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ABSTRACT

This work reviews and adapts the framework for in-flight attitude initialization
of an Inertial Navigation System with Position-Velocity Integration formulas (PIF
and VIF), which are based on measurements from a GPS receiver and inertial
sensors. It is shown that some shortcomings of such methods are more critical
for a simplified comparison algorithm (TRIAD), which in turn helps to create a
derived method (FIL), based on some logical conditions checks which allow pre-
cluding large alignment errors. The algorithms are then analyzed by developing
an original on-line error estimation method, based on an estimation of the co-
variance of the involved vectors yielding a direction error for the vectors, which
allows a decision criterion for online convergence declaration employed for two
additional methods (OPT and OPTc). Results are validated with simulated data
and Monte-Carlo tests are employed to assess the performance and validate some
assumptions associated with those methods.

Keywords: Inertial Navigation. In-Flight Alignment. GPS-Aided Navigation. Co-
variance Propagation.
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SOBRE MÉTODOS PARA ALINHAMENTO EM VOO DE SISTEMAS DE
NAVEGAÇÃO INERCIAL

RESUMO

Este trabalho revisa e adapta os métodos de inicialização de atitude em voo de um
Sistema de Navegação Inercial via Fórmulas de Integração Posição-Velocidade
(PIF e VIF), os quais são baseados em medições provenientes de um receptor
GPS e sensores inerciais. São apresentadas algumas limitações desses métodos,
que são mais críticas para um algoritmo de comparação simplificado (TRIAD), o
qual permite desenvolver um método derivado (FIL), baseado em verificações de
condições lógicas que mitigam erros grandes de alinhamento. Estes algoritmos
são então analisados pelo desenvolvimento de um método original de estima-
ção de erro embarcado, baseado na covariância estimada dos vetores envolvi-
dos, produzindo então um erro de direção dos vetores, que permite um critério
de declaração de convergência empregado em dois métodos adicionais (OPT e
OPTc). Resultados são validados com dados simulados e testes de Monte-Carlo
são empregados para aferir o desempenho e validar hipóteses associadas a esses
métodos.

Palavras-chave: Navegação Inercial. Alinhamento em Voo. Navegação Auxiliada
por GPS. Propagação de Covariância.

vii





LIST OF FIGURES

Page

1.1 Performance for VIF and PIF Methods initialized at 15s. . . . . . . . . . 3
1.2 Performance for VIF and PIF methods initialized at 0s. . . . . . . . . . 4
1.3 Performance for methods VIF, PIF and TRIAD initialized at 0s. . . . . . 5
1.4 Performance VIF, PIF, TRIAD and FIL methods initialized at 0s. . . . . 6
1.5 Performance for all six methods initialized at 0s with comparison

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 High-Level Block Diagram VIF and PIF Methods. . . . . . . . . . . . . 18
2.2 Comparison of norms for v vectors. . . . . . . . . . . . . . . . . . . . . . 21
2.3 Comparison of norms for p vectors. . . . . . . . . . . . . . . . . . . . . . 22
2.4 Comparison of norms for v vectors over long term. . . . . . . . . . . . . 26
2.5 Angle Discrepancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Computed Angles between α and β vectors. . . . . . . . . . . . . . . . . 28
2.7 Discrepancy Between Norms. . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 General block diagram for implementing a recursive formula. . . . . . 35
3.2 Example of Estimated Covariance Matrix of a Stochastic Process . . . . 43
3.3 Example of Graph for Probability Density. . . . . . . . . . . . . . . . . . 45
3.4 Colormap plot for Probability Density. . . . . . . . . . . . . . . . . . . . 46
3.5 Colormap plot for natural logarithm of Probability Density. . . . . . . . 47
3.6 Sample Estimation versus predicted variance for case 1 sequence. Blue

for predicted, black for sample estimated. . . . . . . . . . . . . . . . . . 50
3.7 Color map plot of sample estimated probability density versus pre-

dicted standard deviation for case 1 sequence. . . . . . . . . . . . . . . 51
3.8 Bandwidths used for Kernel estimation of case 1 sequence. . . . . . . . 52
3.9 Sample Estimation versus predicted variance for case 2 sequence. Blue

for predicted, black for sample estimated. . . . . . . . . . . . . . . . . . 53
3.10 Color map plot of sample estimated probability density versus pre-

dicted standard deviation for case 2 sequence. . . . . . . . . . . . . . . 54
3.11 Bandwidths used for Kernel estimation of case 2 sequence. . . . . . . . 55
3.12 Sample Estimation versus predicted variance for case 3 sequence. Blue

for predicted, black for sample estimated. . . . . . . . . . . . . . . . . . 56
3.13 Color map plot of sample estimated probability density versus pre-

dicted standard deviation for case 3 sequence. . . . . . . . . . . . . . . 57
3.14 Bandwidths used for Kernel estimation of case 3 sequence. . . . . . . . 58

ix



3.15 Sample Estimation versus predicted variance for case 4 sequence. Blue
for predicted, black for sample estimated. . . . . . . . . . . . . . . . . . 59

3.16 Color map plot of sample estimated probability density versus pre-
dicted standard deviation for case 4 sequence. . . . . . . . . . . . . . . 60

3.17 Bandwidths used for Kernel estimation of case 4 sequence. . . . . . . . 61
3.18 Worst case for angle error within given probability. . . . . . . . . . . . . 81

4.1 Simulated Reference Specific Force over the IMU relative to Inertial
Frame Expressed in Body Frame. . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Simulated Reference Angular Rate of IMU Relative to Inertial Frame
expressed in Body Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Simulated Reference Attitude with respect to both Inertial and Navi-
gation Frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Simulated Roll, Pitch and Yaw Angles. . . . . . . . . . . . . . . . . . . . 87
4.5 Simulated Reference Position in geodetic coordinates. . . . . . . . . . . 87
4.6 Simulated Reference Velocity in Navigation Frame. . . . . . . . . . . . 88
4.7 Simulated real values of v vectors. . . . . . . . . . . . . . . . . . . . . . 94
4.8 Simulated norm of real values of v vectors. . . . . . . . . . . . . . . . . 94
4.9 Simulated real values of p vectors. . . . . . . . . . . . . . . . . . . . . . 95
4.10 Simulated norm of real values of p vectors. . . . . . . . . . . . . . . . . 95
4.11 Performance of Methods under no integration or noise errors. . . . . . 96
4.12 Norm of v vectors under no noise errors. . . . . . . . . . . . . . . . . . . 97
4.13 Norm of p vectors under no noise errors. . . . . . . . . . . . . . . . . . 97
4.14 GPS provided Velocity in NED frame. . . . . . . . . . . . . . . . . . . . 98
4.15 GPS provided Position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.16 IMU provided specific force. . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.17 IMU provided angular rate. . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.18 Evolution of αv and βv starting at 0s. . . . . . . . . . . . . . . . . . . . . 101
4.19 Evolution of αp and βp in module starting at 0s. . . . . . . . . . . . . . . 102
4.20 Evolution of αp and βp in Module starting at 0s. . . . . . . . . . . . . . 103
4.21 Angles between vector pairs. . . . . . . . . . . . . . . . . . . . . . . . . 104
4.22 Angle Discrepancy between vector pairs. . . . . . . . . . . . . . . . . . 105
4.23 Norm Discrepancy between vectors. . . . . . . . . . . . . . . . . . . . . 106
4.24 Estimated angle errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.25 Estimated angle error bound. . . . . . . . . . . . . . . . . . . . . . . . . 108
4.26 Angle errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.27 Evolution of αv and βv for simulation starting at 15s. . . . . . . . . . . . 110
4.28 Evolution of αp and βp in module for simulation starting at 15s. . . . . 111
4.29 Evolution of αp and βp in Module for simulation starting at 15s. . . . . 112
4.30 Angles between vector pairs for simulation starting at 15s. . . . . . . . 113

x



4.31 Angle Discrepancy between vector pairs for simulation starting at 15s. 114
4.32 Norm Discrepancy between vectors for simulation starting at 15s. . . . 115
4.33 Estimated angle errors for simulation starting at 15s. . . . . . . . . . . . 116
4.34 Estimated angle errors for simulation starting at 15s. . . . . . . . . . . . 117
4.35 Angle errors for simulation initialized at 15s. . . . . . . . . . . . . . . . 118
4.36 Average vector errors for simulation starting at 0s. . . . . . . . . . . . . 121
4.37 Average vector errors for simulation starting at 15s. . . . . . . . . . . . 122
4.38 Relative average vector errors for simulation starting at 0s. . . . . . . . 123
4.39 Relative average vector errors for simulation starting at 15s. . . . . . . 124
4.40 Ratio of covariance maximum difference to sample estimate for αv, for

simulations starting at 0s. . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.41 Ratio of covariance maximum difference to sample estimate for βv, for

simulations starting at 0s. . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.42 Ratio of covariance maximum difference to sample estimate for αv, for

simulations starting at 15s. . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.43 Ratio of covariance maximum difference to sample estimate for βv, for

simulations starting at 15s. . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.44 Sample Covariance against Average Estimated Covariances for αv for

simulation starting at 0s. Black lines labeled ‘est’ are the average of the
covariances estimated by the methods, blue lines labeled ‘clc’ are the
sample estimated covariances. . . . . . . . . . . . . . . . . . . . . . . . . 129

4.45 Sample Covariance against Average Estimated Covariances for αv for
simulation starting at 15s. Black lines labeled ‘est’ are the average of
the covariances estimated by the methods, blue lines labeled ‘clc’ are
the sample estimated covariances. . . . . . . . . . . . . . . . . . . . . . 130

4.46 Sample Covariance against Average Estimated Covariances for βv for
simulation starting at 0s. Black lines labeled ‘est’ are the average of the
covariances estimated by the methods, blue lines labeled ‘clc’ are the
sample estimated covariances. . . . . . . . . . . . . . . . . . . . . . . . . 131

4.47 Sample Covariance against Average Estimated Covariances for βv for
simulation starting at 15s. Black lines labeled ‘est’ are the average of
the covariances estimated by the methods, blue lines labeled ‘clc’ are
the sample estimated covariances. . . . . . . . . . . . . . . . . . . . . . 132

4.48 Kernel Estimated Probability Density for αv for simulation starting at 0s.133
4.49 Kernel Smoother Bandwidth for αv for simulation starting at 0s. . . . . 134
4.50 Kernel Estimated Probability Density for βv for simulation starting at 0s.135
4.51 Kernel Smoother Bandwidth for βv for simulation starting at 0s. . . . . 136
4.52 Kernel Estimated Probability Density for αv for simulation starting at

15s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xi



4.53 Kernel Smoother Bandwidth for αv for simulation starting at 15s. . . . 138
4.54 Kernel Estimated Probability Density for βv for simulation starting at

15s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.55 Kernel Smoother Bandwidth for βv for simulation starting at 15s. . . . 140
4.56 Error below bound frequency for simulations starting at 0s. . . . . . . . 141
4.57 Error below bound frequency for simulations starting at 15s. . . . . . . 142
4.58 αv Error bound comparison for simulations starting at 0s. . . . . . . . . 143
4.59 αv Error bound comparison for simulations starting at 15s. . . . . . . . 144
4.60 βv Error bound comparison for simulations starting at 0s. . . . . . . . . 145
4.61 βv Error bound comparison for simulations starting at 15s. . . . . . . . 146
4.62 Probability Density for Squared Norm Ratio Between calculated and

reference value of αv for simulations starting at 0s. . . . . . . . . . . . . 147
4.63 Probability Density for Squared Norm Ratio Between calculated and

reference value of βv for simulations starting at 0s. . . . . . . . . . . . . 148
4.64 Probability Density for Squared Norm Ratio Between calculated and

reference value of αv for simulations starting at 15s. . . . . . . . . . . . 149
4.65 Probability Density for Squared Norm Ratio Between calculated and

reference value of βv for simulations starting at 15s. . . . . . . . . . . . 150
4.66 Mean estimated angle errors comparison for simulations starting at 0s. 151
4.67 Mean estimated angle errors comparison for simulations starting at 15s. 152
4.68 Variance of estimated angle errors comparison for simulations starting

at 0s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.69 Variance of estimated angle errors comparison for simulations starting

at 15s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.70 Comparison of average methods performance for simulations starting

at 0s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.71 Comparison of average methods performance for simulations starting

at 15s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.72 Comparison of average methods performance with their one standard

deviation interval for simulations starting at 0s. . . . . . . . . . . . . . . 157
4.73 Comparison of average methods performance with their one standard

deviation interval for simulations starting at 15s. . . . . . . . . . . . . . 158
4.74 Comparison of average methods performance with reference per-

centiles for simulations starting at 0s. . . . . . . . . . . . . . . . . . . . . 159
4.75 Comparison of average methods performance with reference per-

centiles for simulations starting at 15s. . . . . . . . . . . . . . . . . . . . 160

A.1 Body frame over an INS. Image Courtesy of SBG Systems (2017). . . . 173
A.2 ECI and ECEF Frames. Circumflexes in this figure indicate unit vectors. 175

xii



A.3 NED Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xiii





LIST OF TABLES

Page

4.1 Simulated Data Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 Comparison table for Simulation starting at 0s. . . . . . . . . . . . . . . 161
4.3 Comparison table for Simulation starting at 15s. . . . . . . . . . . . . . 162

xv





LIST OF ABBREVIATIONS

CDF – Cumulative Distribution Function
CIO – Conventional International Origin
ECEF – Earth Centered Earth Fixed
ECI – Earth Centered Inertial
EKF – Extended Kalman Filter
FIL – Filtered Method
FIP – Finite Induction Principle
GNSS – Global Navigation Satellite System
GPS – Global Positioning System
ICRF – International Celestial Reference Frame
IGRF – International Geomagnetic Reference Field
IID – Independent and Identically Distributed
IMU – Inertial Measurement Unit
INS – Inertial Navigation System
NED – North-East-Down Frame
OPT – Optimal Estimate Method
OPTc – Optimal Chebyschev Bound Method
PDF – Probability Density Function
PIF – Position Integration Formula
SVD – Singular Value Decomposition
TRIAD – TRI-axial Attitude Determination
VIF – Velocity Integration Formula
WGS – World Geodetic System
ICRF – International Celestial Reference Frame

xvii





LIST OF SYMBOLS

A – An Event Space
B – Body Frame
CB

A – Rotation matrix that transforms coordinates in reference frame A to B
I – Earth-Centered Inertial Frame, Identity matrix
E – Earth-Centered Earth-Fixed, the Expectancy operator
fk – A known 3x3 matrix sequence
fX – The probability density function of the random variable X
hk – A known 3x3 matrix
K – A covariance matrix, a matrix storing entries for SVD method
M(IR)n×m – The set of n by m Matrices with real elements
N – Navigation Frame
O – Null element (vector or matrix of zeros)
q – Quaternion
u – A vector indicating rotation direction
X̄ – The expected value of the random variable X
x̂ – An estimation for the value of the random variable X
α – Alpha vector (derived from IMU measurements)
β – Beta vector (derived from GPS measurements)
γ – Theoretical normal gravity on the ellipsoid surface
δ – Indicator of a variation-type error
∆ – An angle discrepancy, a variation
ε – A noise type error with 3x3 covariance matrix σ2

ε

ζ – An event
η – A bias type error with 3x3 covariance matrix σ2

µ

θ – An angle
λ – Geodetic Longitude
Λ – Ensemble Average
µ – A constant bias with covariance σ2

µ

µX – The expected value of the random variable X
ξm – A white noise with 3x3 covariance matrix σ2

ξ

σ2 – A Variance matrix
τ – Time (used as integration variable)
φ – Geodetic Latitude
Φ – A rotation angle
ω – Angular velocity
ωA

BC – Angular velocity of frame C with respect to frame B expressed in frame A
⊗ – Quaternion Multiplication
� – Cross product Covariance Operator
6 – Angle (between vectors)
| – Probability conditioning

xix



xx



CONTENTS

Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Chapters Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 CONCEPTS ON ALIGNMENT OF INERTIAL SYSTEMS . . . . . . . . 9
2.1 Attitude Determination and Estimation . . . . . . . . . . . . . . . . . . 9
2.1.1 Attitude Determination . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1.1 TRIAD Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Optimal Attitude Estimation . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Alignment of Inertial Systems . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Stationary Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Semi-Dynamic Alignment . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 In-flight Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3.1 Transfer Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3.2 Position-Velocity Integration Formulas (VIF and PIF) . . . . . . . . 14
2.2.4 Velocity-Position Formulas with TRIAD Attitude Determination . . . 19
2.3 Remarks on Position-Velocity Formulas . . . . . . . . . . . . . . . . . . 20
2.3.1 Norm threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Norm Trendline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Angle Between Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 Norm Discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.5 Filtered Method (FIL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 COVARIANCE MODELING . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Recursive Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Covariance of a Cross Product . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 General Error Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Basic Errors Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Handling Operations Involving Errors . . . . . . . . . . . . . . . . . . 39
3.4 Working with Covariance Matrices . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Estimating Covariance Matrices . . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Illustrating Covariance Matrices . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Creating Samples for Given Covariance . . . . . . . . . . . . . . . . . 43
3.5 Working with Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 44

xxi



3.5.1 Illustrating Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Covariance Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.2 Case 1: Sum of Known Gains Times Noise . . . . . . . . . . . . . . . . 50
3.6.3 Case 2: Sum of Known Gains Times Bias Cross Product Matrix Times

Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.4 Case 3: Sum of Known Gains Times Noise Cross Product Matrix

Times Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.5 Case 4: Sum of Known Gains Times Case 1 . . . . . . . . . . . . . . . 58
3.7 Error Analysis of the Methods . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.1 Alpha Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7.2 Beta Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.7.3 From Variance to Angle Error . . . . . . . . . . . . . . . . . . . . . . . 77
3.7.3.1 Expected Angle Method (OPT) . . . . . . . . . . . . . . . . . . . . . 77
3.7.3.2 Bounded at Probability Method (OPTc) . . . . . . . . . . . . . . . . 80
3.8 Employing The Estimated Error . . . . . . . . . . . . . . . . . . . . . . . 82

4 SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.1 Simulated Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.2 Initial Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.3 Algorithm Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.4 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.1.5 Assessing Performance Results . . . . . . . . . . . . . . . . . . . . . . 90
4.1.6 Implementation Particularities . . . . . . . . . . . . . . . . . . . . . . 90
4.2 Simulation Cases and Specification . . . . . . . . . . . . . . . . . . . . . 92
4.2.1 Unsampled Noiseless Simulation . . . . . . . . . . . . . . . . . . . . . 93
4.2.2 Sampled Noiseless Simulation . . . . . . . . . . . . . . . . . . . . . . 96
4.2.3 Performance Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.4 Monte-Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.4.1 Managing Seeds for Random Number Generation . . . . . . . . . . 119
4.2.4.2 Average Vector Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2.4.3 Estimating Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.2.4.4 Assessing Bound at Probability . . . . . . . . . . . . . . . . . . . . . 140
4.2.4.5 On the Approximations for the Expected Angle Error Formulation 146
4.2.4.6 Assessing Estimated Angle Error . . . . . . . . . . . . . . . . . . . . 150
4.2.4.7 Assessing Methods Performances . . . . . . . . . . . . . . . . . . . 154

xxii



5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

ANNEX A - CONCEPTS FROM NAVIGATION SYSTEMS. . . . . . . . . 171

A.1 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.1.1 Body Frame B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.1.2 Inertial Frame I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.1.3 Earth Frame E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.1.4 World Geodetic System . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.1.5 Navigation Frame N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.2 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.3 Basic Sensor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.3.1 Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.3.2 Gyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.3.3 GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.4 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.5 The Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 183

ANNEX B - CONCEPTS FROM STATISTICS AND STOCHASTIC SYS-
TEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.1 Definitions and Theorems from Random Variables Theory . . . . . . . 187

B.1.1 Sets, Samples and Events . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.1.2 Basics of Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . 188

B.1.3 Basics of Random Variable Theory . . . . . . . . . . . . . . . . . . . . 189

B.1.4 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.1.5 Variance and Related Terms . . . . . . . . . . . . . . . . . . . . . . . . 192

B.1.6 Other Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

ANNEX C - NOTES ON LINEAR ALGEBRA . . . . . . . . . . . . . . . . 203

C.1 Review on useful matrix properties . . . . . . . . . . . . . . . . . . . . . 203

C.2 Tools from Linear Algebra Theory . . . . . . . . . . . . . . . . . . . . . 206

ANNEX D - CODE TO VERIFY PROPERTIES OF THE VARIANCE OF A
CROSS PRODUCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

ANNEX E - PROOF OF RECURSIVE FORMULAS FOR COVARIANCE . 215

E.0.1 Case 1 Proof: Sum of Known Gains Times Noise . . . . . . . . . . . . 215

xxiii



E.0.2 Case 2 Proof: Sum of Known Gains Times Bias Cross Product Matrix
Times Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

E.0.3 Case 3 Proof: Sum of Known Gains Times Noise Cross Product Ma-
trix Times Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

E.0.4 Case 4 Proof: Sum of Known Gains Times Case 1 . . . . . . . . . . . . 226

xxiv



1 INTRODUCTION

An Inertial Navigation System is a device containing inertial sensors able to pro-
vide navigation information (e.g. position, velocity and attitude). It may perform
pure inertial navigation, or it may use external aids such as satellite-based po-
sitioning and thus perform hybrid or aided navigation. Its output is called the
Navigation Solution and generally is computed based on some form of Kalman
Filter for aided systems, which requires initial knowledge of the states to be es-
timated, a process called Initialization. The initialization of attitude is a major
problem when compared with that of position and velocity (TITTERTON; WESTON,
2004). A significant research effort is dedicated to the development of techniques
to initialize attitude, due both to the possible divergence when out of the linear
region assumed by the Kalman filter (CRASSIDIS, 2006) and the improvement in
convergence time that a good alignment provides.

The alignment of an Inertial Navigation System (INS) consists in obtaining an
estimate for the initial attitude of the platform, such that the navigation solution
can start being computed. It inherits this name from a platform inertial system,
which had accelerometers mounted over gimbals that sustain their axis physi-
cally aligned with the navigation frame (GROVES, 2013). Strapdown inertial sys-
tems are rigidly fixed to a vehicle of interest, have their accelerometers in a fixed
position, and gimbals replaced by angular rate sensors. Within such configura-
tion, the alignment is a purely mathematical process rather than a mechanical.

Alignment methods can be broadly classified as Transfer Alignment if the INS
attitude is determined by an external Master INS or similar device and directly
informed to the platform. An aided alignment method requires external signals
or sensors, such as GPS measurements to allow the INS to compute its attitude.
Finally, a so-called Self-Alignment process is performed when the platform deter-
mines its attitude based on the information it receives from its own sensors. An
example of transfer alignment is when an air-launched missile is attached to the
fuselage of a carrier aircraft, and the navigation solution of the INS on-board the
aircraft is informed or transferred to the INS on the missile. Such process often
relies on Kalman filtering techniques (PSZCZEL; BUCCO, 1992).

Furthermore, methods for alignment can be divided into Stationary Alignment,
when the platform can be assumed to be fixed in attitude and position relative
to the Earth, or as In-flight alignment when the INS can neither be requested
to remain stationary nor controlled to be leveled for the benefit of alignment,
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it may also be called in-motion alignment (ALI; USHAQ, 2009). Such techniques
can be useful when aiding systems had been unavailable for a time period af-
ter which the propagated attitude is no longer reliable. Several works describe
Kalman-filter like techniques for in-flight alignment, such as (PEI et al., 2014) or
(ALI; USHAQ, 2009).

The assessment criteria for the performance of an alignment method lies both
on its timeliness, i.e. how long does it take to provide an attitude estimate, and
on its accuracy, which can be measured by how small is the angle between the
computed and the true attitude of the platform. Both these aspects are considered
and explored in Chapter 4, but should be observed on the figures of this section.

An interesting approach for in-flight alignment is presented in (WU; PAN, 2013)
and related works such as (WU et al., 2011) that is not based on Kalman-Filtering
techniques but rather, on optimal attitude estimation methods. These techniques
are explained in Chapter 2, along with some related background. (WU; PAN, 2013)
presents two similar methods referred as VIF and PIF for Velocity and Position
Integration Formula The main goal of the current work is to analyze and improve
upon these techniques. Examples of the estimation accuracy of these two meth-
ods are presented in this section, which also comments briefly on their behavior
and compares with the developments original to this work. A comprehensive de-
scription of how these results are obtained is given in Chapter 4.
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Figure 1.1 - Performance for VIF and PIF Methods initialized at 15s.
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This profile resembles a typical estimation convergence curve, in which an ini-
tial large error decreases significantly then oscillates around a steady-state value.
However, for the presented methods, depending on the trajectory performed by
the vehicle and the noise characteristics of the sensors, some erratic behavior may
present itself as shown in Figure 1.2.

3



Figure 1.2 - Performance for VIF and PIF methods initialized at 0s.
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It is however demonstrated that such methods are not guaranteed to converge, as
shown in (KOJA; LEITE FILHO, 2017) and reviewed in Chapter 2. Also, the proposed
optimization is shown to possibly provide little or no gain over a deterministic at-
titude determination method based on the TRIAD attitude computation scheme,
which in turn makes the method’s flaws more evident. This is illustrated in Figure
1.3.
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Figure 1.3 - Performance for methods VIF, PIF and TRIAD initialized at 0s.
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The filtered method (indicated as FIL) was introduced in (KOJA; LEITE FILHO, 2017)
and was seen to add a degree of robustness against this erratic behavior but in
some cases requiring longer convergence periods, as shown in Figure 1.4.
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Figure 1.4 - Performance VIF, PIF, TRIAD and FIL methods initialized at 0s.
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Research devoted to overcoming such issues and developing on-line criteria to
assert convergence is presented. This is achieved with analytical deductions and
analyzing simulated data presented in Chapter 4. Briefly, a solution associated
with the best expected accuracy can be picked during the estimation process ac-
cording to statistical methods developed in Chapter 3. An example result that
showcases the improvement is provided by Figure 1.5, where faster convergence
than the filtered method is achieved although with lower accuracy.
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Figure 1.5 - Performance for all six methods initialized at 0s with comparison methods.
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1.1 Chapters Outline

The chapters of this work are organized in the following manner:

• Chapter 2 Reviews some concepts related to the alignment of inertial
systems, revisits the techniques in (WU; PAN, 2013) and introduces a
counterpart presented in (KOJA; LEITE FILHO, 2017).

• Chapter 3: Introduces concepts developed for this work related to recur-
sive on-line estimation of covariances and proposes its application to the
alignment methods this chapter provides the main contributions of the
present work.

• Chapter 4: Explains the simulations employed to implement and test the
proposed methods for in-flight alignment.

• Chapter 5: Presents final remarks and considerations regarding the find-
ings of this work.

The annexes contain basic concepts in the concerned fields treated in consistent
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manner with the main chapters and are quoted as needed for usage of theorems
and properties. They do not present original contributions.

Chapter 2 begins with a bibliographical review, while Chapter 3 use concepts ex-
plained in the literature that are reviewed in the annexes. The scientific methodol-
ogy is explained in Chapter 4. Noticeably, Chapter 3 also presents developments
of this work and the simulations to validate them, but those are of mathematical
nature.

Results indicated as “theorems” are known from the literature and indicted as such
with specific or general citations, contributions of this work are called “proposi-
tions” and were not found in the literature as presented or in similar form.
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2 CONCEPTS ON ALIGNMENT OF INERTIAL SYSTEMS

This chapter briefly explains some classic and new techniques employed for the
alignment of inertial systems. A brief overview of these concepts has been pre-
sented in Chapter 1. The classical techniques are briefly mentioned, and respec-
tive references are provided. The Position-Velocity Integration formulas are the
focus of this chapter. They are introduced in Section 2.2.3.2 and some contribu-
tions of this research follow afterwards.

2.1 Attitude Determination and Estimation

Classical initialization schemes rely on solving an attitude estimation problem
from the measurements available to the INS. The problem of attitude determina-
tion is well-known in spacecraft navigation, and some developments come from
this area. In purely inertial navigation, the INS propagates attitude and velocity
based on previous knowledge and rate measurements (acceleration and angular
rate), rather than on absolute measurements such as position and attitude. This
creates the need for initial values to be either provided to the INS or estimated by
it, a process called initialization. Even with aided navigation, techniques such as
Kalman filtering require initial states to be provided, and propagation of previ-
ous knowledge is still performed. Hence the need for an initial determination of
the states, in particular the attitude, which is not measured by conventional GPS
devices.

A distinction made in the literature concerns “Attitude Determination" which
consists in obtaining attitude information from the minimum necessary amount
of information and “Optimal Attitude Estimation" which consists in finding a
solution to some optimization problem based on possibly redundant attitude in-
formation (SHUSTER; OH, 1981).

2.1.1 Attitude Determination

For the purpose of this work, only the TRIAD method will be explored.

2.1.1.1 TRIAD Method

The TRIAD algorithm was first described on (BLACK, 1964) and became popular
both for being a very simple solution to the attitude (deterministic) determina-
tion problem. Its name stands for TRI-axial Attitude Determination (MARKLEY,
1999). It is used both on the current work and for simple stationary alignment
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techniques presented on Section 2.2.1.

Given two unit vectors uA and vA expressed in A frame, and their counterparts
uB and vB expressed in B frame, the rotation matrix between such frames CB

A can
be computed by:

(2.1a)MA =
[

uA,
uA × vA

‖uA × vA‖
,

uA × (uA × vA)
‖uA × (uA × vA)‖

]

(2.1b)MB =
[

uB,
uB × vB

‖uB × vB‖ ,
uB × (uB × vB)
‖uB × (uB × vB)‖

]

(2.1c)CB
A = MB(MA)T

If the vectors uA and vA and their counterparts in B frame are parallel, then uA ×
vA becomes zero, and therefore the method yields a matrix with undetermined
entries. This singularity encapsulates the fact that two pairs of vectors are the
minimum amount of information needed to compute a frame rotation. If the pairs
are parallel, they represent a single vector, when two distinct vectors and their
representations in each frame are necessary.

When noisy vectors are applied to this method, it is generally recommended us-
ing the most accurate one as the first (uA) and the most uncertain as the second
(vA), because the resulting matrix CB

A will yield uB = CB
AuA (exact equality) while

vB ≈ CB
AvA (approximate result) (MARKLEY; CRASSIDIS, 2014). Since both need to

be unit vectors, it may also be necessary to normalize them, specially if the vectors
used are not originally unitary as in the case shown in Section 2.2.4. Normaliza-
tion for the sake of precluding numerical errors is more relevant when vectors are
unitary by definition, such as the sun direction, but may be corrupted by numer-
ical inaccuracies. There are implementations of TRIAD-like methods when the
used vectors are not necessarily unitary nor normalized, and an inverse matrix
rather than a transposed is used in Equation (2.1c). Some of these implementa-
tions, applied to stationary alignment, are explained and analyzed on (SILVA et al.,
2016).
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2.1.2 Optimal Attitude Estimation

Optimal attitude estimation traces back to the Wahba’s problem (WHABA, 1965)
and it is a least square solution to the problem of determining attitude when
several measured vectors uk are available and the following cost functional J is to
be minimized:

(2.2)J =
1
2 ∑

k
ak

∣∣∣uB
k − CB

AuA
k

∣∣∣2

Where ak is a positive weighting coefficient. Several algorithms to find the solu-
tion of this problem exist, one of the most popular being the QUEST algorithm
(SHUSTER; OH, 1981). The Singular Value Decomposition (SVD) method will be
used in this work for simplicity and robustness of implementation, and shown
here for its analytical insights (MARKLEY; MORTARI, 2000), despite it being compu-
tationally more expensive.
Theorem 2.1.1. Singular Value Decomposition (SVD) Method:
Let a sequence of available vector measurements uA

k and uB
k be known along with

a normalized weighting sequence ak. The optimal rotation matrix estimated from
those entries to minimize Equation (2.2) can be computed by:

(2.3a)K = ∑
k

ak uB
k (uA

k )T

K = U Σ VT = U diag ([Σ11, Σ22, Σ33]) VT (2.3b)

(2.3c)CB
A = U diag ([1, 1, det(U)det(V)]) VT

Where U and V are unitary matrices and Σ11 ≥ Σ22 ≥ Σ33 ≥ 0.

A proof of this method based on (MARKLEY, 1988) is presented after the statement
of Theorem C.2.1 on Section C.2.

2.2 Alignment of Inertial Systems

2.2.1 Stationary Alignment

Procedures for stationary alignment, also called quasi-stationary alignment
(GROVES, 2013), assume the position has been initialized and the inertial system
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has no kinematic acceleration during the initialization period, such that the mea-
sured specific force in body frame matches the local gravity reaction f B = −gB,
then the measured angular rate of the platform also matches the Navigation
frame rate with respect to the inertial frame, which for a stationary object cor-
responds to the Earth’s rotation: ωB

BI = ωB
NI = ωB

EI . Alternatively, the magnetic
field may be used depending on the application (FARRELL, 2008). Both the lo-
cal gravity and magnetic field can be computed from models such as the World
Geodetic System WGS84 (DECKER, 1986) and the International Geomagnetic Ref-
erence Field (IGRF12) (THÉBAULT et al., 2015) respectively.

In navigation frame, the Earth’s angular rate and local gravity can be expressed
by:

(2.4)ωN
IE =

[
ωIE cos(φ) 0 −ωIE sin(φ)

]T

(2.5)gN =
[

0 0 γ(φ)
]T

With φ the geodetic latitude defined in Section A.1.4 and γ(φ) the local gravity
defined on Equation (A.12).

This scheme is often called “Coarse Alignment“ (FARRELL, 2008), in contrast with
“Fine Alignment“, which is a second step that requires the initial output of the
former. There are several variations of such methods, as explained in (LEITE et al.,
2017). As an example, one such approach uses a QUEST-like algorithm instead of
TRIAD and a refinement based on neural-networks (CAMPOS et al., 2017).

2.2.2 Semi-Dynamic Alignment

It is possible to perform experiments with an INS installed on a turn-tables, which
allow creating controlled motions for the INS depending on the specification of
the equipment. This kind of experiment may be used to calibrate sensors, and
during the experiment an alignment procedure may be carried as well. A tech-
nique based on an Unscented Kalman Filter method to compute both the attitude
and sensor biases during one such experiment is described in (KUGA et al., 2007).
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2.2.3 In-flight Alignment

In-flight alignment ditches the assumption of stationarity and is often needed in
situations with stringent time convergence requirements. A few examples when
such techniques are required can be listed:

• When a missile is to be launched from a carrier aircraft, its navigation
system, that likely was turned off, needs to be initialized before detach-
ing from the fuselage (TITTERTON; WESTON, 2004).

• When an airplane needs to initialize the INS either for first start or mid-
flight, to reduce gate delays or to improve reliability (WEED et al., 2004).

• When a missile is launched from a ground, sea of air vehicle without
initializing navigation due to schedule constraints and the navigation
system must start providing navigation solutions at a given time of the
flight envelope (HYSLOP et al., 1990).

There are also works which exploit the enhanced observability characteristics of
the alignment scheme when it is possible to require a specific maneuvering, such
as employing piece-wise constant specific force segments from the vehicle or ro-
tating the INS within it as in (WALDMANN, 2007b) and (WALDMANN, 2007a). For
the purpose of the current work, an arbitrary trajectory is desired, considering a
strapdown inertial system stationary with respect to the vehicle, although a sin-
gle trajectory will be used for Monte Carlo tests described on Section 4.2.4.

2.2.3.1 Transfer Alignment

As mentioned in Chapter 1, it is possible for a carrier vehicle, hosting a master
INS to transfer its state knowledge to a slave INS embarked on a payload (BAZIW;

LEONDES, 1972). This can be done as a one-shot transfer, which would provide
coarse accuracy, but can proceed with techniques such as angular rate or velocity
matching which will help the slave INS to converge despite misalignment be-
tween both body frames and alleviate the degradation of performance caused by
structural flexibility of the arrangement. These techniques generally rely on some
kind of Kalman filtering and are described in detail on (PSZCZEL; BUCCO, 1992).
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2.2.3.2 Position-Velocity Integration Formulas (VIF and PIF)

When no external vehicle or source of attitude information can be assumed avail-
able, the INS needs to compute an attitude with its own means, a process that is
called Self-Alignment (FARRELL, 2008). The Position-Velocity Formulas are a set
of equations that provide a method for in-flight alignment with GPS aid. They
are described in (WU; PAN, 2013), (WU et al., 2011) and other related works. Some
derived methods are also presented in (WU et al., 2014), in which the biases of
sensors and the GPS lever arm are estimated. It is noted that in most of those
publications, the GPS is assumed to provide measurements at a fairly high rate,
ranging from 2Hz (WU; PAN, 2013) with interpolation, up to 50Hz in (WU et al.,
2014), while in this work a rate of 1Hz with no interpolation is used, with other
relevant parameters described in Chapter 4.

Having established optimal attitude estimation methods in Section 2.1.2, they can
be applied to INS alignment if a set of vectors is known in both Body frame (B)
and Navigation Frame (N, or NED for North-East-Down). This allows computing
the matrix CN

B .

Throughout this work, frames with unspecified time are to be understood as with
respect to current time (i.e., N = N(t)), while 0 stands for the starting time of the
alignment process. In the following deduction, a color scheme is employed to
indicate frames related to IMU measurements (red) and frames related to GPS
measurements (blue).

Some equations in this section will be color coded to associate mathematical en-
tities with the sensor they derive from. Red symbols indicate objects computed
based on IMU data and blue indicates relation to the GPS output.

While most filtering techniques try to improve the estimation of CN
B as t pro-

gresses, it is noted that:

(2.6)CN
B = CN(t)

N(0) CN(0)
B(0) CB(0)

B(t)

(2.7)CN
B = CN(t)

E(t) CE(t)
E(0)

(
CN(0)

E(0)

)T
CN(0)

B(0) CB(0)
B(t)

Where E stands for the Earth-Fixed Earth-Centered (ECEF) frame. CN(t)
E(t) can be
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computed directly from GPS position measurements, and its initial value CN(0)
E(0)

can be stored. A constant Earth rotation rate model is used to compute CE(t)
E(0), as

described on Section A.1.4.

Meanwhile, CB(0)
B(t) can be initialized with identity (CB(0)

B(0) = I), and updated at high
rate with measurements from the Inertial Measurement Unit (IMU), by using
quaternions:

(2.8a)û = ωB
BI/
∥∥∥ωB

BI

∥∥∥

(2.8b)qB(t)
B(t−dt) =

[
cos(|ωB

BI |dt/2), sin(|ωB
BI |dt/2)ûT

]T

(2.8c)qB(0)
B(t) = qB(0)

B(t−dt) ⊗ qB(t−dt)
B(t)

Where⊗ stands for quaternion multiplication, further details regarding the prop-
erties and conventions of quaternions is given in Section A.2. All frame transfor-
mations are performed with quaternions for the simulations described in Section
4, even the matrices computed with TRIAD and SVD methods are converted to
quaternions with code adapted from the Propat Library (CARRARA, 2015). Nor-
malization and sign checks are also performed. The analytical developments are
done with matrices for the sake of conciseness.

The technique proposed in (WU; PAN, 2013) starts from the well-known kinematic
equation (FARRELL, 2008):

(2.9)v̇N = CN
B f B−(2ωN

IE + ωN
EN)× vN + gN

Notably, assuming availability of GPS position and velocity measurements, the
rotation rates and the local gravity acceleration can be computed with on-board
models. Applying the expansion from equation 2.6:

(2.10)v̇N = CN(t)
N(0) CN(0)

B(0) CB(0)
B(t) f B−(2ωN

IE + ωN
EN)× vN + gN
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Collecting alike terms:

(2.11)CN(0)
N(t)

[
v̇N+(2ωN

IE + ωN
EN)× vN − gN

]
= CN(0)

B(0) CB(0)
B(t) f B

The initial attitude matrix CN(0)
B(0) is the unknown constant to be estimated. The

other right-hand side terms are computed from the IMU measurements. The left-
hand side terms can be computed directly from the GPS measurements, except
for v̇N, which can be eliminated by proceeding a time-integration:

(2.12)
∫ t

0
CN(0)

N(τ)v̇
N dτ = CN(0)

N(t) vN − v(0)−
∫ t

0
CN(0)

N(τ)

(
ωN

IN

)×
vNdτ

Where (.)× denotes the cross-product matrix. By integrating both sides of Equa-
tion (2.11), one obtains, as in (WU; PAN, 2013):

(2.13a)αv =
∫ t

0
CB(0)

B(τ) f Bdτ

(2.13b)βv = CN(0)
N(t) vN − vN(0) +

∫ t

0
CN(0)

N(τ)

[(
ωN

IE

)×
vN − gN

]
dτ

(2.13c)βv = CN(0)
B(0) αv

The practical implementation of those equations is discussed on Section 4.1.6.

Hence, αv and βv can be used as entries for an optimal estimation method, with
the K matrix from Equation (2.3c) being updated at each time step tk. This is
referred to as the “Velocity Integration Formula" (VIF) in (WU; PAN, 2013). Its so-

lution at each time step tk will be denoted as
(

CN(0)
B(0)

)VIF

k
. It comes from the SVD

algorithm (Theorem 2.1.1) after building the K matrix in the following manner:

(2.14)KVIF
k =

k

∑
i=1

βv(ti) (αv(ti))
T
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It is noted that implicitly, the ponderation sequence ak exists in this equation by
recalling that the vectors should have been normalized. Therefore, it can be said
that:

(2.15)aVIF
k = ‖βv(tk)‖ ‖αv(tk)‖

It will be shown in Section 2.3.2 that this generally tends to give higher impor-
tance to the latest data.

By integrating over time again, new vectors αp and βp are obtained:

(2.16)αp =
∫ t

0
αvdτ

=
∫ t

0

∫ τ2

0
CB(0)

B(τ1) f Bdτ1dτ2

(2.17)βp =
∫ t

0
βvdτ

=
∫ t

0
CN(0)

N(τ)v
Ndτ − tvN(0) +

∫ t

0

∫ τ2

0
CN(0)

N(τ1)

[(
ωN

IE

)×
vN − gN

]
dτ1dτ2

Accumulating such vectors in the K matrix and estimating CN(0)
B(0) is what (WU;

PAN, 2013) refers to as “Position Integration Formula" (PIF). Its solution at each

time step tk will be denoted as
(

CN(0)
B(0)

)PIF

k
. It comes from the SVD algorithm after

building the K matrix in the following manner:

(2.18)KPIF
k =

k

∑
i=1

βp(ti)
(
αp(ti)

)T

Given that such quantities are corrupted by noise, they should always span the
whole Euclidean space, thus avoiding singularities on the SVD method, yet not
granting accuracy of the solution.

A block diagram is provided in Figure 2.1 to give an overview of the information
flow of these methods for implementation. A summary of the equations involved
and their sequencing is provided on (WU; PAN, 2013).
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Figure 2.1 - High-Level Block Diagram VIF and PIF Methods.

Notably, this method assumes that the calculation of both αv and βv is synchro-
nized. For implementation purposes, both calculations are only started when the
first valid GPS measurement is available. This implies that the first IMU measure-
ment must be associated with nearly the same time as the GPS first measurement.
Due to different bus delays this may call for a memory buffer to store IMU mea-
surements. Even then, the measurement times will not be an exact match, but
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this is alleviated by a high enough sample rate from the IMU (100Hz for the cur-
rent work). Causing a maximum mismatch in the order of 10 milliseconds, which
should introduce introduces errors that are be small compared to the other noises
and integration errors in the system.

2.2.4 Velocity-Position Formulas with TRIAD Attitude Determination

If all four vectors αv, αp, βv and βp are computed, then two pairs of vectors
are available, each pair expressed in a respective reference frame. Therefore, the
TRIAD algorithm explained in Section 2.1.1.1 can be used to determine the initial
attitude:

(2.19a)MB(0) =

[
αv

‖αv‖
,

αv × αp∥∥αv × αp
∥∥ ,

αv × (αv × αp)∥∥αv × (αv × αp)
∥∥
]

(2.19b)MN(0) =

[
βv

‖βv‖
,

βv × βp∥∥βv × βp
∥∥ ,

βv × (βv × βp)∥∥βv × (βv × βp)
∥∥
]

(2.19c)CN(0)
B(0) = (MN(0))

T MB(0)

This method will be used as a comparison counterpart of the VIF and PIF meth-
ods and will generally be referred as the TRIAD method. Due to its simplicity,
a performance improvement is not generally expected. However, it will be seen
that the shortcomings of this method also have impacts on the other previous
ones, but its pronounced effect contributes to the investigation of the influence of
flight and noise conditions on performance.

The used vectors are all associated with the same time instant (t) for the pur-
pose of this work, but since the matrix to be estimated by this method is constant
(CN(0)

B(0) ), mismatched times could be used as long as each pair that represents the
same vector in different frames keeps the same instant. For example, if the first
pair is αv(tk) and βv(tk), the second pair could be αp(tj) and βp(tj). This kind of
approach was however not presently pursued.
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2.3 Remarks on Position-Velocity Formulas

This section is devoted to point some conditions under which the reference algo-
rithms (VIF and PIF) and the proposed TRIAD fail to converge or are expected
to deliver poor performance, which also helps to identify on-line if the output of
this method can be declared as converged. This is relevant since most Kalman
filter navigation systems are expected to be initialized with a valid initial state.
The remarks may be illustrated with figures that are based on simulations, which
are explained only in Chapter 4. Some basic convergence criteria are reproduced
here in more details but were generally introduced in (KOJA; LEITE FILHO, 2017).
Different data sets were used to produce this section, with some similar to the
aforementioned reference, as well as the same data used in Chapter 4 and a quasi-
stationary test case.

2.3.1 Norm threshold

Remark 2.3.1. Invalid if free-falling:
A first shortcoming of such method occurs when the INS is free-falling, since un-
der this condition, the measured specific force should be zero f B = 0, though
it will accumulate noise and sensor errors (e.g. bias). This causes αv and con-
sequently αp to be invalid. Additionally, a smaller magnitude for those vectors
which are produced from noisy measurements, implies smaller signal-to-noise
ratio.

It is then suggested to verify that the used vectors have their norm above a certain
threshold, in order to assume they’re usable.

(2.20a)‖αv‖ > ‖αv‖min

(2.20b)
∥∥αp

∥∥ >
∥∥αp

∥∥
min

(2.20c)‖βv‖ > ‖βv‖min

(2.20d)
∥∥βp

∥∥ >
∥∥βp

∥∥
min
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2.3.2 Norm Trendline

Despite the previous claim, many INS use cases involve small accelerations com-
pared with the gravity magnitude of roughly 9, 8m/s2. Hence the norm of these
vectors tend to increase at a rate around g0 m/s for αv depending as well on at-
titude changes. Likewise, a norm around t2g0 /2 m is expected for αp. This also
causes the last computed sets of vectors to be more relevant than the first ones,
since the lack of normalization on the aforementioned vectors causes the norm
to take the role of the weights ak in Equation (2.2). These trends, along with the
computed norms for each vector in simulated quasi-stationary data are shown in
Figure 2.2 and Figure 2.3.

In other words, the norms for αv and βv are not expected to be or remain small for
any practical applications, in this sense, vehicles with large acceleration profiles
should also cause large norms for those vectors, although considerations on the
trajectory should be considered.

Figure 2.2 - Comparison of norms for v vectors.
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Figure 2.3 - Comparison of norms for p vectors.
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For longer simulations however, this trendline will not be sustained. A finer ob-
servation can be derived, which is shown in Figure 2.4, and stated as Proposition
2.3.1. It is first necessary to define the cardinal sine function:
Definition 2.3.1. Cardinal Sine Function:
The function denoted as sinc is given by (WOODWARD, 1953):

(2.21)sinc(x) =

{
sin(πx)

πx , x 6= 0
1, x = 0

Proposition 2.3.1. Trend Line for v Vectors:
A reference magnitude for αv and βv can be computed by:

(2.22)‖βv|vN=O‖ = g0t

√
sin2(φ) + cos2(φ)sinc2

(
ωIEt
2π

)

Where O denotes the null vector, hence expressing that the formula considers a
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stationary case.

Proof: From the formula for βv assuming vN = O:

(2.23)βv|vN=O = CN(0)
N(t) (O)− (O) +

∫ t

0
CN(0)

N(τ)

[(
ωN

IE

)×
(O)− gN

]
dτ

(2.24)βv|vN=O = −
∫ t

0
CN(0)

N(τ)

[
gN
]

dτ

Further assuming gN given by Equation (2.5) and:

(2.25)CN(0)
N(t) = CN(0)

E(0) CE(0)
E(t) CE(t)

N(t)

With CE(t)
N(t) given by Equation (A.13).

Another assumption, coherent with vN = O, is that CE(t)
N(t) = CE(0)

N(0).

This allows evaluating Equation (2.24) to:

(2.26)βv|vN=O = −
∫ t

0
CE(0)

N(0)C
E(0)
E(t) CE(0)

N(0)

 0
0
g0

 dτ

(2.27)βv|vN=O = −CE(0)
N(0)

(∫ t

0
CE(0)

E(τ)dτ

) cos(φ)
0

− sin(φ)

 g0

Now, deriving both sides of this equation with respect to time yields:

(2.28)
d
dt
[
βv|vN=O

]
= −CE(0)

N(0)C
E(0)
E(t)

 cos(φ)
0

− sin(φ)

 g0
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Noting as well that the squared norm of βv can be derived with respect to time,
yielding:

(2.29)
d
dt

[
‖βv|vN=O‖

2
]

= 2βv|vN=O
T d

dt
[
βv|vN=O

]
Since CE(0)

E(t) is a rotation around the z axis by and angle tωIE (GROVES, 2013):

(2.30)CE(0)
E(t) =

 cos(tωIE) − sin(tωIE) 0
sin(tωIE) cos(tωIE) 0

0 0 1


Thus, the integral in Equation (2.27) becomes:

(2.31)

∫ t

0
CE(0)

E(τ)dτ =
∫ t

0

 cos(τωIE) − sin(τωIE) 0
sin(τωIE) cos(τωIE) 0

0 0 1

 dτ

=
1

ωIE

 sin(tωIE) −1 + cos(tωIE) 0
1− cos(tωIE) sin(tωIE) 0

0 0 tωIE


Replacing this result in Equation (2.27):

βv|vN=O = − g0

ωIE
CE(0)

N(0)

 sin(tωIE) −1 + cos(tωIE) 0
1− cos(tωIE) sin(tωIE) 0

0 0 tωIE


 cos(φ)

0
− sin(φ)


(2.32)

Replacing this result in Equation (2.29), the rotation matrices times their trans-
posed counterparts become identity matrices, thus:

d
dt

[
‖βv|vN=O‖

2
]

=

2
go2

ωIE

 cos(φ)
0

− sin(φ)


T  sin(tωIE) −1 + cos(tωIE) 0

1− cos(tωIE) sin(tωIE) 0
0 0 tωIE


 cos(φ)

0
− sin(φ)


(2.33)
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Simplifying:

(2.34)
d
dt

[
‖βv|vN=O‖

2
]

= 2
go2

ωIE

(
2 cos(φ) sin(tωIE) + sin2(φ)tωIE

)

Then integrating this expression with respect to time:

(2.35)‖βv|vN=O‖
2 =

go2

ω2
IE

(
t2ω2

IE sin2(φ)− 2 cos2(φ)(cos(tωIE)− 1)
)

Then, taking the square root and rearranging, a better trendline is given by:

(2.36)‖βv|vN=O‖ = g0t

√√√√sin2(φ) + 4 cos2(φ)

(
sin2 (tωIE/2

)
ω2

IEt2

)

Which can be simplified with the cardinal sine function:

(2.37)‖βv|vN=O‖ = g0t

√
sin2(φ) + cos2(φ)sinc

(
tωIE

2π

)

Thus concluding the proof.

25



Figure 2.4 - Comparison of norms for v vectors over long term.
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2.3.3 Angle Between Vectors

Remark 2.3.2. Angles Match in Both Frames:
Since the same transformation represented by CN(0)

B(0) , transforms αv and αp into βv

and βp respectively, the angle between these pairs of vectors should be the same.

(2.38)−∆tol < 6
(
αv, αp

)
− 6

(
βv, βp

)
< ∆tol

Difference between angles, shown in Figure 2.5 can be monitored, and a set of
vectors can be declared invalid if the error (in absolute value) is above a certain
threshold.
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Figure 2.5 - Angle Discrepancy.
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Due to noise and integration errors, these angles will have a difference that may
be large, especially on the beginning of the simulation since these vectors are
initialized at zero. When using the PIF or VIF methods separately, this property
is not checked.
Remark 2.3.3. Minimum Angle:
The angle between such vectors may be zero, a situation that causes the TRIAD
method to diverge. Even at small angles, TRIAD method’s accuracy significantly
decreases.

It can be verified by checking that the angles between each pair of vectors ex-
pressed in the same frame is larger than a given tolerance as follows:

(2.39)6 αmin < 6
(
αv, αp

)

(2.40)6 βmin < 6
(

βv, βp
)

Such zero angle occurs in one simulation around 12s as can be seen in Figure 2.6.
Unless the attitude matrix to be estimated is the identity, it is also necessary that
such angles varies over time during the simulation, to provide enough informa-
tion for the computation.
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If the direction of vectors αv and βv remains constant for the whole experiment,
the same will be true for the vectors αp and βp. This causes the TRIAD method to
diverge but will also create a condition in which the SVD method has no observ-
ability of the full three-dimensional space, since the matrix K would have two
degenerate singular values.

Figure 2.6 - Computed Angles between α and β vectors.
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This check has not been employed for the current implementation of the pre-
sented algorithms, as the data mass caused angles to be consistently small as
shown in Figure 4.21, which is expected for short trajectories.

2.3.4 Norm Discrepancy

At each simulation step, the norms of the αv and βv can be computed and ide-
ally, they should be exactly the same. Nonetheless, as far as on-line estimation is
concerned, it is not possible to verify that the computed norms are accurate. It is
possible to compute the norms for the estimates and know that their discrepancy
comes from errors in their calculations and noise from measurements. To allow
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inferences to be drawn from the discrepancy, a normalization method is neces-
sary, since smaller errors might be more meaningful if the norms are smaller. Nor-
malization, in turn, requires a reference which ideally should be the true norm,
which once again is not available.

The selected surrogate for the true norm is the average of the computed norms.
In equation form:

(2.41a)ρv = 2
‖αv‖ − ‖βv‖
‖αv‖ + ‖βv‖

(2.41b)ρp = 2

∥∥αp
∥∥ − ∥∥βp

∥∥∥∥αp
∥∥ +

∥∥βp
∥∥

And the criteria being:
− ρmax

v < ρv < ρmax
v (2.42)

− ρmax
p < ρp < ρmax

p (2.43)

Simulated results show that, indeed, a relatively large error appears between the
vectors, shown in Figure 2.7. If the error was related only to the norm itself (and
not to the direction), the TRIAD method (that normalizes vectors) would output
the same result while the SVD method (that weights vectors by their norms when
they’re not unitary but assumes norms to be the same) would be slightly affected.
Significant norm discrepancies, however, are an indication that errors are still
relevant within the computed vectors.
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Figure 2.7 - Discrepancy Between Norms.
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2.3.5 Filtered Method (FIL)

While the TRIAD based method is mentioned as a base check, it has less mem-
ory of the computed vectors than other methods and is more susceptible to the
aforementioned flaws. This is solved by other methods with the accumulation
of vectors (either only v or p ones) on the K matrix as shown on Equation (2.14)
and Equation (2.18). By performing the aforementioned checks, the sets of vec-
tors used can be selected, or filtered, before being added to the matrix K, this
approach constitutes a modified method that takes long before providing any
output, which in turn can be considered close to convergence, unlike the previ-
ous methods (VIF, PIF and TRIAD), which provide no on-line indication to make
inferences about its convergence state. This is shown in Chapter 4.

The usage of condition checking described on the previous sections will be called
the “filtered" method and was originally proposed on (KOJA; LEITE FILHO, 2017).
It depends heavily on user designed parameters but allows better on-line assess-
ment of convergence. Its solution will be denoted with a FIL superscript and is
also determined with the same vectors but does not use all instances of those
vectors, thus not being updated on every cycle.

(2.44)KFIL
k =

{
KFIL

k−1, if conditions not met
βp(tk)

(
αp(tk)

)T + βv(tk) (αv(tk))T + KFIL
k−1, if conditions met
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A discussion of the results obtained with this method will be done in Chapter 4.

Two more methods are explored in this work, but are based on developments to
be presented on the next chapter, hence will be explained later on Section 3.8.
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3 COVARIANCE MODELING

In this chapter, covariance models for the αv and βv vectors are developed. Since
these models are intended to be part of an on-board algorithm, a concept of "Re-
cursive Formula" is introduced with a distinct definition in this work from what
would normally be found on standard mathematical textbooks. Some considera-
tion is later given to how to present covariance matrices and which insight they
can provide into computation errors of those vectors. Many tools are developed
to compute covariance with recursive formulas and applied to the current prob-
lem. This chapter is mostly constituted by original contributions of this work.

3.1 Recursive Formula

Definition 3.1.1. Recursive Formula:
For the purpose of this work, a recursive formula is defined on the following
basis. Given:

• An input sequence un

• An output sequence an

• A set of initial values a0, a1, · · · , ak

If the sequence an may be characterized with a formation law such as:

(3.1)an = f (n, un, an−1, an−2 · · · , ak · · · , a0)

Then a recursive formula is defined as a system of equations:

(3.2a)p0 = I(ak, ak−1, · · · , a0)

(3.2b)pn = G(pn−1, an−1, un)

(3.2c)an = H(pn, an−1)

Where the functions G and H can be computed in polynomial time and do not
depend on the index n. pn ∈ IRm is called an internal state with fixed dimension.
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This means that the recursive scheme may need knowledge of the initialization
of the sequence an, but at each step no additional memory is needed, and no
operation on the whole past sequence (neither an nor un) needs to be done to
compute the next value an+1. The advantage of such formulation is that it allows
implementation for real-time applications to run for an indefinitely long span of
time, provided it can run the first step.

As an example, let un be generic and:

(3.3)an =
n

∑
k=1

(nun)

The operation to determine an would require knowledge of the whole history of
un to be computed, thus it is not recursive. If the sum is rearranged as:

(3.4)an = nun + an−1

The operation still requires knowledge of the index n to be computed. Again, it is
not recursive. Rearranging again as:

(3.5)p0 = 0;

(3.6)pn = pn−1 + 1

(3.7)an = pnun + an−1

This creates a recursive formula for the same sequence as before.

It is not always possible nor simple to find one such formula. For instance, let
un ∈ IN:

(3.8)an =
n

∑
n−uk

f (uk)

No recursive formula is known for such situation, since the sum has variable size
and the state pn is required to have fixed size.
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For summations of that admit the structure shown in Equation (3.9) it is straight-
forward to create a recursive formula:

an =
n

∑
k=0

f (uk) (3.9)

This can be rewritten as:
p0 = 0 (3.10a)

pn = an−1 (3.10b)

an = f (uk) + pn (3.10c)

This will be used on Section 3.6

The general block diagram for a recursive formula is presented below.

Figure 3.1 - General block diagram for implementing a recursive formula.

3.2 Covariance of a Cross Product

It will be seen in Section 3.7 that the variance of the cross product between two
vectors will be used several times. While it is not theoretically hard to compute,
it is burdensome, and the developments made there will require a more compact
notation along with knowledge of some properties, which are introduced in this
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section.
Proposition 3.2.1. Covariance of Cross Product Operator:
Given two zero mean independent random vectors µ and ε with their respective
variances σ2

µ and σ2
ε . The variance of their cross-product can be computed by:

Var
[
µ×ε

]
11 = σ2

µ33
σ2

ε 22 − 2σ2
µ23

σ2
ε 23 + σ2

µ22
σ2

ε 33 (3.11a)

Var
[
µ×ε

]
12 = Var

[
µ×ε

]
21 = −σ2

µ33
σ2

ε 12 + σ2
µ23

σ2
ε 13 + σ2

µ13
σ2

ε 23 − σ2
µ12

σ2
ε 33 (3.11b)

Var
[
µ×ε

]
13 = Var

[
µ×ε

]
31 = σ2

µ23
σ2

ε 12 − σ2
µ22

σ2
ε 13 − σ2

µ13
σ2

ε 22 + σ2
µ12

σ2
ε 23 (3.11c)

Var
[
µ×ε

]
22 = σ2

µ33
σ2

ε 11 − 2σ2
µ13

σ2
ε 13 + σ2

µ11
σ2

ε 33 (3.11d)

Var
[
µ×ε

]
23 = Var

[
µ×ε

]
32 = −σ2

µ23
σ2

ε 11 + σ2
µ13

σ2
ε 12 + σ2

µ12
σ2

ε 13 − σ2
µ11

σ2
ε 23 (3.11e)

Var
[
µ×ε

]
33 = σ2

µ22
σ2

ε 11 − 2σ2
µ12

σ2
ε 12 + σ2

µ11
σ2

ε 22 (3.11f)

Noting that the value depends only on the respective covariance matrices, this
result will generally be denoted by the � operator:

(3.12)Var
[
µ×ε

]
=
(

σ2
µ � σ2

ε

)

Sketch Proof:

(3.13)Var
[
µ×ε

]
= Var


 0 −µz µy

µz 0 −µx

−µy µx 0


 εx

εy

εz




(3.14)Var
[
µ×ε

]
= Var


 µyεz − µzεy

µzεx − µxεz

µxεy − µyεx




Using an identity relating variance with expectancy of a random variable (Theo-
rem B.1.8):
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(3.15)

Var
[
µ×ε

]
=

= E


 µyεz − µzεy

µzεx − µxεz

µxεy − µyεx


 µyεz − µzεy

µzεx − µxεz

µxεy − µyεx


T 

− E


 µyεz − µzεy

µzεx − µxεz

µxεy − µyεx



E


 µyεz − µzεy

µzεx − µxεz

µxεy − µyεx





T

︸ ︷︷ ︸
0

The rest of the proof is omitted, but it consists purely on applying the linearity
of the expectancy operator (Theorem B.1.1) and isolating terms involving each
variable, then identifying their expectancy with the definition of the covariance. A
few properties of this operator that are trivial to verify procedurally are presented
next.
Proposition 3.2.2. � is Bilinear:
For deterministic scalars a and b:

(3.16)Var
[
aµ× (bε)

]
= a2b2(σ2

µ � σ2
ε )

Proposition 3.2.3. � is Commutative:

(3.17)
(

σ2
µ � σ2

ε

)
= (σ2

ε � σ2
µ)

Proposition 3.2.4. Pre-multiplication of second vector:
For any deterministic matrix C:

(3.18)Var
[
µ× (Cε)

]
=
(

σ2
µ �

(
Cσ2

ε CT
))

Proposition 3.2.5. Pre-multiplication on �:
For any matrix D ∈ M(IR)3×3 :

(3.19)Var
[
Dµ×ε

]
= D(σ2

µ � σ2
ε )DT

These results are also implicitly used and checked in the upcoming simulations,
such as the ones verifying Equation (3.52).
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3.3 General Error Equations

This section explains some considerations that are used on Chapter 2, which are
based on the previous concepts of this chapter.

3.3.1 Basic Errors Definitions

Starting with two definitions that are particular to this work:
Definition 3.3.1. Noise Type Error:
A signal εk is called a Noise Type Error if it is an Independent Identically dis-
tributed random sequence, with constant zero mean.

This implies that noise type errors are uncorrelated both over different experi-
ments and at distinct times of the same experiment.
Definition 3.3.2. Bias Type Error:
A random variable η is called a Bias Type Error if it is a constant over any given
experiment, but over different experiments, it is identically distributed with zero
expectancy.

This implies that knowing its value at a given instant of an experiment is the
same as knowing its value throughout the whole experiment. However, even if
the distribution of a Bias Type Error is known, the knowledge of its value during
one experiment offers no new information about its possible values for a different
experiment.

Notably no assumptions are made about the distribution of those errors other
than their mean and covariance. In all simulations presented in Section 3.6 and
in Chapter 4, these errors are modeled with random number generators that pro-
duce normally distributed values. However, all developments in Section 3.6 and
Section 3.7 make no such assumption.

In practical terms for simulations, Bias Type errors are picked at initialization
and kept constant for the whole simulation, while Noise Type errors must be
generated at every (relevant) cycle. These errors are the building blocks for the
models used as inputs to the algorithms that are to be developed. It is noted
that in general, sensor manufacturers should aim for creating products whose
measurements have errors of such type, for two main reasons:

• Bias Type Errors can be removed by calibration.
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• Noise Type Errors can be attenuated by filtering.

Both these tasks can be performed by Kalman Filtering techniques, as done for
instance in (KOJA et al., 2013). It is well understood that some sensors may have
slowly-varying errors, which are strongly correlated between time-steps, but lose
or diminish their correlation over long time periods, such as the ionospheric delay
in pseudorange measurements in GPS receivers (FARRELL, 2008). It is noted that
both types of errors are part of the models for sensors described on Section A.3,
where further considerations are given.

3.3.2 Handling Operations Involving Errors

Assume that a numerical computation of the integral of a generic deterministic
function f (t) is to be approximated by some weight factor times the integrand at
discrete steps such that:

(3.20)
∫ t

0
f (τ) dτ = ∑

k
wk fk(tk)

Noting that wk in this case is the integration time step but could be a different
weighting sequence depending on the numeric integration method. This is fur-
ther discussed in Section A.4.

Assume now the integrand involves a Noise Type Error ε as per Definition 3.3.1
that is additive to some other generic deterministic function g(t), this means:

(3.21)ĝ (t) = g (t) + ε(t)

(3.22)ĝk = gk + εk

Now the function to be integrated is f (t)g(t) while only the value of f (tk)ĝk is
available.

Then the product between f and g under an integral becomes:

(3.23)
∫ t

0
f (τ)ĝ (τ) dτ =

∫ t

0
f (τ)

(
g (τ) + ε(τ)

)
dτ

=
∫ t

0
f (τ)g (τ) dτ +

∫ t

0
f (τ)ε(τ)dτ
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And discretizing:

(3.24)
∫ t

0
f (τ)ĝ (τ) dτ ≈∑

k
wk fk ĝk

= ∑
k

wk fkgk + ∑
k

wk fkεk

Noting that ε is a random variable, it is desired to assess the expected value of the
computation being performed:

(3.25)E

[
∑
k

wk fk ĝk

]
= E

[
∑
k

wk fkgk + ∑
k

wk fkεk

]

From the linearity of the expectation operator (Theorem B.1.1) :

(3.26)E

[
∑
k

wk fk ĝk

]
= E

[
∑
k

wk fkgk

]
+ E

[
∑
k

wk fkεk

]

Noting that the term on the first expectation is not a random variable:

(3.27)E

[
∑
k

wk fkgk

]
= ∑

k
wk fkgk

Thus:

(3.28)E

[
∑
k

wk fk ĝk

]
= ∑

k
wk fkgk + E

[
∑
k

wk fkεk

]

Again applying linearity property:

(3.29)E

[
∑
k

wk fk ĝk

]
= ∑

k
wk fkgk + ∑

k
wk fkE [εk]

And from Definition 3.3.1, which requires E [εk] = 0 (∀k), therefore:

(3.30)E

[
∑
k

wk fk ĝk

]
= ∑

k
wk fkgk
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This implies that upon this kind of operation over a Noise Type Error, the ex-
pected error of the result is zero, which is a convenient result. This however might
seem a bit suspicious as the summing of errors should cause the error magnitude
to build up. However, this perception speaks about variance, rather than about
expectancy of this particular expression.

Proceeding similarly for the variance:

(3.31)

Var

[
∑
k

wk fk ĝk

]
=

E

(∑
k

wk fk ĝk

− E

[
∑
k

wk fk ĝk

])(
∑
k

wk fk ĝk − E

[
∑
k

wk fk ĝk

])T


From the above deduction:

Var

[
∑
k

wk fk ĝk

]
= E

(∑
k

wk fkgk + ∑
k

wk fkεk

−∑
k

wk fkgk

)(
∑
k

wk fkgk + ∑
k

wk fkεk −∑
k

wk fkgk

)T


(3.32)

(3.33)Var

[
∑
k

wk fk ĝk

]
= E

(∑
k

wk fkεk

)(
∑
k

wk fkεk

)T


It is notable that the actual values of g hold no influence over the covariance of
the error, yet naturally the values of fk do. Simplifying the previous equation:

(3.34)Var

[
∑
k

wk fk ĝk

]
= Var

[
∑
k

wk fkεk

]

That is, for the variance, only the non-deterministic part matters.
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The continuation of the deduction of the variance for this situation is provided
on Section 3.6.2, where the weighting coefficient has been incorporated into the
function fk for conciseness of notation. But generally, it does indeed increase over
time depending on the values of fk. Again, it is noted that on this section, and not
through the rest of this work, f ad g are generic time-dependent functions.

3.4 Working with Covariance Matrices

3.4.1 Estimating Covariance Matrices

Let, Xn be a k-dimensional stochastic process that is to be realized M times, and
xi

n be the i-th realization of such process. At each time-index n, an estimate K̂n for
the variance Kn of such process can be computed with two steps (STARK; WOODS,
2002), first computing the sample mean with:

(3.35)µ̂n =
M

∑
i=1

xi
n

M

Then the sample variance is computed with:

(3.36)K̂n =
M

∑
i=1

(
xi

n − µ̂n
) (

xi
n − µ̂n

)T

M − 1

Notice that in Equation (3.36), an empirical estimation of a covariance is found. It
required no prior knowledge of the structure or characteristics of the process, but
realizations were needed for the covariance estimation.

3.4.2 Illustrating Covariance Matrices

Let Xn be a 3-dimensional random process with Kn its covariance matrix. Then
Kn can be plotted in a graph with the index n on the x-axis and the values of
one component of Kn on the y axis. For convenience, it is possible to display all 9
entries in a 3x3 matrix of graphs.

An example of such graph is given in Figure 3.2, where a process described by
Equation (3.46) (presented later on Section 3.6.2) was simulated 50 times and its
covariance computed with Equation (3.36).

It is noted that the diagonal terms are always positive as a consequence of Theo-
rem B.1.6.
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Figure 3.2 - Example of Estimated Covariance Matrix of a Stochastic Process
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3.4.3 Creating Samples for Given Covariance

Most computing languages provide functions for generating either uniformly
distributed independent random variables in the interval [0, 1] or gaussian ran-
dom variables with zero mean and unit standard deviation. Most other kinds of
random variables can be obtained operating over the outputs of those functions.
For instance, let σ2

ε be a variance matrix, it admits a Cholesky decomposition
(LIMA, 1995) of the form:

(3.37)σ2
ε = LLT

With L a lower-triangular matrix. Then let G be a random vector to be gener-
ated by a function that outputs realizations of an independent gaussian random
variable with zero mean and unit standard deviation. The variance of G will be:

(3.38)
Var[G] = E[GGT]

= I
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However, the variance of LG is given by:

(3.39)

Var[LG] = E[LG(LG)T]
= E[LGGT LT]
= LE[GGT]LT

= LILT

= LILT

= σ2
ε

Therefore, LG has the desired variance of σ2
ε .

3.5 Working with Distributions

This section comments on practical matters related to the estimation and pre-
sentation of distribution functions. Focus is given on probability density func-
tions, but considerations would be analogous for cumulative distribution func-
tions. These consideration help understanding the graphs presented both later in
this chapter and on Chapter 4.

3.5.1 Illustrating Distributions

This section explains how to interpret some of the graphs shown later in this
chapter and in Chapter 4. In a single dimension, the distribution of a random
variable X can be plotted against the possible values x it may assume. For several
dimensions, one graph for each dimension could be plotted. For a stochastic pro-
cess, however, the additional dimension of time would need to be added, which
would require a 3D graph for each dimension, with one axis for possible values,
one axis for the time and another for the actual density function value. This is
achieved in a simpler manner by a color map plot. Take as an example a one-
dimensional sequence with the following distribution:

(3.40)fX(x, n) =
e−

x2
n

√
nπ

For this density function, the standard deviation σX =
√

n/2. It is possible to plot
for individual values of the index n, the probability density as a function of x,
as shown in Figure 3.3. A richer representation that better covers the variety of
time indexes is the usage of a color map, as shown in Figure 3.4. In this plot, the
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magnitude of the probability density is expressed in a color scale, shown left to
the graph region. The x-axis is the time-index, which replaces the need for the
multiple curves used in Figure 3.3. The possible values for the random variable
are shown in the y-axis. Hence each point (x, y, z) in the 3D plot is a triple: Time-
index, possible value and associated probability density.

Depending on the case it may add better contrast to the 3D figure if the color
mapping is in logarithmic scale, which is applied in Figure 3.5. Lines showing
the standard deviation multiplied by a few factors, namely {1,−1, 3,−3}, this
shows how the standard deviation envelopes the regions where density is higher
when the process has constant zero mean. These lines could be summed to the
mean value for non-zero mean processes as will be done in Chapter 4.

Figure 3.3 - Example of Graph for Probability Density.
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Figure 3.4 - Colormap plot for Probability Density.
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Figure 3.5 - Colormap plot for natural logarithm of Probability Density.

3.5.2 Kernel Density Estimation

Estimating the distribution of a random process or variable from samples is a
complex process with many issues of practical performance. Within the scope of
this work, it will be done only for illustrative purposes, to create the probability
density plots shown in Section 3.6, Section 4.2.4.3 and Section 4.2.4.5. Hence the
details of the methods are not to be explored, nor their fine accuracy should be
relevant.

A convenient although computationally expensive method for density estimation
is the Kernel Density Estimation method (BOWMAN; AZZALINI, 1997). Given n re-
alized samples xk and a Kernel function κ : IR → IR+, and estimation f̂X of the
probability density function fX can be computed with:

(3.41)f̂X(x) =
1

nh

n

∑
k=1

κ

(
x − xk

h

)

The parameter h is called the bandwidth of the smoothing window, and there
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are rules for picking optimal h values depending on the characteristics of the dis-
tribution to be estimated (BOWMAN; AZZALINI, 1997), a plot of these bandwidths
can be jointly presented. The optimal bandwidth for estimating a normal density
function is given by Equation (3.42):

(3.42)h =
(

4
3n

) 1
5

σ̃

Where σ̃ is an estimator for the standard deviation, computed with Equation
(3.43)

(3.43)σ̃ = median {|xk − x|} 1
0.6745

In Equation (3.43), x is the sample mean.

For the purpose of this work, a normal kernel is used, i.e.:

(3.44)κ(x) =
1√
2π

e−
x2
2

This technique is used herein for estimating the distributions of random se-
quences Xn and presenting them in graphs. For plotting purposes, a discrete set
of points xj is chosen based on the sample to be included in the vertical scale,
such that the matrix of points

(
n, xj

)
can be color mapped to f̂Xn(xj), which re-

quires a square matrix of points and their associated color scale values as shown
in Section 3.5.1. For better aesthetic results with the color plot, a normalization
over this discrete set of points is performed as:

(3.45)f̂ ∗Xn
(xj) =

f̂Xn(xj)

∑p f̂Xn(xp)

This normalization will specially distort sharp distributions if the amount of plot
points xj around the peaks is low, so the values obtained are not to be assumed ex-
act, nor are precisely represented in a color plot. It is again recalled that these tech-
niques serve mostly a visual purpose, and do not replace the simpler approach
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based on matrix charts presented in Section 3.4.2. The advantage of proceeding
with this normalization steams from the fact that most density plots begin with
a peak near zero for the first index and show growing covariance towards the
last, hence normalizing values at each index improves the color scale visibility
throughout the whole plot.

3.6 Covariance Propagation

This section contains part of the present work’s contributions. Computing the co-
variances of some particular cases of stochastic series allows constructing tools to
infer the expected accuracy of estimations. For each particular case, a recursive
formula is found (recalling Definition 3.1.1), such that it can be implemented in a
block diagram with only a few memory or delay blocks, which effectively means
low memory usage and no need to operate on the whole data history on each
cycle. It is noted that the current approach differs meaningfully from the covari-
ance propagation methods described on Section A.5, as will be seen when these
formulas are employed on Section 3.7.

3.6.1 Notation

Establishing the notation to be used throughout this section:

fk ∈ M(IR)3×3 is a function with known value for each k.

hk ∈ M(IR)3×3 is a function with known value for each k.

µ is a Bias Type Error as per Definition 3.3.2 with covariance σ2
µ

εk is a Noise Type Error as per Definition 3.3.1 with 3x3 covariance matrix σ2
ε

ξm is a Noise Type Error as per Definition 3.3.1 with 3x3 covariance matrix σ2
ξ

For each case, the propagation scheme is presented and its results against simu-
lated data are shown. fk and hk were generated randomly with zero mean and
kept the same values for each time index k between simulations. In the plots with
the estimated density, the predicted values for the standard deviation, which are
computed with the recursive formulas, are shown for comparison.
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3.6.2 Case 1: Sum of Known Gains Times Noise

Proposition 3.6.1. Recursive Computation of the Covariance of a Sum of
Known Gains Times Noise:
This case is described by the equation:

(3.46)Var

[
k

∑
k=1

fkεk

]
=

k

∑
k=1

fkσ2
ε f T

k

Figure 3.6 - Sample Estimation versus predicted variance for case 1 sequence. Blue for
predicted, black for sample estimated.
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Figure 3.7 - Color map plot of sample estimated probability density versus predicted
standard deviation for case 1 sequence.
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Figure 3.8 - Bandwidths used for Kernel estimation of case 1 sequence.
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3.6.3 Case 2: Sum of Known Gains Times Bias Cross Product Matrix Times
Case 1

Proposition 3.6.2. Sum of Known Gains Times Bias Cross Product Matrix
Times Case 1:
This case is described by the equation:

(3.47)Var

[
m

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Hm (Gm) HT

m − 2
(

JmHm
T
)
⊕

+ Km

With:

(3.48)Gm =
m

∑
k=1

(
σ2

µ �
(

fkσ2
ε f T

k

))

(3.49)Jm =
m

∑
k=1

Hk−1

(
σ2

µ �
(

fkσ2
ε f T

k

))
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(3.50)Km =
m

∑
k=1

(
Hk−1

(
σ2

µ �
(

fkσ2
ε f T

k

))
Hk−1

T
)

(3.51)Hk =
k

∑
i=1

hi

Where the auxiliary sequences are initialized at zero, with H0 = 0.

Figure 3.9 - Sample Estimation versus predicted variance for case 2 sequence. Blue for
predicted, black for sample estimated.
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Figure 3.10 - Color map plot of sample estimated probability density versus predicted
standard deviation for case 2 sequence.
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Figure 3.11 - Bandwidths used for Kernel estimation of case 2 sequence.
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It is recalled that the operator �was described in Proposition 3.2.1 and Equation
(3.12), and the symbol ⊕ denotes the matrix symmetric part (Definition C.1.4).

3.6.4 Case 3: Sum of Known Gains Times Noise Cross Product Matrix Times
Case 1

Proposition 3.6.3. Sum of Known Gains Times Noise Cross Product Matrix
Times Case 1:
This case is described by the equation:

(3.52)Var

[
n

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
= hn (Ln) hT

n + Var

[
n−1

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]

With:

(3.53)Ln =
n

∑
k=1

(
σ2

ξ �
(

fkσ2
ε f T

k

))
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Figure 3.12 - Sample Estimation versus predicted variance for case 3 sequence. Blue for
predicted, black for sample estimated.
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Figure 3.13 - Color map plot of sample estimated probability density versus predicted
standard deviation for case 3 sequence.
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Figure 3.14 - Bandwidths used for Kernel estimation of case 3 sequence.
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3.6.5 Case 4: Sum of Known Gains Times Case 1

Proposition 3.6.4. Sum of Known Gains Times Case 1:
This case is described by the equation:

(3.54)Var

[
m+1

∑
k=1

hk

k

∑
i=1

fiεi

]
− Var

[
m

∑
k=1

hk

k

∑
i=1

fiεi

]
= hm+1Wm+1hT

m+1 + 2
(

hm+1

(
WmHT

m − Xm

))
⊕

With:

(3.55a)Hk =
k

∑
i=1

hi

(3.55b)Qk = fiσ
2
ε f T

i
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(3.55c)Wk = Qk + Wk−1

=

(
k

∑
i=1

Qi

)

(3.55d)Xk = QkHT
k−1 + Xk−1

=
m

∑
k=1

QkHT
k−1

All such sequences are initialized with zero, thus H0 = 0, W0 = 0 and X0 = 0.

Figure 3.15 - Sample Estimation versus predicted variance for case 4 sequence. Blue for
predicted, black for sample estimated.
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Figure 3.16 - Color map plot of sample estimated probability density versus predicted
standard deviation for case 4 sequence.
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Figure 3.17 - Bandwidths used for Kernel estimation of case 4 sequence.
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3.7 Error Analysis of the Methods

This section describes some approaches employed to assess the accuracy of the
discussed methods. It develops error models for the αv and βv vectors, then at-
tempts to relate such quantities with the expected accuracy of the estimated atti-
tude. Test are conducted to validate these models, and presented in Section 4.2.4.

Usually, measurements are modeled as random variables, composed of a deter-
ministic quantity being measured modified by another random variable associ-
ated with the uncertainty of the measurement. However, for the purpose of this
section, measurements are considered as deterministic values (they are actually
known), while the correct quantity being measured, and the associated noise are
both considered to be random variables. From a purely mathematical point of
view, the choice between these approaches is arbitrary. Within this concept, the
variances of the errors δαv = α̂v − αv and δβv = β̂v − βv can be computed based
on the statistics of the sensor models and the measured values, by removing the
true unknown values from the expressions for these vectors.
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To illustrate this idea, usually if a measurement â is performed over a real value
a, with additive noise X:

(3.56)â = a + X

Where the idea of X being random is transmitted to the measurement â. However,
in this section, the consideration made is that â is a deterministic value, and alike
in the previous equation:

(3.57)a = â − X

This expresses that in this perspective, the real value a is a seen as random vari-
able.

3.7.1 Alpha Error

In this section, the methods from Chapter 3 are employed to estimate a variance
for the error in vector αv, namely δαv.

Recalling the formula for αv:

(3.58)αv =
∫ t

0
CB(0)

B(τ) f Bdτ

Notably, CB(0)
B(t) is another integral gain:

(3.59)CB(0)
B(t) =

∫ t

0
CB(0)

B(τ)

(
ωB

IB

)×
dτ

Using an approach similar to what (TITTERTON; WESTON, 2004) applies to model
the structure of the error in attitude propagation, let’s assume that an error of the
following form is admissible:

(3.60)ĈB(0)
B(t) = CB(0)

B(t)

(
I + δΩ×

)
Rearranging:

(3.61)CB(0)
B(t) = ĈB(0)

B(t)

(
I − δΩ×

)
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Note that this is a small angle approximation, which can be found with Equation
(C.49) by approximating sine functions to their arguments and cosines to one,
while neglecting second order terms.

Assuming that the errors derives from the integration of the gyro measurement
error described in Section A.3.2, the following structure is proposed for the dy-
namics of δΩ:

(3.62)
d
dt

[δΩ] = µ + ε
(

ωB
IB

)
Recalling that µ is a Bias Type Error (Definition 3.3.2) and ε

(
ωB

IB
)

is the Noise
Type Error (Definition 3.3.1) associated with the measurement of ωB

IB. Notably,
this assumption is an approximation that models the magnitude of errors, but the
actual error in computing the rotation of the body is not directly expressed by this
equation, similar to the assumption from Equation (3.60), used by (TITTERTON;

WESTON, 2004).

Alternatively, integrating:

(3.63)δΩ = tµ +
∫ t

0
ε
(

ωB
IB

)
dτ

Which discretizes into:

(3.64)δΩ = (ndt) µ +
n

∑
k=1

wkεk

(
ωB

IB

)
=

n

∑
k=1

wk

(
µ + εk

(
ωB

IB

))

Where wk is a weighting coefficient as described in Section A.4, which equals the
integration step dt for the purpose of this section.

Since εk
(
ωB

IB
)

is assumed uncorrelated from the bias:

(3.65)Var
[
εk

(
ωB

IB

)]
= σ2

ω
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Therefore, noting that this is a particular case of Equation (3.46):

(3.66)Var
[∫ t

0
ε
(

ωB
IB

)
dτ

]
= Var

[
n

∑
k=1

wkεk

(
ωB

IB

)]

=

(
n

∑
k=1

w2
k

)
σ2

ω

And a variance can be roughly estimated for δΩ:

(3.67)Var [δΩ] = t2σ2
µ + t(dt)σ2

ω

Note that this estimation is merely for qualitative assessments, since a more com-
plex error model is to be derived later. It does however show that the uncertainty
(in the sense of standard deviation) in angle alone tends to grow linearly with
time, since its variance grows with the square of time, but starts at zero. It will be
shown that the error in αv inherits some of those characteristics.

The model for the accelerometer is presented in detail on Section A.3.1, but it is
expressed by:

(3.68)f B = f̂ B − η − ε
(

f B
)

With η a Bias Type Error and ε
(

f B) a Noise Type Error.

Equation (3.68) discretizes into:

(3.69)f B
k = f̂ B

k − η − εk

(
f B
)

Recalling the formula for αv

(3.70)αv =
∫ t

0
Cb(0)

b(τ) f Bdτ

Define δαv as the estimation error of αv:
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(3.71)δαv = α̂v − αv

The goal is to derive the variance of δαv. Starting from its definition and the for-
mula for αv:

(3.72)α̂v − αv =
∫ t

0
Ĉb(0)

b(τ) f̂ Bdτ −
∫ t

0
Cb(0)

b(τ) f Bdτ

Applying Equation (3.61):

(3.73)α̂v − αv =
∫ t

0
Ĉb(0)

b(τ) f̂ Bdτ −
∫ t

0
Ĉb(0)

b(τ)

(
I − δΩ×

)
f Bdτ

Applying Equation (3.68):

(3.74)α̂v − αv =
∫ t

0
Ĉb(0)

b(τ) f̂ Bdτ −
∫ t

0
Ĉb(0)

b(τ)

(
I − δΩ×

) [
f̂ B − η − ε

(
f B
)]

dτ

Now all the remaining terms are either known values or random variables. Rear-
ranging:

(3.75)α̂v − αv =
∫ t

0
Ĉb(0)

b(τ) f̂ Bdτ −
∫ t

0
Ĉb(0)

b(τ)

[
f̂ B − η − ε

(
f B
)]

dτ

+
∫ t

0
Ĉb(0)

b(τ)δΩ×
[

f̂ B − η − ε
(

f B
)]

dτ

(3.76)α̂v − αv =
∫ t

0
Ĉb(0)

b(τ)

[
η + ε

(
f B
)]

dτ +
∫ t

0
Ĉb(0)

b(τ)δΩ× f̂ Bdτ

−
∫ t

0
Ĉb(0)

b(τ)δΩ×
[
η + ε

(
f B
)]

dτ

This completes the case without substitution of δΩ.

Recalling Equation (3.64):

(3.77)δΩ =

(
m

∑
k=1

wk

(
µ + εk

(
ωB

IB

)))
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Where the index n is switched to m because it refers to an internal integral.

For simplicity of notation, let:

(3.78)Ck = Ĉb(0)
b(tk)

And replacing the previous integrals with summations over the index m and co-
efficient am corresponding to the time step:

(3.79)α̂v − αv =
n

∑
m=1

amCm

{[
η + εm

(
f B
)

+
(

η + εm

(
f B
)
− f̂ B

m

)×( m

∑
k=1

wk

(
µ + εk

(
ωB

IB

)))]}

(3.80)

α̂v − αv =
n

∑
m=1

amCm
{[

η
]}

+
n

∑
m=1

amCm

{[
εm

(
f B
)]}

+
n

∑
m=1

amCm

{[(
η
)×( m

∑
k=1

wk

(
µ + εk

(
ωB

IB

)))]}

+
n

∑
m=1

amCm

{[(
εm

(
f B
))×( m

∑
k=1

wk

(
µ + εk

(
ωB

IB

)))]}

+
n

∑
m=1

amCm

{[(
− f̂ B

m

)×( m

∑
k=1

wk

(
µ + εk

(
ωB

IB

)))]}
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Further separating the summations:

α̂v − αv =
n

∑
m=1

amCmη +
n

∑
m=1

amCm εm

(
f B
)

+
n

∑
m=1

amCm

{[(
η
)×( m

∑
k=1

wkµ

)]}

+
n

∑
m=1

amCm

{[(
η
)×( m

∑
k=1

wkεk

(
ωB

IB

))]}

+
n

∑
m=1

amCm

{[(
εm

(
f B
))×( m

∑
k=1

wkµ

)]}

+
n

∑
m=1

amCm

{[(
εm

(
f B
))×( m

∑
k=1

wkεk

(
ωB

IB

))]}

+
n

∑
m=1

amCm

{[(
− f̂ B

m

)×( m

∑
k=1

wkµ

)]}

+
n

∑
m=1

amCm

{[(
− f̂ B

m

)×( m

∑
k=1

wkεk

(
ωB

IB

))]}
(3.81)

Assigning letter names for the previous terms:

(3.82)A =
n

∑
m=1

amCmη

(3.83)B =
n

∑
m=1

amCm

{
εm

(
f B
)}

(3.84)C =
n

∑
m=1

amCm

{[(
η
)×( m

∑
k=1

wkµ

)]}

(3.85)D =
n

∑
m=1

amCm

{[(
η
)×( m

∑
k=1

wkεk

(
ωB

IB

))]}

(3.86)E =
n

∑
m=1

amCm

{(
εm

(
f B
))×( m

∑
k=1

wkµ

)}
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(3.87)F =
n

∑
m=1

amCm

{(
εm

(
f B
))×( m

∑
k=1

wkεk

(
ωB

IB

))}

(3.88)G =
n

∑
m=1

amCm

{[(
− f̂ B

m

)×( m

∑
k=1

wkµ

)]}

(3.89)H =
n

∑
m=1

amCm

{[(
− f̂ B

m

)×( m

∑
k=1

wkεk

(
ωB

IB

))]}

Then, recalling Theorem B.1.3:

Var [A + B + C + D + E + F + G + H] = Var [A] + Var [B] + Var [C] + Var [D] + Var [E]
+ Var [F] + Var [G] + Var [H] + 2 (Cov [A, B]

+ Cov [A, C] + Cov [A, D] + Cov [A, E]
+ Cov [A, F] + Cov [A, G] + Cov [A, H]
+ Cov [B, C] + Cov [B, D] + Cov [B, E]
+ Cov [B, F] + Cov [B, G] + Cov [B, H]
+ Cov [C, D] + Cov [C, E] + Cov [C, F]

+ Cov [C, G] + Cov [C, H] + Cov [D, E]
+ Cov [D, F] + Cov [D, G] + Cov [D, H]

+ Cov [E, F] + Cov [E, G] + Cov [E, H]
+ Cov [F, G] + Cov [F, H] + Cov [G, H])⊕

(3.90)

First, the cross-covariance terms may be handled. Generally it suffices to use The-
orem B.1.10 (Expectancy of Independent Variables) or Theorem B.1.2 (Stacked Ex-
pectation), and recall that the random variables η, µ, εm

(
f B) and εk

(
ωB

IB
)

have
zero expectancy:

(3.91)
Cov [A, B] = E

( n

∑
m=1

amCm {η}
)(

n

∑
m=1

amCm

{[
εm

(
f B
)]})T


= 0
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(3.92)
Cov [A, C] = E

( n

∑
m=1

amCmη

)(
n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkµ

))T


= 0

(3.93)
Cov [A, D] = E

( n

∑
m=1

amCmη

)(
n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0

(3.94)
Cov [A, E] = E

( n

∑
m=1

amCmη

)(
n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkµ

))T


= 0

Cov [A, F] = E

( n

∑
m=1

amCmη

)(
n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0
(3.95)

(3.96)
Cov [A, G] = E

( n

∑
m=1

amCmη

)(
n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkµ

))T


= 0

Cov [A, H] = E

( n

∑
m=1

amCmη

)(
n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0
(3.97)
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(3.98)
Cov [B, C] = E

( n

∑
m=1

amCm εm

(
f B
))( n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkµ

))T


= 0

Cov [B, D] = E

( n

∑
m=1

amCm εm

(
f B
))( n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0
(3.99)

Cov [B, E] = E

( n

∑
m=1

amCm εm

(
f B
m

))( n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkµ

))T


= 0
(3.100)

Cov [B, F] = E

( n

∑
m=1

amCmεm

(
f B
m

))( n

∑
m=1

amCm

(
f B
m

)×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0
(3.101)

Cov [B, G] = E

( n

∑
m=1

amCm

{[
εm

(
f B
)]})( n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkµ

))T


= 0
(3.102)

Cov [B, H] = E

( n

∑
m=1

amCm εm

(
f B
))( n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0
(3.103)
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Cov [C, D]

= E

( n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkµ

))(
n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0
(3.104)

Cov [C, E]

= E

( n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkµ

))(
n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkµ

))T


= 0
(3.105)

(3.106)Cov [C, F]

= E

( n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkµ

))(
n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0

Cov [C, G] = E

( n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkµ

))(
n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkµ

))T


= 0
(3.107)

Cov [C, H]

= E

( n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkµ

))(
n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0
(3.108)

(3.109)Cov [D, E]

= E

( n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkεk

(
ωB

IB

)))( n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkµ

))T


= 0
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(3.110)Cov [D, F]

= E

( n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkεk

(
ωB

IB

)))( n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0

Cov [D, G]

= E

( n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkεk

(
ωB

IB

)))( n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkµ

))T


= 0
(3.111)

(3.112)Cov [D, H]

= E

( n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkεk

(
ωB

IB

)))( n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0

(3.113)Cov [E, F]

= E

( n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkµ

))(
n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0

Cov [E, G]

= E

( n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkµ

))(
n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkµ

))T


= 0
(3.114)

(3.115)Cov [E, H]

= E

( n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkµ

))(
n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0
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(3.116)Cov [F, G]

= E

( n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkεk

(
ωB

IB

)))( n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkµ

))T


= 0

(3.117)
Cov [F, H] = E

( n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkεk

(
ωB

IB

)))
· · ·

(
n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0

(3.118)Cov [G, H]

= E

( n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkµ

))(
n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkεk

(
ωB

IB

)))T


= 0

Finally, it is concluded that all the cross-covariance terms are zero. Therefore, the
variance is reduced to:

Var [A + B + C + D + E + F + G + H] = Var [A] + Var [B] + Var [C] + Var [D]
+ Var [E] + Var [F] + Var [G] + Var [H]

(3.119)

Analyzing the terms individually to compute their respective variances, used for-
mulas are recalled when needed:

(3.120)
A =

n

∑
m=1

amCmη

⇒ Var [A]

=

(
n

∑
m=1

amCmη

)
σ2

η

(
n

∑
m=1

amCmη

)T
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(3.121)B =
n

∑
m=1

amCm εm

(
f B
)

B is reduced to Equation (3.46).

(3.122)C =
n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkµ

)

=

(
n

∑
m=1

amCm(mdt)

) (
η
)×

µ

(3.123)⇒ Var [C]

=

(
n

∑
m=1

amCm(mdt)

)(
σ2

η � σ2
µ

)( n

∑
m=1

amCm(mdt)

)T

(3.124)D =
n

∑
m=1

amCm
(
η
)×( m

∑
k=1

wkεk

(
ωB

IB

))

D is reduced to Equation (3.47).

(3.125)

E =
n

∑
m=1

amCm

(
εm

(
f B
))×( m

∑
k=1

wkµ

)

=
n

∑
m=1

amCm(tm − t0)
{(

εm

(
f B
))×

µ

}
= −

n

∑
m=1

amCm(tm − t0)(µ)×εm

(
f B
)

E is reduced to Equation (3.47).

(3.126)F =
n

∑
m=1

amCm

(
εm

(
f B
))×( n

∑
k=1

wkεk

(
ωB

IB

))
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F is reduced to Equation (3.52).

(3.127)

G =
n

∑
m=1

amCm

{[(
− f̂ B

m

)×( m

∑
k=1

wkµ

)]}

=

{
n

∑
m=1

amCm

[(
− f̂ B

m

)×( m

∑
k=1

wk

)]}
µ

=

{
n

∑
m=1

amCm

[(
− f̂ B

m

)×
(tm − t0)

]}
µ

G is reduced to a simpler case, represented by Theorem B.1.4.

(3.128)H =
n

∑
m=1

amCm

(
− f̂ B

m

)×( m

∑
k=1

wkεk

(
ωB

IB

))

H is reduced to Equation (3.54).

3.7.2 Beta Error

Analogous to the previous section, the variance for δβv can be estimated, though
with a much simpler development.

To approach the error for βv, the velocity provided by the GPS is assumed syn-
chronized with the IMU data, the GPS provides velocity outputs in NED ( N )
frame and position fixes in terrestrial (E) coordinates.

The models for the GPS measurements are discussed in Section A.3.3, which in-
troduces Equation (A.29) and Equation (A.30). These equations are reproduced
below, within them, a measurement is denoted with an over-hat, a Noise Type
Error as defined by Definition 3.3.1 is denoted by ε(.).

(3.129)r̂E = rE + ε
(

rE
)

(3.130)v̂N = vN + ε
(

vN
)
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Because the system is GPS aided, CN(t)
N(0) , ωN

EN and ωN
IN are assumed to have neg-

ligible errors, since they are all functions of position with small variations over
displacements in the order of magnitude of the GPS position errors. Thus, recall-
ing the expression for βv and rewriting for the estimation case:

(3.131)βv = CN(0)
N(t) vN − vN (0) +

∫ t

0
CN(0)

N(τ)ω
N
IE × vNdτ −

∫ t

0
CN(0)

N(τ)g
ndτ

(3.132)β̂v = CN(0)
N(t) v̂N − v̂N (0) +

∫ t

0
CN(0)

N(τ)ω
N
IE × v̂Ndτ −

∫ t

0
CN(0)

N(τ)g
Ndτ

Therefore:

(3.133)β̂v − βv = δβv

= CN(0)
N(t) ε

(
vN
)
− ε

(
vN(0)

)
+
∫ t

0
CN(0)

N(τ)ω
N
IE × ε

(
vN
)

dτ

Recalling that integration is done with a weighting sequence with coefficients wk:

(3.134)δβv = CN(0)
N(t) ε

(
vN
)
− ε

(
vN(0)

)
+ ∑

k
wk

(
CN(0)

N(tk)

(
ωN

IE

)×)
ε
(

vN
)

Then notably, as per the reasoning presented in Section 3.3.2:

(3.135)E
[
δβv
]

= O

With O denoting the null vector. Then for the variance:

Var
[
δβv
]

= CN(0)
N(t) σ2

v

(
CN(0)

N(t)

)T
+ σ2

v + ∑
k

w2
kCN(0)

N(tk)

(
ωN

IE

)×
σ2

v

(
CN(0)

N(tk)

(
ωN

IE

)×)T

(3.136)

Apart from the terms related to the velocity at beginning and end, the variance
falls back to a Case 1 propagation Equation (3.46).
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3.7.3 From Variance to Angle Error

In the previous two sections, the variances for αv and βv were developed. Both
vectors are ultimately used to compute an attitude and the interest in their error
lies in estimating the error for such attitude. A method to fully achieve this goal is
beyond the scope of the current work. Instead, a proxy that helps linking the es-
timated errors of these vectors to the performance of the alignment methods can
be developed based on the tools introduced in this section. These developments
are independent on which vector is being used, but βv is used as a generic vector.

3.7.3.1 Expected Angle Method (OPT)

Since Var [δβv]k is a covariance matrix, it is desired to determine the effect on
the direction of βv . Assuming θ is the angle between estimated and true vector.
Stating that:

E
[(

β̂v − βv

) (
β̂v − βv

)T
]

= Var
[
δβv
]

= E
[(

β̂v β̂v
T) − (βv β̂v

T) − (β̂vβT
v

)
+
(

βvβT
v

)]
(3.137)

(3.138)Var
[
δβv
]

= E
[(

β̂v β̂v
T)]

+ E
[(

βvβT
v

)]
− E

[(
βv β̂v

T)
+
(

β̂vβT
v

)]

Noting that β̂v is a random variable, but βv is not:

(3.139)Var
[
δβv
]

= E
[(

β̂v β̂v
T)]

+
(

βvβT
v

)
− E

[(
βv β̂v

T)
+
(

β̂vβT
v

)]
Then taking the trace on the previous expression and using Equation (C.22):

(3.140)Tr
(
Var

[
δβv
])

= E
[∥∥∥β̂v

∥∥∥2
]

+ ‖βv‖2 − E
[
Tr
(

βv β̂v
T)

+ Tr
(

β̂vβT
v

)]

Using Theorem C.1.5:

(3.141)Tr
(
Var

[
δβv
])

= E
[∥∥∥β̂v

∥∥∥2
]

+ ‖βv‖2 − 2E
[

β̂v
T

βv

]
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Rearranging:

(3.142)E
[

β̂v
T

βv

]
=

E
[∥∥∥β̂v

∥∥∥2
]

+ ‖βv‖2 − Tr
(
Var

[
δβv
])

2

Also assuming, as an approximation, that the norm of the estimated vector is
much larger than the actual error, allows setting:

(3.143)E
[∥∥∥β̂v

∥∥∥2
]
≈
∥∥∥β̂v

∥∥∥2

Within this assumption and recalling that the value of βv is not available online,
it is possible to replace the value of its module with the computed module of v:

(3.144)‖βv‖2 ≈
∥∥∥β̂v

∥∥∥2

Thus, Equation (3.142) is reduced to:

(3.145)E
[

β̂v
T

βv

]
=
∥∥∥β̂v

∥∥∥2
−

Tr
(
Var

[
δβv
])

2

Recalling that the dot product between two vectors allows computing the cosine
of the angle between them:

(3.146)cos θβ =
β̂v

T
βv√(

β̂v
T

β̂v

) (
βT

v βv
)

Thus, applying the expectancy operator:

(3.147)E
[
cosθβ

]
= E

 β̂v
T

βv√(
β̂v

T
β̂v

) (
βT

v βv
)
 = E

 β̂v
T

βv∥∥∥β̂v

∥∥∥ ‖βv‖



Reusing the previous approximations:
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(3.148)E

 β̂v
T

βv∥∥∥β̂v

∥∥∥ ‖βv‖

 =
E
[

β̂v
T

βv

]
∥∥∥β̂v

∥∥∥2

Therefore:

(3.149)E
[
cosθβ

]
=

E
[

β̂v
T

βv

]
∥∥∥β̂v

∥∥∥2

Applying this result into Equation (3.145):

(3.150)E
[
cosθβ

] ∼= 1−
Tr
(
Var

[
δβv
])

2
∥∥∥β̂v

∥∥∥2

Thus an estimation for the direction error of β̂v can be given by:

(3.151)θβ = acos

1−
Tr
(
Var

[
δβv
])

2
∥∥∥β̂v

∥∥∥2


For simulation purposes, an arc-cosine function cannot receive an argument out-
side the [−1, 1] interval. Thus, the input value is constrained to lie within the in-
tervals [cos(θα)min, 1] and [cos(θβ)min, 1], with this two variables being simulation
parameters, listed on Section 4.1.

A similar calculation may be proceeded for αv, to obtain θα from the variance of
δαv.

Finally, a first rough estimation of the expected error proxy for the methods can
be obtained by:

(3.152)θest
err = θα + θβ

An assessment of this estimate is the subject of Chapter 4. It is noted that the
expectation of the error is given, but with no likelihood of the actual error being
more or less than the computed amount.
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3.7.3.2 Bounded at Probability Method (OPTc)

A minor extension from a result known in the literature as Chebyschev Inequality
(Theorem B.1.13) is required in this section.
Proposition 3.7.1. Chebyschev Inequality (Multivariate):
Let Let X be an arbitrary n-dimensional random variable with mean µ and vari-
ance matrix K, then an upper bound on how likely X is to deviate from its mean,
as measured by the vector norm, is given by:

(3.153)P
[
‖X − µ‖ ≥ k

√
Tr(K)

]
≤ 1

k2

Proof: From Definition B.1.20, it follows:

(3.154)K =
∫

IRn
(x − µ)(x − µ)T fX(x)dx

Applying the trace operator:

(3.155)Tr(K) =
∫

IRn
Tr((x − µ)(x − µ)T) fX(x)dx

Using Theorem C.1.5:

(3.156)Tr(K) =
∫

IRn
‖x − µ‖2 fX(x)dx

Proceeding in analogous manner to the unidimensional case:

(3.157)
∫

IRn
‖x − µ‖2 fX(x)dx ≥

∫
‖x−µ‖≥δ

‖x − µ‖2 fX(x)dx

(3.158)
∫
‖x−µ‖ ≥δ

‖x − µ‖2 fX(x)dx ≥ δ2
∫
‖x−µ‖≥δ

fX(x)dx

(3.159)δ2
∫
‖x−µ‖ ≥δ

fX(x)dx = δ2P
[
‖x − µ‖ ≥ δ

]
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Therefore:

(3.160)Tr(K) ≥ δ2P
[
‖x − µ‖ ≥ δ

]
And setting δ = k

√
Tr(K) completes the proof:

(3.161)
1
k2 ≥ P

[
‖x − µ‖ ≥ k

√
Tr(K)

]
Another approach to estimate an angle error relies on Proposition 3.7.1. Noting
that βv is estimated as β̂v and assuming again that this estimation is unbiased,
Chebyschev’s multivariate inequality allows asserting:

(3.162)P
[∥∥∥β̂v − βv

∥∥∥ ≥ k
√

Tr
(
Var

[
δβv
])]
≤ 1

k2

Noting that a probability p of the estimate being within the proposed bound can
also be related to the parameter k by:

(3.163)k =
1√

1− p

Then, an upper bound in the error vector length is given. Therefore the estimation
is known to be inside a sphere centered at the actual value with 1− k−2 proba-
bility, as illustrated by Figure 3.18. Within this assumption, the largest possible
angle between βv and β̂v occurs when the latter is tangent to the sphere.

Figure 3.18 - Worst case for angle error within given probability.
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In this case, the estimated worst angle error at 1− k−2 probability is given by:

(3.164)θ
p
β = arctan

k
√

Tr(Var
[
δβv
]
)∥∥∥β̂v

∥∥∥


This approach is notably pessimistic, as the Chebyschev inequality is known to
provide a generally loose bound (STARK; WOODS, 2002) and because the vector
being tangent to the sphere is another very worst case. Hence, a likewise loose
value can be chosen for p, as will be shown on Chapter 4.

And therefore, the expected error at probability p is given by:

(3.165)θ
p
err = θ

p
α + θ

p
β

Once more, this derivation has taken no consideration for the characteristics of
the TRIAD method. Its results are discussed in the next chapter.

3.8 Employing The Estimated Error

Once an expected error θerr can be computed, it can be used on-line as a reference.
First, it could provide a reference of the accuracy level of the performed align-
ment. On a second approach, knowing that the estimation quality varies over
time, both improving or decreasing depending on the trajectory, the alignment
computed at each time step can be either kept or discarded against a previously
computed value associated with better estimated accuracy. While this approach
may not yield the best possible result due to both the random nature of the pro-
cess and the simplicity of disregarding the evolution of the error caused by prop-
agation alone, it could provide a significant improvement in quality and timeli-
ness over the methods explained in Chapter 2, these ideas are further discussed
in Chapter 4. The results obtained with this strategy will be presented in Chapter
4 and labeled as the OPT and OPTc methods if the reference used is the estimated
error or the error bound respectively. Since this computation was performed for
the αv and βv vectors only, these are the vectors accumulated in the K matrix,
causing the methods to behave similarly to the VIF method if the computed error
proxies are always decreasing.
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4 SIMULATIONS

This chapter explains the simulation setup and obtained results. Attention is
given to remarks on general characteristics of the methods previously described
that also required proper illustration from simulation results. The performances
obtained are described for a particular case on Section 4.2.3 while the statistics es-
timated with Monte-Carlo simulations are shown on Section 4.2.4. Sections Sec-
tion 4.2.1 and Section 4.2.2 provide important background on how to interpret
the presented results. Notes on how the simulation was designed are given on
Section 4.1.

4.1 Simulation Setup

Simulated data for a sounding rocket flight was used. The idea was to simulate
the algorithm starting either on propelled stage or close to zero gravity. Hence
for the result charts, the simulation may begin at different instants, before which
no data is shown. The simulated flight is the same shown through the figures in
Section 4.1.1 and Section 4.1.2, finishing at 60s.

It is recalled that many basic operations are performed using functions adapted
from (CARRARA, 2015).

4.1.1 Simulated Trajectory

The raw data used for all simulations in this chapter are the reference (noise-free)
IMU measurements at 100Hz frequency. These are the specific force and angular
rate of the Body frame with respect to the Inertial frame expressed in Body Frame.
They are shown in Figure 4.1 and Figure 4.2.
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Figure 4.1 - Simulated Reference Specific Force over the IMU relative to Inertial Frame
Expressed in Body Frame.
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Figure 4.2 - Simulated Reference Angular Rate of IMU Relative to Inertial Frame ex-
pressed in Body Frame.
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The beginning of the trajectory presents a high dynamics environment, which is
beyond the operating range of most consumer and commercial application GPS
receivers, but there are reports in the literature describing receivers for this very
application being designed to maintain tracking ability up to 40g (RONCAGLIOLO

et al., 2006), and earlier developments that were tested in circular trajectories to
track pseudoranges while subjected to 50g (HURD et al., 1987).

4.1.2 Initial Parameters

Some parameters need to be set at time t = 0s so that they can be propagated
until the end of the simulation at the IMU frequency with Runge-Kutta numerical
integration. These are:

• The initial attitude of the Body frame with respect to the inertial frame
CN(0)

B(0) .

• The initial position in geodetic coordinates [φ0, λ0, h0].

• The initial velocity in Navigation frame vN(0).
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By setting those parameters, the profile over time of each of those magnitudes can
be computed once by integration with the primary data and saved. The obtained
values for each time instant t are retrieved to be used as initialization data when a
simulation is performed starting at any later instant. This is done to compare the
effect of initializing the algorithms at different moments on the same trajectory.
The propagated values are shown in Figure 4.3, Figure 4.5 and Figure 4.6. The
values for the rotation quaternion of the Body Frame with respect to both Inertial
and Navigation frame are shown because, for the convenience of the simulation,
the initial parameter used is indeed the one with respect to the Inertial Frame,
however, the quantity that is to be estimated by the methods is the attitude with
respect to the Navigation frame.

Figure 4.3 - Simulated Reference Attitude with respect to both Inertial and Navigation
Frames.
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For better interpretation, the attitude of the Body frame with respect to the navi-
gation frame is also shown as Roll, Pitch and Yaw angles (FARRELL, 2008) in Figure
4.4.
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Figure 4.4 - Simulated Roll, Pitch and Yaw Angles.
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Figure 4.5 - Simulated Reference Position in geodetic coordinates.
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Figure 4.6 - Simulated Reference Velocity in Navigation Frame.
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4.1.3 Algorithm Inputs

The inputs that are provided by the simulation setup to each of the methods are
listed below, these are all functions of time, and therefore associated with time
stamps starting at zero. These are

vN The GPS provided velocity.

φ The GPS provided latitude.

λ The GPS provided longitude.

h The GPS provided altitude.

aB
BI The IMU measured specific force.

ωB
BI The IMU measured angular rate.

Note that the real attitude matrix CN
B is not informed to the algorithm but is gen-

erated by the simulation so that the estimation error can be computed. The signals
associated with the position, such as the gravity acceleration are computed based
on the GPS provided position, at the GPS rate, with no IMU coupling modeled.
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4.1.4 Simulation Parameters

The parameters are values that remain unchanged between all simulations, these
are:

σ2
v The GPS velocity variance matrix.

σ2
ω The IMU angular rate noise variance matrix.

σ2
µ The IMU angular rate bias variance matrix.

σ2
f The IMU acceleration noise variance matrix.

σ2
η The IMU acceleration bias variance matrix.

p The probability limit to be used by error estimation.

θtol The minimum angle between αv and αp and between βv and βp.

∆tol The maximum angle discrepancy between 6
(
αv, αp

)
and 6

(
βv, βp

)
.

6 αmin The minimum acceptable angle between αv and αp.

6 βmin The minimum acceptable angle between βv and βp.

‖αv‖min Minimum acceptable norm for αv.∥∥αp
∥∥

min Minimum acceptable norm for αp.

‖βv‖min Minimum acceptable norm for βv.∥∥βp
∥∥

min Minimum acceptable norm for βp.

ρmax
v Maximum relative error between the norms of αv and βv.

ρmax
p Maximum relative error between the norms of αp and βp.

cos(θα)min Minimum realistic value for estimating the angle error of αv.

cos(θβ)min Minimum realistic value for estimating the angle error of βv.

Note that variance matrices relate directly to characteristics of the sensors, hence
their values should be changed for each specific equipment. The other parame-
ters are tuning variables, which vary both with the INS itself and possibly with
the application case i.e., a surface vehicle application such as a large ship would
likely need meaningfully different parameters than those required by a sounding
rocket.
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4.1.5 Assessing Performance Results

For each estimated attitude ĈN(t)
B(t) , the discrepancy between the real matrix CN(t)

B(t)
from the simulated data and the estimate can be represented by the rotation angle
between them. In a simplified manner:

θerr = arccos
[

0.5
(

Trace
(

CN(t)
B(t)

(
ĈN(t)

B(t)

)T
)
− 1
)]

(4.1)

This is the metric that the covariance models would ideally be able to estimate.
Also, the smaller its value the better the estimation performance becomes.

Ideally, θerr should be zero if a perfect estimation was possible. Since to the calcu-
lation of CB(0)

B(t) and the velocity with measurements diverge over time, there will
be some discrepancy. In particular, biases in the angular rate sensor (and likewise
in the accelerometer) are not considered nor computed on the alignment method,
though present on simulation. This metric allows comparing results to see which
method gave smaller errors and after how much time.

Also as important is to assess how θerr relates to θest
err and θ

p
err, though this compar-

isons will be done separately. Again, it is recalled that θest
err and θ

p
err were computed

exclusively from the expected errors for the αv and βv vectors, with little regard
to the effect of these errors on the estimation methods. This is still relevant as a
first step into further work to be performed.

4.1.6 Implementation Particularities

For implementation purposes, some computations differ in structure from their
analytical counterparts presented earlier. The algorithm needs both vectors αv

and βv to be initialized simultaneously, thus αv computation is disabled until a
first valid GPS measurement is available.

It is assumed that IMU outputs are provided regularly at a constant sample time
dt. Thus for αv:

(4.2a)ûk =
(

ωB
BI

)
k
/
∥∥∥(ωB

BI

)
k

∥∥∥
qB(tk)

B(tk−1) =
[
cos

(∥∥∥(ωB
BI

)
k

∥∥∥ dt/2
)

, sin
(∥∥∥(ωB

BI

)
k

∥∥∥ dt/2
)

ûk
T
]T

(4.2b)
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qB(t0)
B(tk) = qB(t0)

B(tk−1) ⊗ qB(tk−1)
B(tk) (4.2c)

αv(tk) = αv(tk−1) + qB(tk)
B(0) ⊗ f B

k ⊗
¯qB(tk)

B(0) dt (4.2d)

Afterwards, αp is implemented with:

(4.3)αp(tk) = αp(tk−1) + dtαv(tk)

Let φ0 and λ0 be the first available GPS measurement of position at a time tk,
which may be varied between simulations, following Equation (A.13):

CN(0)
E(0) =

 − sin(φ0) cos(λ0) − sin(φ0) sin(λ0) cos(φ0)
− sin(λ0) cos(λ0) 0

− cos(φ0) cos(λ0) − cos(φ0) sin(λ0) − sin(φ0)

 (4.4)

This result is converted to a quaternion and stored for the whole simulation. For
the consecutive measurements:

CN(tk)
E(tk) =

 − sin(φk) cos(λk) − sin(φk) sin(λk) cos(φk)
− sin(λk) cos(λk) 0

− cos(φk) cos(λk) − cos(φk) sin(λk) − sin(φk)

 (4.5)

Which is also converted to quaternion, and used along with qN(0)
E(0) as seen below.

The quaternion in scalar first convention representing the rotation of the Earth
frame is computed with:

qE(tk)
E(t0) =


cos(ωIE(tk − t0)/2)

0
0

sin(−ωIE(tk − t0)/2)

 (4.6)

And finally:

(4.7)qN(tk)
N(t0) = qN(tk)

E(tk) ⊗ qE(tk)
E(t0) ⊗ qE(t0)

N(t0)

Recalling that gN is computed with Equation (A.12) as a function of φk. Then βv

is computed by:
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(4.8)βv = qN(t0)
N(tk) ⊗ vN(tk)⊗ qN(tk)

N(t0) − vN(0)

+
k

∑
i=0

(tk − tk−1)qN(t0)
N(tk)

[(
ωN

IE

)×
vN(tk)− gN

k

]
⊗ qN(tk)

N(t0)dt

Then βp is implemented by:

(4.9)βp(tk) = (tk − tk−1)βv(tk) + βp(tk−1)

The equations for implementing the computation of the variance of δαv and δβv

are presented on Section 3.7 using the tools from Section 3.6.

The difference in the update rate of GPS and IMU computations can be seen for
instance in Figure 2.2, where αv evolves rather smoothly while βv has a stair like
growth.

Another particularity mentioned in Section 3.7.3.1, is that the arc-cosine functions
used to estimate the angle error receive a saturated input. Whenever the input is
below the lower-saturation bracket, the result should be considered invalid. This
in informed by means of a validity flag. The saturation value is used as an upper
scale value for the errors. The upper saturation bracket is set to 1, done merely as
safeguard against numerical errors to forcibly prevent impossible inputs.

4.2 Simulation Cases and Specification

Over the next section, the four configuration cases of simulation are described
and only the third and fourth cases, described on Section 4.2.3 and Section 4.2.4
simulate noises.

For each sensor, the covariances of the errors are chosen to be diagonal matrices
with entries whose magnitudes are compatible with a GPS receiver and Inertial
Measurement Unit suitable for the sounding rocket scenario. Their specific values
are described on Table 4.1, all at 1σ confidence level.

The equations for modeling the errors of each sensor are explained in Section
A.3.1, Section A.3.2, Section A.3.3 and Section 3.4.3.

The covariances used for the simulations are obtained by multiplying the square
of the accuracies presented on Table 4.1 by an identity matrix. The associated
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Table 4.1 - Simulated Data Specifications

Specification Value
IMU Frequency 100Hz
Angular Rate Noise 1, 2′/

√
h

Angular Rate Bias Repeatability 2◦/h
Accelerometer Noise 7µG
Accelerometer Bias Repeatability < 550µG
GPS Frequency 1Hz
GPS Position Accuracy 5m
GPS Velocity Accuracy 0, 1m/s

noises and biases are generated as described on Section 3.4.3.

4.2.1 Unsampled Noiseless Simulation

The GPS measurements are provided at 1Hz, hence numerical integration errors
by themselves are expected to have some impact on accuracy, as well as the effect
of the sensors’ noise. As a general reference, these are the results obtained by
integrating both vectors at the IMU rate of 100Hz when no noise is added to
the process. These are referred as the real values of the abstract quantities αv, αp,
βv and βp and shown in the following figures for the sake of completeness. The
key takeaway note is that the norms of the vectors are exactly the same in this
simulation.

In Figure 4.7 and Figure 4.9, the reference values for the vectors are shown. Nat-
urally, since they’re the same vector expressed in different frames, the graphs
are different with some resemblances. As remarked on Section 2.3.4, the norms
should be the same as shown in Figure 4.8 and Figure 4.10.

93



Figure 4.7 - Simulated real values of v vectors.
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Figure 4.8 - Simulated norm of real values of v vectors.
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Figure 4.9 - Simulated real values of p vectors.
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Figure 4.10 - Simulated norm of real values of p vectors.
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Consequently, all methods yield perfect estimation of the attitude once they have
enough information to converge, which happens when the pair of vectors in each
frame are not parallel for TRIAD method and when the matrix K becomes full
rank for other methods. The graph is shown in Figure 4.11, and details on its
computation were explained on Section 4.1.5.

Figure 4.11 - Performance of Methods under no integration or noise errors.
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4.2.2 Sampled Noiseless Simulation

Because numerical integration with smaller sample rate for the GPS will intro-
duce errors, which have been neglected on Section 3.7, a simulation is performed
to verify both the impact of this error component and to create reference values
for αv, αp, βv and βp, such that in the next section, the sensor’s noise impact is
assessed eliminating most of the sampling effect. The reason for this is that the
trajectory itself cannot be varied over Monte-Carlo simulations, hence the error
components found in this simulation will be present on all others and remain
relatively unaffected by the sensor’s noise.

In Figure 4.12, both vectors are plotted at the 100Hz frequency, however, βv is
updated at the GPS sample rate and kept constant between samples.
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Figure 4.12 - Norm of v vectors under no noise errors.
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Figure 4.13 - Norm of p vectors under no noise errors.
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4.2.3 Performance Simulation

Two main test cases are used. One starting at 0s and another at 15s, recalling that
the trajectory remains the same, only the starting time of the methods is shifted to
a moment when the rocket is no longer propelled. These simulations provide in-
sight on the behavior of the methods and allow making a preliminary calibration
of some tuning parameters. However, care should be taken when drawing con-
clusions from few realizations of a random process. The performances obtained
herein are no more than anecdotal evidence, since they have no statistical signif-
icance, which in turn can only be assessed with Monte-Carlo tests, such as those
described on Section 4.2.4. Nonetheless, the better the sensors involved, the more
representative an individual simulation becomes. This will be further discussed
on Section 4.2.4. Furthermore, some characteristics of the behavior of those meth-
ods may be lost on averaged curves, and as such is important to provide at least
a couple examples of the methods being executed.

For illustration, the sensor outputs with modeled errors are shown in Figures 4.14
to 4.17

Figure 4.14 - GPS provided Velocity in NED frame.
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Figure 4.15 - GPS provided Position.
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Figure 4.16 - IMU provided specific force.
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Figure 4.17 - IMU provided angular rate.
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For illustration, the evolution of αv, βv, αp and βp is shown in Figures 4.18 to 4.20
for a simulation starting at 0s.
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Figure 4.18 - Evolution of αv and βv starting at 0s.
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Likewise, their norms are compared in figures Figure 4.19 and Figure 4.20.

101



Figure 4.19 - Evolution of αp and βp in module starting at 0s.
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Figure 4.20 - Evolution of αp and βp in Module starting at 0s.
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As shown in Section 2.3.2, the norms of the vectors are very close together even
under noise, although βv and βp are updated at a slower rate.

A few plots related to the functioning of the Filtered Method are presented next.
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Figure 4.21 - Angles between vector pairs.
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Figure 4.22 - Angle Discrepancy between vector pairs.
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Figure 4.23 - Norm Discrepancy between vectors.
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The estimated covariances for δαv and δβv are not shown in this section since
there would be nothing to compare them against at this point. The results that
derived from their values are shown here nonetheless, to provide insight into the
behavior of the covariance-based methods, again, the result is of little statistical
representativeness.
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Figure 4.24 - Estimated angle errors.
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Figure 4.25 - Estimated angle error bound.
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The evolution of all these errors depends on the trajectory. For this simulation,
they are expected to decrease for a short while, then diverge. This happens be-
cause the covariance errors (as estimated online) grow quadratically with time,
while the norm of the vectors grows linearly with time (with variations depend-
ing on the trajectory), thus the squared norm also grows quadratically with time.
Depending on slopes and on the variations from the trendlines described in Sec-
tion 2.3.2, it is to be expected that the error associated with αv would grow over
time due to the effect of errors in the calculation of the body rotation matrix as
roughly indicated by Equation (3.67). Meanwhile, the variance of βv increases
slowly but starts at a relatively larger value, while the norm increases at the same
pace as that of αv. At the beginning however, and specially for this simulation that
involves high accelerations, it is also expected that the errors should decrease for
a short while.
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Notably, the error estimated by both methods reaches a minimum around 6 sec-
onds, with its specific location possibly varying between simulations. This will
cause the OPT and OPTc methods to declare convergence at that instant.

Finally, the chart comparing the performances for this specific test case can be
presented in Figure 4.26.

Figure 4.26 - Angle errors.
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The black dotted line represents the error obtained by comparing the reference at-
titude with the actual value computed in the simulation with the simulated data,
it remains on the chart mostly as a development artifact to verify if any initial-
ization error could have taken place. It appears on the legend, but it is actually
superimposed over the abscissa axis.

As seen on Chapter 1, the VIF and PIF method oscillate in performance for this
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simulation, with their accuracy decreasing in several instances during the first
ten seconds. The TRIAD method has no memory of the past values of the used
vectors, hence it oscillates more than the others in accuracy. The filtered method
takes 4 seconds before providing a valid attitude because not all its checks had
converged before, however, this does not ensure sufficient performance of the
method, which later oscillates significantly. The OPT and OPTc methods stop im-
proving at 5s, but at this point they declare convergence, although the perfor-
mance is not the best achieved, this is a very fast convergence time, with reason-
able accuracy.

These graphs are now repeated for the simulation starting at 15s.

Figure 4.27 - Evolution of αv and βv for simulation starting at 15s.
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Figure 4.28 - Evolution of αp and βp in module for simulation starting at 15s.
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Figure 4.29 - Evolution of αp and βp in Module for simulation starting at 15s.
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Figure 4.30 - Angles between vector pairs for simulation starting at 15s.
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Figure 4.31 - Angle Discrepancy between vector pairs for simulation starting at 15s.
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Figure 4.32 - Norm Discrepancy between vectors for simulation starting at 15s.
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Figure 4.32 shows that for the example case starting at 15s, the relative norm
discrepancies surpass or approach the tolerance lines more often than shown in
Figure 4.23, this is likely due to the magnitude of errors being similar for both
cases, but the algorithms starting at 15s yield smaller magnitudes for the actual
norms, hence increasing the relative error.
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Figure 4.33 - Estimated angle errors for simulation starting at 15s.
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Figure 4.34 - Estimated angle errors for simulation starting at 15s.
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Notably in this case, both the estimated error and the bound are monotonically
decreasing, as shown in Figure 4.33 and Figure 4.34. Due only to initialization
reasons, the initial angle error for the vectors is shown as zero at t = 15s in Figure
4.33 but, at that instant, both vectors have zero norm.

In both cases, the error of the βv angle has a flatter curve while αv may decrease or
increase more steadily, this is because the main contributors to the error in βv are
the two velocity measurements, which tend to have nearly constant magnitude,
while αv has a more complex error model which is expected to diverge faster un-
der the presence of sensors biases. The resulting performance is shown in Figure
4.35.
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Figure 4.35 - Angle errors for simulation initialized at 15s.
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Notably, the monotonically decreasing error estimations cause the OPTc methods
to match exactly the results from the VIF method, as it is simply accumulating
the αv and βv vectors on the matrix K. Meanwhile, OPT method gives slightly
different performance because of an initialization difference that requires the an-
gle error estimation to be valid twice before the vectors start being accumulated.
The TRIAD method error still oscillates considerably, since this method has less
memory than the others, for which the accumulation of values on the K matrix
causes new inputs to be relatively less relevant at each updating step.

4.2.4 Monte-Carlo Simulations

This section describes the conduction of Monte-Carlos tests, presenting and an-
alyzing their results. Notes are given on the handling of the seeds for random
number generation and the considerations required to interpret the information
exposed.
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In this section, the analysis of αv and βv errors is performed by taking the differ-
ence between their values in each individual simulation and their values obtained
from the reference simulation described in Section 4.2.2, this is meant to remove
the effect of the integration error, exposing mostly the noise effects.

For the performance of methods, the comparison is done against the correct atti-
tude, shown in Figure 4.3, which does not change between all simulations under
the same trajectory, even if varying the stating moment. In simpler words, for the
simulations starting at 15s, the position, velocity and attitude are initialized with
the values shown at the 15s step in figures 4.3, 4.5 and 4.6.

Effectively these two comparison guidelines allow verifying the validity of the
methods under the assumptions taken, while assessing the final performance as
it should be obtained on real experiments.

The results are presented for both the case starting at 0s and 15s, in order to min-
imally represent the variation of the starting moment. The number of performed
simulations for each case is shown on the graphs as needed.

4.2.4.1 Managing Seeds for Random Number Generation

Each random parameter (such as the biases) is generated by a random num-
ber generating function that requires an initial state, commonly referred as the
“seed”. Controlling this seed allows ensuring the reproducibility of results and
the variation of relevant factors between simulations.

At the beginning of each simulation, that corresponds to a realization of the ran-
dom process, a global seed is configured explicitly. It is 1 for the simulations
shown in Section 4.2.3 to simplify reproducibility. When setting Monte Carlo
tests, a file is either read or created to store the last global seed used for a Monte
Carlo test. At the beginning of each run, the global seed is declared by increment-
ing the value of the previous seed, and the used value is stored in the same file,
overwriting it. This ensures that the global seed is not repeated between simula-
tions.

For sequences of random numbers, such as the Noise Type Errors, their gener-
ating functions have dedicated seeds, which are chosen during initialization as
random integer values, whose choice depends only on the global seed.

Further discussions on the management aspects of seeds and the generation of
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random numbers are presented in (GENTLE, 2006).

4.2.4.2 Average Vector Error

It has been assumed in Section 3.3.2 that the average error on the vectors αv and
βv would be zero, if accounting for noise, but not for numerical integration errors.
This hypothesis can be assessed with the sample average of the errors obtained
for the simulations, which is shown in Figure 4.36 and Figure 4.37. In these fig-
ures, the obtained average is compared with the sample estimated covariance for
each dimension of the vector divided by the square root of the number of sim-
ulations. As a consequence of the Central Limit Theorem (Theorem B.1.15), at
each time index, this is expected to represent the variance of the estimation of
the mean. Because the values are not far from these standard deviation lines, one
could claim that the average error being zero cannot be falsified at two sigma
confidence level, the actual length of the interval can be as small as required but
at the cost of running an order of 100 times more simulations to reduce by a factor
of 10.
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Figure 4.36 - Average vector errors for simulation starting at 0s.

0 10 20 30 40 50 60
-0.01

-0.005

0

0.005

0.01

v E
rr

or
 (

m
/s

)

Average Error over 1560 Simulations

x
y
z
norm

x
/ n

y
/ n

z
/ n

0 10 20 30 40 50 60

Simulation Time (s)

-0.01

-0.005

0

0.005

0.01

v E
rr

or
 (

m
/s

)

x
y
z
norm

x
/ n

y
/ n

z
/ n

121



Figure 4.37 - Average vector errors for simulation starting at 15s.
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Recalling from Figure 4.18 and Figure 4.27 that the norms of these vectors is in
the order of 102m/s, hence the encountered values are likely negligible within
this order of magnitude, and with respect to the actual errors in each simulation.
To further illustrate how much this average error represents in terms of the actual
value of the involved vectors, the relative error i.e., the error divided by the norm
of the vector is plotted next.
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Figure 4.38 - Relative average vector errors for simulation starting at 0s.
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Figure 4.39 - Relative average vector errors for simulation starting at 15s.
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This allows claiming that up to the confidence level allowable by the number of
experiments, the claim that the average error would be zero is not falsified. A
confidence interval could be constructed, but it is recalled that rather than saying
that the average error should be small, it should be exactly zero, which is hard to
prove statistically.

4.2.4.3 Estimating Covariance

In the previous section, the sample covariance was used for comparison with the
average error, now its value will be compared against the predicted covariance
values.

Prior to present the encountered values, an implicit hypothesis made while de-
veloping the methods which needs to be checked. It was assumed that with the
trajectory being the same, and despite the different biases and noise realizations,
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the estimated covariance would either accompany actual errors discrepancies or
would vary very little between simulations. While the former assumption could
be difficult to analyze with data, the latter can be proven correct by computing a
dimensionless ratio that indicates the fact that the estimated covariances remain
nearly unchanged between simulations.

Figures 4.40 to 4.43. show the difference between the largest and smallest com-
puted values for the diagonal elements of the covariance matrices normalized
by the sample estimated counterpart. This is done with each element of the di-
agonals and their quadratic sum. In these graphs, the ratios below 1.2 × 10−7

show that the encountered discrepancies between simulations are small relative
to the actual values of the computed covariances. Allowing the conclusion that
computed covariances remain nearly unchanged between different simulations
of the Monte-Carlo campaign.

Figure 4.40 - Ratio of covariance maximum difference to sample estimate for αv, for sim-
ulations starting at 0s.
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Figure 4.41 - Ratio of covariance maximum difference to sample estimate for βv, for sim-
ulations starting at 0s.
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Figure 4.42 - Ratio of covariance maximum difference to sample estimate for αv, for sim-
ulations starting at 15s.
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Figure 4.43 - Ratio of covariance maximum difference to sample estimate for βv, for sim-
ulations starting at 15s.
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With the conclusion that between simulations the estimated covariance varies at
least relatively little, it is possible to plot the sample covariance against average of
the estimated covariances to verify the validity of the calculation, as was done in
Section 3.4.2. It is noted that since the estimated angle error and the error bound
depend mostly on the estimated covariance, the fact that this covariance is nearly
unchanged between simulations allows using the average of those estimates as a
reliable representation for the actually encountered values, hence why their dis-
crepancies between simulations are not further analyzed.
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Figure 4.44 - Sample Covariance against Average Estimated Covariances for αv for sim-
ulation starting at 0s. Black lines labeled ‘est’ are the average of the covari-
ances estimated by the methods, blue lines labeled ‘clc’ are the sample esti-
mated covariances.
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Figure 4.45 - Sample Covariance against Average Estimated Covariances for αv for sim-
ulation starting at 15s. Black lines labeled ‘est’ are the average of the co-
variances estimated by the methods, blue lines labeled ‘clc’ are the sample
estimated covariances.
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Figure 4.46 - Sample Covariance against Average Estimated Covariances for βv for sim-
ulation starting at 0s. Black lines labeled ‘est’ are the average of the covari-
ances estimated by the methods, blue lines labeled ‘clc’ are the sample esti-
mated covariances.

Average Estimated Covariance Vs.Monte-Carlo Obtained Covariance for v with 1560 simulations

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

C
ov

(1
,:)

Cov(:,1)

clc
est

0 10 20 30 40 50 60
-5

0

5

10
10-4 Cov(:,2)

clc
est

0 10 20 30 40 50 60

-1

-0.5

0

0.5

1
10-3 Cov(:,3)

clc
est

0 10 20 30 40 50 60
-5

0

5

10

C
ov

(2
,:)

10-4

clc
est

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

clc
est

0 10 20 30 40 50 60
-1

-0.5

0

0.5

1

10-3

clc
est

0 10 20 30 40 50 60

Time (s)

-1

-0.5

0

0.5

1

C
ov

(3
,:)

10-3

clc
est

0 10 20 30 40 50 60

Time (s)

-1

-0.5

0

0.5

1

10-3

clc
est

0 10 20 30 40 50 60
Time (s)

0

0.005

0.01

0.015

0.02

0.025

clc
est

131



Figure 4.47 - Sample Covariance against Average Estimated Covariances for βv for sim-
ulation starting at 15s. Black lines labeled ‘est’ are the average of the co-
variances estimated by the methods, blue lines labeled ‘clc’ are the sample
estimated covariances.
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The cross-terms in both graphs have significantly smaller magnitudes than the di-
agonal terms. This is partially a result of the covariance matrices given as inputs
being all diagonal matrices. such that the estimated values for the off-diagonal
terms is much smaller. As happened with the average error, it is therefore dif-
ficult to reliably estimate average values with are close to zero under relatively
large variance. Noting that the methods OPT and OPTc operate on the diagonal
elements of these matrices rather than on the off-diagonal ones.

Again, the kernel estimations are plotted together with their smoother’s band-
widths providing further insight on the behavior of the errors.
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Figure 4.48 - Kernel Estimated Probability Density for αv for simulation starting at 0s.
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Figure 4.49 - Kernel Smoother Bandwidth for αv for simulation starting at 0s.
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Figure 4.50 - Kernel Estimated Probability Density for βv for simulation starting at 0s.
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Figure 4.51 - Kernel Smoother Bandwidth for βv for simulation starting at 0s.
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Again, the same is done for the simulations starting at 15s.
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Figure 4.52 - Kernel Estimated Probability Density for αv for simulation starting at 15s.
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Figure 4.53 - Kernel Smoother Bandwidth for αv for simulation starting at 15s.
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Figure 4.54 - Kernel Estimated Probability Density for βv for simulation starting at 15s.
Logarithm of Normalized Estimated Density for v
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Figure 4.55 - Kernel Smoother Bandwidth for βv for simulation starting at 15s.
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4.2.4.4 Assessing Bound at Probability

Recalling that on Section 3.7.3.2, a bound was given for the error under some as-
sumptions, it is possible to verify in each simulation if the angle error of each vec-
tor is below or above the proposed bound, and count in how many simulations
each case was found, this allows raising a statistic of how often the bound was
respected, recalling that ideally this should match the given p parameter, how-
ever, a larger value should be encountered since the sphere tangency assumption
is rather pessimistic.
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Figure 4.56 - Error below bound frequency for simulations starting at 0s.
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Figure 4.57 - Error below bound frequency for simulations starting at 15s.
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During the tuning of parameters, a value of p = 50% was selected, as it was seen
to generate bounds for around 95% of the cases, as shown in Figure 4.56 and
Figure 4.57. The initial values of the estimated bound are rather large, thus why
both charts start at 100%.

The actual bound compared to the average value is presented in Figure 4.58, Fig-
ure 4.59, Figure 4.60 and Figure 4.61 where it is compared with the sample mean
angle error curve, in turn two curves adding and removing one standard devia-
tion from the mean are also plotted, thus showing that indeed, as expected from
the previous charts, the bound indeed provides a realistic though conservative es-
timation of the error, since it has similar shape and sits above the aforementioned
curves.
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Figure 4.58 - αv Error bound comparison for simulations starting at 0s.
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Figure 4.59 - αv Error bound comparison for simulations starting at 15s.
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Figure 4.60 - βv Error bound comparison for simulations starting at 0s.
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Figure 4.61 - βv Error bound comparison for simulations starting at 15s.
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4.2.4.5 On the Approximations for the Expected Angle Error Formulation

Two approximations were adopted during the derivation of the equations for the
expected angle error, shown in Section 3.7.3.1. These can be assessed by verify-
ing the squared ratio between norms of the computed values for αv and βv and
their reference magnitude. A unitary ratio would imply that the result is perfectly
adequate, whereas values close to unity signal a reasonable approximation.
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Figure 4.62 - Probability Density for Squared Norm Ratio Between calculated and refer-
ence value of αv for simulations starting at 0s.
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Figure 4.63 - Probability Density for Squared Norm Ratio Between calculated and refer-
ence value of βv for simulations starting at 0s.
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Figure 4.64 - Probability Density for Squared Norm Ratio Between calculated and refer-
ence value of αv for simulations starting at 15s.
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Figure 4.65 - Probability Density for Squared Norm Ratio Between calculated and refer-
ence value of βv for simulations starting at 15s.
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4.2.4.6 Assessing Estimated Angle Error

As was done with the error bound, the quality of the estimated angle error can
be checked by comparing with the sample estimated average error, in this case
the average estimation fell below the +1σ line, which implies the estimation to be
reasonable though slightly conservative, which in this case was not intended, but
is a consequence of the approximations performed in Section 3.7.3.1. Again, the
shape of the curves is quite similar.
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Figure 4.66 - Mean estimated angle errors comparison for simulations starting at 0s.
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Figure 4.67 - Mean estimated angle errors comparison for simulations starting at 15s.
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For minimally checking this factor, it is recalled that the estimated error is ex-
pected to have little variance between simulations, this can be verified by plot-
ting the sample covariance of the estimated angle errors, showing indeed that the
variance of this computation is small.
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Figure 4.68 - Variance of estimated angle errors comparison for simulations starting at 0s.
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10-5 Standard Deviation of Estimated Angle Error for 1560 simulations
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Figure 4.69 - Variance of estimated angle errors comparison for simulations starting at
15s.
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10-4 Standard Deviation of Estimated Angle Error for 1560 simulations
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4.2.4.7 Assessing Methods Performances

Finally, it is possible to have a relative assessment of the performances of the
methods by plotting their average performances over the Monte-Carlo tests in
the same chart. Notably, these results are specific to the given trajectory and to
the tuning of the filtered method, but the noise and biases realizations are varied
through the simulations.
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Figure 4.70 - Comparison of average methods performance for simulations starting at 0s.
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Figure 4.71 - Comparison of average methods performance for simulations starting at
15s.
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The OPTc method error curve superposes that of the VIF method, for a few sec-
onds in Figure 4.70 and almost until the end of the simulated time in Figure 4.71.
Tables 4.2 and 4.3 provide the same data in selected instants.

As was seen in Section 4.2.3, in the simulations starting at 0s, the OPT and OPTc
convergence do not improve after a moment around 6s, as the error proxies have
reached a minimum around this iteration, which can be expected to be a consis-
tent behavior since the minimum taking more or less to occur would cause the
performance curve to oscillate more, this is not always the case as will be shown
in Figure 4.74. In simulations starting at 15s, the proxies monotonically decreas-
ing cause the OPT and OPTc methods to behave very similarly to the VIF method.

To provide further insight on the characteristics of the methods, their perfor-
mances are also compared with their sample standard deviations and the ref-
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erence error, which was obtained for each method as explained and presented on
Section 4.2.2. By adding the standard deviation to the mean error an upper band
is created and by subtracting the deviation a lower band is produced to present an
interval of plus or minus one deviation around the mean alignment error of each
method, shown in Figure 4.72 and Figure 4.73. This allows noting the effect of
the early convergence of the covariance based methods, since in a few iterations
the output their final estimation, the effect of noise varying between simulations
cause the variance to keep high and nearly constant.

The PIF method has particularly poor performance in the beginning, which is
due to the significant contribution of the numerical integration of the GPS, since
it happens even for the noiseless case.

Figure 4.72 - Comparison of average methods performance with their one standard devi-
ation interval for simulations starting at 0s.
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Figure 4.73 - Comparison of average methods performance with their one standard devi-
ation interval for simulations starting at 15s.
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As an alternative to the standard deviation, it is possible to plot percentiles of
performances, hence having an idea of how existing non-extreme cases behave.

158



Figure 4.74 - Comparison of average methods performance with reference percentiles for
simulations starting at 0s.
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Figure 4.75 - Comparison of average methods performance with reference percentiles for
simulations starting at 15s.
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With Figure 4.74 and Figure 4.75, it is possible to see that for at least 10% of the
simulations, all methods may take long before providing acceptable estimates,
seen by the 90% percentile line being stuck at 10◦, the TRIAD method takes the
longest before the referred line drops below the saturation limit, hence confirming
that this method is indeed expected to take longer before converging or even start
providing estimated. Then, the PIF and TRIAD methods also take long before
dropping below saturation at the 90% percentile. VIF, OPT and OPTc methods
have in this situation (which contains slower dynamics) taken similar lengths.

In all cases, both the average minus 1σ and the 10% percentile line are well above
the reference line at least after a transition period, which allows concluding that
indeed the integration errors play a minor role when compared to the sensor’s
noises and biases, as has been assumed on Section 3.3.2.
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Tables 4.2 and 4.3 present a numerical comparison of the average performance for
each method for the simulations starting at 0s and 15s respectively. In this table,
the best accuracy at each time is highlighted in red. For the simulations starting
at 0s the VIF method provided the best performance at all instants, whereas the
OPT and OPTc methods have nearly constant performance because they have
declared convergence, and thus stopped improving their results. This creates an
obstacle for directly comparing those methods, since time earned might be traded
off against accuracy. However, for the simulations starting at 15s, no convergence
is declared since the error proxies are generally decreasing during the simulation,
thus OPT and OPTc provide better performance in some occasions, as they are
less prone to have increasing error and possibly due to initialization effects. The
superposition of the VIF and OPTc performances is better seen in this table than
in Figure 4.71.

Table 4.2 - Comparison table for Simulation starting at 0s.

Time\Method VIF PIF TRIAD FIL OPT OPTc

00s 10.000◦ 10.000◦ 10.000◦ 10.000◦ 10.000◦ 10.000◦

05s 2.539◦ 3.038◦ 4.321◦ 3.347◦ 3.422◦ 2.539◦

10s 1.591◦ 5.812◦ 2.875◦ 6.204◦ 3.422◦ 2.539◦

15s 0.532◦ 1.119◦ 0.825◦ 0.870◦ 3.422◦ 2.539◦

20s 0.353◦ 0.440◦ 0.557◦ 0.424◦ 3.422◦ 2.539◦

25s 0.296◦ 0.334◦ 0.415◦ 0.330◦ 3.422◦ 2.539◦

30s 0.271◦ 0.292◦ 0.371◦ 0.291◦ 3.422◦ 2.539◦

35s 0.256◦ 0.271◦ 0.328◦ 0.270◦ 3.422◦ 2.539◦

40s 0.249◦ 0.258◦ 0.304◦ 0.258◦ 3.422◦ 2.539◦

45s 0.245◦ 0.251◦ 0.300◦ 0.251◦ 3.422◦ 2.539◦

50s 0.242◦ 0.247◦ 0.283◦ 0.247◦ 3.422◦ 2.539◦

55s 0.241◦ 0.244◦ 0.275◦ 0.244◦ 3.422◦ 2.539◦

60s 0.240◦ 0.242◦ 0.273◦ 0.242◦ 3.422◦ 2.539◦

As could be expected, the error proxies do not relate as directly to the methods’ er-
rors such that some clear relationship could stand out in the present charts, all the
errors are in the order of few degrees while the proxies are in the order of tenths
of degrees. This is partially due to the fact that the proxies encode the accuracy
for the direction of the αv and βv vectors, while the accuracy in other directions
also affects the alignment error. Additionally, the mean performance for the VIF
method does not showcase the occurrence of oscillations in the performance, as
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Table 4.3 - Comparison table for Simulation starting at 15s.

Time\Method VIF PIF TRIAD FIL OPT OPTc

15s 10.000◦ 10.000◦ 10.000◦ 10.000◦ 10.000◦ 10.000◦

20s 7.973◦ 8.259◦ 8.035◦ 9.745◦ 7.988◦ 7.973◦

25s 5.152◦ 5.948◦ 5.762◦ 7.576◦ 4.984◦ 5.152◦

30s 2.534◦ 3.739◦ 2.926◦ 4.781◦ 2.427◦ 2.534◦

35s 1.442◦ 2.187◦ 1.917◦ 2.931◦ 1.397◦ 1.442◦

40s 1.184◦ 1.609◦ 1.730◦ 2.238◦ 1.155◦ 1.184◦

45s 1.008◦ 1.334◦ 1.459◦ 1.825◦ 0.988◦ 1.008◦

50s 0.861◦ 1.144◦ 1.121◦ 1.584◦ 0.846◦ 0.861◦

55s 0.714◦ 0.983◦ 0.926◦ 1.389◦ 0.718◦ 0.725◦

60s 0.611◦ 0.847◦ 0.779◦ 1.234◦ 0.619◦ 0.611◦

was the case in Figure 4.26 and Figure 4.35 where the error of the VIF method
increases after the proxies reach a minimum. Hence, the relation between the co-
variance of the vectors and the alignment performance remains as the subject of
further research. Nonetheless, the proxies allow for decision making within the
methods, preventing oscillations in performance and possibly allowing an early
convergence declaration, which allows the nominal navigation filter to be initial-
ized sooner.
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5 CONCLUSION

A review of relevant topics on navigation systems and stochastic processes was
performed to pave the way for new developments in in-flight alignment. An anal-
ysis of the methods proposed on (WU; PAN, 2013) was carried out, and statistical
results were obtained comparing with derived methods with the current simu-
lated experiments. The selectivity scheme originally presented on (KOJA; LEITE

FILHO, 2017) provided indeed an added value in terms of reliability, albeit de-
pendent on designer chosen threshold values, some additional considerations to
this method were also introduced in this work. The variance propagation scheme
based on error models was validated with Monte-Carlo tests, showing good ad-
herence to sample estimated covariances and provided promising tools for devel-
oping methods less dependent on designer choices. The OPT and OPTc methods
have been introduced in this work, and provide promising results, with proper-
ties both similar and distinguishable with respect to the VIF and PIF methods.
An overall statistical comparison of all those methods was conducted for a few
reference test cases in a given flight envelope, and particularly the low variance
of the results obtained from the covariance estimation was demonstrated, thus
corroborating that the approach is promising although requiring further devel-
opments.

Future work can be pursued by several venues, such as:

• Systematically simulating a wider variety of flight envelopes, this is
paramount in establishing robustness of those methods.

• Developing a reset criterion to re-start the methods if necessary due to
poor flight conditions, which might also be of interest for practical pur-
poses.

• The covariance propagation employed for βv could also be slightly mod-
ified by considering a variable GPS measurement covariance, which is
expected to be informed by the receiver as the Dilution of Precision.

• A better connection between the actual alignment error and the pre-
dicted variance matrices could be investigated.

• Variance models for αp and βp could be developed, along with a model
for the correlation with the respective v vectors. This would be a sub-
stantial extension of the current work.
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• Since the TRIAD method having known methods for covariance com-
putation given the variance of the input vectors, if the aforementioned
models were available, a model for the accuracy of the TRIAD method
could then be developed.

• The TRIAD algorithm could be applied to pairs of αv and βv vectors in
different instants

• Due to the approximations used on the development of the expected
angle error, a different approach could be considered employing the
theory of stochastic processes over manifolds, which would incorporate
form the beginning the assumption of the computed norm being the true
norm of the vector.

• Methods to encode the covering of the three-dimensional space for the
collected set of vectors should allow improving the error proxies relation
to the alignment performance, since the angle errors are essentially a
one-dimensional error proxy, while the alignment estimation involves a
three dimensional space.

• In Chapter 4 it was shown that strong relations exist between the angles
between the vectors in each frame and the performance on the estima-
tion must exist, and as such should be investigated.

• A metric could be developed to allow single-criterion comparison be-
tween the performance of the methods, one that could encode aspects
of average error, error distribution and speed of convergence.
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ANNEX A - CONCEPTS FROM NAVIGATION SYSTEMS

This annex reviews basic concepts from the field of Navigation Systems which
are well known in the literature, but relevant review in a framework and notation
coherent with the rest of this work.

A.1 Reference Frames

For the purpose of this work, a reference frame is defined by an origin O and a
set of linearly independent vectors {v1, v2, ...vk} corresponding to a right-handed
orthonormal ordered basis in some vector space (CALLIOLI et al., 2007). Thus a
reference frame A within R3 can be determined by the set

{
OA

A , vA
1 , vA

2 , vA
3
}

where
the upper script stands for the specific frame.

This implies that for any r ∈ R3 there exists a unique set of parameters{
xA, yA, zA} such that:

r =
[

vA
1 vA

2 vA
3

]
 xA

yA

zA

 +OA
A

 (A.1)

Such parameters are the coordinates of r in the reference frame A. The origin
has a lower script to inform that it is the origin of the frame A expressed in A
coordinates. For a second reference frame B, the same applies:

r =
[

vB
1 vB

2 vB
3

]
 xB

yB

zB

 +OB
B

 (A.2)

By equating both sides, one has:

[
vA

1 vA
2 vA

3

]
 xA

yA

zA

 +OA
A

 =
[

vB
1 vB

2 vB
3

]
 xB

yB

zB

 +OB
B

 (A.3)

Therefore:
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 xA

yA

zA

 =
[

vA
1 vA

2 vA
3

]T


[

vB
1 vB

2 vB
3

]
 xB

yB

zB

 +OB
B


−OA

A (A.4)

The term corresponding to a matrix combination of scalar products between basis
vectors is the Rotation Matrix from frame B to frame A.

CA
B =

[
vA

1 vA
2 vA

3

]T [
vB

1 vB
2 vB

3

]
(A.5)

Defining from now on:

rA The coordinates in A frame:

rA =

 xA

yA

zA

 (A.6)

rB The coordinates in B frame:

rB =

 xB

yB

zB

 (A.7)

OA
A The coordinates of the origin of frame A expressed in frame A

OB
A The coordinates of the origin of frame A expressed in frame B

OB
A = CA

BOA
A (A.8)

rB
BA The relative position between the origin of frames A and B (subscripts)

expressed in coordinates on frame B (superscript).

A.1.1 Body Frame B

The Body Frame is defined with specific characteristic by the manufacturer of
an Inertial Navigation System or Inertial Measurement Unit. It should be fixed
within the instruments’ presumably rigid structure. Generally, it is possible to
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say that the origin of this frame is fixed and centered on the platform’s body,
which also contains indications of the axis directions, that in turn are orthogonal.
Likewise, the measurements provided by accelerometers and gyros are expressed
in this frame

Figure A.1 - Body frame over an INS. Image Courtesy of SBG Systems (2017).

A.1.2 Inertial Frame I

An ideal inertial frame of reference is defined in classical physics as one where
Newton’s laws are applicable (FARRELL, 2008), which requires the frame origin
neither to accelerate nor to rotate with respect to the rest of the universe, which
are very strong assumptions for practical purposes. An inertial reference system
may be realized by listing coordinates for stars which are very far away. The In-
ternational Celestial Reference Frame (ICRF) defined in (FEY et al., 2015). Its sec-
ond edition, ICRF2 contains precise positions of 3414 compact radio astronomical
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sources. It has a noise floor of 40µas (micro-arcseconds) and an axis stability of
10µas.

The nearest star from the Sun, Proxima Centauri (4.24 light years away), presents
a parallax of up to 0.77as, which is the apparent angle deviation of its direction
over the Earth’s orbit. Some star catalogs only include stars at distances greater
than 100 light years from the solar system, so that their parallax is less than 0.03as
near the Earth (MARKLEY; CRASSIDIS, 2014).

Accelerometer and gyro measurements are expressed with coordinates in Body
frame, yet they ideally measure rates with respect to an Inertial frame.

While the ICRF frame origin is located at the barycenter of the solar system, for
most terrestrial applications it suffices to consider an inertial frame centered at the
barycenter of the Earth (DECKER, 1986) thus, being usually called Earth-Centered
Inertial (ECI).

Neither the ICRF nor the ECI frames are truly inertial frames, yet the ECI is suffi-
cient for the navigation of both Earth-bound vehicles and Earth orbiting satellites
(MARKLEY; CRASSIDIS, 2014) (FARRELL, 2008).

Another distinct approach adopted by the International Astronomical Union is
to define distinct reference systems, the Barycentric Celestial Reference System
(BCRS) and the Geocentric Celestial Reference System (GCRS), one centered at
the barycenter of the solar system and another on the geocenter. Further details
are provided on (BRUMBERG; GROTEN, 2001), (SOFFEL et al., 2003) and (KAPLAN,
2005).

A.1.3 Earth Frame E

The Earth frame, also known as the Terrestrial frame, is fixed on the Earth. It will
be defined in this work alike to (DECKER, 1986) as having:

• Origin at the Earth’s barycenter.

• Z-axis parallel to the direction of the Conventional International Origin
for polar motion.

• X-axis at the intersection of WGS 84 reference meridian plane and the
plane of the mean astronomic equator.
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• Y-axis completing a right-handed orthonormal basis.

Notably, the reference meridian is parallel to the zero meridian defined by the
Bureau International de I’Heure. This reference frame is that of a mean or standard
earth rotation direction at a constant rate of ωEI = 7.292115× 10−5rad s−1 around
a mean astronomic pole (the CIO) fixed in time.

Figure A.2 - ECI and ECEF Frames. Circumflexes in this figure indicate unit vectors.

A.1.4 World Geodetic System

The World Geodetic System, developed by the Defense Mapping Agency of the
United States (DECKER, 1986), often referred as “WGS84" for the update published
in 1984, provides a coordinate system on an ellipsoid approximation of the Earth.
GPS coordinates are often given in the form of Geographic or Geodetic coordi-
nates. Which are:

φ : (geodetic) Latitude

λ : Longitude
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h : Altitude (above ellipsoid).

They may be used to obtain Terrestrial frame coordinates with:

x = (RN + h) cos(φ) cos(λ) (A.9a)

y = (RN + h) cos(φ) sin(λ) (A.9b)

z =
(

RN(1− e2) + h
)

sin(φ) (A.9c)

Definition A.1.1. Normal Radius:
Where RN is the Normal Radius, prime vertical radius of curvature or great nor-
mal, defined as a function of latitude by:

RN =
a√

1− e2 sin(φ)
(A.10)

Definition A.1.2. Meridian Radius:
RM, the Meridian Radius, or ellipse radius, is also defined as a function of latitude
by:

RM =
a
(
1− e2)

(1− e2 sin(φ))
3
2

(A.11)

This quantity is used for convenience is some transformations but is shown on
(OSBORNE, 2008) to correspond to the inverse of the local curvature along the
meridian line of the ellipsoid surface.

WGS84 also contains the Earth Gravitational model, based on spherical harmonic
expansion and comprising 32755 geopotential coefficients. A simpler equation for
the theoretical normal gravity γ as a function of latitude on the surface of the
WGS84 Ellipsoid is also provided (DECKER, 1986):

(A.12)γ(φ) =
9.7803267714

(
1 + 0.001931851386 sin

(
φ
))√

1− 0.00669437999013 sin2 (φ) m/s2

A.1.5 Navigation Frame N

Also known as the local level navigation frame, this is the reference frame in
which the outputs of the INS are generally provided.

• Origin coinciding with the origin of the Body frame
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• Z-axis normal to the WGS84 ellipsoid surface pointing down.

• X-axis tangent to the ellipsoid, pointing towards the local North

• Y-axis completing a right-handed triad.

Figure A.3 - NED Frame.

The Transformation of frames between Terrestrial and Navigation frame can be
performed by (FARRELL, 2008):

(A.13)CN
E =

 − sin(φ) cos(λ) − sin(φ) sin(λ) cos(φ)
− sin(λ) cos(λ) 0

− cos(φ) cos(λ) − cos(φ) sin(λ) − sin(φ)


A.2 Quaternions

Quaternions are used in the implemented code, as they provide a convenient
method to parametrize attitude, since they have linear of the quaternion differ-
ential equations, no singularities, do not require usage of trigonometric functions
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(unlike Euler angles), and are composed of only four parameters against 9 used
in a rotation matrix (FARRELL, 2008). They were first introduced by (HAMILTON,
1866), and are expressed as an extension to the complex numbers:

(A.14)q = q0 + q1 i + q2 j + q3 k

Where q0 is called the scalar part, and the other terms are referred as the imagi-
nary or vector part, also denoted as:

(A.15)q = q0 +−→q

A vector in IR3 can be expressed as a quaternion with zero scalar part.

Within the code, it is simply stored as a four-dimensional array:

(A.16)q =
[

q0 q1 q2 q3

]T

Let q and p denote quaternions, its multiplication rule, as defined by Hamilton,
but with modern notation (JIA, 2008) is expressed as:

p⊗ q = p0 q0 −−→p .−→q + p0
−→q + q0

−→p +−→p ×−→q (A.17)

A vector ←−u can be rotated around an unitary vector −→v by an angle of θ by the
rotation operator defined as (JIA, 2008):

Lq(−→u ) = q⊗ u⊗ q∗ (A.18)

With the quaternion q composed by:

q = cos
(

θ

2

)
+ sin

(
θ

2

)
.−→v (A.19)

Following the conventions from (SAVAGE, 2000), let uA be a vector with coordi-
nates expressed in frame A and uB the same vector expressed in B frame. The
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quaternion that relates frame A to frame B is denoted as qA
B , and applying the

operator from Equation (A.18), the rotation works as follows:

uA = qA
B ⊗ uB ⊗ (qA

B )∗ (A.20)

Likewise, the multiplication of rotation quaternions admits the following chain
rule (SAVAGE, 2000):

(A.21)qA
C = qA

B ⊗ qB
C

And it is also possible compute the associated rotation matrix with (SAVAGE,
2000):

CA
B = C(qA

B ) =
(

q2
0 −
−→q .−→v

)
+ 2−→v −→v T + 2 q0

−→v × (A.22)

A.3 Basic Sensor Models

Sensors are all prone to measurement errors, which ultimately interfere with the
performance of the system they compose. This section explains the basic models
that establish standard structures to those errors, such that they can be compen-
sated by means of filtering or parameter estimation.

A.3.1 Accelerometer

An accelerometer measures specific acceleration over its sensitive axes. It is prone
to several forms of errors, including misalignment and scale factor deviation,
which generally are dealt in a unit-specific basis by means of calibration. The
most significant contributors to the measurement errors in a high quality inertial
sensor are the random zero mean noise represented by ε

(
f B) and the bias η.

The measurement denoted with an over-hat is modeled by:

(A.23)f̂ B = f B + η + ε
(

f B
)

The actual physical magnitude can be isolated by:

(A.24)f B = f̂ B − η − ε
(

f B
)
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Since the measurements are periodic samples, they are to be treated as a sequence
for most developments:

(A.25)f B
k = f̂ B

k − η − εk

(
f B
)

It may also be assumed that the IMU provides a velocity increment ∆vB. For long
simulations, the bias η should be assumed variable, having a random walk of its
own, but with small deviations over time for high quality instruments.

The characteristics assumed for η and εk are respectively described in Definition
3.3.2 and Definition 3.3.1, after the proper terminology and apparatus are pre-
sented.

A.3.2 Gyrometer

The model assumed for the angular rate sensor is analogous to the accelerome-
ter’s. With ε

(
ωB

IB
)

denoting a Noise Type Error and µ a Bias Type Error (Defini-
tion 3.3.2 and Definition 3.3.1 respectively).

(A.26)ω̂B
IB = ωB

IB + µ + ε
(

ωB
IB

)

(A.27)ωB
IB = ω̂B

IB − µ − ε
(

ωB
IB

)

(A.28)
(

ωB
IB

)
k

=
(̂
ωB

IB
)

k − µ − εk

(
ωB

IB

)
It may also be assumed that the IMU provides a small angle increment ∆Θ. Once
more, for long simulations, the bias µ should be assumed as slowly varying.

A.3.3 GPS

The Global Positioning System (GPS) is the most famous example of a Global
Navigation Satellite System (GNSS), which employs a satellite network that
broadcasts positioning signals. Upon contact with at least 4 of such satellites, it
is possible to determine the position and velocity of the receiver antenna. The
greatest advantage of such system is that it provides absolute rather than relative
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measurements, in the sense that position is an absolute measurement, while ve-
locity is a rate that can be integrated into position variation, while the position
would remain unknown if no initial value was available and furthermore, the
integration process using noisy measurements would introduce an error whose
variance would grow with time, as shown in Chapter 3. An absolute measure-
ment, however, has bounded errors at any time.

The error model employed for the purpose of this work assumes uncorrelated
noise between measurements i.e., a Noise Type Bias denoted by ε

(
rE) and ε

(
vN)

for the position and velocity measurements, as follows:

(A.29)r̂E = rE + ε
(

rE
)

(A.30)v̂N = vN + ε
(

vN
)

Much more complex models for errors, usually focused on their sources are dis-
cussed in the literature, such as in (FARRELL, 2008). This is relevant when develop-
ing GPS receivers, as for instance the standard GPS user range error is expected
to be in the order of 8 to 11 meters, while differential operation yields 10 cen-
timeters to 3 meter error for differential pseudorange by compensating some of
the intervening effects. It is however understood to be reasonable to sustain the
assumption of uncorrelated error for the user delivered measurement (FARRELL,
2008).

Furthermore, while there are complex models in the literature for characterizing
the uncertainty of GPS based position and velocity fixes, and generally they are
known as “Dilution of Precision" (GROVES, 2013), the developments presented
in Chapter 3 and simulations discussed in Chapter 4, it is assumed a constant
covariance matrix for the error ε (ve) at each iteration. The error in position itself
is of lesser relevance because it will basically be used to compute the local gravity
gN.

Despite the formulation shown in Equation (A.29), GPS receivers often provide
measurements in geodetic coordinates of latitude (φ), longitude (λ) and altitude
(h). These can be translated if needed to Earth frame coordinates with either iter-
ative methods such as the ones presented in (FARRELL, 2008) or exact closed form
algebraic methods such as the one presented in (VERMEILLE, 2002).
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A.4 Numerical Integration

Given a set of equations of the form:{
x(0) = x0

ẋ = f (t, x)
(A.31)

It is often impossible to find analytical solutions for x(t), but is possible to select a
set of points tk and numerically evaluate an approximation for the value of x(tk).
The most commonly used algorithm for such task is the Runge-Kutta of forth
order (CARNAHAN et al., 1969), which uses a fixed interval between consecutive
point tk known as the step size h:

xk+1 = xk +
h
6
(k1 + 2k2 + 2k3 + k4) (A.32a)

tk+1 = tk + h (A.32b)

With:
k1 = f (tk, xk) (A.33a)

k2 = f
(

tk +
h
2

, xk + h
k1

2

)
(A.33b)

k3 = f
(

tk +
h
2

, xk + h
k2

2

)
(A.33c)

k4 = f (tk + h, xk + hk3) (A.33d)

Such method re-evaluates the function f at intermediate points over the interval
[tk, tk+1].

Accurate integration methods are paramount when:

• The interval of integration is long, but finite

• The initial value x0 is known

• The system plant f (t, x) is well known

• The system is not subject to perturbation

None of these conditions are true when dealing with estimations or with a navi-
gation solution, because in this case:
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• The interval of integration is indefinitely long, yet recomputed at every
small cycle

• The initial value x0 is unknown

• The system plant f (t, x) is subject to unknown interference

• The system is subject to perturbations, including but not limited to
noise.

Despite this, Runge-Kutta methods are used in inertial systems (TITTERTON; WE-

STON, 2004) with demanding applications.

However, a set of simpler methods have a remarkable property. Take for example,
Euler’s method:

xk+1 = xk + h f (tk, xk) (A.34)

As another example that is used in inertial systems is Simpson’s rule (TITTERTON;

WESTON, 2004), in which case the system plant is assumed as depending on time,
but not on the state:

xk+1 = xk +
h
3

f (tk−1) +
4h
3

f (tk) +
h
3

f (tk+1, xk) (A.35)

In both cases, the value of xk+1 can be written as a summation, in Euler’s case:

xk+1 = x0 +
k

∑
k=1

h f (tk, xk) (A.36)

For Simpson’s rule, and in a more general case:

xk+1 = x0 +
k

∑
k=1

wk fk (A.37)

Where the argument of the function f is omitted and replaced by the index k.
For different methods, the form above is the same with variation of the weight-
ing coefficients wk. While such form is of little practical utility, it will help the
developments of Chapter 3.

A.5 The Extended Kalman Filter

The Extended Kalman Filter (EKF) is by far the most used tool for integrating
IMU and GPS (CRASSIDIS, 2006). It can be regarded as an extension of the Linear
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Kalman Filter, that is an optimal state observer for linear systems (STARK; WOODS,
2002). It is described here to lay basis for some comments and considerations
made through the text.

Let two random process X and Z have their realizations governed by:

Ẋ = f (X, u) + ε (A.38a)

Z = h(X, u) + ξ (A.38b)

With u a known control input. ε is called the process noise and ξ the measurement
noise.

A discretized estimation x̂k for the state X, at time steps ∆t is to be computed
given the measurements zk which are known realizations of Z at each step k,
with future realizations being unknown. The EKF is initialized with an a priori
estimation x̂0, and an a priori variance P−0 .

The state and measurement functions are assumed known, computable but not
linear. Their partial derivatives are given by:

Fk =
∂ f
∂x
|x̂k

(A.39a)

Hk =
∂h
∂x
|x̂k

(A.39b)

The state at the next step is predicted based on the previous state, using some
numerical method as described on Section A.4.

(A.40)x̂−k+1 =
∫

∆t
f (x̂+

k , u) dt

The transition matrix Φk is computed with either Equation (A.41) or some ap-
proximation to it.

Φk = eFk ∆t (A.41)

The a priori covariance is computed based on linearized equations:

(A.42)P−k+1 = ΦT
k P+

k Φk + σ2
ε

184



Where σ2
ε often denoted as Qk is called the process covariance.

The measurement prediction is computed:

ẑk+1 = h(x̂−k+1) (A.43)

The innovation covariance is given by:

Ek = Hk P−k HT
k + σ2

ξ (A.44)

Where σ2
ξ , often denoted as Rk is the measurement (or observation) covariance.

Then the Kalman gain vector will be:

Kk+1 = P−k+1 HT
k+1 E−1

k+1 (A.45)

And the a posteriori state estimate is:

(A.46)x̂+
k+1 = x̂−k+1 + Kk+1 (zk+1 − ẑk+1)

Finally, the a posteriori covariance is given by:

(A.47)P+
k+1 = (I − Kk+1 Hk+1) P−k+1

Typically, the a priori variance P−0 is chosen to be relatively large to allow the first
measurements to play an important part in having x̂k approach to the real state
value. While in linear systems without time varying parameters the EKF reaches
a steady state where the matrix P+

k becomes constant over time, this may not hap-
pen in non-linear estimation since the observability characteristics of the system
may vary over time. Also, the a posteriori state estimate is basically a correction
that is expected to improve accuracy in a linear vicinity of the true value. Being
far away from such linear region may cause the EKF to diverge (CRASSIDIS, 2006).
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ANNEX B - CONCEPTS FROM STATISTICS AND STOCHASTIC SYSTEMS

This annex reviews basic concepts on random variables and stochastic processes
that are needed to build the online error estimation of the INS alignment. The
notation and concepts are mostly taken from (MOOD, 1950) and (STARK; WOODS,
2002). It is recalled that on section Section 3.6 contributions of this work are pre-
sented, nominally the recursive formulas for a set of summations involving ran-
dom variables.

B.1 Definitions and Theorems from Random Variables Theory

B.1.1 Sets, Samples and Events

Definition B.1.1. Set:
A set is a collection of abstract and or concrete objects. Each of those will be called
a point or element. As an example of notation, ζ may be an element contained in
the set Ω.
Definition B.1.2. Subset:
If for every element ζ contained in a set Ω (ζ ∈ Ω), ζ is also contained in Ψ
(ζ ∈ Ψ), then Ω is a subset of Ψ, which is denoted as:

Ω ⊆ Ψ (B.1)

If the possibility of Ψ = Ω can be discarded, the notation may be presented as
follows:

Ω ⊂ Ψ (B.2)

Definition B.1.3. Disjoint Sets:
Two sets A and B are said to be disjoint if there exists no element x such that
belongs to both. This can be expressed as:

A ∩ B = ∅ (B.3)

Definition B.1.4. Sample Space:
The set containing all possible outcomes of a conceptual experiment is called sam-
ple space or alternatively a description space, and is generally denoted by Ω.
Definition B.1.5. Event:
For a given sample space Ω, every subset A ∈ Ω is called an event.
Definition B.1.6. Event Space:
Given a sample space Ω, let A be an event andA be a sample space satisfying the

187



following properties:

a) Ω ∈ A

b) If A ∈ A then Ā ∈ A

c) If A1 ∈ A and A2 ∈ A then (A1 ∪ A2) ∈ A

Then A is called an Event Space or alternatively an Experiment.

B.1.2 Basics of Probability Theory

Definition B.1.7. Probability Function:
A function P : A → [0, 1] satisfying the following properties:

a) P[A] ≥ 0 for every A ∈ A.

b) P[Ω] = 1.

c) If A1, A2, · · · is a sequence of mutually exclusive events in A such that
(
⋃∞

i=1 Ai) ∈ A then P (
⋃∞

i=1 Ai) = ∑∞
i=1 P (Ai)

Then P is called a probability function or alternatively a probability measure.

It is noted that item c requires sets Ai and Aj to be disjoint for all i 6= j.
Definition B.1.8. Independent Events:
Two events A and B are said to be independent if and only if:

(B.4)P[A ∪ B] = P[A] P[B]

Definition B.1.9. Conditional Probability:
Given two events A, B ∈ A with B 6= ∅, the conditional probability of A given B
is denoted P[A|B], and can be computed by:

(B.5)P[A|B] =
P[A ∪ B]

P[B]
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B.1.3 Basics of Random Variable Theory

Definition B.1.10. Random Variable:
Let A be an experiment with sample space Ω, then a function X : A → Ω satisfy-
ing:

a) For every Borel set of numbers B, the set {ζ ∈ Ω, X(ζ) ∈ B} is an event.

b) P[X = ∞] = P[X = −∞] = 0.

Naturally, a point x such that P[X = x] = 0 is an impossible event.

With this definition, an event ζ can be represented by {ζ : X(ζ) ≤ x}, which maps
the event ζ to the numbers ]−∞, x]
Definition B.1.11. Cumulative Distribution Function:
Given a random variable X, its Cumulative Distribution Function (CDF), is de-
fined as:

FX(x) = P (ζ : X(ζ) ≤ x) = PX ( ]−∞, x]) (B.6)

Definition B.1.12. Probability Density Function:
Given a random Variable X, a function fX : IR→ IR satisfying:

∫ x

−∞
fX(x)dx = FX(x) (B.7)

Is called the probability density function of the random variable X. It is noted
that, axiomatically, any function satisfying:

a) (∀x)→ f (x) ≥ 0

b)
∫ ∞
−∞ fX(x)dx = 1

Is a Probability Density Function (PDF).
Definition B.1.13. Joint Cumulative distribution Function:
Let X1, X2, · · · , Xk be k random variables all defined on the same probability space
(Ω,A, P). Their joint cumulative distribution function FX1,X2,···,Xk is defined as:

FX1,X2,···,Xk(x1, x2, · · · , xk) = P (X1 ≤ x1, X2 ≤ x2, · · · , Xk ≤ xk) (B.8)

For multivariate X, the notation is simplified to FX, and the word "joint" is often
omitted.
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Definition B.1.14. Joint Density Function:
Let X1, X2, · · · , Xk be k random variables all defined on the same probability space
(Ω,A, P). A function satisfying:

FX1,X2,···,Xk(x1, x2, · · · , xk) =
∫ x1

−∞

∫ x2

−∞
· · ·

∫ xk

−∞
fX1,X2,···,Xk(x1, x2, · · · , xk)dx1dx2 · · · dxk

(B.9)
Is their Joint Cumulative Density Function fX1,X2,···,Xk(x1, x2, · · · , xk).
Definition B.1.15. Conditional Density Function:
Let X and Y be jointly random variables with joint probability density function
fXY(x, y). The conditional probability of X given Y = y is:

(B.10)fX|Y(x|y) =
fXY(x, y)

fY(y)

An important consequence of this definition is:

(B.11)fX|Y(x|y) fY(y) = fXY(x, y)

B.1.4 Expectation

Definition B.1.16. Expectation:
The value µ ∈ IRk or X̄ provided by:

µ =
∫

IRk
x fX(x)dx (B.12)

Is defined as the Expectation of X or the Expected Value of X, it is also generally
denoted as E[X] or µX when needed to make the underlying random variable
explicit.

It is an unfortunate notation coincidence that the greek letter mu is used both for
the expectation of a random variable and for a bias type error. It will be defined in
each context and also the associated random variable will be made explicit with
a subscript whenever necessary.
Definition B.1.17. General Expectation:
Given a random variable X and a generic function g : IRk →n, the value given by:

E[g(X)] =
∫

IRk
g(x) fX(x)dx (B.13)
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is called the Expectation or Expected Value of g(X).
Theorem B.1.1. Linearity of Expectation:
For two scalars a and b and two functions g : IRk →n and h : IRk →n, the following
identity holds:

(B.14)E
[
ag(X) + bh(X)

]
= aE

[
g(X)

]
+ bE [h(X)]

This is a direct consequence of the linearity of the integral operator. Noting for
the involved terms that:

(B.15)E
[
ag(X) + bh(X)

]
=
∫

IR
fX(x)

(
ag(x) + bh(x)

)
dx

Definition B.1.18. Conditional Expectation:
Let X and Y be a k-dimensional and a p-dimensional random variable respec-
tively and g : IRk+p → IRm, then, the conditional expectation of g(X, Y) given
Y = y is defined as:

(B.16)E[g(X, Y)|Y = y] =
∫

IRk
g(x, y) fX|Y(x|y)dx

Theorem B.1.2. Stacked Expectation:
Let X and Y be a k-dimensional and a p-dimensional random variable respec-
tively and g : IRk+p → IRm then, the expectation of g(X, Y) can be computed by:

(B.17)E[g(X, Y)] = E
[
E
[
g(X, Y)|Y

]]
Proof: Applying the definition of Expectancy (Definition B.1.16) on the outer ex-
pectation:

(B.18)E
[
E
[
g(X, Y)|Y

]]
=
∫

IRp
E
[
g(X, Y|Y)

]
fY(y)dy

Applying the definition of conditional expectation (Definition B.1.18):

(B.19)E
[
E
[
g(X, Y)|Y

]]
=
∫

IRp

(∫
IRk

g(x, y) fX|Y(x|y)dx
)

fY(y)dy

Reorganizing the integrals:

(B.20)E
[
E
[
g(X, Y)|Y

]]
=
∫

IRp

∫
IRk

g(x, y)
(

fX|Y(x|y) fY(y)
)

dxdy
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Recalling Equation (B.11), that derives from Definition B.1.15:

(B.21)E
[
E
[
g(X, Y)|Y

]]
=
∫

IRp

∫
IRk

g(x, y) fXY(x, y)dxdy

And naturally:

(B.22)
∫

IRp

∫
IRk

g(x, y) fXY(x, y)dxdy = E
[
g(X, Y)

]
Therefore:

(B.23)E[g(X, Y)] = E
[
E
[
g(X, Y)|Y

]]
Thus concluding the proof. This result is also known as the “Total Expectation”
theorem.

B.1.5 Variance and Related Terms

Definition B.1.19. Cross-Covariance:
Let X and Y be two k-dimensional random variables defined in the same proba-
bility space. The matrix KX,Y ∈ Mk×k(IR) provided by:

KXY = Cov[X, Y] = σX,Y = E
[
(X− µX) (Y− µY)

T
]

(B.24)

Is defined as the Covariance or Cross-Covariance of X and Y. It is also known in
the literature are the Correlation of X and Y.
Definition B.1.20. Variance:
The matrix K ∈ Mk×k(IR) provided by:

K = E[(X− µ)(X− µ)T] = KXX = Cov[X, X] = σ2
X (B.25)

K =
∫

IRk
(x− µ)(x− µ)T fX(x)dx (B.26)

Is defined as the Autocovariance of the random variable X. Throughout this
work, it will be generally referred to as the Variance. It is sometimes known in
the literature as the Covariance (STARK; WOODS, 2002) of X and Y.

It is possible to show that there always exists a matrix σ such that σσ = σ2 = K,
therefore the superscript does not cause notation inconsistency.
Definition B.1.21. Standard Deviation:
Let X be a one dimensional random variable, with variance σ2, the value

√
σ2 =

σ ∈ IR+ is called the standard deviation of X.
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It is noted that no direct equivalent of the standard deviation for multi-
dimensional variables is widespread in the literature

If the cross-covariance refers to random sequences, it is also useful to make the
relevant time index explicit:

KXY[m, n] = Cov[Xn, Ym] = E
[
(Xn − µX[n]) (Ym − µY[m])T

]
(B.27)

Theorem B.1.3. Variance of a Sum:
Let X and Y be two k-dimensional random variables, and A, B ∈ M(IR)k×k Then:

(B.28)Var [AX + BY] = AVar[X]AT + ACov[X, Y]BT + BCov[Y, X]AT + BVar[Y]BT

Proof:

(B.29)Var [AX + BY] = E
[
(AX + BY) (AX + BY)T

]

(B.30)Var [AX + BY] = E
[

AX (AX + BY)T + BY (AX + BY)T
]

Using distribution of transposition (Theorem C.1.1 and Theorem C.1.2):

(B.31)Var [AX + BY] = E
[

AX
(

XT AT + YTBT
)

+ BY
(

XT AT + YTBT
)]

(B.32)Var [AX + BY] = E
[

AXXT AT + AXYTBT + BYXT AT + BYYTBT
]

Using Linearity of Expectation (Theorem B.1.1):

Var [AX + BY] = E
[

AXXT AT
]

+ E
[

AXYTBT
]

+ E
[

BYXT AT
]

+ E
[

BYYTBT
]

(B.33)

Again, using linearity:

Var [AX + BY] = AE
[

XXT
]

AT + AE
[

XYT
]

BT + BE
[
YXT

]
AT + BE

[
YYT

]
BT

(B.34)
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And from the definitions of Variance and Covariance (Definition B.1.20,Definition
B.1.19):

(B.35)Var [AX + BY] = AVar[X]AT + ACov[X, Y]BT + BCov[Y, X]AT + BVar[Y]BT

Which concludes the proof.
Theorem B.1.4. Corollary for Single Random Variable:
A direct consequence of the Theorem B.1.3, is:

(B.36)Var [AX] = AVar[X]AT

Theorem B.1.5. Covariance matrices are symmetric:
This is restricted to autocovariance and applicable at same time index, and fol-
lows directly from the definition:

K = E[(X− µ)(X− µ)T] (B.37)

KT =
(

E
[
(X− µ)(X− µ)T

])T
= E

[(
(X− µ)(X− µ)T

)T
]

(B.38)

KT =
(

E
[
(X− µ)(X− µ)T

])T
= E

[(
(X− µ)T

)T
(X− µ)T

]
(B.39)

KT = E
[
(X− µ)(X− µ)T

]
(B.40)

Therefore:
KT = K (B.41)

Theorem B.1.6. Covariance matrices are positive semi-definite:
Any matrix A satisfying:

vT Av ≥ 0 ∀v 6= O (B.42)

Is called positive semi-definite. Noting that:

vTKv = vTE[(X− µ)(X− µ)T]v = E
[
vT(X− µ)(X− µ)Tv

]
(B.43)

Also noting:
(X− µ)Tv = vT(X− µ) = ∑

i
((X− µ)i)vi = a (B.44)
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Then:
vTKv = E[a2] ≥ 0 (B.45)

Theorem B.1.7. Identity with Expectancy and Variance:
Given a random unidimensional variable X with variance σ2

X and mean µX, the
following identity holds:

(B.46)Var[X] = E[X2]− E[X]2

Or with different notation:

(B.47)σ2
X = E[X2]− µ2

X

Theorem B.1.8. Identity with Expectancy and Variance (Multivariate Case):
Given an n-dimensional random variable X with variance σ2

X and mean µX, the
following identity holds:

(B.48)Var[X] = E[XXT]− E[X]E[X]T

Or with different notation:

(B.49)σ2
X = E[XXT]− µXµT

X

Theorem B.1.9. Distribution of Independent Random Variables:
Both density and cumulative probability joint distributions of two independent
random variables X and Y can be factored into the individual distributions. Re-
calling Definition B.1.8:

(B.50)P
[
(X ≤ x) ∧

(
Y ≤ y

)]
= P [X ≤ x] P

[
Y ≤ y

]
From Definition B.1.11:

(B.51)FXY(x, y) = FX(x)FY(y)

Recalling as well:

(B.52)
∫ x

−∞

∫ y

−∞
fXY(x, y)dxdy =

∫ x

−∞
fX(x)dx

∫ y

−∞
fY(y)dy

Therefore:

(B.53)fXY(x, y) = fX(x) fY(y)
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Theorem B.1.10. Expectancy of Independent Variables (Product Case):
Let X be a k-dimensional and Y be a p-dimensional independent random vari-
able. Then the expectation of a function g : IRk+p → IRl that assumes the form
g(X, Y) = r(X)s(Y) can be computed by:

(B.54)E[g(X, Y)] = E[r(X)s(Y)]

(B.55)
∫

IRk+p
g(x, y) fXY(x, y)dxdy =

∫
IRk+p

r(x)s(y) fXY(x, y)dxdy

From Theorem B.1.9:

(B.56)
∫

IRk+p
g(x, y) fXY(x, y)dxdy =

∫
IRk+p

r(x)s(y) fX(x) fY(y)dxdy

(B.57)
∫

IRk+p
g(x, y) fXY(x, y)dxdy =

∫
IRp

∫
IRk

r(x) fX(x)s(y) fY(y)dxdy

(B.58)
∫

IRk+p
g(x, y) fXY(x, y)dxdy =

∫
IRk

r(x) fX(x)dx
∫

IRp
s(y) fY(y)dy

Therefore:

(B.59)E[r(X)s(Y)] = E[r(X)]E[s(Y)]

Thus, over products of functions of independent random variables, the ex-
pectancy operator admits distribution. This is particularly useful and convenient
when either expectation is zero, as is often used on Section 3.7.1.
Theorem B.1.11. Expectancy of Independent Variables (Sum Case):
Let X be a k-dimensional random variable and Y be a p-dimensional independent
random variable. Then the expectation of a function g : IRk+p → IRl that assumes
the form g(X, Y) = r(X) + s(Y) can be computed by:

(B.60)E[g(X, Y)] = E[r(X) + s(Y)]
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(B.61)
∫

IRk+p
g(x, y) fXY(x, y)dxdy =

∫
IRk+p

(r(x) + s(y)) fXY(x, y)dxdy

From Theorem B.1.9:

(B.62)
∫

IRk+p
g(x, y) fXY(x, y)dxdy =

∫
IRk+p

(r(x) + s(y)) fX(x) fY(y)dxdy

(B.63)
∫

IRk+p
g(x, y) fXY(x, y)dxdy =

∫
IRk

∫
IRp

(
r(x) fX(x) fY(y) + s(y) fX fY(y)

)
dxdy

(B.64)

∫
IRk+p

g(x, y) fXY(x, y)dxdy =∫
IRk

∫
IRp

r(x) fX(x) fY(y)dxdy + · · ·

+
∫

IRk

∫
IRp

s(y) fX(x) fY(y)dxdy

Definition B.1.22. Random Sequence:
Let (Ω,A, P) be a probability space. Let ζ ∈ Ω and n ∈ IN. Let Xn(ζ) be a mapping
of the event ζ into the sample space Ω, then for each index n, Xn(ζ) is a random
variable and in general Xn(ζ) is Random Sequence, also known as Stochastic Se-
quence. Some alternative definitions may extend the domain of X to the complex
numbers and the indexes to the whole integer set (STARK; WOODS, 2002), but for
the purposes of this work it shall suffice to treat the case defined. Additionally,
the index generally relates to time and for clarity will often be referred as the
“time index".

A lot of care should be taken to avoid confusion when referring to multiple re-
alizations of random sequences. In this work, subscript indexes will refer to dif-
ferent time indexes (same process or realization) while superscripts will refer to
different realizations (same random variable, different experiment result). This
requires a few definitions that are very similar between themselves.
Definition B.1.23. Mean Function:
Given a random k-dimensional sequence Xn, the mean function at index n is de-
fined by:

µX[n] = E[Xn] =
∫

IRk
xn fX(xn, n)dx (B.65)

It is important to note that the mean function is defined in terms on the expec-
tation of a sum of random variables, that may or may not hold dependencies or
correlations between themselves.
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Definition B.1.24. Ensemble Average:
Given a random sequence Xn, for which m realizations were taken over the pro-
cess at the same index (or time) n, each corresponding to a respective event ζ i,
i ≤ m, their ensemble average is given by:

(B.66)ΛX[n] =
1
M

M

∑
m=1

xm
n

The idea of an ensemble average is to take several experiments.
Definition B.1.25. Time Average:
Given a random sequence Xn, for which several realizations are made, and let the
m-th realization taken over the process correspond to a respective event ζm, Let
N be a time step on the process. Its Time Average µT is given by:

(B.67)µTX =
1
N

N

∑
n=1

xm
n

The time average may also be regarded as a random variable, since the realization
is both unique and arbitrary:

(B.68)MT,X =
1
N

N

∑
n=1

Xn

The notation T is related to a last observed instant, associated with the index N,
and meant to differentiate from the notation used for ensemble average.
Definition B.1.26. Wide Sense Stationary Process:
A stochastic process Xn is called Wide-Sense Stationary if it satisfies the following
properties:

a) The mean function is constant for time indexes n:

(B.69)µX[n] = µX[0] ∀n

b) The auto-covariance is (time) shift-invariant:

(B.70)KXX[n, m] = KXX[n + p, m + p] ∀p
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Definition B.1.27. Mean-Square Convergence:
A stochastic sequence Xn converges in the mean-square sense to the random vari-
able X if:

(B.71)lim
n→∞

Var [Xn − X] = 0

Definition B.1.28. Ergodic in the Mean:
Given a wide-sense stationary process Xn, if its time average converges in mean-
square to the expected value, then X is called Ergodic in the Mean. This implies:

lim
N→∞

MT,X = lim
N→∞

1
N

N

∑
n=1

Xn (B.72)

Such process is very useful because it can be observed over time in a single ex-
periment rather than at a single instant over several experiments. It is generally
the case of white noise.
Definition B.1.29. Independent Random Sequence:
An independent random sequence is one whose random variables Xn at any time-
index are jointly independent for any combination of indexes.
Definition B.1.30. White Noise:
A wide-sense stationary, ergodic in the mean process Xn is called a White Noise
if:

• It has zero mean:
E[Xn] = 0 (∀n) (B.73)

• It has no correlation at different times:

KXX[n, p] = KXX[n, n]δn,p (∀n, p) (B.74)

With δn,p the Kronecker delta:

δn,p =

{
1 n = p
0 n 6= p

(B.75)

Theorem B.1.12. Expected Mean of White Noise:
The expected mean of a white noise Xn over a finite period is zero:
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(B.76)

E[M] = E
[

X1 + X2 + · · ·Xn

N

]
=

E [X1 + X2 + · · ·Xn]
N

=
E [X1] + E [X2] + · · · + E [Xn]

N
= 0

Definition B.1.31. Independent And Identically Distributed Random Variable:
A set of random variables Xn (which may or may not be a sequence) is called
Independent and Identically Distributed (IDD) if for any i 6= j Xi and Xj are inde-
pendent but have the same distribution.
Theorem B.1.13. Chebyschev Inequality (Univariate):
Let X be an arbitrary random variable with mean µ and standard deviation σ, an
upper bound can be given to how likely a realization of a random variable is to
deviate a certain amount from the mean. This bound is given by:

(B.77)P[‖X − µ‖ ≥ kσ] ≤ 1
k2

Proof: From Definition B.1.20, it follows:

(B.78)σ2 =
∫

IR
(x − µ)2 fX(x)dx

From Definition B.1.12 fX(x) ≥ 0, thus:

(B.79)
∫

IR
(x − µ)2 fX(x)dx ≥

∫
‖x−µ‖≥δ

(x − µ)2 fX(x)dx

(B.80)
∫
‖x−µ‖ ≥δ

(x − µ)2 fX(x)dx ≥ δ2
∫
‖x−µ‖≥δ

fX(x)dx

(B.81)
∫

IR
(x − µ)2 fX(x)dx ≥ δ2

∫
‖x−µ‖≥δ

fX(x)dx
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Finally from Definition B.1.7

(B.82)δ2
∫
‖x−µ‖ ≥δ

fX(x)dx = δ2P[‖x − µ‖ ≥ δ]

Therefore:

(B.83)σ2 ≥ δ2P[‖x − µ‖ ≥ δ]

Setting δ = kσ completes the proof:

(B.84)
1
k2 ≥ P[‖x − µ‖ ≥ kσ]

B.1.6 Other Theorems

Theorem B.1.14. Central Limit Theorem:
If for each positive integer n, X1, X2, · · · Xn are independent and identically dis-
tributed random variables with constant mean µX and variance σ2

X, and defining
the random variable the random variable Z with:

(B.85)Z[n] =
X[n]− µX

σX/
√

n

Where X[n] is stands for:

(B.86)X[n] =
n

∑
k=1

X[k]
n

Which is a mean estimator.

Then the distribution of Z[n] converges to a normal distribution with zero mean
and unitary variance as n tends to infinity (MOOD, 1950).
Theorem B.1.15. Corollary to Limit Theorem:
Under the assumption and notation of Theorem B.1.14, the mean estimator, de-
fined by Equation (B.86), has normal distribution with mean µX and variance
σ2

X/n.
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ANNEX C - NOTES ON LINEAR ALGEBRA

This section explains some results from Linear Algebra theory that are referred
throughout this work.

C.1 Review on useful matrix properties

Definition C.1.1. Transposition Operator:
The transpose of a matrix A ∈ M(IR)n×m with elements aij is the matrix AT ∈
M(IR)m×n with elements aji

.
Theorem C.1.1. Distribution of Transposition (Sum):
For any matrices A ∈ M(IR)n×m and B ∈ M(IR)m×n:

(A + B)T = AT + BT (C.1)

Theorem C.1.2. Distribution of Transposition (Product):
For any matrices A ∈ M(IR)n×m and B ∈ M(IR)m×n:

(AB)T = BT AT (C.2)

Definition C.1.2. Symmetric Matrix:
A matrix A ∈ M(IR)n×n is said to be symmetric if and only if AT = A.
Definition C.1.3. Anti-Symmetric Matrix:
A matrix A ∈ M(IR)n×n is said to be anti-symmetric if and only if AT = −A.
Definition C.1.4. Matrix Symmetric Part:
A ∈ M(IR)n×n, the symmetric part of A, denoted by A⊕, given by

A⊕ =
A + AT

2
(C.3)

Definition C.1.5. Matrix Anti-Symmetric Part:
A ∈ M(IR)n×n, the anti-symmetric part of A, denoted by A	, given by

A	 =
A− AT

2
(C.4)

Theorem C.1.3. Any matrix is the sum of a symmetric and an anti-symmetric
matrix:

203



Let A ∈ M(IR)n×n, then one has:

A =
A + AT

2
+

A− AT

2
(C.5)

A = A⊕ + A	 (C.6)

Theorem C.1.4. Distribution of Symmetric Part operator:
For any matrices A ∈ M(IR)n×m and B ∈ M(IR)m×n:

(A + B)⊕ = A⊕ + B⊕ (C.7)

Proof:

(A + B)⊕ =
(A + B) + (A + B)T

2
(C.8)

Using Theorem C.1.1

(A + B)⊕ =
A + B + AT + BT

2
(C.9)

Rearranging:

(A + B)⊕ =
A + AT

2
+

B + BT

2
(C.10)

Therefore:
(A + B)⊕ = A⊕ + B⊕ (C.11)

Which concludes the proof.
Definition C.1.6. Trace Operator:
The trace of a square matrix A ∈ M(IR)n×n with elements aij is defined by:

(C.12)Tr(A) =
n

∑
i=1

aii

Theorem C.1.5. Trace is Invariant over Commutation:
For any matrices A ∈ M(IR)n×m and B ∈ M(IR)m×n

(C.13)Tr(AB) = Tr(BA)

Proof: Let

(C.14)C = AB

(C.15)D = BA
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(C.16)cij =
n

∑
k=1

aikbkj

(C.17)∴ Tr(C) =
m

∑
i=1

n

∑
k=1

aikbki

(C.18)dij =
m

∑
k=1

bikakj

(C.19)∴ Tr(D) =
m

∑
i=1

n

∑
k=1

bikaki

Since summation is order independent:

(C.20)
m

∑
i =1

n

∑
k =1

aikbki =
m

∑
i=1

n

∑
k=1

bikaki

Therefore:

(C.21)Tr(C) = Tr(D)

Particularly this has one useful corollary. For any vector u ∈ M(IR)n×1

(C.22)Tr(uuT) = Tr(uTu)
= uTu
= 〈u, u〉

Theorem C.1.6. Trace is Invariant over Transposition:
For any matrix A ∈ M(IR)n×n

(C.23)Tr(A) = Tr(AT)

Theorem C.1.7. Linearity Trace:
For any matrices A ∈ M(IR)n×m and B ∈ M(IR)m×n:

(C.24)Tr(A + B) = Tr(A) + Tr(B)
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C.2 Tools from Linear Algebra Theory

Theorem C.2.1. Singular Value Decomposition:
For any matrix A ∈ M(IR)n×m, there exist unitary matrices U ∈ M(IR)n×n and
V ∈ M(IR)m×m and a diagonal matrix Σ ∈ M(IR)n×m such that:

A = UTΣV (C.25)

And:
Σii ≥ Σjj ≥ 0 ⇐⇒ i > j (C.26)

More details over the properties and existence of such decomposition are pre-
sented by (LIMA, 1995).

With this result, it is possible to present the proof for Theorem 2.1.1.

Assuming first that the weighting coefficient can be normalized:

1 = ∑
k

ak (C.27)

Then, express J as in terms of the trace operator using Equation (C.22) and linear-
ity of the trace operator (Theorem C.1.7):

J =
1
2 ∑

k
akTr

((
uB

k − CB
AuA

k

) (
uB

k − CB
AuA

k

)T
)

(C.28)

J =
1
2 ∑

k
akTr

((
uB

k

) (
uB

k

)T
− CB

AuA
k

(
uB

k

)T
− uB

k

(
uA

k

)T (
CB

A

)T
+ CB

AuA
k

(
uA

k

)T (
CB

A

)T
)

(C.29)
Noting that the vectors are assumed normalized:

Tr
((

uB
k

) (
uB

k

)T
)

= 1 (C.30)

(C.31)Tr
(

CB
AuA

k

(
uA

k

)T (
CB

A

)T
)

= 1

Also, by invariance of trace over transposition and commutation (Theorem C.1.5):

Tr
(
−CB

AuA
k

(
uB

k

)T
− uB

k

(
uA

k

)T (
CB

A

)T
)

= 2Tr
(
−CB

AuA
k

(
uB

k

)T
)

(C.32)
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Reducing Equation (C.29) to:

(C.33)J = 1−∑
k

akTr
(

CB
AuA

k

(
uB

k

)T
)

By linearity of trace:

(C.34)J = 1− Tr

(
CB

A ∑
k

(
akuA

k

(
uB

k

)T
))

Defining as before:

(C.35)K = ∑
k

(
akuA

k

(
uB

k

)T
)T

(C.36)J = 1− Tr
(

CB
AKT

)

Now it is necessary to find CB
A that minimizes the expression above. Factoring K

with Singular Value Decomposition (Theorem C.2.1):

K = U Σ VT = U diag[Σ11, Σ22, Σ33] VT (C.37)

Noting that U and V are unitary matrices, it is useful to define proper rotation
matrices:

(C.38)U+ = U [1, 1, (detU)]

(C.39)V+ = V [1, 1, (detV)]

Thus it is also possible to rewrite K as:

K = U+ Σ VT = U diag[Σ11, Σ22, Σ33det(U)det(V)] VT
+ (C.40)

Express the diagonal matrix as:

S = diag[Σ11, Σ22, Σ33det(U)det(V)] (C.41)
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K = U+ Σ S VT
+ (C.42)

Since a product of rotation matrices is a rotation matrix itself, let:

(C.43)W = UT
+ CB

AV+

Then, conversely:

(C.44)CB
A = U+WVT

+

This effectively becomes a change of variables in Equation (C.36), that becomes:

(C.45)J = 1− Tr
(

U+WVT
+ KT

)
Using the decomposition of K given by Equation (C.40):

(C.46)J = 1− Tr
(

U+WVT
+

(
U S VT

+

)T
)

Simplifying:

(C.47)J = 1− Tr
(

U+WSUT
+

)
Applying the invariance of trace over commutation (Theorem C.1.5)

(C.48)Tr
(

U+WSUT
+

)
= Tr

(
UT

+ U+WS
)

= Tr (WS)

As rotation matrix, W admits the following decomposition:

(C.49)W = cos(Φ)I + (1− cos(Φ)) wwT − sin(Φ)w×

With Φ a rotation angle and w a unit vector corresponding to the rotation axis.
Therefore:

(C.50)WS = cos(Φ)S + (1− cos(Φ)) wwTS − sin(Φ)w×S
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Applying the trace:

(C.51)Tr (WS) = Tr
(

cos(Φ)S + (1− cos(Φ)) wwTS − sin(Φ)w×S
)

Performing the operations:

(C.52)Tr (WS) = Tr(S)− (1− cos(Φ))
(

Σ22 + Σ33det(U)det(V) + (Σ11 − Σ22) w2
2

+ (Σ11 − Σ33det(U)det(V)) w2
3

)
Since Σ11 ≥ Σ22 ≥ Σ33 ≥ 0, the term in parentheses is always positive. Thus
Equation (C.52) is maximized for Φ, which in turn minimizes Equation (C.46) as:

(C.53)J = 1− Tr (S)

Since S depends only on K, it cannot be further minimized since there are no
(relevant) variables left to vary. But recalling Equation (C.49), and Φ = 0, this
form is now reduced to W = I, and from Equation (C.44):

(C.54)CB
A = U+WVT

+

= U diag[1, 1, (detU)(detV)] VT

Completing the proof.
Definition C.2.1. Projection Matrix:
The projection of a vector v over a direction given by a vector u is given by:

(C.55)
Proju(v) = uut ‖u‖−2 v

= Puv

With:

(C.56)Pu = uut ‖u‖−2

And Pu is referred as the Projection Matrix over the direction of u.
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Definition C.2.2. Projection Removal Matrix:
The projection of a vector v over a direction given by a vector u is given by:

(C.57)v − Proju(v) = v − (uut ‖u‖−2)v
= (I − Pu)v
= Ruv

With:

(C.58)Ru = I − uut ‖u‖−2

Ru is called the Projection Removal Matrix over the direction of u.
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ANNEX D - CODE TO VERIFY PROPERTIES OF THE VARIANCE OF A
CROSS PRODUCT

This annex contains the computer code that deduces the equations for the � op-
erator. It is developed with Wolfram Mathematica (WOLFRAM RESEARCH, 2018).

Although the random variables involved are modeled as being normally dis-
tributed, it was already noted in Section 3.2 that only properties of the Variance
matrix and the expectancy operator are needed to perform those demonstrations,
hence the actual distribution used does not affect the produced results, provided
the zero expectancy hypothesis is sustained.

The formatting in these pages inherits the template used by Mathematica note-
books, with the font set to Lucida Sans Unicode, in order to correctly print the �
symbol.
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Demonstrating properties of the ⊠ operator

Clearing the workspace and making basic definitions:

In[190]:= ClearAll["Global`*"]

aaTProd[v__, u__] := Transpose[{u}].{v}

Defining the concerned vectors and covariances:

In[192]:= μv = {Subscript[μ, x], Subscript[μ, y], Subscript[μ, z]};

εv = {Subscript[ε, x], Subscript[ε, y], Subscript[ε, z]};

Kμ = {{σμxx, σμxy , σμxz }, {σμxy , σμyy, σμyz }, {σμxz, σμyz , σμzz}};

Kε = {{σεxx, σεxy , σεxz }, {σεxy , σεyy, σεyz }, {σεxz, σεyz , σεzz}};

μv NormalDistribution[{0, 0, 0}, Kμ];

εv NormalDistribution[{0, 0, 0}, Kε];

Σ = ArrayFlatten Kμ Table[0, {i, 3}, {j, 3}]
Table[0, {i, 3}, {j, 3}] Kε

;

Noting the cross product:

In[199]:= μvXεv = Cross[μv, εv]

Out[199]= {εz μy - εy μz, -εz μx + εx μz, εy μx - εx μy}

Showing that the expectation of the cross product is zero:

In[200]:= Expectation[μvXεv, Join[μv, εv]MultinormalDistribution[{0, 0, 0, 0, 0, 0}, Σ]]

Out[200]= {0, 0, 0}

Evaluating the cross product times its transpose:

In[201]:= aTa = aaTProd[μvXεv, μvXεv]

Out[201]= (εz μy - εy μz)
2, (-εz μx + εx μz) (εz μy - εy μz), (εy μx - εx μy) (εz μy - εy μz),

(-εz μx + εx μz) (εz μy - εy μz), (-εz μx + εx μz)
2, (εy μx - εx μy) (-εz μx + εx μz),

(εy μx - εx μy) (εz μy - εy μz), (εy μx - εx μy) (-εz μx + εx μz), (εy μx - εx μy)
2

Computing the expectation yields the covariance:

In[202]:= Expectation[aTa, Join[μv, εv]MultinormalDistribution[{0, 0, 0, 0, 0, 0}, Σ]]

Out[202]= {{σεzz σμyy - 2σεyz σμyz + σεyy σμzz,

-σεzz σμxy + σεyz σμxz + σεxz σμyz - σεxy σμzz, σεyz σμxy - σεyy σμxz - σεxz σμyy + σεxy σμyz},

{-σεzz σμxy + σεyz σμxz + σεxz σμyz - σεxy σμzz, σεzz σμxx - 2σεxz σμxz + σεxx σμzz,

-σεyz σμxx + σεxz σμxy + σεxy σμxz - σεxx σμyz}, {σεyz σμxy - σεyy σμxz - σεxz σμyy + σεxy σμyz,

-σεyz σμxx + σεxz σμxy + σεxy σμxz - σεxx σμyz, σεyy σμxx - 2σεxy σμxy + σεxx σμyy}}

Defining the ⊠ operator as a function of Kμ and Kε:



In[203]:= ⊠[Kμ__, Kε__] :=Module{μv, εv, Σ, aTa, μvXεv, a, b, c, d, e, f, g, h, i, j, k, l, A, B, C, D, E, F},

a = Kμ[[1]][[1]]; b = Kμ[[2]][[1]]; c = Kμ[[3]][[1]];

d = Kμ[[2]][[2]]; e = Kμ[[2]][[3]]; f = Kμ[[3]][[3]];

g = Kε[[1]][[1]]; h = Kε[[2]][[1]]; i = Kε[[3]][[1]];

j = Kε[[2]][[2]]; k = Kε[[2]][[3]]; l = Kε[[3]][[3]];

Σ = ArrayFlatten
Kμ Table[0, {ii, 3}, {jj, 3}]

Table[0, {ii, 3}, {jj, 3}] Kε
;

μvXεv = Cross[{A, B, C}, {D, E, F}];

aTa = aaTProd[μvXεv, μvXεv];

Expectation[aTa, Join[{A, B, C, D, E, F}]MultinormalDistribution[{0, 0, 0, 0, 0, 0}, Σ]]

Checking the result:

In[204]:= ⊠[Kμ, Kε] ⩵ Expectation[aTa, Join[μv, εv]MultinormalDistribution[{0, 0, 0, 0, 0, 0}, Σ]]

Out[204]= True

Verifying that ⊠ is bilinear:

In[205]:= a2 b2⊠[Kμ, Kε] == Expectation[aaTProd[Cross[aμv, b εv], Cross[aμv, b εv]],

Join[μv, εv]MultinormalDistribution[{0, 0, 0, 0, 0, 0}, Σ]] // Simplify

Out[205]= True

Verifying that ⊠ is commutative:

In[206]:= ⊠[Kμ, Kε] ⩵⊠[Kε, Kμ] // Simplify

Out[206]= True

Verifying pre-multiplication of second vector:

In[211]:= M = {{a, b, c}, {d, e, f}, {g, h, i}};

⊠[Kμ, M.Kε.(M)] ⩵ Expectation[aaTProd[Cross[μv, M.εv], Cross[μv, M.εv]],

Join[μv, εv]MultinormalDistribution[{0, 0, 0, 0, 0, 0}, Σ]] // FullSimplify

Out[212]= True

Verifying pre-multiplication of cross product matrix:

In[217]:= M.(⊠[Kμ, Kε]).(M) ⩵ Expectation[aaTProd[M.Cross[μv, εv], M.Cross[μv, εv]],

Join[μv, εv]MultinormalDistribution[{0, 0, 0, 0, 0, 0}, Σ]] // Simplify

Out[217]= True

2     BoxSquare.nb





ANNEX E - PROOF OF RECURSIVE FORMULAS FOR COVARIANCE

This annex contains the demonstrations for the recursive formulas the allow com-
puting the covariances for each of the four cases of random processed shown in
Section 3.6. The notation and definitions are same introduced in Section 3.6.1,
including the definitions of the auxiliary sequences.

While the developments on this annex are original from this work, Proposition
3.6.1 can be regarded as a particular case of applying Theorem B.1.7 to a con-
veniently constructed random variable. Nonetheless, this development is still
shown here as it exemplifies the framework applied for the other cases.

It is also recalled that the variance formulas or their auxiliary sequences are gen-
erally shown in summation forms that follow the pattern in Equation (3.9), which
are easily convertible to recursive formulas defined and explained in Section 3.1.

E.0.1 Case 1 Proof: Sum of Known Gains Times Noise

Recalling Equation (3.46):

(E.1)Var

[
k

∑
k=1

fkεk

]
=

k

∑
k=1

fkσ2
ε f T

k

From the definition of variance (Definition B.1.20):

(E.2)Var

[
∑
k

fkεk

]
= E

(∑
k

fkεk

)(
∑
k

fkεk

)T


Changing the index in the second summation:

(E.3)Var

[
∑
k

fkεk

]
= E

(∑
k

fkεk

)(
∑

j
f jε j

)T


Using Theorem C.1.1 and Theorem C.1.2 to handle the transposition operation::

(E.4)Var

[
∑
k

fkεk

]
= E

[(
∑
k

fkεk

)(
∑

j
ε j

T f T
j

)]
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Noting that:

(E.5)

(
∑

i
ai

)(
∑

j
bj

)
= ∑

i
∑

j
aibj

Applying to the previous equation:

(E.6)Var

[
∑
k

fkεk

]
= E

[
∑
k

∑
j

fkεkε j
T f T

j

]

From the linearity of the expectation operator (Theorem B.1.1) :

(E.7)Var

[
∑
k

fkεk

]
= ∑

k
∑

j
fkE
[
εkε j

T
]

f T
j

From the independence of εk and ε j for k 6= j, and using the kronecker delta
(Equation (B.75)):

(E.8)E
[
εkεT

j

]
= σ2

ε δkj

Thus the double summation in Equation (E.7) is reduced to:

(E.9)Var

[
∑
k

fkεk

]
= ∑

k
fkσ2

ε f T
k

Concluding the proof.

E.0.2 Case 2 Proof: Sum of Known Gains Times Bias Cross Product Matrix
Times Case 1

Recalling Equation (3.47):

(E.10)Var

[
m

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Hm (Gm) HT

m − 2
(

JmHm
T
)
⊕

+ Km

The demonstration of this result will be performed by finite induction. The cases
for m ∈ {1, 2, 3} will be done both as the first step and to find a first guess for the
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general result. The obtained equation however does not allow recursive imple-
mentation, thus it will have to be manipulated before the proof is concluded and
Equation (3.47) demonstrated.

For m = 1:

(E.11)Var

[
1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
h1µ× f1ε1

]
Using Theorem B.1.3 and Proposition 3.2.4:

(E.12)Var

[
1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= h1

(
σ2

µ �
(

f1σ2
ε f1

T
))

h1
T

For m = 2:

(E.13)Var

[
2

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
h2µ×

(
f2ε2 + f1ε1

)
+ h1µ× f1ε1

]

(E.14)Var

[
2

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
h2µ× f2ε2 + (h2 + h1)µ× f1ε1

]
Note that:

(E.15)Cov
[

h2µ× f2ε2 , (h2 + h1)µ× f1ε1

]
= E

[(
h2µ× f2ε2

) (
(h2 + h1)µ× f1ε1

)T
]

Using Theorem C.1.2 to handle the transposition operation:

(E.16)Cov
[

h2µ× f2ε2 , (h2 + h1)µ× f1ε1

]
= E

[
h2µ× f2ε2εT

1 f T
1 (−µ

×
) (h2 + h1)

T
]

From the linearity of the expectation operator (Theorem B.1.1) :

(E.17)Cov
[

h2µ× f2ε2 , (h2 + h1)µ× f1ε1

]
= h2E

[
µ× f2ε2εT

1 f T
1 (−µ

×
)
]

(h2 + h1)T

The uncorrelated terms in the middle, cause the cross-covariance to become zero,
thus, applying the identity for the variance of a sum (Theorem B.1.3) on Equation
(E.14):
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(E.18)Var

[
2

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
h2µ× f2ε2 + (h2 + h1)µ× f1ε1

]
= Var

[
(h2 + h1)µ× f1ε1

]
+ Var

[
h2µ× f2ε2

]
Using Proposition 3.2.1, with properties described on Proposition 3.2.2 and
Proposition 3.2.4:

(E.19)Var

[
2

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= (h2 + h1)

(
σ2

µ �
(

f1σ2
ε f T

1

))
(h2 + h1)T

+ h2

(
σ2

µ �
(

f2σ2
ε f T

2

))
hT

2

For m = 3:

(E.20)Var

[
3

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
h3µ×

(
f3ε3 + f2ε2 + f1ε1

)
+ h2µ×

(
f2ε2 + f1ε1

)
+ h1µ× f1ε1

]

Var

[
3

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
h3µ× f3ε3 + (h3 + h2) µ× f2ε2 + (h3 + h2 + h1) µ× f1ε1

]
(E.21)

(E.22)Var

[
3

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
h3µ× f3ε3

]
+ Var

[
(h3 + h2) µ× f2ε2

]
+ Var

[
(h3 + h2 + h1) µ× f1ε1

]
Recalling Equation (3.51):

(E.23)Hk = Hk−1 + hk =
k

∑
i=1

hi
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Then replacing terms in Equation (E.22):

(E.24)Var

[
3

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
(H3 − H2) µ× f3ε3

]
+ Var

[
(H3 − H1) µ× f2ε2

]
+ Var

[
(H3 − H0) µ× f1ε1

]

(E.25)
Var

[
3

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= (H3 − H0)

(
σ2

µ �
(

f1σ2
ε f T

1

))
(H3 − H0)T

+ (H3 − H1)
(

σ2
µ �

(
f2σ2

ε f T
2

))
(H3 − H1)T

+ (H3 − H2)
(

σ2
µ �

(
f3σ2

ε f T
3

))
(H3 − H2)T

This allows proposing the inductive hypothesis:

(E.26)Var

[
m

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
=

m

∑
k=1

(Hm − Hk−1)
(

σ2
µ �

(
fkσ2

ε f T
k

))
(Hm − Hk−1)T

Assume the hypothesis valid for m = M:

(E.27)Var

[
M

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
=

M

∑
k=1

(HM − Hk−1)
(

σ2
µ �

(
fkσ2

ε f T
k

))
(HM − Hk−1)T

For m = M + 1:

(E.28)Var

[
M+1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
hM+1µ×

M+1

∑
i=1

fiεi +
M

∑
k=1

hkµ×
k

∑
i=1

fiεi

]

Var

[
M+1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
hM+1µ× fM+1εM+1+hM+1µ×

M

∑
i=1

fiεi +
M

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
(E.29)
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Noting that the hypothesis is assumed valid for any arbitrary sequence hk, define
an auxiliary sequence:

(E.30)h′k =

{
hk k < M

hM + hM+1 k = M

Then the summation multiplied by hM+1µ× inside the variance in Equation (E.29)
is incorporated into the later sum:

(E.31)Var

[
M+1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
hM+1µ× fM+1εM+1 +

M

∑
k=1

h′kµ×
k

∑
i=1

fiεi

]

From the uncorrelation between εM+1 and εi for i ≤ M, and using Theorem B.1.3

(E.32)Var

[
M+1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
hM+1µ× fM+1εM+1

]
+ Var

[
M

∑
k=1

h′kµ×
k

∑
i=1

fiεi

]

Recalling that the hypothesis is assumed valid for h′k as well:

Var

[
M+1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
hM+1µ× fM+1εM+1

]
+

M

∑
k=1

(
H′M − H′k−1

) (
σ2

µ �
(

fkσ2
ε f T

k

)) (
H′M − Hk−1

)T

(E.33)

Where H′k is analogously defined:

(E.34)H′k =

{
Hk k < M

HM + hM+1 k = M

Noticeably: H′M = HM+1, thus:

Var

[
M+1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Var

[
hM+1µ× fM+1εM+1

]
+

M

∑
k=1

(HM+1 − Hk−1)
(

σ2
µ �

(
fkσ2

ε f T
k

))
(HM+1 − Hk−1)T

(E.35)
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Then using the properties described in Proposition 3.2.4 and Proposition 3.2.5 of
the � operator:

Var

[
M+1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= hM+1

(
σ2

µ �
(

fM+1σ2
ε f T

M+1

))
hT

M+1

+
M

∑
k=1

(HM+1 − Hk−1)
(

σ2
µ �

(
fkσ2

ε f T
k

))
(HM+1 − Hk−1)T

(E.36)

Since hM+1 = HM+1 − HM:

Var

[
M+1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= (HM+1 − HM)

(
σ2

µ �
(

fM+1σ2
ε f T

M+1

))
(HM+1 − HM)T

+
M

∑
k=1

(HM+1 − Hk−1)
(

σ2
µ �

(
fkσ2

ε f T
k

))
(HM+1 − Hk−1)T

(E.37)

And the last term can be incorporated into the summation:

Var

[
M+1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
=

M+1

∑
k=1

(HM+1 − Hk−1)
(

σ2
µ �

(
fkσ2

ε f T
k

))
(HM+1 − Hk−1)T

(E.38)

Which concludes the inductive step.

There remains the need to find recursive formulas for the computation of Equa-
tion (E.38). Noting that:

(E.39)

Var

[
M+1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
=

M+1

∑
k=1

(
HM+1

(
σ2

µ �
(

fkσ2
ε f T

k

))
HM+1

T

− Hk−1

(
σ2

µ �
(

fkσ2
ε f T

k

))
HM+1

T

− HM+1

(
σ2

µ �
(

fkσ2
ε f T

k

))
Hk−1

T

+ Hk−1

(
σ2

µ �
(

fkσ2
ε f T

k

))
Hk−1

T
)
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Then the two middle terms can be grouped as twice a symmetric part matrix:

(E.40)
Var

[
M+1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
=

M+1

∑
k=1

(
HM+1

(
σ2

µ �
(

fkσ2
ε f T

k

))
HM+1

T

− 2
(

Hk−1

(
σ2

µ �
(

fkσ2
ε f T

k

))
HM+1

T
)
⊕

+ Hk−1

(
σ2

µ �
(

fkσ2
ε f T

k

))
Hk−1

T
)

Distributing the summation operator:

(E.41)

Var

[
M+1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
=

M+1

∑
k=1

(
HM+1

(
σ2

µ �
(

fkσ2
ε f T

k

))
HM+1

T
)

− 2
M+1

∑
k=1

(
Hk−1

(
σ2

µ �
(

fkσ2
ε f T

k

))
HM+1

T
)
⊕

+
M+1

∑
k=1

(
Hk−1

(
σ2

µ �
(

fkσ2
ε f T

k

))
Hk−1

T
)

Removing from summations terms that do not depend on the summation index,
and using Theorem C.1.4

(E.42)

Var

[
M+1

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= HM+1

(
M+1

∑
k=1

(
σ2

µ �
(

fkσ2
ε f T

k

)))
HT

M+1

− 2

((
M+1

∑
k=1

Hk−1

(
σ2

µ �
(

fkσ2
ε f T

k

)))
HM+1

T

)
⊕

+
M+1

∑
k=1

(
Hk−1

(
σ2

µ �
(

fkσ2
ε f T

k

))
Hk−1

T
)

Naming a few summations:

(E.43)Gm =
m

∑
k=1

(
σ2

µ �
(

fkσ2
ε f T

k

))

(E.44)Jm =
m

∑
k=1

Hk−1

(
σ2

µ �
(

fkσ2
ε f T

k

))
222



(E.45)Km =
m

∑
k=1

(
Hk−1

(
σ2

µ �
(

fkσ2
ε f T

k

))
Hk−1

T
)

Replacing those new summations into Equation (E.42):

(E.46)Var

[
m

∑
k=1

hkµ×
k

∑
i=1

fiεi

]
= Hm (Gm) HT

m − 2
(

JmHm
T
)
⊕ + Km

Thus concluding the proof.

E.0.3 Case 3 Proof: Sum of Known Gains Times Noise Cross Product Matrix
Times Case 1

Recalling Equation (3.52):

(E.47)Var

[
n

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
= hn (Ln) hT

n + Var

[
n−1

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]

In this case, finite induction is unnecessary, since it is possible to directly establish
a recurrence formula. Although some examples are helpful:

For n = 1:

(E.48)Var

[
1

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
= Var

[
h1ξ×1 f1ε1

]
Then, using the properties described in Proposition 3.2.4 and Proposition 3.2.5 of
the � operator:

(E.49)Var

[
1

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
= h1

(
σ2

ξ �
(

f1σ2
ε f T

1

))
hT

1

For n = 2:

(E.50)Var

[
2

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
= Var

[
h2ξ×2 f2ε2 + h2ξ×2 f1ε1 + h1ξ×1 f1ε1

]
Noting that:

(E.51)Cov
[
h2ξ×2 f2ε2 , h2ξ×2 f1ε1

]
= E

[
h2ξ×2 f2ε2 εT

1 f T
1 ξ×2

ThT
2

]
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Then, using the distributivity of expectancy for independent variables (Theorem
B.1.10):

(E.52)Cov
[
h2ξ×2 f2ε2 , h2ξ×2 f1ε1

]
= E

[
h2ξ×2 f2ε2 εT

1 f T
1 ξ×2

ThT
2

]
Now applying Stacked Expectation (Theorem B.1.2):

(E.53)Cov
[
h2ξ×2 f2ε2 , h2ξ×2 f1ε1

]
= E

[
h2ξ×2 f2E

[
ε2 εT

1 |ξ1, ξ2

]
f T
1 ξ×2

ThT
2

]
Where it is recalled that | denotes statistical conditioning, as per Definition B.1.18
and Definition B.1.9.

Since every ξ j is independent from any εi:

(E.54)E
[
ε2 εT

1 |ξ1, ξ2

]
= E

[
ε2 εT

1

]
Thus:

(E.55)Cov
[
h2ξ×2 f2ε2 , h2ξ×2 f1ε1

]
= E

[
h2ξ×2 f2E

[
ε2 εT

1

]
f T
1 ξ×2

ThT
2

]
And the inner expectation is zero, therefore:

(E.56)Cov
[
h2ξ×2 f2ε2 , h2ξ×2 f1ε1

]
= 0

This means that cross-covariances that do not repeat indexes for both random
variables are zero. Therefore:

Var

[
2

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
= Var

[
h2ξ×2 f2ε2

]
+ Var

[
h2ξ×2 f1ε1

]
+ Var

[
h1ξ×1 f1ε1

]
(E.57)

Using the � operator:

(E.58)Var

[
2

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
= h2

(
σ2

ξ �
(

f2σ2
ε f T

2

))
hT

2 + h2

(
σ2

ξ �
(

f1σ2
ε f T

1

))
hT

2

+ h1

(
σ2

ξ �
(

f1σ2
ε f T

1

))
hT

1
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Factoring out h2 and hT
2 :

(E.59)Var

[
2

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
= h2

((
σ2

ξ �
(

f2σ2
ε f T

2

))
+
(

σ2
ξ �

(
f1σ2

ε f T
1

)))
hT

2

+ h1

(
σ2

ξ �
(

f1σ2
ε f T

1

))
hT

1

For n = 3:

(E.60)Var

[
3

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
= Var

[
h3ξ×3 f3ε3 + h3ξ×3 f2ε2 + h3ξ×3 f1ε1 + h2ξ×2 f2ε2

+ h2ξ×2 f1ε1 + h1ξ×1 f1ε1
]

Under the same argument:

(E.61)Var

[
3

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
= Var[h3ξ×3 f3ε3] + Var[h3ξ×3 f2ε2] + Var[h3ξ×3 f1ε1]

+Var[h2ξ×2 f2ε2]+Var[h2ξ×2 f1ε1]+Var[h1ξ×1 f1ε1]

Var

[
3

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
= h3

{(
σ2

ξ �
(

f3σ2
ε f T

3

))
+
(

σ2
ξ �

(
f2σ2

ε f T
2

))
+
(

σ2
ξ �

(
f1σ2

ε f T
1

))}
hT

3

+ h2

((
σ2

ξ �
(

f2σ2
ε f T

2

))
+
(

σ2
ξ �

(
f1σ2

ε f T
1

)))
hT

2

+ h1

(
σ2

ξ �
(

f1σ2
ε f T

1

))
hT

1

(E.62)

Which allows a straightforward formula:

Var

[
n

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
= hn

(
n

∑
k=1

(
σ2

ξ �
(

fkσ2
ε f T

k

)))
hT

n + Var

[
n−1

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
(E.63)
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Naming a sequence:

(E.64)Ln =
n

∑
k=1

(
σ2

ξ �
(

fkσ2
ε f T

k

))

Therefore:

(E.65)Var

[
n

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]
= hn (Ln) hT

n + Var

[
n−1

∑
m=1

hmξ×m
m

∑
k=1

fkεk

]

Which concludes the proof.

E.0.4 Case 4 Proof: Sum of Known Gains Times Case 1

Recalling Equation (3.54):

(E.66)Var

[
m+1

∑
k=1

hk

k

∑
i=1

fiεi

]
− Var

[
m

∑
k=1

hk

k

∑
i=1

fiεi

]
= hm+1Wm+1hT

m+1 + 2
(

hm+1

(
WmHT

m − Xm

))
⊕

Proof is provided by finite induction. It is again necessary to showcase a few ex-
amples in order to infer the form adopted by the general equation. The result,
however, will again require manipulation in order to admit recursive implemen-
tation.

For m = 2:

(E.67)Var

[
2

∑
k=1

hk

k

∑
i=1

fiεi

]
= E

( 2

∑
k=1

hk

k

∑
i=1

fiεi

)(
2

∑
k=1

hk

k

∑
i=1

fiεi

)T


Expanding the summations:

Var

[
2

∑
k=1

hk

k

∑
i=1

fiεi

]
= E

[(
h1 f1ε1 + h2 f1ε1 + h2 f2ε2

) (
h1 f1ε1 + h2 f1ε1 + h2 f2ε2

)T
]

(E.68)
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Performing the distributions and using Theorem C.1.2 and Theorem C.1.1:

(E.69)Var

[
2

∑
k=1

hk

k

∑
i=1

fiεi

]
= E

[
h1 f1ε1ε1

T f T
1 hT

1 + h1 f1ε1ε1
T f T

1 hT
2 + h1 f1ε1εT

2 f T
2 hT

2

+ h2 f1ε1ε1
T f T

1 hT
1 + h2 f1ε1ε1

T f T
1 hT

2 + h2 f1ε1εT
2 f T

2 hT
2

+ h2 f2ε2ε1
T f T

1 hT
1 + h2 f2ε2ε1

T f T
1 hT

2 + h2 f2ε2εT
2 f T

2 hT
2

]

Applying the linearity property of the expectancy operator (Theorem B.1.1) :

Var

[
2

∑
k=1

hk

k

∑
i=1

fiεi

]
= E

[
h1 f1ε1ε1

T f T
1 hT

1

]
+ E

[
h1 f1ε1ε1

T f T
1 hT

2 ] + E[h1 f1ε1εT
2 f T

2 hT
2

]
+ E

[
h2 f1ε1ε1

T f T
1 hT

1 ] + E[h2 f1ε1ε1
T f T

1 hT
2

]
+ E

[
h2 f1ε1εT

2 f T
2 hT

2

]
+ E

[
h2 f2ε2ε1

T f T
1 hT

1

]
+ E

[
h2 f2ε2ε1

T f T
1 hT

2

]
+ E[h2 f2ε2εT

2 f T
2 hT

2 ]

(E.70)

Reusing the argument from Equation (E.53) and Equation (E.55) allows eliminat-
ing terms containing the noise at different time indexes. Thus:

(E.71)Var

[
2

∑
k=1

hk

k

∑
i=1

fiεi

]
= h1 f1σ2

ε f T
1 hT

1 + h1 f1σ2
ε f T

1 hT
2 + h2 f1σ2

ε f T
1 hT

1

+ h2 f1σ2
ε f T

1 hT
2 + h2 f2σ2

ε f T
2 hT

2

Factoring out some terms:

(E.72)Var

[
2

∑
k=1

hk

k

∑
i=1

fiεi

]
= h1 f1σ2

ε f T
1

(
hT

1 +hT
2

)
+h2 f1σ2

ε f T
1

(
hT

1 +hT
2

)
+h2 f2σ2

ε f T
2 hT

2

Again, performing factorization:

(E.73)Var

[
2

∑
k=1

hk

k

∑
i=1

fiεi

]
= (h1 + h2) f1σ2

ε f T
1

(
hT

1 + hT
2

)
+ h2 f2σ2

ε f T
2 hT

2
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Now, for m = 3:

Var

[
3

∑
k=1

hk

k

∑
i=1

fiεi

]
= · · ·

= E
[(

h1 f1ε1 + h2 f1ε1 + h2 f2ε2 + h3 f1ε1 + h3 f2ε2 + h3 f3ε3
)

(
h1 f1ε1 + h2 f1ε1 + h2 f2ε2 + h3 f1ε1 + h3 f2ε2 + h3 f3ε3

)T
]

(E.74)

Reusing the result from Equation (E.71) to some extent:

Var

[
3

∑
k=1

hk

k

∑
i=1

fiεi

]
=

= E
[(

h1 f1ε1 + h2 f1ε1 + h2 f2ε2
)
· · ·(

h1 f1ε1 + h2 f1ε1 + h2 f2ε2 + h3 f1ε1 + h3 f2ε2 + h3 f3ε3
)T + · · ·

+
(
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

) (
h1 f1ε1 + h2 f1ε1 + h2 f2ε2

)T + · · ·

+
(
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

) (
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

)T
]

(E.75)

Factoring some alike terms:

(E.76)

Var

[
3

∑
k=1

hk

k

∑
i=1

fiεi

]
=

= E
[(

h1 f1ε1 + h2 f1ε1 + h2 f2ε2
) (

h1 f1ε1 + h2 f1ε1 + h2 f2ε2
)T · · ·

+
(
h1 f1ε1 + h2 f1ε1 + h2 f2ε2

) (
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

)T + · · ·

+
(
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

) (
h1 f1ε1 + h2 f1ε1 + h2 f2ε2

)T + · · ·

+
(
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

) (
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

)T
]
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Distributing the expectancy operator:

Var

[
3

∑
k=1

hk

k

∑
i=1

fiεi

]
=

= (h1 + h2) f1σ2
ε f T

1

(
hT

1 + hT
2

)
+ h2 f2σ2

ε f T
2 hT

2 + · · ·

+ E
[(

h1 f1ε1 + h2 f1ε1 + h2 f2ε2
) (

h3 f1ε1 + h3 f2ε2 + h3 f3ε3
)T

+
(
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

) (
h1 f1ε1 + h2 f1ε1 + h2 f2ε2

)T

+
(
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

) (
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

)T
]

(E.77)

Var

[
3

∑
k=1

hk

k

∑
i=1

fiεi

]
=

= (h1 + h2) f1σ2
ε f T

1

(
hT

1 + hT
2

)
+ h2 f2σ2

ε f T
2 hT

2 + . . .

+E
[(

h1 f1ε1 +h2 f1ε1 +h2 f2ε2
) (

h3 f1ε1 + h3 f2ε2 + h3 f3ε3
)T
]

+E
[(

h3 f1ε1 +h3 f2ε2 +h3 f3ε3
) (

h1 f1ε1 + h2 f1ε1 + h2 f2ε2
)T
]

+E
[(

h3 f1ε1 +h3 f2ε2 +h3 f3ε3
) (

h3 f1ε1 + h3 f2ε2 + h3 f3ε3
)T
]

(E.78)

(E.79)

Var

[
3

∑
k=1

hk

k

∑
i=1

fiεi

]
= (h1 + h2) f1σ2

ε f T
1

(
hT

1 + hT
2

)
+ h2 f2σ2

ε f T
2 hT

2

+ E
[

h1 f1ε1
(
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

)T

+ h2 f1ε1
(
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

)T

+ h2 f2ε2
(
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

)T
]

+ E
[(

h3 f1ε1
(
h1 f1ε1 + h2 f1ε1 + h2 f2ε2

)T

+ h3 f2ε2
(
h1 f1ε1 + h2 f1ε1 + h2 f2ε2

)T

+ h3 f3ε3
(
h1 f1ε1 + h2 f1ε1 + h2 f2ε2

)T
)]

+ E
[(

h3 f1ε1
(
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

)T

+ h3 f2ε2
(
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

)T

+ h3 f3ε3
(
h3 f1ε1 + h3 f2ε2 + h3 f3ε3

)T
)]
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Var

[
3

∑
k=1

hk

k

∑
i=1

fiεi

]
= (h1 + h2) f1σ2

ε f T
1

(
hT

1 + hT
2

)
+ h2 f2σ2

ε f T
2 hT

2

+ E
[

h1 f1ε1
(
h3 f1ε1

)T + h2 f1ε1
(
h3 f1ε1

)T + h2 f2ε2
(
h3 f2ε2

)T
]

+ E
[(

h3 f1ε1
(
h1 f1ε1 + h2 f1ε1

)T + h3 f2ε2
(
h2 f2ε2

)T
)]

+ E
[(

h3 f1ε1
(
h3 f1ε1

)T + h3 f2ε2

) (
h3 f2ε2

)T

+ h3 f3ε3
(
h3 f3ε3

)T
]

(E.80)

Evaluating the expectancy operations:

Var

[
3

∑
k=1

hk

k

∑
i=1

fiεi

]
= (h1 + h2) f1σ2

ε f T
1

(
hT

1 + hT
2

)
+ h2 f2σ2

ε f T
2 hT

2

+ (h1 + h2) f1σ2
ε f T

1 (h3)T + h2 f2σ2
ε f T

2 (h3)T + h3 f1σ2
ε f T

1 (h1 + h2)T

+ h3 f2σ2
ε f T

2 (h2)T + h3

(
f1σ2

ε f T
1 + f2σ2

ε f T
2 + f3σ2

ε f T
3

)
hT

3

(E.81)
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[
3

∑
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k

∑
i=1

fiεi

]
= (h1 + h2) f1σ2

ε f T
1

(
hT

1 + hT
2

)
+ h2 f2σ2

ε f T
2 hT

2

+ (h1 + h2) f1σ2
ε f T

1 (h3)T + h2 f2σ2
ε f T

2 (h3)T + h3 f1σ2
ε f T

1 (h1 + h2)T

+ h3 f2σ2
ε f T

2 (h2)T + h3

(
f1σ2

ε f T
1 + f2σ2

ε f T
2 + f3σ2

ε f T
3

)
hT

3

(E.82)

(E.83)Var

[
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∑
k=1
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k

∑
i=1

fiεi

]
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ε f T
1

(
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2

)
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ε f T
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ε f T
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ε f T
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(
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ε f T
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ε f T
3

)
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3

Var

[
3

∑
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k

∑
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]
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ε f T
1

(
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2

)
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1 (h3)T
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(
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3
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3

(E.84)
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(E.85)Var

[
3

∑
k=1
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k

∑
i=1

fiεi

]
= (h1 + h2 + h3) f1σ2

ε f T
1 (h1 + h2 + h3)T

+ (h2 + h3) f2σ2
ε f T
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(
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ε f T
3

)
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3

Comparing to the result for case m = 2:
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[
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∑
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k

∑
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]
= (h1 + h2) f1σ2

ε f T
1

(
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2

)
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ε f T
2 hT

2

Recalling a previous definition:

(E.87)Hk =
k

∑
i=1

hi

Then:

(E.88)Var

[
2

∑
k=1

hk

k

∑
i=1

fiεi

]
= H2Q1HT

2 + (H2 − H1) Q2(H2 − H1)T

(E.89)Var

[
3

∑
k=1
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k

∑
i=1

fiεi

]
= H3Q1(H3)T + (H3 − H1)Q2(H3 − H1)T

+ (H3 − H2) Q3(H3 − H2)T

For the inductive step hypothesis m = M:

(E.90)Var

[
M

∑
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hk

k

∑
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fiεi

]
=

M

∑
k=1
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Then for m = M + 1:
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[
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∑
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k

∑
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]
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[
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∑
i=1
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∑
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∑
i=1

fiεi

]
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Var

[
M+1

∑
k=1

hk

k

∑
i=1

fiεi

]
=

= Var

[
hM+1 fM+1εM+1 + hM+1

M

∑
i=1

fiεi +
M

∑
k=1

hk

k

∑
i=1

fiεi

]
(E.92)

By setting:

(E.93)h′k =

{
hk, k < M

hM + hM+1, k = M

}

The two summations in the last expression can be grouped together:

(E.94)Var

[
M+1

∑
k=1

hk

k

∑
i=1

fiεi

]
= Var

[
hM+1 fM+1εM+1 +

M

∑
k=1

h
′
k

k

∑
i=1

fiεi

]

Using the property from Theorem B.1.3 and noting that the term εM+1 does not
appear in the second summation, and it is assumed independent from any previ-
ous value εi, so the cross-covariance term does not appear:

(E.95)Var

[
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∑
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k

∑
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fiεi

]
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[
hM+1 fM+1εM+1

]
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M

∑
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h
′
k

k

∑
i=1
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]

Applying the hypothesis to the term with summations:

(E.96)Var

[
M+1

∑
k=1

hk

k

∑
i=1

fiεi

]
= hM+1QM+1hT

M+1 +
M

∑
k=1

(H′M − H′k−1)Qk
(

H′M − H′k−1
)T

In the last term, it is possible to retrieve Hk from H′k noting:

(E.97)H′k =

{
Hk, k < M

HM + hM+1, k = M

Which implies for k ≤ M:

(E.98)H′M − H′k−1 = hM+1 + HM − Hk−1
= HM+1 − Hk−1
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Replacing this in the summation:

Var

[
M+1

∑
k=1

hk

k

∑
i=1

fiεi

]
= hM+1QM+1hT

M+1 +
M

∑
k=1

(HM+1 − Hk−1)Qk(HM+1 − Hk−1)T

(E.99)

Rewriting the first term with:

(E.100)hM+1 = HM+1 − HM

(E.101)Var

[
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∑
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∑
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]
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+
M

∑
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Then, the outside term can be added to the summation:
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[
M+1

∑
k=1

hk
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]
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∑
k=1

(HM+1 − Hk−1)Qk(HM+1 − Hk−1)T

Thus, concluding the inductive step. So for any m:

(E.103)Var

[
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∑
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k

∑
i=1
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]
=

m

∑
k=1
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This result, albeit simple, does not allow recursive implementation. To derive a
recursive formula, one approach is to investigate the increment between steps:
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(E.104)
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Making the summations match the summation span:
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)
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Making hm+1 explicit:
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Expanding the term in the summation:
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Simplifying:
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]
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Separating into two summations:
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∑
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Defining the symmetric part and anti-symmetric part operators:

(E.111)(M)⊕ =
M + MT

2

(E.112)(M)	 =
M − MT

2

Notice the property:

(E.113)

(A + B)⊕ =
A + B + (A + B)T

2

=
A + B + AT + BT

2

=
A + AT + B + BT

2
= A⊕ + B⊕

Therefore:

(E.114)
(
∑ Ak

)⊕ = ∑ (Ak)⊕
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Thus:

(E.115)∑ (BAk)⊕ =
(
∑ BAk

)⊕
=
(

B ∑ Ak
)⊕

Notice that:
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(E.116)

Then:
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Looking at this particular term:
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Now the last summation:
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Thus, defining two additional recurrent sequences:

(E.122)Hk =
k

∑
i=1

hi
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Then the variance increment can be given by:
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Which in turn is also a recurrence formula for the variance.
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