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ABSTRACT

An accurate mapping of Brazilian Savanna (Cerrado) is
still a difficult task due to the high spatial variability and spec-
tral similarity between its vegetation types, called physiog-
nomies. This work proposes a methodology based on the hi-
erarchy of physiognomies, GEOBIA techniques with Super-
pixel and a very high spatial resolution image (WorldView-
2) to classify the Cerrado physiognomies in an area of pre-
served vegetation. Seven classes were distinguished: Gallery
Forest, Wooded Savanna, Typical Savanna, Shrub Savanna,
Shrub Grassland, Open Grassland and Rocky Grassland. The
texture features were essential for the classification and the hi-
erarchical approach obtained higher accuracies than the non-
hierarchical approach. Moreover, GEOBIA and Superpixel
were essential to represent the context that characterizes each
physiognomy.

Index Terms— Cerrado, Random Forest, context

1. INTRODUCTION

The Brazilian Savanna, known as Cerrado, is the second
largest Brazilian biome, occupying an area of 24% of the
Brazilian territory. Cerrado is considered one of the 35
hotspots for biodiversity conservation on a global scale [1].
It has a flora containing more than 12 thousand species, of
which 40% are endemic. An accurate mapping of Cerrado
vegetation is an essential task for assessing biodiversity and
improving estimation of Carbon storage in this biome.

Large-scale mapping of the Cerrado vegetation using re-
mote sensing images is still a challenge, due to the high spa-
tial variability and spectral similarity between its vegetation
types, called physiognomies. According to the classification
legend proposed by [2], there are 25 physiognomies. They
vary in structure, density and biomass and can be grouped
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into three major natural formations: Grasslands, Savannas
and Forests.

Therefore, physiognomies can be distinguished hierarchi-
cally: the identification of the major natural formation in a
first level of classification can improve the identification of
more detailed physiognomies (e.g. Shrub Savanna and Shrub
Grassland). Nevertheless, the hierarchical structure of this
legend is not being explored in remote sensing approaches
([3], [4]).

The legend [2] was created based on in situ observations,
so the identification of each physiognomy relies on a context
based on aspects like proximity of water bodies and presence
of certain vegetation species or rocky outcrops. Thus, a per
pixel classification would not be enough to correctly identify
the physiognomies.

In order to consider the context and the hierarchical struc-
ture in a classification process, GEOBIA (Geographic Object-
based Image Analysis) techniques are a useful tool, once they
are based on segmentation and feature extraction [5]. One
approach of image segmentation, Superpixel [6], is becom-
ing very popular because of its simplicity and computational
efficiency. It isolates spectrally homogeneous regions creat-
ing meaningful objects of similar sizes. Superpixel has never
been tested in applications related to Cerrado physiognomies
classification.

In this context, this work aims to develop a semi-automatic
hierarchical classification procedure for mapping Brazilian
Savanna physiognomies, using GEOBIA with Superpixel
segmentation. Several datasets containing different features
were tested and the hierarchical approach was compared with
a non-hierarchical one.

2. METHODOLOGY

2.1. Study area

The study area is in the Brası́lia National Park (BNP) in
Federal District - Brazil, which has approximately 30,000
hectares of preserved Cerrado vegetation. The physiog-
nomies found on this area are Gallery Forest (Mata de Ga-
leria), Wooded Savanna (Cerrado Denso), Typical Savanna



Table 1. Description of physiognomies at two levels.
First Level

G
ra

ss
la

nd

Herbaceous vegetation with or without shrubs

Sa
va

nn
a

Trees scattered over shrubs and herbaceous layers,
no continuous canopies

Fo
re

st Arboreal species forming continuous
or discontinuous canopies

Second Level

Sa
va

nn
a

Wooded
Savanna

Predominantly arboreal vegetation.
Tree cover between 50% and 70%

and tree height of 5 up to 8m

Typical
Savanna

Predominantly
arboreal-shrub vegetation.

Tree cover between 20% and 50%
and tree height of 3 up to 6m

Shrub
Savanna

Arboreal-shrub vegetation.
Tree cover between 5% and 20%

and tree height of 2 up to 3m

G
ra

ss
la

nd

Shrub
Grassland

Herbaceous-shrub vegetation
and some isolated trees

Open
Grassland Predominantly herbaceous vegetation

Rocky
Grassland

Herbaceous-shrub vegetation
and presence of rocky outcrop

(Cerrado Tı́pico), Shrub Savanna (Cerrado Ralo), Shrub
Grassland (Campo Sujo), Open Grassland (Campo Limpo)
and Rocky Grassland (Campo Rupestre) (Table 1). The BNP
is an important protected area for the Cerrado biome once
it contains several endangered species (e.g. Jaguar - Pan-
thera onca and Anteater - Myrmecophaga tridactyla) and
also contains a dam that is responsible for 25% of the Federal
District’s water supply.

2.2. Very high spatial resolution image and preprocessing

A WorldView-2 image (tile ID 103001003373A600) acquired
in July 22, 2014 with a spatial resolution of 2 meters was used.
This image has 8 spectral bands, of which 7 were used in this
work: Blue (450-510nm), Green (510-580nm), Yellow (585-
625nm), Red (630-690nm), Red-Edge (705-745nm), Near In-
frared 1 (NIR-1 - 770-895nm) and Near Infrared 2 (NIR2 -
860- 1040nm).

The image was converted from Digital Numbers (DNs) to
surface reflectance using the Fast Line-of-sight Atmospheric
Analysis of Hypercubes (FLAASH) algorithm [7] on the
ENVI 5.2 software. Also a mask was created to remove con-

structed areas, water bodies, bare soil and burned areas from
the analysis. The mask was identified as “Non Observed” in
the final classification legend.

2.3. Superpixel

The Superpixel approach is a region-based image segmenta-
tion that over-segment the image to produce meaningful ob-
jects (Superpixels) [6]. According to [8], the Superpixels
should adhere well to image boundaries and the algorithm
should be memory efficient, simple to use, increase the speed
and improve the quality of results.

The Superpixel algorithm used in this paper was the
Simple Linear Iterative Clustering (SLIC). This is an adap-
tation of k-means algorithm [9], that computes the weighted
distance measure through a combination of colour, in the
CIELAB colour space, and spatial proximity.

The algorithm creates a regularly spaced grid controlled
by the number of desired Superpixels. After that, each pixel
overlapped by the search region is associated with the near-
est cluster centre, then the cluster centres are adjusted on an
update step and this procedure is repeated until convergence.

It is also possible to control the compactness of the Super-
pixels. If the compactness value is large, spatial proximity is
more relevant, therefore Superpixels are more compact (close
to a square shape). However, when the compactness is small,
they adhere more to image boundaries and have less regular
size and shape [8]. In this work, compactness equal to 850
was used.

2.4. Feature extraction

In order to obtain object-based information, features were ex-
tracted combining the Superpixels and the WorldView-2 im-
age. First, the features were generated for each image pixel
using the surface reflectance values. Then, the average values
for each feature on each Superpixel was calculated, except the
texture features, that were performed according to [10].

The dataset is composed by the following features:
• Spectral: Surface reflectance from the 7 WorldView-2

bands used;
• TC: Tasseled Cap Transformation - Greenness, Wetness

and Brightness components [11];
• SMA: Spectral Mixture Analysis - Soil, Shadow and

Vegetation fractions [12];
• VI: Vegetation Indices - Normalized Difference Vege-

tation Index (NDVI), Enhanced Vegetation Index (EVI), En-
hanced Vegetation Index 2 (EVI2), Soil-Adjusted Vegetation
Index (SAVI) and Modified Soil-Adjusted Vegetation Index 2
(MSAVI2) - all of them described in [4];

• TX: Gray Level Co-occurrence Matrix (GLCM) Tex-
ture - Contrast, Dissimilarity, Entropy, Homogeneity, Corre-
lation and Second Angular Moment [10].



2.5. Classification

The algorithm used to perform the classification was Random
Forest [13]. The number of trees on each forest was set to
100. The classification was generated using a 10-fold cross
validation method. The overall accuracy and the accuracy for
each class, derived from the confusion matrix, were used.

In the hierarchical approach, a first experiment was per-
formed using all features (TC + SMA + VI + Spectral + TX).
Then several experiments were performed using all features
except one at a time. Thus, this procedure can outline the
importance of each group of features for the classification.

The result of the First Level of the classification was used
as input data to the next level. The misclassified Superpixels
at the First Level were also considered as errors at the Second
Level. In the non-hierarchical approach, the classification was
performed in only one step with seven possible classes.

2.6. Fieldwork and validation

The classification was validated by a fieldwork that occurred
in July, 2017, in which 141 sample points were collected
[4]. More 888 sample points were visually interpreted using
the WorldView-2 image, generating a total of 1029 validation
points.

3. RESULTS

The Overall Accuracies (OA) of each experiment for both hi-
erarchical classification levels are presented in Table 2. On
the First Level (distinguished Forest, Savanna and Grassland),
the highest OA was of 88.21%. It was obtained consider-
ing all features except the VI. The removal of TC, SMA and
Spectral features also provided close OA values, ranging from
87.62% to 87.92%. On the other hand, when TX features
were not used, the OA dropped to 85,17%, indicating that
they play an important role in the classification of Cerrado
physiognomies.

The Second Level of hierarchical classification is com-
posed by Savanna and Grassland. The first one was subdi-
vided into the physiognomies of Wooded Savanna, Typical
Savanna and Shrub Savanna, while the second one was dis-
tinguished into Shrub Grassland, Open Grassland and Rocky
Grassland physiognomies. Forest is not included on the Sec-
ond Level, once the study area has only one Forest physiog-
nomy (Gallery Forest), that was already distinguished on the
First Level.

For the Savanna physiognomies classification, the highest
OA (67.33%) was also obtained using all the features except
the VI. The largest drop in the OA happened when TX fea-
tures were excluded from the dataset (62.33%). The use of
TX features proved to be essential for discriminating these
classes, once they are capable of capturing the alternation be-
tween trees and shrub vegetation [4].

Table 2. Overall accuracy (%) for each level of hierarchical
classification.

First
Level

Second
Level

Savanna Grassland

Fe
at

ur
es

TC + SMA +
VI + Spectral + TX 87.72 65.67 64.78

All - TC 87.62 65.17 64.18
All - SMA 87.82 66.83 64.48

All - VI 88.21 67.33 62.39
All - Spectral 87.92 66.00 63.58

All - TX 85.17 62.33 62.69

Table 3. Accuracy (%) for each physiognomy.
Physiognomy Hierarchical Non-hierarchical
Gallery Forest 95.51 96.63

Wooded Savanna 19.57 15.22
Typical Savanna 88.95 87.29
Shrub Savanna 39.25 36.56

Shrub Grassland 72.51 69.67
Open Grassland 55.36 50.89
Rocky Grassland 16.67 8.33
Overall Accuracy 68.95 66.40

For the classification of Grassland physiognomies, the
highest OA (64.78%) was obtained when using all features.
The removal of the VI from the dataset dropped the OA to
the lowest value (62.39%). Differently from what happened
to the First Level and the discrimination of Savanna physiog-
nomies, the VI were essential to improve the classification
of Grassland physiognomies, once higher values of VI were
noticed for the Shrub Grasslands when compared to the Open
grasslands and Rocky Grasslands.

The comparison between hierarchical and non-hierarchical
OA classification for each class is presented in Table 3. The
Gallery Forest was the only class that had a slightly better
accuracy using the non-hierarchical approach. However, the
presence of a unique Forest class on the study site hinders
the evaluation of the hierarchy for the classification of Forest
physiognomies.

The remaining six classes had higher accuracies on the
hierarchical approach, indicating that the inclusion of the hi-
erarchical aspect in the classification of the Cerrado physiog-
nomies can improve the classification of this vegetation. The
hierarchical OA (68.95%) includes the correctly classified Su-
perpixels of Forest, Savanna and Grassland physiognomies
and was also higher than the non-hierarchical OA (66.40%).

The classification result, using the Random Forest models
with highest OA (Table 2), are presented in Figure 1. The veg-
etation map shows a consistent result, with correct transitions
between the studied physiognomies.

The accuracies obtained in this work can be compared



Fig. 1. Vegetation map using hierarchical classification.

with other works that also classified Cerrado physiognomies.
Shrub Grassland and Typical Savanna had higher accuracies
than [4]. Moreover, Gallery Forest, Typical Savanna, Shrub
Grassland and Open Grassland had better accuracies than [3].
Both works were realized on the same study area.

4. CONCLUSION

The inclusion of a hierarchical approach has the potential to
improve the methodologies for mapping the Cerrado phys-
iognomies. In addition, GEOBIA techniques and Superpixel
play an important role in representing the context that char-
acterizes Cerrado physiognomies. Results also showed that
some features better characterize some physiognomies than
others. Texture features were essential for the First and the
Second Level of classification and vegetation indexes were
useful for the discrimination of Grasslands physiognomies.

For future works, it is recommended to test more recent
classification techniques, such as deep learning. Classifying
Cerrado physiognomies is not a trivial task due to the spectral
similarity between their vegetation types. Better classifica-
tion results can reflect on more accurate products, such as the
estimation of Carbon storage and biodiversity assessment.
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[6] C. Çığla and A. A. Alatan, “Efficient graph-based im-
age segmentation via speeded-up turbo pixels,” in Image
Processing (ICIP), 2010 17th IEEE International Con-
ference on. IEEE, 2010, pp. 3013–3016.

[7] T. Perkins, S. Adler-Golden, M. Matthew, A. Berk,
G. Anderson, J. Gardner, and G. Felde, “Retrieval of at-
mospheric properties from hyper and multispectral im-
agery with the flaash atmospheric correction algorithm,”
in Remote Sensing of Clouds and the Atmosphere X. In-
ternational Society for Optics and Photonics, 2005, vol.
5979, p. 59790E.

[8] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
S. Ssstrunk, “Slic superpixels compared to state-of-the-
art superpixel methods,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, no. 11, pp.
2274–2282, Nov 2012.

[9] J. Macqueen, “Some methods for classification and
analysis of multivariate observations,” in In 5-th Berke-
ley Symposium on Mathematical Statistics and Proba-
bility, 1967, pp. 281–297.

[10] R. M. Haralick, K. Shanmugam, et al., “Textural fea-
tures for image classification,” IEEE Transactions on
systems, man, and cybernetics, , no. 6, pp. 610–621,
1973.

[11] L. D. Yarbrough, K. Navulur, and R. Ravi, “Presen-
tation of the kauth–thomas transform for worldview-2
reflectance data,” Remote Sensing Letters, vol. 5, no. 2,
pp. 131–138, 2014.

[12] Y. E. Shimabukuro and J. A. Smith, “The least-squares
mixing models to generate fraction images derived from
remote sensing multispectral data,” IEEE Transactions
on Geoscience and Remote sensing, vol. 29, no. 1, pp.
16–20, 1991.

[13] L. Breiman, “Random forests,” Machine learning, vol.
45, no. 1, pp. 5–32, 2001.

View publication statsView publication stats


