Close

1. Identity statement
Reference TypeBook or Monograph (Book)
Sitemtc-m21c.sid.inpe.br
Holder Codeisadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S
Identifier8JMKD3MGP3W34R/3UCPLUE
Repositorysid.inpe.br/mtc-m21c/2019/11.11.10.41
Last Update2020:01.10.16.25.55 (UTC) simone
Metadata Repositorysid.inpe.br/mtc-m21c/2019/11.11.10.41.50
Metadata Last Update2022:01.04.01.34.54 (UTC) administrator
Secondary KeyINPE-18266-RPQ/939
Labelself-archiving-INPE-MCTIC-GOV-BR
Citation KeyRomero:2020:AtDyCo
TitleSatellite simulation developer's guide - attitude dynamics and control of nonlinear satellite simulations
Year2020
Access Date2024, May 08
Secondary TypeMAN
Number of Pages89
Number of Files1
Size2795 KiB
2. Context
AuthorRomero, Alessandro Gerlinger
GroupDIDSE-CGETE-INPE-MCTIC-GOV-BR
AffiliationInstituto Nacional de Pesquisas Espaciais (INPE)
Author e-Mail Addressromgerale@yahoo.com.br
e-Mail Addressromgerale@yahoo.com.br
PublisherInstituto Nacional de Pesquisas Espaciais
CitySão José dos Campos
History (UTC)2019-11-11 10:41:50 :: romgerale@yahoo.com.br -> pubtc@inpe.br ::
2019-12-02 10:23:24 :: pubtc@inpe.br -> administrator ::
2020-01-10 15:57:33 :: administrator -> marcelo.pazos ::
2020-01-16 15:28:09 :: marcelo.pazos :: -> 2020
2020-01-16 15:28:10 :: marcelo.pazos -> simone :: 2020
2020-01-16 15:50:40 :: simone -> administrator :: 2020
2020-01-16 15:55:09 :: administrator -> simone :: 2020
2020-01-16 15:55:58 :: simone -> administrator :: 2020
2022-01-04 01:34:54 :: administrator -> simone :: 2020
3. Content and structure
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
Keywordssatellite simulation
attitude dynamics
control of nonlinear satellite simulations
AbstractThe satellite attitude and orbit control subsystem (AOCS), that one in charge of the attitude control, can be designed with success by linear control theory if the satellite has slow angular motions and small attitude maneuver. However, for large and fast maneuvers, the linearized models are not able to represent all the perturbations due to the effects of the nonlinear terms present in the dynamics and in the actuators (e.g., saturation) which can damage the systems performance. Therefore, in such cases, it is expected that nonlinear control techniques yield better performance than the linear control techniques, improving the AOCS pointing accuracy without requiring a new set of sensors and actuators. One candidate technique for the design of AOCS control law under a large and fast maneuver is the State-Dependent Riccati Equation (SDRE). SDRE provides an effective algorithm for synthesizing nonlinear feedback control by allowing nonlinearities in the system states while offering great design flexibility through state-dependent weighting matrices. The Brazilian National Institute for Space Research (INPE, in Portuguese) was demanded by the Brazilian government to build remote-sensing satellites, such as the Amazonia-1 and CONASAT mission. In such missions, the AOCS must stabilize the satellite in three-axes so that the optical payload can point to the desired target. Currently, the control laws of AOCS are designed and analyzed using linear control techniques in commercial software. In this work, we report an open-source nonlinear satellite simulator built to analyze control laws and their stability and robustness. This satellite simulator is implemented in Java using Hipparchus (linear algebra library; which was extended in order to support the SDRE technique) and Orekit (flight dynamics framework). The initial results ratify that SDRE yields better performance in the INPEs missions. RESUMO: O subsistema de controle de atitude e órbita (AOCS), aquele responsável pelo controle de atitude, pode ser projetado com sucesso através da teoria de controle linear se o satélite tem movimentos angulares lentos e pequenas manobras de atitude. No entanto, para grandes e rápidas manobras, os modelos linearizados não são capazes de representar todas as perturbações devido aos efeitos dos termos não lineares presentes na dinâmica e nos atuadores (por exemplo, saturação), o que pode comprometer o desempenho do sistema. Portanto, nestes casos, é esperado que técnicas de controle não linear apresentem melhor desempenho que técnicas lineares, melhorando a acurácia de apontamento do AOCS sem necessitar de conjuntos adicionais de sensores e atuadores. Uma técnica candidata para o projeto do controle para grandes e rápidas manobras é a equação de Riccati dependente de estado (State-Dependent Riccati Equation; SDRE). SDRE fornece um algoritmo efetivo para a sintetização de controle baseado em realimentação (feedback control) permitindo não linearidades nos estados do sistema enquanto oferece grande flexibilidade de projeto. O Instituto Nacional de Pesquisas Espaciais (INPE) é demandado pelo governo Brasileiro para projetar e implantar satélites de sensoriamento remoto, como as missões Amazonia-1 e CONASAT. Em tais missões, o AOCS deve estabilizar o satélite em três eixos de forma que a carga ótica útil possa apontar para o alvo em solo. Atualmente, o controle do AOCS é projetado e analisado usando controle linear em software comercial. Neste trabalho, apresentamos um simulador de satélites não linear projetado para analisar técnicas de controle bem como sua estabilidade e robustez. Este simulador de satélites é implementado em Java usando-se Hipparchus (uma biblioteca de álgebra linear, que foi estendida para suportar a técnica SDRE) e Orekit (um quadro de trabalho para dinâmica de vôo). Os resultados iniciais ratificam que o SDRE oferece melhor performance para as missões do INPE.
AreaETES
Arrangementurlib.net > BDMCI > Fonds > Produção anterior à 2021 > DIDSE > Satellite simulation developer's...
doc Directory Contentaccess
source Directory Content
satellitesimulator-0.1.0-SNAPSHOT/amazonia1.properties 25/01/2019 16:54 0.9 KiB 
satellitesimulator-0.1.0-SNAPSHOT/conasat.properties 20/01/2019 18:10 0.9 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/commons-lang-2.6.jar 09/04/2017 02:23 277.6 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/commons-math3-3.6.1.jar 20/01/2018 07:31 2.1 MiB
satellitesimulator-0.1.0-SNAPSHOT/lib/hipparchus-core-1.3.jar 27/05/2018 17:16 958.8 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/hipparchus-filtering-1.3.jar 27/05/2018 19:13 19.7 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/hipparchus-fitting-1.3.jar 27/05/2018 17:16 30.4 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/hipparchus-geometry-1.3.jar 27/05/2018 17:16 251.0 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/hipparchus-ode-1.3.jar 27/05/2018 17:16 243.8 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/hipparchus-optim-1.3.jar 27/05/2018 17:16 178.1 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/hipparchus-stat-1.3.jar 27/05/2018 17:16 212.2 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/j3d-core-1.3.1.jar 20/05/2017 05:34 2.4 MiB
satellitesimulator-0.1.0-SNAPSHOT/lib/j3d-core-utils-1.3.1.jar 20/05/2017 05:34 1.3 MiB
satellitesimulator-0.1.0-SNAPSHOT/lib/jama-1.0.3.jar 09/04/2017 02:02 36.5 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/JMathArray-1.0.jar 09/04/2017 02:02 49.4 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/JMathIO-1.0.jar 09/04/2017 02:02 23.1 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/JMathPlot-1.0.1.jar 09/04/2017 02:02 228.2 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/log4j-api-2.10.0.jar 21/01/2018 12:15 249.5 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/log4j-core-2.10.0.jar 21/01/2018 12:15 1.5 MiB
satellitesimulator-0.1.0-SNAPSHOT/lib/log4j-slf4j-impl-2.10.0.jar 21/01/2018 12:15 23.6 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/orekit-8.0.jar 08/04/2017 07:38 1.6 MiB
satellitesimulator-0.1.0-SNAPSHOT/lib/satellitesimulator-0.1.0-SNAPSHOT.jar 27/01/2019 21:12 113.7 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/slf4j-api-1.8.0-alpha2.jar 21/01/2018 12:15 42.9 KiB 
satellitesimulator-0.1.0-SNAPSHOT/lib/vecmath-1.3.1.jar 20/05/2017 05:33 283.1 KiB 
satellitesimulator-0.1.0-SNAPSHOT/LICENSE.txt 11/09/2014 11:16 34.3 KiB 
satellitesimulator-0.1.0-SNAPSHOT/log4j2.xml 25/01/2019 20:03 0.6 KiB 
satellitesimulator-0.1.0-SNAPSHOT/orekit-data/IGRF/IGRF.COF 09/04/2017 17:14 139.3 KiB 
satellitesimulator-0.1.0-SNAPSHOT/orekit-data/README.txt 01/04/2017 07:38 0.8 KiB 
satellitesimulator-0.1.0-SNAPSHOT/orekit-data/tai-utc.dat 01/04/2017 07:38 3.2 KiB 
satellitesimulator-0.1.0-SNAPSHOT/README.txt 26/05/2017 22:39 0.9 KiB 
satellitesimulator-0.1.0-SNAPSHOT/simulationcontroller.properties 25/01/2019 19:56 1.2 KiB 
satellitesimulator-0.1.0-SNAPSHOT/simulationcontroller_201706_CMC202.properties 25/01/2019 17:53 1.2 KiB 
satellitesimulator-0.1.0-SNAPSHOT/simulationcontroller_201806_SPACEOPS.properties 25/01/2019 17:04 1.2 KiB 
satellitesimulator-0.1.0-SNAPSHOT/simulationcontroller_201812_IAALACW.properties 25/01/2019 17:48 1.2 KiB 
satellitesimulator-0.1.0-SNAPSHOT/simulationcontroller_201901_ICEDyn.properties 25/01/2019 18:30 1.2 KiB 
agreement Directory Content
autorizacao.pdf 10/01/2020 13:25 1.7 MiB
4. Conditions of access and use
data URLhttp://urlib.net/ibi/8JMKD3MGP3W34R/3UCPLUE
zipped data URLhttp://urlib.net/zip/8JMKD3MGP3W34R/3UCPLUE
Languageen
Target Filepublicacao.pdf
User Grouppubtc@inpe.br
romgerale@yahoo.com.br
simone
Reader Groupadministrator
marcelo.pazos
pubtc@inpe.br
romgerale@yahoo.com.br
simone
yolanda.souza@mcti.gov.br
Visibilityshown
Copyright Licenseurlib.net/www/2012/11.12.15.10
Rightsholderoriginalauthor yes
Read Permissionallow from all
Update Permissionnot transferred
5. Allied materials
Next Higher Units8JMKD3MGPCW/446AUSL
Citing Item Listsid.inpe.br/bibdigital/2021/02.11.20.54 1
Host Collectionurlib.net/www/2017/11.22.19.04
6. Notes
Empty Fieldsarchivingpolicy archivist callnumber contenttype copyholder creatorhistory descriptionlevel dissemination doi edition editor format isbn issn lineage mark mirrorrepository nextedition notes numberofvolumes orcid parameterlist parentrepositories previousedition previouslowerunit progress project resumeid schedulinginformation secondarydate secondarymark serieseditor seriestitle session shorttitle sponsor subject tertiarymark tertiarytype translator url versiontype volume
7. Description control
e-Mail (login)simone
update 


Close