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Abstract

Numerical weather prediction (NWP) uses atmospheric general cir-
culation models (AGCMs) to predict the weather future conditions.
The process is done inserting observation data into computer model
to compute initial conditions – also named ”analysis”. Such feature is
called data assimilation (DA). Several techniques have been developed
for DA. Ensemble Kalman filter. Here, a set of artificial neural net-
works (ANNs) – multi-layer perceptron with back propagation learn-
ing – is configured to emulate the Local Ensemble Transform Kalman
Filter (LETKF) applied to the SPEEDY model. The novelty is to
perform the analysis when some observations are missing in a DA cy-
cle, or several cycles. A comparison between analysis produced by the
LETKF and ANN is carried out. The numerical experiment was done
at January 1985.

Keywords: Data assimilation, atmospheric model, artificial neural net-

work, ensemble Kalman filter.

1. Introduction

The procedure to determine the initial condition in the operational pre-
diction centers is called data assimilation (DA), where the background fields
are combined with observations for producing the analysis – the new initial
condition. There are many different types of data assimilation schemes. A
useful overview of some of the most common data assimilation methods can
be found in texts such as Daley [7] and Kalnay [16].

Two DA schemes are analized here: Local Ensemble Transform Kalman
Filter (LETKF) [14], and the approach based on Artificial Neural Networks
(NN) to emulate the LETKF [19, 11, 4, 5]. The main advantage to use NN
is to improve the computational performance.

Numerical experiment is performed using syntethic observations from
surface stations (data at each 6 hours/day) and upper-air soundings (data
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at each 12 hours/day). The research investigates the behaviour of DA tech-
niques with missing observiations for data assimilation cycles. Each day
a sequence of analyses at 00:00, 06:00, 12:00, and 18:00 UTC. The grid of
observations reproduces the stations of World Meteorological Organization
(WMO) of radiosonde observations.

The atmospheric model is the 3D SPEEDY(Simplified Parameterizations
PrimitivE-Equation Dynamics) [2], a model with simplified physics parame-
terization. We run 44 data assimilation cycles (analysis/model/forecast) for
LETKF and ANN approach, where some cycles have missing observations.

2. Data Assimilation

Considering a general nonlinear system with a n−dimensional state vec-
tor xf and a m−dimensional observation vector yo evolving according to

xfk+1 = f(xfk , tk) + qk (1)

yok = h(xfk , tk) + vk (2)

where qk and vk are Gaussian noise terms.
Forecasting is a step to predict a state xfk+1 of a system from the last

state by numerical weather prediction model. From mathematical point, the
assimilating process can be represented by

xak = xfk+1 +W [yok −H(xfk+1)] , (3)

W = (HP fHT +R) . (4)

Equation (3) is the analysis step, where H is the observation operator, W is
the weighting matrix, computed from the error covariance matrices P f and
R, representing model and observations errors respectively.

The data assimilation approach with ANN uses neural networks to im-
plement the function:

xa = FNN (yo, xf ) (5)

where FNN is the data assimilation process, yo represents the observations,
xf is a model forecast, often called the first guess, and xa is the analysis
field with innovation that represents the correction to the model.

2.1 Local Ensemble Transform Kalman Filter

Ensemble Kalman filter (EnKF) is a Bayesian approach proposed by
Evensen [8]. Several schemes for the EnKF has been developed. The local
ensemble transform Kalman filter (LETKF) is one of them [14].
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The basic idea for the LETKF is to perform the analysis at each grid
point simultaneously using the state variables and all observations in the
region centred at given grid point. The local strategy separates groups of
neighbouring observations around a central point for a given region of the
grid model. Each grid point has a local patch; the number of local vectors
is the same as the number of global grid points [17].

3. Atificial Neural Networks

An ANN is composed of simple processing units (neurons) for comput-
ing certain mathematical functions, and consists of interconnected artificial
neurons or nodes. The neurons are connected to others to form an ANN.
Each artificial neuron has one or more inputs and outputs The connection
among neurons stores a weighted sum, called synaptic weight. In ANN pro-
cessing, the inputs are multiplied by weights feeding an activation function.
This function activates or inhibits the next neuron. Mathematically, we can
describe the i-th neuron with the following form:

input summation: ui =
∑p

j=1wijxi
neuron output: yi = ϕ(ui)

(6)

where x1, x2, · · · , xn are the inputs; wi1, · · · , wip are the synaptic weights; ui
is the output of linear combination; ϕ(·) is the activation function, and yi is
the i-th neuron output, n is number of patterns, p is number of neurons.

A feed-forward network, which processes in one direction from input to
output, has a layered structure. The first layer of an NN is called the input
layer, the intermediary layers are called hidden layers, and the last layer
is called the output layer. Some parameters, as number of layers and the
quantity of neurons in each layer, define the neural network topology, but
other parameters are also need to be computed, such as learning ratio and
momentum. These parameters are determined by the nature of the problem.

There are two distinct phases in using a suvervised NN: the training
phase (learning process) and the run phase (activation or generalization).
The training phase of the ANN consists of an iterative process for adjusting
the weights for the best performance of the NN in establishing the mapping
of input and target vector pairs. The learning algorithm is the set of proce-
dures for adjusting the weights. The single pass through the entire training
set in one process in called an ’epoch’. The iterative training process contin-
ues or stops after defined criteria, which can be minimum error of mapping
or a determined number of epochs. Once the ANN is trained the weights are
fixed, and the ANN is ready to receive new inputs (different from training
inputs) for which it calculates the corresponding outputs.
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The multilayer perceptron (MLP) is the ANN topology used in this
study; with at least one intermediate layer of neurons (hidden layer) [12].
The supervised learning process, the functional to be minimized is tread as
a function of the weights wij (Eq. 6), instead of the NN inputs. For a given
input vector x, the output vector xaNN is compared to the target answer
xaref . If the difference is smaller than a required precision, no learning takes
place; on the other hand, the weights are adjusted to reduce this difference.
The goal is to minimize the error between the actual output yi (or xaNN )
and the target output (di) (or xaref ) from the training data. The set of
procedures to adjust the weights is the learning algorithm backpropagation,
which is generally used for the MLP training.

4. The SPEEDY Model

The SPEEDY model [18], is an Atmospheric Global Circulation model
(AGCM) developed in the International Centre for Theoretical Physics (ICTP)
in Triesty-Italy, based on a spectral dynamical core with a simplified set of
physical parametrization schemes. The dynamic variables for the primi-
tive meteorological equations are integrated by the spectral method in the
horizontal grid at each vertical level – more details in [2].

The SPEEDY is executed on T30L7: horizontal resolution with trian-
gular spectral truncation at total wave-number 30 (T30), with seven levels
on the vertical coordinate (100, 200, 300, 500, 700, 850, and 925 hPa). The
vertical coordinate are defined on sigma (σ = p/ps), where ps is the surface
pressure. The horizontal coordinates are latitude and longitude on Gaussian
grid, with a regular grid with 96 zonal points (longitude), and 48 meridian
points (latitude). The prognostic variables of input and output model are
the absolute temperature (T ), surface pressure (ps), zonal and meridional
wind components (u, v), and specific humidity (q).

5. MLP-DA: Data assimilation with missing observation

The ANN configuration for this experiment is a set of multilayer percep-
trons, referred to as MLP-DA, defined in the experiment described by Cintra
and Campos Velho [6]. The topology has the following characteristics:

1. Two input nodes, one node for the meteorological observation vector
and the other for the 6-hours forecast model vector;

2. One output node for the analysis vector results;

3. One hidden layer with eleven neurons;
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4. The hyperbolic tangent as the activation function;

5. Learning rate η is defned do each MLP;

6. Training phase stops when the error reaches 10−5 or after 5000 epochs,
which criterion first occurs.

The input vectors represent the model grid point for a single variable with
a correspondent observation-forecast. In the training algorithm, the MLP-
DA computes the output and compared it with the analysis vector from the
LETKF – the target data. The output vectors represent the analysis values
for one grid point.

The MLP-DA scheme were developed with a set of thirty NNs: six re-
gions with five prognostic variables (ps, u, v, T, q). All NNs have one
hidden layer, with the same number of neurons for all regions, but with
different connection weights. The MLP-DA scheme divides the entire globe
into six regions: for the Northern Hemisphere, 90o N and three longitudinal
regions of 120o each; for the Southern Hemisphere, 90o S and three longitu-
dinal regions of 120o each. All regions have the same size, but the number of
observations is distinct for each region – see Figure 1. This regional division
is applied only for the MLP-DA; the LETKF procedures are not modified.

The MLP-DA is designed to emulate the LETKF analysis for SPEEDY
initial condition. The LETKF analysis is the average field from an ensemble
of analyses.

The upper levels and the surface covariance error matrices to run the
LETKF system, as well as the SPEEDY model boundary conditions data
and physical parameterizations are the same as those used for Miyoshi’s
[17] and Cintra’s [6] experiments. The so-called ”true” (or control) model
is generated the SPEED simulation without noise. The data assimilation
cycles are considered at four times per day (00:00, 06:00, 12:00, 18:00 UTC).

The synthetic observations are generated, reading the ”true” SPEEDY
model fields and adding a random noise on meteorological variables. The
observation localization is on some grid model point. An observation mask
is designed, adding a positive flag to grid point where the observation should
be considered, the locations are similar to the WMO data stations observa-
tions from rawinsonde – see Fig. 1. Except for ps observations, the other
observations are also descripted on upper seven levels.

The MLP-DA data assimilation scheme has no error covariance matrices
to spread the observation influence. Therefore, it is necessary to capture
the influence of observations from the neighbouring region around a grid
point. This calculation is based on the distance from the grid point related
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Figure 1: Observations localizations in global area. The dot points represent
rawinsonde stations (∼ 415).

to observations inside a determined neighbourhood (initially: γ = 0)

ŷoi±m,j±m,k±m =
yoijk

(6 − γr) r2ijk
+

6∑
l=1

αl

yoi±m,j±m,k±m

r2ijk
(7)

(m = 1, 2, . . . ,M)

αl =

{
0 (if there is no observation)
1 (if there is observation, and: γr+1 = γr + 1)

(8)

where ŷo is the weighted observation, M is the number of discrete layers
considered around observation, r2ijk = (xp−yoi )2+(yp−yoj )2+(zp−yok)2, where
(xp, yp, zp) is grid point coordinate, and the (yoi , y

o
j , y

o
k) is the observation

coordinate, and γr is a counter of grid points with observations around
(yoi , y

o
j , y

o
k). If γr = 6, there is no influence to be considered. Hereafter,

the values computed from Eq. (7) are referred as pseudo-observation. grid
points considered to LETKF analysis, although these calculations are made
without interference on LETKF system.

The training processes was made by the Cintra’s experiment [6]. With
trained NNs, the system is ready to used as a data assimilation process. The
MLP-DA results a global analysis field. The MLP-DA activation has input
values (forecast and observations) at each grid point. This experiment of
MLP-DA data assimilation is performed for 11 days (44 cycles). It starts at
10 January 1985 00UTC up to 20 January 1985 18UTC.
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The DA cycles starting with complete global mask, to five prognostic
variable, with four upper-air variables with 7 vertical layers. During three
days (12 cycles), SPEEDY analyses were computed from 415 stations for
all variables (12035 observations) – phase-1. Next two days (12/Jan and
13/Jan) with eight cycles, there is no observations for U, V, and Q, again
with 415 stations with temperature and surface pressure only (3320 obser-
vations) – phase-2. For next 5 days (20 cycles), there is no observations
points from a set of stations – phase-3.

6. Results and Conclusion

The input and output values of prognostic variables (ps, u, v, T, q) are
processed on grid model points for time integrations. Taking into account
the psudo-observation (Eq. 7), with two grid layers (M = 2) around a given
observation are considered, as carried out by [4]. The results show the
comparison of analysis fields, generated by the MLP-DA and the LETKF,
and the true model fields.

The differences between analyses for global humidity q observation at
950hPa as presented in Figure 2 of cycle performed at 10 January 06UTC:
phase-1. Figure 3 shows the humidity with missing observations (u,v,q) in
phase-2 (13 January 12 UTC).

For absolute temperature (950hPa) and suface pressure, Figures 4 and
5 present the phase-2, January 13th 12 UTC, with missing observations
(u,v,q), for 415 station with temperature (7 vertical layers) and surface
pressure. The temperature field are in Kelvin unit (values above 273.15) with
the diferrences up to 10 K in some points. For surface pressure field, there
are differences on the entire domain, because there are pseudo-observations
on all domain.

In the phase 3, LETKF and MLP-NN are executed with missing obser-
vation of some points. Figure 6 shows the surface pressure at 18 January
00UTC, last day of this fail of observation cycles. For phase-3, the observa-
tion mask is complete, similar phase-1. The model has the same behavior
that previous Cintra’s experiment [6] – see Fig. 7 for temperature analysis
for 19 January 00UTC.

The analysis tries to be a correction from a forecast. Less observation
means a worse analysis. Missing observations could occur in a different as-
similation cycles. The MLP-DA was trained with 2 layers for observation
influence (M = 2 in Eq. (7)). Figures 3, 5, and 7 show a good agreement
between the LETKF and MLP-DA analyses. Figures 2, 4, and 6 display
some desagreement between the analyses obtained from the two methodolo-
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Figure 2: Humidity (kg/kg) for 10 January 06UTC: LETKF analysis, MLP-
DA analysis, True model — and diferences: (LETKF and MLP-DA), (True
model and LETKF), (True model and MLP-DA).
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Figure 3: Humidity (kg/kg) for 13 January 12UTC: LETKF analysis, MLP-
DA analysis, True model — and diferences: (LETKF and MLP-DA), (True
model and LETKF), (True model and MLP-DA).
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Figure 4: Absolute temperature (K) for 13 January 12UTCLETKF analysis,
MLP-DA analysis, True model — and diferences: (LETKF and MLP-DA),
(True model and LETKF), (True model and MLP-DA).
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Figure 5: Surface Pressure (hPa) for 13 January 12UTCLETKF analysis,
MLP-DA analysis, True model — and diferences: (LETKF and MLP-DA),
(True model and LETKF), (True model and MLP-DA).

11



Figure 6: Surface Pressure (hPa) for 18 January 00UTC: LETKF analysis,
MLP-DA analysis, True model — and diferences: (LETKF and MLP-DA),
(True model and LETKF), (True model and MLP-DA).
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Figure 7: Absolute Temperature for 19 January 00UTC: LETKF analysis,
MLP-DA analysis – and diferences: (LETKF and MLP-DA).

gies. Looking at Figure 6, we can realize significant differences on regions
over Europe-Asia interface zone, and mainly over the oceans.

There are difference among points on the domain – see Fig. 2 over Alaska
and Vladivostok (red dots), indicating the observation influence was not
enough effetive by computing pseudo-observation with M = 2. One proce-
dure to overcome such issue is to enhance the observation influence (M ≥ 3).
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