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Abstract. 

The dominant hydrometeor types associated with Brazilian tropical precipitation systems are identified

via research X-band dual-polarization radar deployed in the vicinity of the Manaus region (Amazonas)

during both the GoAmazon2014/5 and ACRIDICON-CHUVA field experiments. The present study is

based on an Agglomerative Hierarchical Clustering (AHC) approach that makes use of dual polarimetric

radar  observables  (reflectivity  at  horizontal  polarization  ZH,  differential  reflectivity  ZDR,  specific

differential  phase KDP,  and correlation coefficient ρHV) and temperature data inferred from sounding

balloons.  The  sensitivity  of  the  agglomerative  clustering  scheme  for  measuring  the  inter-cluster

dissimilarities (linkage criterion) is evaluated through the wet season dataset. Both the weighted and

Ward linkages exhibit better abilities to retrieve cloud microphysical species, whereas clustering outputs

associated with the centroid linkage are poorly defined. The AHC method is then applied to investigate

the microphysical structure of both the wet and dry seasons. The stratiform regions are composed of

five  hydrometeor  classes:  drizzle,  rain,  wet  snow, aggregates,  and ice  crystals,  whereas  convective

echoes are generally associated with light rain, moderate rain, heavy rain, graupels, aggregates and ice

crystals. The main discrepancy between the wet and dry seasons is the presence of both low- and high-

density graupels within convective regions, whereas the rainy period exhibits only one type of graupel.

Finally, aggregate and ice crystal hydrometeors in the tropics are found to exhibit higher polarimetric

values compared to those at mid-latitudes.

Keywords: hydrometeor identification, tropical microphysics, dual-polarization radar, clustering.
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1. Introduction

The use of dual-polarization (DPOL) radars over several decades by national weather services as

well  as  research  laboratories  has  deeply  changed  the  understanding  and  forecasting  of  many

precipitation events around the world. By using a second orthogonal polarization, such weather radars

enable inference of the size, shape, orientation, and phase state of different particles detected within the

sampled cloud. To date, the major advances that have been made as a result of DPOL radar sensitivities

are mainly related to improvement in the distinction between meteorological and non-meteorological

echoes,  attenuation  correction,  quantitative  rainfall  estimation,  and  bulk  hydrometeor  classification

(Bringi and Chandrasekar 2001; Bringi et al., 2007). By combining DPOL radar observables (generally,

reflectivity at horizontal polarization, ZH; differential reflectivity, ZDR; specific differential phase, KDP;

and correlation coefficient, ρHV) with some extra information such as temperature to locate the freezing

level,  the  hydrometeor  identification  task  has  been  the  subject  of  many  research  studies.  Indeed,

potential  benefits  from  this  research  topic  are  numerous  such  as  the  evaluation  of  microphysical

parametrization  in  high-resolution  numerical  weather  prediction  models  (e.g.,  Augros  et  al.,  2016;

Wolfensberger  and Berne,  2018),  investigation of relationships  between microphysics  and lightning

(e.g.,  Ribaud et al.  2016a), and improvement in weather nowcasting for high-impact meteorological

events (hailstorms, flight assistance, road safety).

Three hydrometeor classification schemes have been developed since the emergence of DPOL

radar in the 1980s: (i) supervised, (ii) unsupervised, and (iii) semi-supervised techniques (Figure 1). 
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i. The supervised method constitutes, by far, most of the literature and is subdivided into three

different techniques: the boolean tree method, fuzzy logic and the Bayesian approach. Here, the

supervised technique refers to a priori and arbitrarily identified hydrometeor types from which

DPOL  radar  responses  have  been  derived  from  either  theoretical  models  or  empirical

knowledge. Polarimetric observations are then assigned to the most suitable hydrometeor types

according to their similarities.

 Boolean  method.  This  technique  is  the  easiest  way  to  identify  dominant  hydrometeor

populations and has consequently been the first  to  be used.  The algorithm relies  on the

beforehand definition of the ranges of DPOL radar-observable values for each hydrometeor

type  by  the  user.  Then,  a  simple  Boolean  decision  is  applied  to  retrieve  the  dominant

hydrometeor type (Seliga and Bringi, 1976; Hall et al, 1984; Bringi et al, 1986; Straka and

Zrnić, 1993; Höller et al, 1994). This approach, nevertheless, does not take into account the

fact that different hydrometeor types can be defined on the same range of values for the same

polarimetric radar observable and, therefore, frequently leads to misclassification.

 Fuzzy  logic  technique  (Mendel  et  al.,  1995).  This  supervised  algorithm  type  fixed  the

previous limitation by allowing a smooth transition of DPOL radar-observable ranges for all

hydrometeor types. The originality of fuzzy logic is its ability to transform sets of nonlinear

radar data into scalar outputs referring to different microphysical species. In this regard, each

hydrometeor type distribution is characterized by a membership function coming from either

T-matrix  simulations  (Mishchenko  and  Travis,  1998)  or,  less  frequently,  aircraft  in  situ

measurements.  The  hydrometeor  inference  is  finally  the  result  of  a  combination  of
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membership functions and a set of a priori rules defined by the user (Straka et al., 1996;

Vivekanandan et al., 1999; Liu and Chandrasekar, 2000; Marzano et al, 2006; Park et al.,

2009, Dolan and Rutledge, 2009; Al-Sakka et al., 2013; Thompson et al., 2014). This method

is relatively simple to implement and computationally inexpensive. Few studies such as the

Joint Polarization Experiment (Ryzhkov et al., 2005) for hail detection or even the recent use

of a fuzzy logic algorithm as an operational tool for national weather services (Al-Sakka et

al., 2013) have demonstrated the robustness of this hydrometeor classification algorithm type

in singular environments.

 Bayesian  approach.  In  this  case,  the  hydrometeor  identification  task  is  expressed  in  a

probabilistic  form based on synthetic  data  derived from polarimetric  radar  simulation of

different hydrometeor types (with each one being characterized by a centre and a covariance

matrix).  The  final  supervised  hydrometeor  inference  is  then  performed  by  adapting  the

maximum a posteriori rule. Another interesting attribute of the Bayesian technique resides in

the  appealing  possibility  of  retrieving  the  liquid  water  content  associated  with  each

hydrometeor type (Marzano et al., 2008; Marzano et al., 2010).

ii. More recently,  Grazioli  et  al.  (2015) or  even Grazioli  et  al.  (2017)  proposed an  innovative

unsupervised approach to identifying the dominant hydrometeor distribution within precipitation

events,  where  hydrometeor  types  are  retrieved  by  gathering  DPOL radar  data  observable

similarities. Indeed, the unsupervised technique refers to a set of unlabelled data observations in

which  the  goal  is  to  group  them  into  clusters  sharing  similar  properties  based  on  innate

structures of the data  (variance,  distribution,  etc.)  and without using a priori  knowledge. To
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achieve this goal, the authors used an agglomerative hierarchical clustering technique together

with a spatial constraint on the consistency of the classification (homogeneity). This data-driven

approach mainly  avoids the  numerical-scattering simulations  used in  fuzzy logic,  which are

well-designed  for  the  liquid  phase  but  questionable  for  ice-phase  microphysics.  Finally,

interpretation of the clusters (labelling) is done manually. 

iii. Although initially mentioned by Liu and Chandrasekar (2000), the first complete study based on

a semi-supervised approach was done by Bechini and Chandrasekar (2015), recently followed

by the works of Wen et al. (2015), Wen et al. (2016) and Besic et al. (2016). This technique

combines  the  advantages  of  the  fuzzy logic and clustering  methods.  The algorithm initially

begins with a fuzzy logic classification, which is then adjusted by a K-means clustering method

that iteratively allows  for rectifying the initial membership function of each hydrometeor type

according  to  the  observed  DPOL  radar  measurements.  In  addition,  constraints  such  as

temperature  limits  and/or  spatial  distribution  can  be  implemented  in  this  self-adapting

methodology.

Overall,  these  Hydrometeor  Classification  Algorithms  (HCAs)  still  require  in  situ  aircraft

validations (especially within convective cores) that are problematic due to their cost and, obviously, the

dangerousness of obtaining such measurements. Only a few studies have had the opportunity to use

limited aircraft measurements and generally compared a few isolated in situ images with HCA outputs

(Aydin  et  al.,  1986;  El-Magd  et  al.,  2000;  Cazenave  et  al.,  2016;  Ribaud  et  al.,  2016b).  Another

limitation of these studies using methods such as the fuzzy logic approach is the dependency of their
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validity, since they are generally both wavelength- and climatically radar-dependent. Although T-matrix

simulations for a radar wavelength have been theoretically demonstrated, each final algorithm is then

tuned by giving weights to each DPOL radar observable to allow them to fit as closely as possible with

local ground observations. Finally, one can also see that the related hydrometeor identification literature

is mainly concerned with the middle latitudes. Indeed, the methods were initially developed for S-band

radar before being adapted to both C- and X-band radars, and research studies have largely been done in

North America, Europe, and Oceania. 

The present study aims to develop the first HCA for Brazilian tropical precipitation systems via an

X-band dual-polarization radar  used in  both the GoAmazon2014/5 and ACRIDICON-CHUVA field

experiments (Martin et al.,  2016; Wendisch et  al.,2016; Martin et al.,  2017; Machado et al.,  2018).

Although the area constitutes  an intriguing location with both a  high amount  of rain and complex

aerosol-cloud  interaction  (e.g.,  Cecchini  et  al.,  2017;  Machado  et  al.,  2018),  there  are  almost  no

references for hydrometeor classification over tropical land, especially for the Amazon region. In this

regard, the studies by Dolan et al. (2013) and Cazenave et al. (2016) took place in singular locations

(Darwin, Australia, and Niamey, Niger, respectively). Both of these studies used a supervised fuzzy

logic  approach  to  retrieve  the  hydrometeor  distribution  within  precipitation  events  with  a  C-  and

adapted  X-band  scheme,  respectively.  As  aforementioned,  fuzzy  logic  algorithms  use  weights  to

constrain the final identification. Another issue that might be related to hydrometeor identification tasks

is the use of the melting layer as a parameter to detect liquid-ice delineation. However, liquid water

above the melting layer within the convective tower of tropical systems is not unusual (Cecchini et al.,
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2017; Jakel et al., 2017). For instance, Cecchini et al. (2017) retrieved liquid water at as low as -18 °C

within polluted tropical convective clouds. Classification using cluster analysis might thus tackle this

issue by allowing the use of natural (non-imposed) classes of ice-water species. For all these reasons,

the present paper deals with the first unsupervised clustering method based on X-band DPOL radar

measurements in the Brazilian tropical region. Three main questions are addressed in this paper: (1)

What is the sensitivity of the clustering algorithm to the different linkage methods, and how can one

improve the liquid-solid delineation? (2) What are the hydrometeor classification output characteristics

for both wet and dry tropical seasons in Amazonas? And (3) what are the microphysical distribution

differences within tropical convective and stratiform cloud systems between the wet and dry seasons?

The article is organized as follows: section 2 provides a brief description of the radar dataset,

while section 3 presents the AHC method. The sensitivity of the AHC to the linkage methods together

with a potential  temperature improvement is  assessed and discussed in section 4.  The hydrometeor

identification  for  Brazilian  tropical  system  events  is  presented  in  terms  of  wet-dry  seasons  and

stratiform-convective regions in section 5, while a discussion of hydrometeor distribution comparisons

is presented in section 6.

2. Datasets and processing

The data used in this study are mainly based on DPOL radar data observations collected during

both the GoAmazon2014/5 and ACRIDICON-CHUVA experiments that took place around the city of

Manaus  in  the  Amazonas  state  of  Brazil  (Figure  2).  Both  of  these  research  experiments  aimed  to

investigate  the complex mechanisms at  play within tropical  weather  through intriguing interactions
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between human activities and the neighbouring tropical forested region. In this regard, the present study

considers the wet and dry seasons as corresponding to the intensive operating periods (IOPs) of the

GoAmazon2014/5 field experiment (Martins et al., 2016), which were from 1 Feb – 31 Mar 2014 (wet

season: 59 days) and 15 Aug – 12 Oct 2014 (dry season: 60 days).

Among all the instruments deployed, a Selex-Gematronik X-band DPOL radar was located in the

city of Manacapuru in 2014 to complete the radar coverage from the Manaus Doppler radar, as well as

to  provide  more  microphysical  details  about  the  South  American  monsoon meteorological  systems

(Oliveira et al., 2016). The X-band DPOL radar was operated at 9.345 GHz with a 1.3° beam width at -3

dB and in simultaneous transmission and reception (STAR) mode (Schneebeli et al., 2012; and Table 1).

The latter characteristic allows the reflectivity at horizontal polarization ZH, differential reflectivity ZDR,

differential  phase  ΦDP,  and  correlation  coefficient  ρHV  to  be  obtained.  The  scanning  strategy  was

designed to complete an entire volume scan in 10 minutes by combining 15 different plan position

indicators  (PPIs)  ranging from 0.5°  to  30°,  as  well  as  two range height  indicators  (RHIs)  towards

randomly different directions. 

The raw radar dataset has been processed beforehand to be used for the hydrometeor identification

task. In this regard, a four-step process has been applied to the DPOL radar dataset which consists of i)

calibration of ZDR (offset corrected by vertically pointing scans), ii) identification of meteorological and

non-meteorological echoes, iii) ΦDP filtering and estimation of the derivative specific differential phase

KDP (Hubbert and Bringi, 1995), and iv) attenuation correction applied to both ZH and ZDR based on the

ZPHI method proposed by Testud et al. (2000). Note that the dataset has been restricted to precipitation

events  wherein the radome of  the X-band DPOL radar  was dry in  order  to  remove any additional
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attenuation (Bechini et al, 2010). In addition to these considerations, a signal-to-noise ratio of SNR ≥

+10 dB, as well as a reduced radar coverage ranging from 5 to 60  km have been considered for this

study  to  mitigate  potential  remaining  errors.  The  last  processing  step  relies  on  the  separation  of

stratiform and convective radar echoes. The methodology used in the present paper is the same as that

used by Steiner et al.  (1995) and has been applied from a horizontal reflectivity field at a constant

altitude plan position indicator (CAPPI) generated at 3 km height (T > 0 °C).

The  present  study  also  deals  with  external  temperature  information  coming  from  soundings

launched near the X-band radar (downwind of Manaus) at 00, 06, 12, 15, and 18 UTC, respectively. The

sounding with the closest time to the radar measurements has been considered to derive the temperature

profile associated with both PPIs and RHIs.

3. Unsupervised Agglomerative Hierarchical Clustering

The present hydrometeor classification algorithm is an unsupervised AHC method that aims to

partition a set of n observations into N different clusters. This technique works as an iterative “bottom-

up” method where each observation starts in its own cluster and pairs of clusters are aggregated step by

step until there is one final cluster, which comprises the entire dataset. Each cluster is composed of a

group of observations sharing more similar characteristics than the observations belonging to the other

clusters. Here, there is no a priori information concerning the shape and size of each cluster or the final

optimized number of clusters. A posteriori analysis is then performed through the final iterations to

retrieve the optimal clustering partition and respective labels. 
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Since associated background already exists, the reader is especially referred to Ward (1963) and

Jain et al. (2000) for detailed mathematical reviews of the technique. Additionally, the present clustering

framework is mainly based on the methodology developed by Grazioli et al. (2015 – section 4 and

Figure 2), hereafter referred to as GR15, and only relevant and important information will be addressed

hereafter to avoid being redundant. The main steps of the present AHC can be summarized as follows:

 Vectorized objects of radar observations are defined for each valid radar resolution volume as 

x = {ZH, ZDR, KDP, ρHV, Δz},

 where Δz is the difference between the radar resolution height and the altitude of the isotherm at 

0 °C, deduced from sounding balloons.

 Since scales of radar polarimetric variables differ by orders of magnitude, data normalization is

applied to concatenate all the observations into a [0;1] common space. The first four components

of  each  object  are  based  on  the  minimum-maximum  boundaries  rule.  The  temperature

information is redistributed by applying a soft sigmoid transformation that allows setting a value

of zero (one) for altitudes below (over) the bright band. Here, the thickness of the bright band

over  the  whole  GoAmazon2014/5  –  ACRIDICON-CHUVA  database  has  been  manually

estimated and set up to spread over a layer of ± 700 m. To obtain the maximum degrees of

freedom in the initial dataset coming from the DPOL radar measurements, here, the influence of

the temperature information is mitigated by distributing its values into a [0;0.5] range space.

 Although the radar data are now suitable for clustering, the choice of two criteria still remains.

At each iteration of the AHC method, similarities/dissimilarities must be evaluated to determine

which clusters merge. In this regard, the Euclidean metric is considered to calculate the distance
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between different single objects. The generalization of this distance metric to an ensemble of

objects is called the merging linkage rule. Various methods exist to evaluate inter-dissimilarities

such as single (nearest neighbour), complete (farthest neighbour), averaged, weighted, centroid,

or even Ward (variance minimization) linkages (see Müllner, 2011).  Herein, we consider the

weighted, centroid and Ward linkage rules (see section 4.a). 

 Running such a clustering method over the whole dataset is computationally very expensive. To

tackle this problem, a subset of approximately 25 000 initial observations is randomly chosen

through the whole precipitation events database. The clustering method is initially applied to the

subset and then extended to the whole dataset by using the nearest cluster rule at each iteration.

 One  of  the  major  novelties  proposed  by  GR15  relies  on  the  implementation  of  a  spatial

constraint that aims to check the homogeneity of the clustering distribution at each iteration.

More precisely, one assumes that a smooth, horizontal transition exists between the resulting

hydrometeor field outputs. Therefore, a spatial smoothness index is calculated at the end of each

iteration step and individual object by checking the four closest geographical radar gates. In the

very same way as that used in GR15, results are summarized into a confusion matrix,  from

which  several  spatial  indexes  can  be  extracted  to  analyse  the  individual  and global  spatial

smoothness of a partition. 

 The merging of two clusters is realized by identifying the cluster which presents the lowest

spatial similarities among all clusters. Objects belonging to this spatially poor cluster are then
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constrained  to  be  redistributed  through  the  other  existing  clusters  according  to  the  linkage

method chosen. This final step allows decreasing the total number of clusters by one. 

 If the iteration process does not reach a single and unique cluster, the iteration loop then restarts

at the initial PPIs classification and goes through the evaluation of spatial homogeneity.

 Finally, an analysis of the variance explained has been implemented to evaluate the consistency

of the clustering classification outputs. This quality metric allows definition of the theoretically

appropriate number of clusters by analysing the ratio between the internal and external variance

of each cluster at each step of the iteration. The main idea here is to find the optimal cluster

distribution beyond which considering one more cluster is not meaningful.

4. Methodology discussions 

a) Linkage rule sensitivity 

According to the setup described in section 3, different linkage rules have been tested through the

special wet season observation period (February to March) of 2014. To perform this sensitivity test,

three different linkage rules have been considered here: (i) weighted, (ii) centroid, and (iii) Ward (see

Table 2 for their respective formulas). Since the clustering method randomly picks observations within

the whole wet season period, a set of numerous runs for each linkage method have been performed to

extract, as much as possible, the most representative behaviour of each one. The general common setup

is composed of a subset of 25 000 observations randomly picked through more than 50 precipitation

days. The temperature information is based on radiosounding observations and is dispatched in a [0;0.5]

interval to place twice as much importance on the initial DPOL radar observations. The number of
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clusters reached in the first step of the AHC method is set at 50 (far enough from the final partition and

not too computationally expensive). Finally, the clustering method has been conducted separately on

stratiform and convective regions.

In this respect, Figure 3 presents the evolution of the variance explained (the ratio between the

internal  and external  variance)  for  the three different  linkage rules  as a  function of  the number of

clusters  considered,  together  with  their  associated  precipitation  regimes  (stratiform or  convective).

Overall, the three methods exhibit an “elbow” curvature with an optimal number of clusters ranging

from approximately 5 to 8 (orange background on Figure 3). One can see that from 2 to 5 clusters, the

variances explained sharply increases, meaning that each added cluster within this interval contributes

significantly to retrieving the most adequate cluster partition. From 5 to 8 clusters, the increase starts to

slow down, indicating that considering a greater number of clusters is not meaningful. In this regard, the

best  “compromise” seems to  be the  weighted  and/or  Ward linkage method for  both stratiform and

convective regions. Indeed, these methods have the highest scores, with approximately 99 % reached

within the 5-8 clusters interval. 

Due to the inherent complexity of representing all the potential combinations, manual analysis and

selection have been performed beforehand to find the optimal number of clusters between the stratiform

and convective regions. The results from this partitioning are presented through one stratiform and one

convective RHI (Figures 4 and 5). 
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In addition, fuzzy logic information has been implemented to make comparisons with cluster outputs.

The fuzzy logic  scheme is  mainly  based on the  X-band algorithm of  Dolan  and Rutledge (2009),

hereafter  referred  to  as  DR09,  and  has  been  slightly  enriched  for  the  wet  snow and  melting  hail

hydrometeor types by Besic et al (2016) through scattering simulations and a temperature membership

function  (Besic  et  al,  2016 –  Appendix  A). Finally,  the  adapted  fuzzy logic  allows  discrimination

between  nine  hydrometeor  types:  light  rain  (LR),  rain  (RN),  melting  hail  (MH),  wet  snow (WS),

aggregates (AG), low-density graupel (LDG), high-density graupel (HDG), vertically aligned ice (VI),

and ice crystals (IC).

Figure 4 shows a stratiform system exhibiting a well-defined bright band signature from polarimetric

observations that occurred on the shores of the Amazon river on 21 February 2014. Overall, the centroid

linkage method does not reproduce the event well, and the final representation is microphysically poor

(Figure 4-f). Indeed, this linkage rule simply divides the cloud into three homogeneous regions (T > 0

°C, T ~ 0 °C, and T < 0 °C). Additionally, the centroid linkage fails to identify a clear bright band region

(Figure 4f, clusters 2S and 3S). On the other hand, the weighted and Ward linkage methods are very

close to the fuzzy logic output descriptions (Figure 4e-g-h). They both exhibit two kinds of rain, and a

bright  band region sits  on top of what  appears  to  be an aggregates-ice crystals  mixture.  The main

discrepancy here concerns the representation of the rain structure. The Ward linkage rule retrieves two

more distinct  liquid species (as does fuzzy logic),  whereas the weighted linkage method exhibits  a

smoother rainy region.
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Figure 5 presents a decaying convective cell that occurred on 02 February 2014 at 13:57 UTC (0-7 km

from the radar: stratiform region, 7-40 km from the radar: convective region). As is the case for the

stratiform RHI in Figure 4, the centroid linkage rule fails to retrieve a detailed microphysical structure

and only presents very homogeneous liquid and solid regions. Once again, both the weighted and the

Ward linkage rule stand out and display a more realistic hydrometeor description of the convective

cloud in comparison to the DPOL radar observations and the fuzzy logic outputs (Figure 5 a-b-c-d-e-g-

h). Although they both present three clusters for T > 0 °C, the weighted linkage rule puts more emphasis

on the convective region located ~ 20-30 km from the radar than does the Ward linkage (Figure 5-e,

cluster 6C vs. Figure 5-g, cluster 11C). The representation of the solid region (T < 0 °C) is almost the

same, except for in the aggregates region (Figure 5h), which seems to be smaller for the weighted

linkage  rule  (Figure  5e  cluster  8C)  than  for  the  Ward  method  (Figure  5g  cluster  10C).  Another

discrepancy between the weighted and Ward linkages concerns the layer around the isotherm at 0 ºC.

Although Figure 5 does not exhibit any bright band region, the Ward linkage rule does exhibit one due

to the temperature input (Figure 5g cluster 12C), whereas the weighted rule does not. The bright band

region is known to be well-defined for stratiform regimes but quasi-undetectable (if detectable at all) for

convective  areas  (Leary  and  Houze,  1978;  Smyth  and  Illingworth,  1998;  Matrosov  et  al.,  2007).

Throughout  the  present  paper,  one  will  thus  consider  only a  bright  band cluster  for  the  stratiform

regions, whereas convective areas will be lacking one.

Overall, Figures 3, 4, and 5 have shown that the centroid linkage method is inappropriate for the present

task,  whereas  both  weighted  and  Ward  linkage  rules  are  able  to  retrieve  a  detailed  microphysical
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structure within the sample cloud. Based on the present description and our personal analysis over the

whole dataset, we chose to keep working with the weighted linkage rule throughout the remainder of the

paper. 

b) Potential improvement around isotherm 0 °C

High amounts of liquid water a few kilometres above the isotherm at 0 °C are not rare within the core of

convective tropical cells. Sometimes,  super-cooled liquid drops can be maintained and even moved

upward  within  the  melting  layer,  thus  occasionally  giving  distinctive  column-shaped  polarimetric

signatures for ZDR/KDP (e.g., Kumjian and Ryzhkov, 2008). A simple liquid-solid delineation based only

on the temperature profile is therefore unsuitable. 

Figure  6  presents  an  adaptive  solution  to  tackle  this  issue  based  on  the  clustering  outputs  of  the

weighted  linkage rule.  The solution  proposed here  relies  on  a  posteriori  analysis  of  the  clustering

outputs associated with the convective regions. First, one proceeds to identify the convective core under

the isotherm at 0ºC (here, cluster 6C). Then, all radar observations within the solid region are assigned

by calculating their distance from the 6C cluster centroid without applying any temperature constraint

(objects are thus defined only by the first four radar components). If the distance is smaller than D<0.25

and there is  no discontinuity throughout the liquid-solid delineation,  then the solid  identification is

switched to liquid (cluster 6C). Note that the distance D has been empirically chosen for the present

radar observations and could consequently be adjusted by exploring more convective days. Overall,

with this simple hypothesis, one can see the potential of a such method (Figure 6b). The liquid cluster

can thus reach 8 km in the core of the convection at 25 km from the radar, which matches well with the
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convective tower (>35 dBZ) visible in Figure 5a. Around this convective core, the enhancement allows

raising raindrops by about one kilometre upward in the 0ºC isotherm, restraining cluster 6C at ~ 5 km.

In comparison to a simple binary delineation such as that used for the fuzzy logic outputs (Figure 6a),

the focus on radar observables in a second phase is then promising. 

5. Wet and dry season dominant hydrometeor classifications

This section aims to interpret and label each cluster retrieved through both the wet and dry seasons

over  the  Manaus  region  by  using  the  AHC  method  setup  described  in  section  3.  As  the  use  of

classification  allowing  liquid  water  above  the  melting  layer  of  convective  towers  needs  further

validation, a standard classification is used to classify and analyse the wet and dry hydrometeors using

the temperature parameter.

a) Wet season clustering outputs

The distributions of ZH, ZDR, KDP, ρHV, and Δz for each cluster from the stratiform and convective

clouds of the wet season together with their probability densities are presented in the violin plot in

Figure  7  and  Figure  8,  respectively.  The  contingency  table  between  the  stratiform  (convective)

clustering  outputs  and  the  nine  microphysical  species  retrieved  by  the  DR09 adapted  fuzzy  logic

algorithm is  shown in  Table  3  (Table  4).  The  complete  wet  season cluster  centroids  are  given  in

Appendix A.1.
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1) Stratiform region

Cluster 1S is only defined for negative temperatures and is associated with high ρHV and low ZH,

ZDR and KDP values (Figures 4e and 7).  One can see from contingency Table 3 that the cluster 1S

repartition is mostly associated with aggregates (~ 33 %) and ice crystals (~ 12 %) for high altitudes.

Although the horizontal and differential reflectivity values are slightly higher than those for the DR09

T-matrix microphysical outputs and polarimetric characteristics retrieved by GR15, one can make the

assumption that the cluster 1S behaviour stands for ice crystals. On the other hand, cluster 2S is closer

to  the  DR09  T-matrix  aggregates  microphysical  features.  This  cluster  is  characterized  by  a  mean

horizontal (differential) reflectivity of ~ 27 dBZ (~ 1.3 dB), a low specific differential phase (~ 0.27

degree/km) and a high coefficient of correlation (0.97). Overall, the polarimetric signatures of cluster 2S

are mostly divided into the associated wet and dry snow (aggregates) from the microphysical categories

of fuzzy logic (Table 3). Figure 4e allows discrimination between these categories, and one can consider

that cluster 2S is here associated with aggregates. Once again, its polarimetric signatures are slightly

higher than the DR09 T-matrix values or even the GR15 aggregates clustering output. One explication

behind these distributions being slightly shifted to higher values can be the relative humidity, which is

higher in the tropics than at higher latitudes. The growth of ice crystals/aggregates by vapor diffusion

within this cloud region (Houze, 1997) may lead to bigger solid particles (higher ZH and ZDR values). 

The bright band region is well-represented here by cluster 4S. Indeed, its global distribution spreads

only at the altitude of the isotherm at 0 °C and exhibits high ZH and ZDR values, as well as low KDP and
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ρHV values. Finally, clusters 3S and 5S present rain characteristics since more than 90 % of these clusters

are in agreement with the drizzle and rain fuzzy logic types from DR09. Although the two clusters have

the same behaviours, cluster 3S is characterized by polarimetric signatures higher than those in cluster

5S, except for the coefficient of correlation (0.97 vs. 0.99, respectively). In this regard, one can consider

that  cluster  3S  represents  the  rain  microphysical  species,  whereas  cluster  5S  is  related  to  drizzle

characteristics. 

2) Convective region

Overall, one can see from Figures 5 and 8 that the convective regions of the wet season are composed of

three types of hydrometeors for both positive (clusters 6C-10C-11C) and negative temperatures (clusters

7C, 8C and 9C). 

Hail precipitation in the Amazonas region is rare, and as expected, no clusters represent melting hail

characteristics, as in Ryzhkov et al. (2013) or Besic et al. (2016) (Table 4). Therefore, clusters 6C, 10C,

and 11C can be associated with three distinct rainfall precipitation regimes. In this regard, cluster 10C

presents the same light rain characteristics as both DR09 and GR15. The cluster is characterized by ZH

(ZDR) values approximately 13 dBZ (0.68 dB), and a KDP (0.14 degree/km) that is in high agreement

with the drizzle hydrometeor type from the adapted fuzzy logic (~ 97 %, Table 4). According to this

description, one can attribute cluster 11C to the light rain precipitation type. The two remaining liquid

clusters  are  associated  with  moderate  and  heavy  rainfall  types  with  almost  the  same  polarimetric

signatures as those given in GR15. Indeed, cluster 6C presents higher ZH (44 vs. 31 dBZ), ZDR (2.1 vs
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1.4 dB), and KDP (1.9 vs 0.8 degree/km) mean values than those for cluster 11C. In this regard, one can

link cluster 6C to heavy rainfall and cluster 11C to moderate rainfall.  

Concerning negative temperatures, cluster 9C stands out by being spread at the highest altitudes (Figure

8-e). This cluster is defined by low ZH, ZDR, and KDP values together with a moderate ρHV (~ 0.97). One

can note that cluster 9C is close to the ice crystals/small aggregates retrieved by GR15 and is also the

only cluster related to the T-matrix ice crystals  species from DR09 (Table 4).  Within the decaying

convective cell presented in Figure 5, one can observe that cluster 7C is associated with the low-density

graupel characteristics proposed by DR09 and exhibits ZH (ZDR) values approximately 36 dBZ (0.8 dB).

In addition, cluster 7C is mainly classified (~ 69 %) as low-density graupel (Table 4). Finally, the last

cluster,  8C, is  surrounded by ice crystals  and presents  polarimetric  signatures  lower than those for

cluster 7C. Although it  is defined by higher values than those given by DR09 and GR15, one can

associate cluster 8C with the aggregate microphysical species. Indeed, contingency Table 4 shows that

45 % of the cluster 8C points are in agreement with this hydrometeor type. 

b) Dry season clustering outputs

As for the previous section,  the clustering outputs retrieved by the AHC method and the weighted

linkage rule are identified and associated with their corresponding microphysical species through the

dry tropical season. The corresponding cluster centroids are detailed in Appendix A.2.

1) Stratiform region
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Figure 9 shows the clustering classification outputs extracted from an RHI presenting a melting layer

region within a stratiform event that occurred on 08 September 2014 in the region of Manaus. Overall,

the clustering outputs are  close to the hydrometeor distribution retrieved by the adapted DR09 fuzzy

logic. Clusters 1S-2S retrieved for positive temperatures appear well located in terms of polarimetric

signatures and fuzzy logic outputs. One can see that the melting layer region is clearly characterized by

cluster 4S, whereas for negative temperatures, clusters 3S-5S show patterns close to the fuzzy logic

outputs. 

The violin  plots  in  Figure 10 and contingency Table 5 allow discrimination and labelling of  these

clusters.  For  DR09  classification,  clusters  1S  and  2S  exhibit  rainfall  signatures.  Cluster  2S  is  in

agreement with the fuzzy logic drizzle category (~ 92 %), whereas cluster 1S is divided into the drizzle

(~ 76 %) and rain (~ 22 %) microphysical species. Between these two clusters, one can observe that

cluster 1S contains the highest ZH, ZDR and KDP values, and one can consequently label it as a rainfall

type. Cluster 2S is, however, associated with the drizzle/light rain category according to the polarimetric

radar signatures (GR15). 

The liquid-solid delineation is represented here by cluster 4S. It presents a low ρHV (~ 0.93) and a large

ZH distribution around ~ 30 dBZ and is almost only defined for altitudes close to the 0ºC isotherm. In

addition, contingency Table 5 matches well with this hydrometeor association. 

For the negative temperatures, the clustering outputs exhibit two clusters, 3S-5S. The first is located

within the edge region of the cloud, whereas cluster 5S is distributed at lower altitudes and is closer to

particles of greater densities (Figure 10). Cluster 5S is in ~ 70 % agreement with the aggregate fuzzy

logic  outputs  (Table  5),  and  its  polarimetric  signatures  are  close to  those  of  GR15  and  T-matrix
22

440

445

450

455

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-174
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 19 September 2018
c© Author(s) 2018. CC BY 4.0 License.



simulations from DR09. One can then define cluster 5S as the aggregate microphysical species. Finally,

ice crystals/small aggregates are represented through cluster 3S, which is defined by low ZH, ZDR, and

KDP values and a high ρHV. 

2) Convective region

Figure 11 shows an RHI of a convective system that occurred in the late afternoon on 06 October 2014

in the  region of  Manaus.  Overall,  this  RHI shows a convective  cell  (at  24-50 km from the  radar)

together with its relative stratiform region (0-23 km). Note that the abrupt transition from the convective

and stratiform classification areas (Figure 5-6-11) is inherent to the Steiner et al. (1995) algorithm. In

terms of microphysical distribution, there should be some consistency between the two cloud types. The

implementation  of  continuity  analysis  may  prevent  the  latter  artefacts. The  convective  cell  is

characterized by ZH values up to 25 dBZ at 14 km, and the cloud top exceeds 16 km. According to the

fuzzy  logic  outputs  (Figure  11-f),  the  cell  exhibits  mostly  rainfall  precipitation  for  positive

temperatures. The corresponding cluster outputs retrieve the same signatures, dividing the rain pattern

into three different clusters: 6C, 7C, and 12C.  Once again, the fuzzy logic collocates a bright band

around the isotherm at 0ºC, whereas neither polarimetric signatures nor clustering outputs exhibit a

bright band. For negative temperatures, the AHC method retrieves four clusters (8C, 9C, 10C and 11C)

as the fuzzy logic outputs.

The violin  plots  in  Figure 12 and contingency Table 6 allow discrimination and labelling of  these

clusters. For the convective regions observed during the wet season, hail precipitation is rare in the
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Amazonas. Contingency Table 6 is also in agreement with this description, since none of the clustering

outputs exceed 2 %. Therefore, one can attribute clusters 6C, 7C, and 12C to three different rainfall

precipitation regimes, ranking the cluster positions as follows: 12C presents weaker ZH, ZDR, and KDP

values than does cluster 7C, which presents lower values than does cluster 6C (Figure 12). In addition,

one can see from contingency Table 6 that all three are in very high agreement with the drizzle and rain

microphysical species. Based on the aforementioned description together with Figure 11 analysis, one

can attribute cluster 12C to light rainfall, cluster 7C to moderate rainfall and, finally, cluster 6C to the

heavy rainfall type. 

Concerning all clusters spreading at negative temperatures, cluster 11C matches well with the high-

density graupel category defined by DR09  such as “graupel growing in regions of large supercooled

water contents, melting graupel, and freezing of supercooled rain”. Based on contingency Table 6, this

cluster is mainly associated with wet snow and slightly with the low-density graupel microphysical

specie. Nevertheless, one can see that the ρHV distribution is pretty low (~ 0.94) and could also be the

signature of wet graupel (due to melting or wet growth) or a mixture of graupel and hail, as suggested

by Straka  et  al  (2000) and Kumjian  et  al  (2008).  This  cloud region is  surrounded by low-density

graupel, characterized by cluster 9C (Figures 11-12). This hydrometeor type shows 60 % agreement

with this microphysical type within contingency Table 6 and is close to the DR09 T-matrix outputs.

Cluster 10C shares more than 50 % with the aggregates type and 30 % with the low-density graupel

type, whereas cluster 8C is associated in general with ice crystals and aggregates types (Table 6). With

Figures 11-12 and the aforementioned description, one can analyse cluster 9C as low-density graupel,

cluster 10C as aggregates, and, finally, cluster 8C as ice crystals. 
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6) Discussion

a) Impact of the clustering method and location

The present results allow making a brief comparison between the classical supervised fuzzy logic

technique commonly used in the literature and the unsupervised AHC method. In opposition to the rigid

structure of a fuzzy logic algorithm, the flexibility of the clustering approach allows better identification

of  the  bright  band  region.  Indeed,  the  liquid-solid  delineation  around  the  0  °C  isotherm is  better

captured and distinguished by the AHC method, which preferentially follows the polarimetric signatures

instead of the stratified temperature region. Additionally, one can see the ability of the AHC method to

fully exploit the high sensitivity of the X-band radar frequency to distinguish between three different

(light, moderate, and heavy) rainfall regimes such as in GR15. This enhancement allows, for instance,

putting more emphasis onto severe convective precipitation cells and may open new perspectives for

nowcasting issues.

Note that the present clustering method has been distinctly subdivided into stratiform and convective

regions.  Although they are  characterized  by  different  thermodynamic  structures  (Houze,  1997),  the

stratiform and convective regions may be related in terms of microphysical distributions, such as ice

particles which might be ejected from the top of an active convective cell into the upper part of the

stratiform region. This microphysical inconsistency may be prevented by the implementation of an a

posteriori continuity analysis.

The  location  of  the  present  study  also  offers  the  possibility  to  discuss  mid-latitude  and  tropical

microphysical differences. As described in section 5, the dominant tropical hydrometeor classification
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overlaps some mid-latitude microphysical species definitions. For instance, one can see that both the

aggregate  and  ice  crystal  microphysical  species  are  skewed  to  higher  horizontal  (differential)

reflectivity, regardless of the season and region (stratiform/convective) considered. These discrepancies

might  be attributed either  to  an inaccurate  attenuation correction (overestimations due to  the ZPHI

method) or inherent tropical characteristics involved within microphysical ice growth. Indeed, tropical

atmospheric characteristics present higher tropospheric humidity profiles together with higher incident

solar radiation that could play an important role in comparison to mid-latitudes. 

b) Wet-Dry season differences

The investigation of some Amazonian wet-dry season differences has already been explored by a few

studies.  For  instance,  Machado  et  al.  (2018)  noted  that  during  both  the  GoAmazon2014/5  and

ACRIDICON-CHUVA field campaigns, the wet season overall mean cumulative rain was four time as

much as that during the dry season. However, though characterized by a low amount of total rainfall, the

dry season presents the higher rainfall rate (Dolan et al,  2013; Machado et al,  2018). According to

Machado et  al  (2018),  these  discrepancies  can  partly  be explained by the fact  that  the dry season

presents higher convective available potential energy (CAPE) and lower cloud cover than those during

the wet season. Another study conducted by Giangrande et al (2017) also examined the wet-dry season

differences  through  convective  clouds.  The  authors  showed  that  warm clouds  exhibit  larger  cloud

droplets and that the stratiform region during the wet season is much more developed than that during

the dry season (due to surrounding monsoon ambient characteristics). 
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All these differences are expected to contribute to the wet-dry season differences. Here, one can address

for  the  first  time  these  discrepancies  through  the  dominant  microphysical  patterns  in  terms  of

stratiform/convection  precipitation  regimes  associated  with  the  Central  Amazonas  (Manaus region).

Based on this new hydrometeor classification adapted to the tropical region, this section  explores the

differences among the clouds related to these two seasons. 

1) Stratiform region

Figure 13 presents a comparison of pairs  of stratiform hydrometeor types between the wet and dry

seasons. For positive temperatures, both the drizzle and rain microphysical species present higher ZH

and lower ZDR values during the dry season than during the wet season. These polarimetric signatures

are  generally  attributed  to  the  evaporation  and  breakup  processes  that  tend  to  reduce  the  particle

diameters (Kumjian and Ryzhkov 2010; Penide et al, 2013). However, this pattern normally refers to the

dry season, which presents a more favourable environment. The separation between the drizzle/light

rain  and  the  rain  microphysical  species  is  defined  for  a  rainfall  rate  of  approximately  2.5  mm/h

(American  Meteorological  Society,  2018).  The  classical  Marshall-Palmer  Z-R  relationship  allows

estimation of the rainfall rate for stratiform precipitation. In this regard, the wet rain microphysical

species is characterized, on average, by a rainfall rate of 1.84 mm/h, whereas the rate is up to 3 mm/h

during  the  dry  season.  The  general  wet  rain  microphysical  species  distribution  thus  still  contains

drizzle/light rain observations. This puzzling rain partitioning might be due to the different cloud cover

patterns associated with stratiform echoes during the two seasons. As noted by Machado et al (2018),

stratiform cloud cover related to the rainy season is more associated with a monsoon cloud regime than
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during the remaining season. While the dry season stratiform regime is directly the result of the rain

convective  cells,  the  wet  stratiform  cover  may  also  refer  to  large  ambient  unrelated  residual

precipitation far outside the original convective cloud.

Overall, the melting layer, which is represented here through the wet snow microphysical species, is

consistent with the results of previous studies (Durden et al, 1997; Giangrande et al, 2008; Heymsfield

et al, 2015; Wolfensberger et al, 2015). The vertically restricted layer of wet snow presents the most

widespread distribution of ZH, ZDR, KDP and ρHV of all the retrieved microphysical species and for both

seasons. One can see that the wet season distribution differs from the dry season, as its distribution is

more associated with lower (higher) ZH (ZDR) values. The main discrepancy here is related to the ZDR

distribution,  which  has  stronger  values  during  the  wet  season  by approximately  1  dB.  One  might

attribute  this  difference to  the  microphysical  processes  involved,  such as  that  during the wet  (dry)

season, the melting layer is mainly driven by warm rain (ice microphysics) processes  (Dolan et al.,

2013). 

One of the main differences in the cloud structure between the wet and dry season relies on the cloud

top altitudes. Indeed, during the dry season, clouds can easily reach 16-17 km in the tropics compared to

only 13-14 km during the wet season. Therefore, the microphysical processes for negative temperatures

are distributed over two different  thickness layers and moisture profiles.  In this  cloud region, both

aggregates and ice crystals mainly grow by vapor diffusion (Houze, 1997). Although they present quite

similar distributions, they both spread at about a 1.5 km interval difference in altitude. Additionally, the

ZDR values associated with aggregates and ice crystals are generally slightly higher than those retrieved
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in DR09 or GR15. However,  this  result  is  consistent with the study of Wendisch et  al  (2016) that

identified shaped plates of aggregates/crystals in the anvil outflow with in situ airplane observations.

2) Convective region

Figure 14 presents a comparison of pairs of convective microphysical species between the wet and dry

seasons. As aforementioned in section 5, the dry season is composed of 7 hydrometeor types compared

to 6 for the wet season. While the rainy season only has a graupel microphysical species, the dry season

allows  distinguishing between low- and high-density  graupel.  Therefore,  the  graupel  microphysical

species defined during the wet season has been associated with the low-density  graupel  of the dry

season to make this comparison possible. 

Convective regions are characterized by three different rainfall regimes: light, moderate and heavy rain.

Overall, the ZH, ZDR, and KDP distributions associated with the dry season are generally shifted towards

higher values. The dry season is known to exhibit the most intense convective cells (Machado et al,

2018).  Their  corresponding  precipitation  formation  mechanism  is  generally  dominated  by  ice

microphysical processes, wherein the melting of graupel particles lead to large raindrops (Rosenfeld and

Ulbrich, 2003; Dolan et al., 2013). One can see here that although growth by coalescence could be very

efficient  during  the  wet  season,  the  ice  microphysical  processes  outweigh the  production  of  larger

raindrops. 

Overall,  the combination of the wet season graupel microphysical species with the dry season low-

density  graupel  makes  sense  in  Figure  14.  Indeed,  they  have  almost  the  same  polarimetric  range

distributions and are in agreement with each other. By contrast, the high-density graupel signatures are
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correlated with high ZH, ZDR, and KDP values and low ρHV values. As mentioned in section 5.b.2, high-

density graupel would have been associated with a mixture of wet graupel/small hail.  Nevertheless,

these three related graupel categories are even consistent with the DR09 T-matrix definitions.

The  main  discrepancy  between  the  aggregate  and  ice  crystal  microphysical  species  concerns  their

altitude  definitions,  wherein  the  dry  season  allows  generating  these  hydrometeor  types  at  higher

altitudes. Systematically, the aggregate and ice crystal ZH and ZDR distributions are shifted to higher

values during the wet season.  These shifts may be due to an unreliable estimation of the attenuation

correction or explained by the results of Rosenfeld et al (1998) and Giangrande et al (2016). Both of

these studies showed that during the dry season, updrafts are more intense and, therefore, do not allow

enough time for small  ice crystals to properly develop. Additionally,  Williams et al (2002) or even

Cecchini  et  al  (2016)  highlighted  the  impact  of  aerosol  concentrations  on  the  microphysical

development of cloud particles. According to these studies, during the dry season, the higher the aerosol

concentration is, the more the coalescence process is suppressed (thus, leading to smaller particles). In

terms of aerosol concentrations, the wet Amazonian season is known to be much cleaner than the dry

season (Artaxo et al. 2002).

7. Conclusions

Based on an innovative clustering approach, the first hydrometeor classification for Amazon tropical-

equatorial  precipitation  systems has  been realized  by using research  X-band DPOL radar  deployed

during both the GoAmazon2014/5 and ACRIDICON-CHUVA field experiments. The AHC method was

broadly equivalent to GR15 and built using ZH, ZDR, KDP and pHV polarimetric radar variables together
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with  temperature  information  extracted  from  sounding  balloons.  The  clustering  approach  allowed

gathering of polarimetric radar observations that exhibit similarities amongst themselves within both

wet and dry seasons and both stratiform and convective regions. Sensitivity analysis during the wet

season was performed through different linkage rules and showed that both the weighted and Ward

linkage rules were the most suitable for this hydrometeor classification task. In this regard, a novel

approach was tested to improve the 0 °C hydrometeor layer representation within the convective region.

While the 0 °C isotherm region is generally binarily represented, one can allow the liquid water content

to overpass this region by setting simple rules. The final representation showed a realistic distribution

and created new perspectives to respect polarimetric radar signatures as much as possible. 

The AHC clustering outputs for both the wet and dry seasons and the stratiform and convective regions

were investigated over the Manaus region with the complete datasets collected during 2014. Although

previous studies were conducted for different latitudes and/or wavelengths, the retrieved hydrometeor

types were found to be generally in agreement. Overall, typical cloud microphysical distributions within

the stratiform precipitation regimes are characterized by five hydrometeors: drizzle/light rain, rain, wet

snow,  aggregates,  and ice  crystals.  On the  other  hand,  convective  regions  exhibit  more  diversified

microphysical populations with six (seven) retrieved hydrometeor types for the wet (dry) season: light

rain,  moderate  rain,  heavy  rain,  low-density  graupel,  (high-density  graupel),  aggregates,  and  ice

crystals.

The present study also highlighted the potential of the clustering approach in comparison to a more

“classical” supervised fuzzy logic algorithm. For instance, the clustering results showed a better ability

to delimit and distinguish the bright band region. The AHC method also allowed exploiting the higher
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sensitivity of the X-band radar and permitted retrieving three different rainfall regimes by exhibiting

light, moderate, and heavy intensities. 

The retrieved labelled clusters  allowed making comparisons  of  the dominant  microphysical  species

involved during both the wet and dry seasons of Brazilian tropical precipitation systems. Thus, the main

discrepancy relies on the presence of one more microphysical species within the convective region of

the dry season, defined as high-density graupel. This microphysical species is probably the result of a

deeper convection associated with precipitation systems that occur during this period of the year. 

Overall, the dry season ZH, ZDR, and KDP distribution shapes were quite similar to those of the rainy

period; however, the distributions were shifted towards higher (lower) values for positive (negative)

temperatures. The different rainfall intensities associated with the dry season generally exhibited higher

ZH, ZDR, and KDP values than those during the wet season, leading us to believe that ice microphysical

processes outweigh warm rain microphysical mechanisms. Finally, the retrieved tropical microphysical

species distribution showed that both aggregates and ice crystals were shifted towards higher radar

observable values in comparison to the mid-latitude X-band definition. These signatures might be due to

the presence of a higher humidity amount within tropical regions, which may allow more dendritic-plate

growth of aggregates and ice crystals microphysical species.

Although the year 2014 was representative and complied with typical tropical precipitation events, the

present study could be strengthened by an extended dataset as well as the use of in situ observations for

validation tasks. Nevertheless, this first detailed analysis of dominant hydrometeor distributions within

tropical precipitation systems is promising and could also be extended to other radar frequencies and
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operational DPOL radars. Such improvements could be useful to identify key microphysical parameters

for nowcasting issues, which are expected to be investigated in the near future through both the SOS-

CHUVA (Brazil)  and  RELAMPAGO  (Argentina)  research  projects.  In  this  regard,  the  clustering

methodology  could  be  enhanced  by  taking  into  account  the  Doppler  velocities  to  explore  the

microphysical processes involved within vigorous updraft/downdraft regions of the cloud. Finally, these

results  could also be helpful in evaluating the microphysical parameterization schemes used within

high-resolution numerical weather prediction models.
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Table 1: X-band dual-polarization radar characteristics

Table 2: Distance formulas for the weighted, centroid and Ward linkage rules.
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TYPE DZ RN MH WS AG LDG HDG VI CR

1S 38.64 % 0.01 % 0.00 % 10.34 % 32.91 % 1.31 % 0.00 % 4.47 % 12.34 %

2S 0.02 % 0.21 % 0.00 % 43.51 % 42.66 % 11.91 % 0.00 % 0.02 % 1.67 %

3S 64.36 % 27.55 % 0.21 % 7.88 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

4S 5.75 % 7.27 % 0.02 % 86.02 % 0.53 % 0.11 % 0.00 % 0.03 % 0.27 %

5S 98.04 % 0.00 % 0.27 % 1.68 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

Table  3: Confusion matrix  comparing the clustering  outputs  from the stratiform region of  the  wet
season and hydrometeor species retrieved from the adapted fuzzy logic.

TYPE DZ RN MH WS AG LDG HDG VI CR

6C 77.00 % 21.70 % 0.99 % 0.31 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

7C 0.00 % 0.16 % 0.00 % 21.69 % 7.70 % 69.01 % 1.44 % 0.00 % 0.00 %

8C 0.78 % 2.70 % 0.02 % 27.24 % 44.51 % 23.71 % 0.00 % 0.27 % 0.77 %

9C 0.10 % 0.00 % 0.00 % 9.86 % 55.90 % 5.83 % 0.00 % 9.15 % 19.16 %

10C 96.47 % 0.14 % 1.46 % 1.92 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

11C 31.42 % 62.98 % 1.24 % 4.36 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

Table 4: Same as Table 3, but for the convective region of the wet season.
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TYPE DZ RN MH WS AG LDG HDG VI CR

1S 76.30 % 22.17 % 0.10 % 1.43 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

2S 92.32 % 4.36 % 0.65 % 2.63 % 0.02 % 0.00 % 0.00 % 0.01 % 0.00 %

3S 0.25 % 0.00 % 0.00 % 2.65 % 41.61 % 2.19 % 0.00 % 21.18 % 32.12 %

4S 0.97 % 1.30 % 0.00 % 49.30 % 18.46 % 26.83 % 0.23 % 0.44 % 2.48 %

5S 0.30 % 0.03 % 0.00 % 8.28 % 68.48 % 3.99 % 0.00 % 5.29 % 13.62 %

Table 5: Same as Table 3, but for the stratiform region of the dry season.

TYPE DZ RN MH WS AG LDG HDG VI CR

6C 73.71 % 23.34 % 2.60 % 0.34 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

7C 21.61 % 73.56 % 1.00 % 3.83 % 0.01 % 0.00 % 0.00 % 0.00 % 0.00 %

8C 0.07 % 0.01 % 0.00 % 5.62 % 51.01 % 2.70 % 0.00 % 12.72 % 27.87 %

9C 0.16 % 2.32 % 0.00 % 27.80 % 7.41 % 60.40 % 1.86 % 0.00 % 0.04 %

10C 0.79 % 0.17 % 0.00 % 13.48 % 51.19 % 30.91 % 0.00 % 0.83 % 2.63 %

11C 0.00 % 15.29 % 0.51 % 64.19 % 0.19 % 11.4 % 7.72 % 0.00 % 0.00 %

12C 97.19 % 0.00 % 0.41 % 2.34 % 0.06 % 0.00 % 0.00 % 0.01 % 0.00 %

Table 6: Same as Table 3, but for the convective region of the dry season.
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Figure 1: Schematic  representation of the different  hydrometeor classification techniques and their
principal associated benchmarks.
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Figure  2: (a)  Geographical  localization  of  the  GoAmazon2014/5  and  ACRIDICON-CHUVA
experiments. (b) X-band DPOL radar coverage and its associated topography.
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Figure 3: Evolution of the variance explained for different clustering linkage methods. Each linkage
method is  subdivided in  terms of  stratiform (dashed line)  and convective  (solid  line)  regions.  The
orange vertical span highlights the interval potentially associated with the optimal number of clusters.
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Figure 4: X-band DPOL radar observables and corresponding retrieved hydrometeor classification
outputs at 12:07 UTC on 21 February 2014, along the azimuth 290°. DPOL radar observables are
shown in panels  (a)  ZH,  (b)  ZDR,  (c)  KDP,  and (d)  pHV.  Comparisons  of  retrieved hydrometeors  for
clustering outputs based on (e) weighted, (f) centroid, and (g) Ward linkage rules and (h) fuzzy logic
scheme outputs. In panels (e)-(f)-(g), each number corresponds to a different cluster. ‘S’ stands for
stratiform regimes, whereas ‘C’ is for convective regimes. 
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Figure 5: Same as Figure 4, but for 13:57 UTC on 13 February 2014, along the azimuth 200°.
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Figure 6: Clustering hydrometeor classification retrieved from the X-band radar at 12:07 UTC on 21
February  2014,  along  the  azimuth  290°.  (a)  With  temperature  constraint,  (b)  without  temperature
constraint.
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Figure 7: Violin plot of  cluster outputs retrieved for the stratiform regime of the wet season (DZ:
drizzle, RN: rain, WS: wet snow, AG: aggregates, IC: ice crystals). The thick black bar in the centre
represents  the  interquartile  range,  and  the  thin  black  line  extended  from  it  represents  the  95  %
confidence intervals, while the white dot is the median.
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Figure 8: Same as Figure 7, but for the convective regime of the wet season (LR: light rain, MR:
moderate rain, HR: heavy rain, GR: graupel, AG: aggregates, IC: ice crystals).
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Figure 9: X-band DPOL radar observables and corresponding retrieved hydrometeor classification
outputs at 21:26 UTC on 08 September 2014, along the azimuth 200°. DPOL radar observables are
shown in panels (a) ZH, (b) ZDR, (c) KDP, and (d)  pHV. Comparisons of the retrieved hydrometeor for
clustering outputs based on (e) weighted linkage rules and (f) the fuzzy logic scheme. In panels (e)-(f),
each number corresponds to a different cluster. ‘S’ stands for the stratiform region, whereas ‘C’ is for
the convective region. 
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Figure 10: Same as Figure 7, but for the stratiform regime of the dry season (DZ: drizzle, RN: rain,
WS: wet snow, AG: aggregates, IC: ice crystals).
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Figure 11: Same as Figure 9, but for an RHI at 18:16 UTC on 06 October 2014, along the azimuth
200°.
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Figure 12:  Same as Figure 7, but for the convective regime of the dry season (LR: light rain, MR:
moderate  rain,  HR:  heavy  rain,  LDG:  low-density  graupel,  HDG:  high-density  graupel,  AG:
aggregates, IC: ice crystals).
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Figure 13: Violin plot comparison of pairs of stratiform hydrometeor types between the wet and dry
seasons (DZ: drizzle, RN: rain, WS: wet snow, AG: aggregates, and IC: ice crystals). 
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Figure  14: Same  as  Figure  13,  but  for  the  convective  precipitation  regime  (LR:  light  rain,  MR:
moderate rain, HR: heavy rain, LDG: low-density graupel, HDG: high-density graupel, AG: aggregates,
and IC: ice crystals).
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APPENDIX A: Wet and Dry Season cluster centroids

Cluster Label ZH [dBZ] ZDR [dB] KDP [degree/km] ΡHV [-] Δz [km]

1S
Ice Crystals

Small Aggregates
17.18 1.17 0.21 0.98 + 2.23

2S Aggregates 27.09 1.31 0.27 0.97 + 1.25

3S Rain 27.28 1.43 0.10 0.97 - 2.49

4S Wet Snow 27.54 1.83 0.07 0.95 - 0.10

5S Drizzle 13.84 1.21 0.02 0.99 - 3.00

6C Heavy Rain 44.18 2.09 1.88 0.98 - 2.81

7C Graupel 36.28 0.74 0.34 0.98 + 2.76

8C Aggregates 28.94 0.75 0.20 0.98 + 2.32

9C
Ice Crystals

Small Aggregates
17.62 0.91 0.22 0.97 + 3.07

10C Light Rain 13.21 0.68 0.14 0.96 - 2.81

11C Moderate Rain 31.09 1.39 0.50 0.98 - 2.74

Table A.1: Cluster centroids for the wet season.
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Cluster Label ZH [dBZ] ZDR [dB] KDP [degree/km] ΡHV [-] Δz [km]

1S Rain 31.43 1.27 0.25 0.98 - 3.12

2S Drizzle 20.66 0.89 0.07 0.98 - 3.16

3S
Ice Crystals

Small Aggregates
13.61 0.11 0.06 0.98 + 3.65

4S Wet Snow 29.18 0.85 0.17 0.93 + 1.40

5S Aggregates 19.65 0.71 0.11 0.98 + 3.04

6C Heavy Rain 46.7 2.38 3.12 0.97 - 2.90

7C Moderate Rain 34.18 1.24 1.06 0.97 - 2.82

8C
Ice Crystals

Small Aggregates
16.69 0.43 0.11 0.97 + 3.85

9C
Low-Density

Graupel
36.79 0.78 0.59 0.97 + 1.96

10C Aggregates 24.75 0.45 0.18 0.98 + 3.20

11C
High-Density

Graupel
46.36 2.20 2.50 0.94 + 0.50

12C Light Rain 14.47 0.27 0.21 0.97 - 2.89

Table A.2: Cluster centroids for the dry season.
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