proc.
12th Conference on Computability in Europe, Paris, 2016, edited
by A. Beckmann, L. Bienvenu, and N. Jonoska, LNCS 9709
(Springer, Cham, 2016), pp. 153–163.

[53] I. Marcovici, M. Sablik, and S. Taati, Ergodicity of some
classes of cellular automata subject to noise, arXiv:1712.05500
[math.PR].

[54] R. Fernández, P.-Y. Louis, and F. R. Nardi, Overview: PCA mod-
els and issues, in Probabilistic Cellular Automata, Emergence,
Complexity and Computation Vol. 27, edited by P.-Y. Louis and
F. R. Nardi (Springer, Cham, 2018), pp. 1–30.

012135-10

https://doi.org/10.1103/PhysRevLett.55.2527
https://doi.org/10.1103/PhysRevLett.55.2527
https://doi.org/10.1103/PhysRevLett.55.2527
https://doi.org/10.1103/PhysRevLett.55.2527
https://doi.org/10.1007/BF01019786
https://doi.org/10.1007/BF01019786
https://doi.org/10.1007/BF01019786
https://doi.org/10.1007/BF01019786
https://doi.org/10.1007/BF01015566
https://doi.org/10.1007/BF01015566
https://doi.org/10.1007/BF01015566
https://doi.org/10.1007/BF01015566
https://doi.org/10.1007/BF01049718
https://doi.org/10.1007/BF01049718
https://doi.org/10.1007/BF01049718
https://doi.org/10.1007/BF01049718
https://doi.org/10.1016/0022-0000(86)90002-4
https://doi.org/10.1016/0022-0000(86)90002-4
https://doi.org/10.1016/0022-0000(86)90002-4
https://doi.org/10.1016/0022-0000(86)90002-4
https://doi.org/10.1023/A:1004823720305
https://doi.org/10.1023/A:1004823720305
https://doi.org/10.1023/A:1004823720305
https://doi.org/10.1023/A:1004823720305
https://doi.org/10.1023/A:1004824203467
https://doi.org/10.1023/A:1004824203467
https://doi.org/10.1023/A:1004824203467
https://doi.org/10.1023/A:1004824203467
https://doi.org/10.1103/PhysRevLett.74.208
https://doi.org/10.1103/PhysRevLett.74.208
https://doi.org/10.1103/PhysRevLett.74.208
https://doi.org/10.1103/PhysRevLett.74.208
https://doi.org/10.1103/PhysRevLett.80.425
https://doi.org/10.1103/PhysRevLett.80.425
https://doi.org/10.1103/PhysRevLett.80.425
https://doi.org/10.1103/PhysRevLett.80.425
https://doi.org/10.1590/S0103-97332000000100005
https://doi.org/10.1590/S0103-97332000000100005
https://doi.org/10.1590/S0103-97332000000100005
https://doi.org/10.1590/S0103-97332000000100005
https://doi.org/10.1088/0305-4470/39/13/004
https://doi.org/10.1088/0305-4470/39/13/004
https://doi.org/10.1088/0305-4470/39/13/004
https://doi.org/10.1088/0305-4470/39/13/004
https://doi.org/10.1073/pnas.92.23.10742
https://doi.org/10.1073/pnas.92.23.10742
https://doi.org/10.1073/pnas.92.23.10742
https://doi.org/10.1073/pnas.92.23.10742
https://doi.org/10.1103/PhysRevLett.74.5148
https://doi.org/10.1103/PhysRevLett.74.5148
https://doi.org/10.1103/PhysRevLett.74.5148
https://doi.org/10.1103/PhysRevLett.74.5148
https://doi.org/10.1103/PhysRevE.55.R2081
https://doi.org/10.1103/PhysRevE.55.R2081
https://doi.org/10.1103/PhysRevE.55.R2081
https://doi.org/10.1103/PhysRevE.55.R2081
https://doi.org/10.1142/S0129183198000868
https://doi.org/10.1142/S0129183198000868
https://doi.org/10.1142/S0129183198000868
https://doi.org/10.1142/S0129183198000868
https://doi.org/10.1016/j.physd.2005.08.005
https://doi.org/10.1016/j.physd.2005.08.005
https://doi.org/10.1016/j.physd.2005.08.005
https://doi.org/10.1016/j.physd.2005.08.005
https://doi.org/10.1073/pnas.0400672101
https://doi.org/10.1073/pnas.0400672101
https://doi.org/10.1073/pnas.0400672101
https://doi.org/10.1073/pnas.0400672101
https://doi.org/10.1140/epjb/e2008-00406-4
https://doi.org/10.1140/epjb/e2008-00406-4
https://doi.org/10.1140/epjb/e2008-00406-4
https://doi.org/10.1140/epjb/e2008-00406-4
https://doi.org/10.1016/j.physd.2013.07.002
https://doi.org/10.1016/j.physd.2013.07.002
https://doi.org/10.1016/j.physd.2013.07.002
https://doi.org/10.1016/j.physd.2013.07.002
https://doi.org/10.1016/j.biosystems.2009.05.001
https://doi.org/10.1016/j.biosystems.2009.05.001
https://doi.org/10.1016/j.biosystems.2009.05.001
https://doi.org/10.1016/j.biosystems.2009.05.001
https://doi.org/10.1103/PhysRevE.83.012102
https://doi.org/10.1103/PhysRevE.83.012102
https://doi.org/10.1103/PhysRevE.83.012102
https://doi.org/10.1103/PhysRevE.83.012102
https://doi.org/10.1103/PhysRevE.83.031112
https://doi.org/10.1103/PhysRevE.83.031112
https://doi.org/10.1103/PhysRevE.83.031112
https://doi.org/10.1103/PhysRevE.83.031112
https://doi.org/10.1088/1751-8121/aa7d86
https://doi.org/10.1088/1751-8121/aa7d86
https://doi.org/10.1088/1751-8121/aa7d86
https://doi.org/10.1088/1751-8121/aa7d86
https://doi.org/10.1007/s00224-012-9386-3
https://doi.org/10.1007/s00224-012-9386-3
https://doi.org/10.1007/s00224-012-9386-3
https://doi.org/10.1007/s00224-012-9386-3
https://doi.org/10.1016/j.neucom.2006.07.003
https://doi.org/10.1016/j.neucom.2006.07.003
https://doi.org/10.1016/j.neucom.2006.07.003
https://doi.org/10.1016/j.neucom.2006.07.003
https://doi.org/10.1016/j.tcs.2014.09.009
https://doi.org/10.1016/j.tcs.2014.09.009
https://doi.org/10.1016/j.tcs.2014.09.009
https://doi.org/10.1016/j.tcs.2014.09.009
https://doi.org/10.1239/aap/1386857853
https://doi.org/10.1239/aap/1386857853
https://doi.org/10.1239/aap/1386857853
https://doi.org/10.1239/aap/1386857853
http://arxiv.org/abs/arXiv:1712.05500


DENSITY CLASSIFICATION PERFORMANCE AND … PHYSICAL REVIEW E 98, 012135 (2018)

[55] J. R. G. Mendonça, Mean-field critical behavior and ergodic-
ity break in a nonequilibrium one-dimensional RSOS growth
model, Int. J. Mod. Phys. C 23, 1250019 (2012).

[56] S. Vigna, xoroshiro+/xorshift*/xorshift+ generators and the
PRNG shootout (2018). http://xoroshiro.di.unimi.it/ (accessed
10 March 2018).

[57] J. Marro and R. Dickman, Nonequilibrium Phase Transitions in
Lattice Models (Cambridge University Press, Cambridge, 1999).

[58] P. Balister, B. Bollobás, and R. Kozma, Large deviations for
mean field models of probabilistic cellular automata, Random
Struct. Algor. 29, 399 (2006).

[59] G. A. Kohring and M. Schreckenberg, The Domany-Kinzel
cellular automaton revisited, J. Phys. I 2, 2033 (1992).

[60] T. Tomé, Spreading of damage in the Domany-Kinzel cel-
lular automaton: A mean-field approach, Physica A 212, 99
(1994).

012135-11

https://doi.org/10.1142/S0129183112500192
https://doi.org/10.1142/S0129183112500192
https://doi.org/10.1142/S0129183112500192
https://doi.org/10.1142/S0129183112500192
http://xoroshiro.di.unimi.it/
https://doi.org/10.1002/rsa.20126
https://doi.org/10.1002/rsa.20126
https://doi.org/10.1002/rsa.20126
https://doi.org/10.1002/rsa.20126
https://doi.org/10.1051/jp1:1992264
https://doi.org/10.1051/jp1:1992264
https://doi.org/10.1051/jp1:1992264
https://doi.org/10.1051/jp1:1992264
https://doi.org/10.1016/0378-4371(94)90139-2
https://doi.org/10.1016/0378-4371(94)90139-2
https://doi.org/10.1016/0378-4371(94)90139-2
https://doi.org/10.1016/0378-4371(94)90139-2



