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ABSTRACT 

 

This dissertation was motivated by a real-life problem of developing a Flight 
Software (FSW) for a commercial nanosatellite mission, heavily constrained in 
cost and schedule. FSW is a complex subject, demanding a software 
development team with competencies in embedded systems, real-time systems, 
spacecraft engineering and spacecraft operations in order to conceive a project. 
This set of skills is rarely found together, consisting of a great barrier for new 
entrants. The “New Space” FSW development approach proposed herein 
consists in four steps: 1) selection and adoption of a FSW framework; 2) 
compliance assessment of the framework with respect to applicable space 
software standards; 3) software design rules proposition to better adhere to 
framework and improve quality; 4) creation of a tool that facilitates the 
implementation of the aforementioned rules in the software development. NASA 
cFS was the chosen framework, being the central piece of this work. Despite its 
considerable heritage and success in several NASA scientific missions and 
being open source since 2015, cFS is still not widely adopted outside the 
American space agency. This work also helps filling the lack of academic 
literature with respect to frameworks employment and their systematic use in 
“New Space” missions. 

 

Keywords: Flight Software. FSW. OBDH. OBSW. Flight Management Systems. 
Onboard Data Processing. New Space. NASA cFS. Software Frameworks. 
Software Development Approach. 
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UMA ABORDAGEM “NEW SPACE” PARA O DESENVOLVIMENTO DE 

SOFTWARE DE VOO PARA SATÉLITES UTILIZANDO O FRAMEWORK 

NASA cFS 

 

RESUMO 

A presente dissertação foi motivada por um problema real em desenvolver 
um software de voo para uma missão nanossatélite comercial, fortemente 
restringida em custo e cronograma. Software de voo é um tema complexo, 
demandando um time de desenvolvimento de software com competências 
nas áreas de sistemas embarcados, sistemas real-time, engenharia de 
satélites e operações para poder conceber e realizar um projeto nessa área. 
Esse conhecimento é raramente encontrado reunido, consistindo assim em 
uma grande barreira para novos entrantes. A abordagem de desenvolvimento 
de software de voo “New Space” proposta nesse trabalho consiste em quatro 
etapas: 1) seleção e adoção de um framework para software de voo; 2) 
análise de conformidade do framework escolhido com respeito a normas 
aplicáveis de software para espaço; 3) proposição de regras de projeto de 
software para aprimorar a aderência ao framework e melhorar a qualidade; 4) 
criação de uma ferramenta que facilite a implementação de tais regras no 
desenvolvimento de software. O framework escolhido foi o NASA cFS, peça 
chave de estudo do presente trabalho. Apesar de possuir considerável 
herança de voo e sucesso em diversas missões científicas da NASA e seu 
código ser liberado para uso público desde 2015, o cFS ainda é pouco 
adotado fora da agência espacial estado-unidense. Esse trabalho também 
contribui para preencher a lacuna de literatura acadêmica com respeito ao 
emprego de frameworks e seu uso sistemático em missões “New Space”. 

 

Palavras-chave: Software Embarcado. Software de Voo. OBDH. OBSW. 
FSW. Sistemas de Gestão de Voo. Processamento de Dados a Bordo. New 
Space. NASA cFS. Frameworks de Software. Abordagem de 
Desenvolvimento de Software. 
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1 INTRODUCTION 

1.1. Motivation 

On space applications, the On-Board Software is a software that is embedded 

in a spacecraft computer, being responsible for managing on-board activities 

and data processing. It is usually referred to as “Flight Software” (FSW). In such 

a domain, the level of failure protection and recovery is generally higher than 

that of usual computer systems due to space environment intrinsic 

characteristics, and the reduced accessibility after the launch of the space 

vehicle. 

The FSW is, on most cases, responsible for the operation of the space 

segment, but it hasn’t always been like this. 

In a space mission, the responsibility for performing tasks is shared between 

the ground and the space segment. The first space missions allocated almost 

all tasks to the ground segment. In such missions, the space segment was a 

mere executor of the commands sent from the ground, but by adding computers 

to the space segment, the operators could start delegating tasks to on-board 

execution (KUCINSKIS, 2013). 

With the evolution of spacecraft on-board computer and electronics and with the 

gain of confidence on autonomous spacecraft operations, more responsibility 

was given to the FSW. Nowadays missions are increasingly demanding more 

powerful, autonomous, robust and flexible flight software to meet complex 

mission requirements. 

Due to the flexible nature of software in general, the FSW is usually perceived 

in a space project as a highly customizable item, which is easier or less costly 

to change compared to hardware-intensive spacecraft subsystems. This leads 

to a misconception that FSW can be continuously modified to achieve mission’s 

objectives and represents no challenge or critical path to a space systems 

development. 

Dvorak (2009) pointed that flight software complexity is growing rapidly, with the 

number of code lines experimenting exponential growth rate of a factor of 10 
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approximately every 10 years in NASA missions. To deal with such growth in 

size and complexity, a software development process is even more necessary 

now than in previous space missions. However, the cost of a complete software 

development cycle for every mission is difficult to afford, and a simplification is 

required to save time and money. 

FSW is a complex subject that demands a software development team with 

competencies in embedded systems, real-time systems, spacecraft engineering 

and spacecraft operations in order to conceive a flight software project. This set 

of skills is rarely found together in the literature and in the academia, consisting 

of a great barrier to start a flight software project from scratch. 

It is reasonable to say that this knowledge is mostly present in established 

space companies, agencies and space research institutes who have already 

invested considerable time and human resources on this endeavor. New 

entrants to this field often have to find their own way and dig deeply into the 

subject to conceive a software product. 

In Brazil for example, the Brazilian National Institute for Space Research 

(INPE), founded in 1961, has great competence in FSW development, having 

fully developed or participated on the development of FSW for the Satélite de 

Coleta de Dados (SCD), China-Brazil Earth Resources Satellite (CBERS), 

Satélite de Aplicações Científicas (SACI) and the Plataforma Multimissão 

(PMM) satellites series, with the first being Amazonia-1, currently on its final 

Assembly, Intagration and Testing (AIT) phases. 

Nevertheless, all mentioned missions had FSW specifically designed for a given 

hardware and a given operating system. This is also true for most space 

missions to date. 

Having said that, there are few multi-mission software product line approaches 

in the space industry, which could be used in order to reduce the overall 

development effort. 

According to Schmidt et al. (2004), the use of a well-established software 

framework leads to a shorter development program, with reduced costs and 

improved quality. These consequences are beneficial for space engineering 
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organizations, and that’s what motivated this work engagement on space 

frameworks research, evaluation and application. 

After FSW framework selection, despite its support in software design, new 

users often spend a considerable amount of time on its learning, understanding 

and finally adoption in a space mission. Schmidt et al. (2004) states that in 

order to use a framework effectively, one must evaluate whether the time spent 

learning it outweighs the time saved by software reuse. 

This issue motivated this research engagement on evaluating FSW frameworks 

suitability for a “New Space” mission, and finally simplifying the use of the 

chosen framework by means of a systematic development of software 

applications. 

 

1.2. Research objectives 

The main objective of this dissertation is to provide an approach for FSW 

development using a suitable framework, aiming to address the demands of 

“New Space” missions. 

This main objective is achieved through the accomplishment of the following 

steps: 

1. Selection and adoption of a FSW framework; 

2. Compliance assessment of the framework with respect to applicable 

space software standards; 

3. Software design rules proposition to better adhere to framework and 

improve quality; 

4. Creation of a tool that facilitates the implementation of the 

aforementioned rules in the software development. 
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1.3. Methodology 

Six relevant FSW frameworks were analyzed according to criteria typically 

required in what is being called “New Space” missions. 

“New Space” in this dissertation is understood as a paradigm shift in space 

engineering, especially involving nanosatellites, in which reliability, conformance 

to standards, quality assurance and some industrial aspects are simplified 

aiming at costs saving. 

After careful consideration and according to the selected criteria, NASA cFS 

was chosen as the flight software framework in this research reference mission. 

According to Core Flight System (2017), “cFS initial conception started with a 

team of NASA senior engineers that performed a structured heritage analysis of 

missions covering more than a decade. The diversity of the heritage missions 

(single vs. redundant components, varying orbits, different operational 

communication scenarios, etc.) provided valuable insights into what drove FSW 

commonality and variability across the missions. The team took the entire FSW 

life cycle into consideration, including in-orbit FSW sustaining engineering, as 

they performed their analysis. They identified system and application level 

variation points to address the range and scope of the flight systems domain. A 

primary goal was to enable portability across embedded computing platforms 

and to implement different end-user functional needs without the need to modify 

the source code”. 

The present work performed a careful analysis on the FSW design of a Brazilian 

“New Space” mission, that finally adopted cFS as the design framework through 

all the spacecraft design. 

This use case happened during the time frame between 2016 and 2019, in 

Visiona Space Technology, a Brazilian space systems company located in São 

José dos Campos city, state of São Paulo. The reference mission is an In-Orbit 

demonstration CubeSat with two payloads, an optical camera and a data 

collection radio. It will be placed in a LEO Sun-Synchronous orbit, with an 

average of 3 daily passes over Brazil. 

The reference spacecraft is using a CubeSat COTS OBC and FSW based on 

NASA cFS v6.5.0 open-source version. This use case will be referenced along 
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the project and constitute the main experimentation that justifies most part of 

the conclusions of this work. 

Software standards like CCSDS SOIS (Spacecraft Onboard Interface Services) 

and ECSS PUS (Packet Utilization Standard) establish a minimum number of 

services that might be implemented on the flight software to allow successful 

spacecraft operation. 

These norms constitute an aggregate of space agencies and institutes 

experience and bring valuable heritage and lessons learned to new missions. 

Because of that, the author has carefully studied these standards before 

analyzing the reference mission FSW project. 

It is important to emphasize that there is no contradiction in partially or entirely 

adopting space standards and being a “New Space” mission. Quality is still an 

important subject and using standards may not represent prohibitive costs, 

especially if the software framework already implements some of the standards’ 

proposed functionalities. 

cFS is a framework with considerable flight heritage at NASA Goddard and 

other institutions. It is not a coincidence that it implements several of the 

services specified in CCSDS SOIS and ECSS PUS on its core functions. The 

rigorous use of cFS rules on mission-created applications is therefore a good 

indication of compliance with space standards. 

Nevertheless, one of the immediate results from the reference mission analysis 

is that even though cFS, on its open-source version, is a consistent and 

validated architecture and software product line, its adoption was not straight-

forward at all. 

Among other tasks, the recurrent “handcrafted” confection of high-level cFS-

compliant applications led to the occurrence of basic errors such as typos, 

absence of cFE mandatory API’s declarations and wrong use of cFE/cFS 

functions. Correcting these mistakes and associated troubleshooting, in order to 

guarantee cFS rules compliance, was a time-consuming activity in the reference 

mission and could certainly be optimized. 

Some root causes for these issues are: different developers might code the 

same cFS-application differently; the developer might not know cFS deeply 
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enough; different applications need slightly different API’s and function calls; 

and the absence of an universal customizable cFS application template. 

To deal with such problems, this dissertation proposes a systematic approach 

for cFS applications development, consisting of design rules creation, adoption 

and the use of a corresponding cFS template generator. 

This template generator can create customized application files according to a 

few pre-defined application types, all of them implementing the proposed rules 

accordingly. The design rules and the respective tool are validated through end-

to-end testing with runtime FSW and a ground control system in a simulated 

environment. 

 

1.4. Expected contributions  

The expected contribution of this work is to establish a software development 

strategy that can be applied in the space industry and academia, saving money 

and time for space organizations. It was conceived to be replicable by means of 

using only open-source software and openly available literature and standards. 

The comparison among software frameworks constitutes a literature survey that 

might be an interesting starting point for other FSW projects, especially those in 

initial phases. Different selection criteria might alter the framework of choice for 

other missions or, in the case of similar missions, cFS selection rationale can 

simply refer to the analysis performed herein. 

cFS compliance with space software standards is an analysis that can be 

inherited by other cFS-based missions because essentially the study was 

performed over the product line core, which is common to every cFS-based 

mission. Some non-conformances to the standards were observed, duly noted, 

and might be interesting points for framework enhancement. 
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The “Dan Templates Wrapper” developed tool code is open-source and is 

hosted in the author’s GitHub page1. It was developed using NASA’s 

OpenSatKit SDK environment. Besides the code, the proposed design 

requirements for new cFS applications can also be useful for the framework 

users. 

In conclusion, the approach described in this dissertation may be particularly 

interesting for low-cost space missions, which can’t afford purchasing 

commercial solutions for the flight and ground software. Hiring a team of 

software experts to develop from scratch a customized solution might not also 

be a feasible option. This was the case for Visiona’s reference mission but 

certainly is also a latent need in the “New Space” paradigm. 

 

1.5. Document structure 

The dissertation is organized through chapters, each one hosting the following 

content: 

 

 Chapter 1 introduces the present work, listing the motivation, objectives, 

methodology and the expected contributions. 

 Chapter 2 presents VCUB1 reference mission that motivated the 

research and contextualizes it in the “New Space” paradigm. 

 Chapter 3 brings a survey of the state-of-the-art FSW frameworks 

solutions found in the literature. A comparison among them is performed 

and the criteria behind cFS choice as the design paradigm for the 

reference mission is described and justified. 

 Chapter 4 shows in details NASA cFS framework, its heritage, 

architecture and relevant tools. 

                                                        
 

1 https://github.com/DaniloJFMiranda/OpenSatKit 
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 Chapter 5 presents cFS conformance to space standards related to on-

board software services, tracing parallels between norms and cFS 

capabilities. 

 Chapter 6 describes cFS mission-specific applications development, a 

domain where FSW developers spend considerable time in every 

satellite mission. This part of the document reports one of this research’s 

main contributions: the proposed systematic approach for developing 

software applications. It aims to facilitate developers’ job and help to 

improve cFS mission-specific applications quality.  

 Finally, Chapter 7 contains the dissertation’s conclusion and lists future 

work. 
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2 REFERENCE MISSION CONTEXTUALIZATION 

As previously stated, this work adopts a reference space mission, with the 

intention of getting real requirements and checking the applicability of the 

proposal. The reference mission, VCUB1, is a CubeSat under development in a 

Brazilian space company called Visiona Space Technology, located in São José 

dos Campos. 

The following definitions are fundamental concepts aiming to justify this 

dissertation’s applicability not only to the chosen reference mission, but more 

generically to similar “New Space” missions. 

 

2.1. “New space” definition 

According to Paikowsky (2017), the changes caused by the greater involvement 

of the private sector in the global space activity in the past several years is 

being called “New Space”. 

This term is used to differentiate from traditional space projects, i.e. the existing 

ecosystem since the beginning of space activities, characterized by being 

mainly controlled by national activity and mostly a State-only business. 

Under the “New Space” ecosystem, new and well-established companies are 

working to develop low-cost access to space and affordable space technologies 

and services, focusing on space as a resource and venue for profitable 

business. 

Most “New Space” undertakings are private and commercial, offering various 

developmental and business models for innovative initiatives. They are 

inherently different from the traditional approaches to space activities. The fact 

that clients and investors are private actors triggers a shift in the financial 

models from “cost plus” to “fixed price”. This change requires different methods 

of management and demands shorter durations of time devoted to research and 

development (PAIKOWSKY, 2017). 
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Yet, according to Paikowski (2017), “in this context, the technological 

miniaturization of satellites enabled a decrease in the costs of developing and 

launching satellites. Satellites, systems, and components can now be 

purchased off the shelf. Development processes are shorter, and satellites 

spend relatively less time in orbit. As a result, project management in these 

fields is more inclined to take risks. It is tuned toward a ‘good enough’ R&D 

model and performing technological demonstrations while in service, instead of 

aiming for 100% success in orbit, as was the case for satellite development 

under the Old Space ecosystem.” 

 

2.2. CubeSat definition 

One of the most successful results of “New Space” are CubeSats. The CubeSat 

concept was publicly proposed in 2000, with the first CubeSats launched in 

2003 (SWARTWOUT, 2013). CubeSats are small cuboid-shaped satellites 

developed around multiples of the basic volume unit of 10 cm x 10cm x 10cm, 

defined as 1U. 

CubeSats opened quicker and cheaper mission opportunities due to the 

standardization effort done specially with the CubeSat dispenser or deployer, 

which was gradually being accepted as secondary payload by multiple launch 

agencies (CHIN, 2008). 

CubeSat standard is maintained by Cal Poly university, in San Luis Obispo, 

USA. The 6U form factor is specified in “6U CubeSat Design Specification 

Revision 1.0” (CP-6UCDS-1.0)2. This specification for example is used as 

applicable document by many launch agencies, therefore affecting the entire 

CubeSat industry design. 

 

                                                        
 

2 http://www.cubesat.org/ 
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2.3. FSW definition 

Flight Software (FSW) is a software that is running on a processor embedded in 

a spacecraft’s avionics, being responsible for managing on-board activities, 

data processing and spacecraft health and safety. 

The name “flight software” reflects the location where it executes, i.e. in the 

spacecraft, to differentiate from “ground software”, which runs in the ground 

segment. It is considered a high-risk system because it interacts directly with 

spacecraft hardware, controlling virtually all of the onboard systems in real time 

at various levels of automation (DVORAK, 2009). In such a domain, the level of 

failure protection and recovery is generally higher than usual computer systems 

as a result of the reduced accessibility to the hardware after launch, as well as 

the space environment intrinsic characteristics. 

 

2.4. VCUB1 reference mission  

VCUB1 reference mission is an in-orbit demonstration CubeSat under 

development at the Brazilian space company Visiona Space Technology S.A, 

with target launch date foreseen for 2020. VCUB1 is fully compliant with 6U 

CubeSat specification (CP-6UCDS-1.0). A photo of the satellite can be seen in 

Figure 2.1. 

The spacecraft contains two payloads. One is a multispectral optical camera, 

devoted to remote sensing, and the second is a data collection radio based on 

FPGA, allowing two-way narrow-band data communication. The satellite will be 

placed in a LEO Sun-Synchronous orbit, with an average of 3 daily passes over 

Brazil (DE CONTO et al., 2018). 

This mission was targeted for being low-cost, fixed price, using several 

Commercial Off-The-Shelf (COTS) parts. It was initially conceived as a R&D 

project to validate in-orbit some company’s software technologies, and therefore 

the project management philosophy is willing to accept some risk. The mission 

scope was later broadened to include remote sensing and IoT commercial 
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applications. The satellite will be launched as secondary payload, susceptible to 

the CubeSat launch opportunities available. 

 

Figure 2.1 – VCUB1 mockup photo. 

 

VCUB1 Spacecraft is a 6U CubeSat under development in São José dos Campos, 
Brazil. This photograph shows a spacecraft mockup in deployed configuration 
(operational mode) that was presented in the 8th Brazilian Industry Innovation Summit, 
June 2019. 
 
Source: O Estado de São Paulo (2019). 
 

Accordingly, it is a typical “New Space” mission following the CubeSat standard. 

The Spacecraft’s FSW is running in a CubeSat COTS On-Board Computer 

(OBC). There is a single main OBC, which is responsible for interfacing directly 

with the TMTC radio, receiving commands and sending telemetry to the ground 

segment, and interfacing with all the spacecraft avionics. The OBC is also the 

bus controller for all digital data buses. 
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Thus, the strategy used on VCUB1 is centralized computing architecture, 

implying on more responsibility for the OBC, which is SPF (Single Point 

Failure). Consequently, the reliability required for the FSW is relatively high. To 

this aspect, one can sum up the low-cost and short-schedule VCUB1 

management premises. 

This scenario led the software team to look for a well-established open-source 

FSW framework compatible with CubeSat COTS On-Board Computers (OBC). 

The research on reliable FSW frameworks is subsequently presented in 

Chapter 3. 

 

2.5. Potential advantages of using frameworks for FSW 

According to Schmidt et al. (2004), the use of a well-established software 

framework leads to a shorter development program, with reduced costs and 

improved quality. 

Besides that, going into the specificities of space software field, Birrane et al. 

(2009) affirms that frameworks are one of the five critical enablers for FSW 

systems. 

He continues saying that isolation of individual tasks is a key motivator for 

spacecraft FSW frameworks. The reason for that is because it increases reuse 

of the software by allowing for unmodified tasks to be easily reused from 

spacecraft to spacecraft and reduces production costs as modules can be 

selected from a software library to be included in an architecture. 

Responsive space systems are likely to have different mission requirements, 

different payload, and different supporting hardware and associated interfaces. 

This does not mean that large portions of the systems requirements 

specification cannot be stabilized. For example, the creation of standardized 

operating systems and frameworks has, in no way, restricted what can be done 

with modern computers. They have just defined the context in which operations 

must be performed. 
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Dos Santos (2008) performed further analysis into a broader scope than 

frameworks only, i.e. the higher-level problem of reusability, adaptability and 

variability in space software systems. He sustains that these systems require 

the use of abstraction, projection, and decomposition to be designed, 

understood, communicated, and maintained. As part of that effort, frameworks 

are sets of patterns that provide an architectural backbone that might incur in 

software reuse. 
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3 FLIGHT SOFTWARE FRAMEWORKS  

The author performed a survey on the literature to find a representative set of 

FSW frameworks that could potentially be adopted in the reference satellite 

mission presented in Chapter 2. 

During the research first steps, the author was skeptic if there were indeed 

reliable frameworks solutions that could be used in “New Space” CubeSat 

missions. Along the research, however, it was noticed that some of the 

architectures presented herein have even gained recognition and are starting to 

be accredited by CCSDS flight software standardization committee. That fact 

was an indication that such frameworks existed and motivated the engagement 

on further investigation. 

Despite finding many academic and commercial framework solutions, this 

research ultimately channelized its effort on studying FSW architectures that 

had a minimum amount of available material, allowing further analysis and 

comparison. 

 

3.1. Comparison criteria 

There are many studies related to software performance, quality and cost 

assessment. As a disclaimer, this section cannot and does not intend to be 

exhaustive on software comparison criteria. The author, while investigating 

each framework documentation, collected and observed evaluation criteria that 

were judged significant, keeping in mind the intended use in the reference 

mission. 

The chosen criteria, to be detailed in Table 3.1, are: 1) Software Code and 

Documentation, 2) Flight Heritage, 3) Small Footprint, 4) Quality Attributes, 5) 

Long-Term Support, 6) User-Community Collaboration and 7) The Consultative 

Committee for Space Data Systems (CCSDS) Standardization. 
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Criteria from 1 to 3 came from the CubeSat reference mission high-level 

requirements document. Nevertheless, these are typical requirements from 

space missions, especially in “New Space” paradigm. 

Quality attributes (criteria 4) were taken from Wilmot et al. (2016). Not all 

fourteen quality attributes identified by NASA’s Software Architecture Review 

Board were taken, but only four of them, judged to be more closely related to 

software implementation. To those quality attributes, the author added 

“Specification Traceability” and “Well-Defined Semantics”, inspired in some 

framework’s documentation. 

Criteria 5 to 7 were created by the author. They intend to assess the 

frameworks capability to evolve, improve (“User-Community Collaboration”) and 

standardize in the future (“CCSDS”), all that supervised by their 

sponsoring/maintaining institutions (“Long-Term Support”). 

 

Table 3.1 – FSW Selection Criteria. 

# Criteria Description 

1 Software Code and Documentation 

1.1 Open-source Software source-code and respective documentation 

freely available on an internet open code repository, 

preferably with versioning control 

1.2 Technical 

Documentation 

Availability of software User-Guide and Comprehensive 

Technical Documentation 

1.3 Demo/Training Existence of demonstration applications that provide 

training and insights on how to use the framework. The 

provision of a SDK is considered an asset 

2 Flight Heritage Flight software framework that has flown successfully 

on previous spacecraft or instrument missions 

3 Small Footprint Minimal memory and CPU usage loads 

4 Quality Attributes 

4.1 Reliability Reliability of a software code using by criteria the 

existence of unit testing with significant code coverage 
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# Criteria Description 

 

4.2 

 

Specification 

Traceability 

 

Use of architectural rules or requirements to specify the 

software implementation and comprehensive 

traceability from user requirements down to the code 

4.3 Well-Defined 

Semantics 

Existence of a clear and unambiguous defined behavior 

4.4 Requirements 

Traceability 

Requirements individually traced to their 

implementation and to verification evidence 

4.5 Modularity 

(Component-

based design) 

Flight software architecture that emphasizes the 

separation of concerns by means of loosely coupled 

independent software components or applications. It 

favors software code reusability 

4.6 Portability (to 

several RTOS 

and Processors) 

A design and implementation property of the 

architecture and applications supporting their use on 

systems other than the initial target system. It generally 

involves software isolation and abstraction techniques 

5 Long-Term 

Support 

Framework software support guaranteed for long-term 

according to the sponsoring/maintaining institution 

strategic plan 

6 User-Community 

Collaboration 

Users return of experience expressed in a centralized 

internet open code repository. Capacity of universally 

opening ticket issues, forking and uploading software 

code, all that controlled and moderated by the 

sponsoring institution 

7 CCSDS 

Standardization 

The framework has been recognized as expressive by a 

competent authority (in this case, CCSDS) and is being 

standardized as a reference flight software architecture 

Source: Made by the author. 

 

3.2. Related work 

There are few comparisons of frameworks for spacecraft use in the literature. 

One of them was presented by Rexroat (2014). He compares several candidate 
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middleware, aiming at his target distributed embedded systems, which were 

Unmanned Air Vehicles (UAV) and CubeSats. Nevertheless, Rexroat 

considered not only service-level middleware, but also lower level middleware 

at Network (e.g. SpaceWire) and Distribution Layer (e.g. MIL-STD-1553) levels. 

Some of Rexroat’s selection criteria were: 

 Network communication – node-oriented versus message-oriented 

systems 

 Coordination – synchronous versus asynchronous behavior 

 Reliability – in terms of message delivering: at-most-once, at-least-once, 

exactly-once 

 Scalability – abstraction in the following aspects: access, location, 

migration and replication 

 Heterogeneity – portability and interoperability with different hardware, 

network or software 

MAVLink, which was originally developed for the UAV world, was his 

middleware solution of choice for UAVs and CubeSats, NASA cFS being 

second in the rank. 

The present work focuses, differently from Rexroat, on software design aspects 

for a nanosatellite mission rather than in network aspects. This explains the 

differences in selection criteria, frameworks to be compared and results 

between the two researches. Still, valuable lessons were taken and applied in 

the present work. 

 

3.3. FSW frameworks summary 

The following subsections will present a summary of the six relevant FSW 

frameworks judged compatible with the reference mission and “New Space” 

characteristics described in Chapter 2. 
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3.3.1. GERICOS 

The GEneRIC Onboard Software (GERICOS) framework was developed and 

qualified by LESIA (Laboratoire d'études spatiales et d'instrumentation en 

astrophysique), a French space laboratory, for the rapid development of 

payload flight software. 

The GERICOS studies started in 2007. At the time there was no off-the-shelf 

software solution available, and at the end of 2015 the Radio Plasma Wave 

instrument flight software was delivered, built and qualified using GERICOS 

framework (PLASSON et al., 2016). This instrument will fly on ESA’s Solar 

Orbiter mission, expected to be launched at 2020. 

GERICOS framework offers a set of reusable and customizable flight software 

components, written in C++. It is composed of 3 layers, as shown in Figure 3.1: 

 GERICOS::CORE: Lightweight (small memory footprint: 10 kB), 

optimized implementation of the active object paradigm on top of a real-

time kernel. It includes the concepts related to real-time and embedded 

systems, such as the concept of interrupts, synchronized objects, shared 

resources and circular buffers. This layer allows a developer to quickly 

build a real-time application using the object-oriented approach while 

being independent of a specific real-time operating system and from a 

specific hardware target. Each active object (called task) has its own 

message queue and computational thread, which processes incoming 

messages one by one by executing the corresponding methods. 

 GERICOS::BLOCKS: The second layer offers a set of reusable software 

components for building flight software based on generic solutions to 

recurrent functionalities: telecommand management, telemetry 

management, European Coordination for Space Standardization (ECSS) 

Packet Utilization Standard (PUS) service implementation, mode 

management, time management, CCSDS protocol management, etc. 

 GERICOS::DRIVERS: The third layer implements software drivers 

corresponding to COTS IP cores used in the chip. 
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In order to formally model and document the different concepts provided by 

GERICOS, it was created a specific UML profile, called GERICOS UML profile. 

ESA’s Solar Orbiter mission was completely modeled using this semantics. 

 

Figure 3.1 – GERICOS Software Layers. 

 
The French GERICOS software layers, from BSP up to application software. 
 
Source: Obtained from Plasson et al. (2016). 
 

With respect to specification traceability and conformance to standards, 

GERICOS::BLOCKS offers an implementation of PUS services and sub-

services focused on what is required at payload level at ESA missions 

(PLASSON et al., 2016): PUS services 1, 3, 5, 6, 9 and 17. More details about 

ESA PUS services will be provided in Section 5.2. 

LESIA is working to make possible the use of GERICOS framework by other 

organizations. One evolution already done for GERICOS::CORE is its port to 

ARM processor target, that allowed GERICOS use in the context of CubeSats, 

as made in PicSat mission launched in January 2018 (LAPEYRERE, 2017). 

The code nevertheless is not yet open-sourced, preventing a more detailed 

analysis of the framework architecture. 
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3.3.2. NASA cFS 

The core Flight System (cFS) platform is a 3-layered flight software architecture 

developed by NASA Goddard Space Flight Center (GSFC) that provides a 

hardware and operating system independent application runtime environment. 

The product line includes software lifecycle artifacts that can be configured to 

meet the user’s requirements. 

The cFS provides benefits including: 

 Freely available high-quality flight software 

 Provides common spacecraft flight software functionality 

 Portable across many platforms 

 Reduces project cost and schedule risks 

 Users can focus on mission specific applications 

 Active user community. 

The United States of America space agency NASA has a Technology Transfer 

Program according to which they release from time to time some technology 

developments to the public. Some of these offsets are for restricted use and 

others for the wide-public. In the software world, the NASA Software catalog 

2017-2018 lists all developments that were released in that period. The 

technologies related to cFS are shown as open source and licensed under the 

NASA Open Source Agreement Version 1.3, which guarantees the non-

exclusive, world-wide, royalty-free source-code distribution (NASA 

SOFTWARE, 2017). 

The cFS was originally developed as NASA Class B software for GSFC science 

missions. Nevertheless, since then there has been a wide range of adoption 

from manned space and scientific missions to CubeSats and even to a Lunar 

Mission (CORE FLIGHT SYSTEM, 2017). 

NASA cFS is composed of three layers, as shown in Figure 3.2, from bottom to 

top: 
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 Abstraction Library Layer, composed of  

o Operating System Abstraction Layer (OSAL): small software 

library that isolates the Flight Software from the Real Time 

Operating System. 

o Platform Support Package (PSP): software that is needed to adapt 

the cFE Core to a particular Processor Card. 

 cFE Core Layer, composed of 

o Executive Services (ES): Manages cFE Core and cFS 

applications. 

o Event Services (EVS): Provides an interface for sending 

asynchronous debug, informational, or error message telemetry. 

o Software Bus (SB): Provides a portable inter-application message 

service. 

o Table Services (TBL): Manages all cFS table images. 

o Time Services (TIME): Manages spacecraft internal time and 

distributes tone signal to querying applications. 

 Mission and cFS application layers: composed of reusable and mission-

specific applications. NASA has provided some cFS applications 

distributed as open source (NASA, 2017) that implement common 

spacecraft functionality. Additionally, a new mission must define and 

implement its mission-specific functionalities by means of cFS 

applications. 
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Figure 3.2 – NASA cFS Software Layers and Components. 

NASA cFS is composed of three tiers, as shown in blue. The color code shows what 
software packages are open-sourced by NASA, what need to be developed by each 
mission and 3rd party provided software (RTOS)  
 
Source: Obtained from NASA (2014). 
 

With respect to flight heritage, cFS was initially developed by NASA’s Goddard 

Space Flight Center (GSFC) over many years. It was based on the heritage of 

successful missions. The cFS components were incrementally developed and 

publicly released. The core Flight Executive (cFE) including the platform 

abstraction layer was first used on the Lunar Reconnaissance Orbiter (LRO) 

launched in 2009 and the initial suite of cFS applications was first used on the 

Global Precipitation Measurement (GPM) spacecraft launched in 2014. The 

entire cFS software suite was released as open source in the beginning of 2015 

(CORE FLIGHT SYSTEM, 2017). 

The CCSDS “Application Support Services Working Group”, led by Mr Jonathan 

Wilmot (GSFC/NASA), is in charge of conducting a project called “NASA cFS as 

a CCSDS Onboard Reference Architecture”. The existence of this project 

highlights the importance of cFS. cFS code and documentation is available at 
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NASA’s GitHub page3 and there is also a community page4 for getting help 

about cFS and questions and answers. 

 

3.3.3. SAVOIR / COrDeT 

The European Space Agency (ESA), inspired by the AUTomotive Open System 

Architecture (AUTOSAR), an open and standardized automotive software 

architecture started in 2002 that was released for the first time in 2005 

(AUTOSAR, 2018), launched a space standardization initiative called Space 

AVionics Open Interface aRchitecture, a.k.a. SAVOIR (TERRAILLON, 2012). 

The SAVOIR working group was formally started in November 2008, as an 

outcome of ESA’s yearly workshop called ADCSS (Avionics Data, Control and 

Software Systems) (SAVOIR, 2018). 

One of SAVOIR goals is to identify the main avionics functions and to 

standardize the interfaces between them, in a way that allows building blocks to 

be developed and reused across projects (TERRAILLON, 2012). Among the 

several working groups of ESA’s SAVOIR initiative, there was the SAVOIR-

FAIRE group, which is in charge of the on-board software reference 

architecture. 

It was proposed an architecture (named COrDeT: Component Oriented 

Development Techniques) based on the segregation of the application software 

(mission-specific applications, which are normally independent from execution 

context) and the execution platform (basic services) (TERRAILLON, 2012). 

Figure 3.3 shows the static architecture of COrDeT reference architecture. 

 

 

                                                        
 

3 https://github.com/nasa/cFE 
4 http://coreflightsystem.org/ 
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Figure 3.3 – SAVOIR-COrDeT Software Reference Architecture. 

 

The COrDeT software reference architecture shows mission-specific applications 
separated from execution platform services. 
 
Source: Obtained from SAVOIR (2018). 

 

It is worth to mention that COrDeT is part of a broader avionics reference 

architecture that the SAVOIR committee is promoting in Europe. Figure 3.4 

presents the SAVOIR avionics reference architecture and gives an idea of the 

scope of this standardization task. 

COrDeT output from SAVOIR group was a reference architecture with no 

particular implementation and API rules. Nevertheless, one of the companies of 

the industrial consortium funded by an ESA Contract, which goal was to specify 

COrDeT (P&P SOFTWARE, 2008), has provided a specification traceability of 

the framework and also a C-language implementation of COrDeT which is 

publicly available at the company’s webpage (P&P SOFTWARE, 2018). 

The P&P Software GmbH company from Switzerland is as of Dec 2019 

extending the CORDET Framework implementation to support a subset of PUS 

pre-defined services (PASETTI, 2018). 
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The CCSDS “Application Support Services Working Group” is in charge of 

conducting a project called “SAVOIR as a CCSDS Onboard Reference 

Architecture”, expected to finish by July/20205. The existence of this project 

highlights the importance of COrDeT/SAVOIR. 

C2 implementation, which is a C-language open-source implementation of the 

CORDET Framework made by P&P Software GmbH, allowed the author to 

perform a technical analysis on the software source-code and in the COrDeT 

framework itself. 

C2 implementation of COrDeT is a service-oriented application, with strong 

correspondence to ECSS PUS defined services. C2 implementation is being 

used in ESA’s CHEOPS satellite payload software, that will be flying in Dec 

2019 (P&P SOFTWARE, 2018). 

The author noticed that the mechanism through which messages are sent from 

one application to another is outside the scope of the framework. C2 framework 

assumes that a middleware layer is present which can be used to send and 

receive messages to and from other applications. Also, the author found no 

binding layer between C2 and the underlying real-time operating system. This 

connection probably will be made by the middleware layer that is missing in this 

framework. 

 

 

                                                        
 

5 https://cwe.ccsds.org/fm/Lists/Projects/DispFormDraft.aspx?ID=547 
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Figure 3.4 – SAVOIR Avionics Reference Architecture. 

 

The SAVOIR avionics reference architecture containing hardware and software standardization. 
 
Source: Obtained from SAVOIR (2018). 
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3.3.4. KubOS 

Kubos is a space software start-up company located in Texas, USA. It was 

founded in 2014 and developed the KubOS flight software framework. The 

analyzed software is at version v1.5.0, and has BSP for 3 major CubeSat 

OBC’s, and its full package is open-source. Satellite users can pay for 

additional features, like support services and software updates (KUBOS, 

2018). 

KubOS stack is shown in Figure 3.5. Each layer means: 

 Kubos Linux: Kubos Linux is a custom Linux distribution designed 

with embedded devices in mind. It focuses on including only drivers 

that are useful for space applications (eg. I2C and SPI, rather than 

display drivers) and multi-layer system validation and recovery 

logic. Kubos Linux projects are built into binaries which will run as 

Linux user space applications. 

 Kubos Services: A Kubos service is defined as any persistent 

process that is used to interact with the satellite. Services rarely 

make decisions, but will allow the user to accomplish typical flight 

software tasks such as telemetry storage, file management, shell 

access, and hardware interaction. 

 Mission Applications: Mission applications compose the upper layer 

and are virtually anything that governs the behavior of the satellite. 

They for example govern state management, accomplish scripted 

tasks and monitor onboard behavior. Each application is typically 

dedicated to a certain mode or isolated task the satellite is 

supposed to accomplish to keep them lightweight and portable. 

They can be simple, such as a telemetry beacon app, or complex, 

such as a payload operations app (KUBOS, 2018). 
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Figure 3.5 – KubOS Stack. 

 

The KubOS stack, starting from the OnBoard Computer (OBC), going to Kubos 
Linux Operating System, Kubos Services and finally Mission Applications. 
 
Source: Obtained from Kubos (2018). 
 

KubOS v.1.5.0 is open-sourced in a GitHub repository. Also, first time 

users can create its own KubOS project using a Software Development Kit 

(SDK) provided by the company. The author noticed that KubOS is light-

weight and provides the basis for writing mission applications using Rust 

or Python languages. C and Lua are also claimed to be supported 

(KUBOS, 2018). 

 

3.3.5. CAST software reference architecture 

China Academy of Space Technology (CAST) is the main spacecraft 

development and production facility in China, subordinated to the China 

Aerospace Science and Technology Corporation (CASC), which is the 

state-owned main contractor for the Chinese space program, responsible 

for execution of the Chinese National Space Program. On the other side, 

the China National Space Administration (CNSA) is the main responsible 

for National space policy. 

Integration of functions in spacecraft avionics system is a trend in the 

development of spacecraft (XIONGWEN, 2015). The problem of 

spacecraft avionics software reuse is mentioned as one of the main points 

to be solved. 
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A spacecraft avionics software architecture has been designed and 

implemented by CAST technicians, which is based on Spacecraft Onboard 

Interface Services (SOIS) recommended by Consultative Committee for 

Space Data Systems (CCSDS) and Packet Utilization Standard (PUS) 

recommended by European Cooperation for Space Standardization 

(ECSS). 

According to Xiongwen (2015), the results of the test and validation 

demonstrate that the software architecture has great positive effects on 

software reuse. Under CNSA lead, this effort has gained CCSDS 

standardization status through a dedicated working group6. 

Figure 3.6 shows CAST Software Reference Architecture. This reference 

architecture is composed of: 

 Operating System Layer: The interface of Operating System is 

encapsulated and a uniform Application Program Interface (API) is 

provided by the Operating System Layer. Any Operating System 

that supports this interface can be used in the avionics system. 

 Middleware: Common service platform between the Operating 

System Layer and Application Layer, which has standard program 

interface and protocols, and can realize the data exchange and 

cross support among different hardware and operating system, as 

well as data exchange and cross support among different hardware 

and operating system. In order to make the middleware extendable 

and support technology upgrades, the middleware is divided into 

three configurable layers: 

o Subnetwork Layer: Defined to shield data links and service 

components to the upper layers. Its support includes 

onboard subnetwork components and space subnetwork 

components. 

                                                        
 

6 https://cwe.ccsds.org/fm/Lists/Projects/DispForm.aspx?ID=595 
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o Transfer Layer: Provides standard interface to the layer 

above to transfer data. CCSDS Space Packet Protocol is 

included and future extension is allowed 

o Application Support Layer: Provides the standard service 

components to support the application, which includes SOIS 

application support layer services and PUS services. 

 Application Layer: contains most of the common functions of 

avionics systems. The implementation of this layer may be different 

among different projects. 

In order to validate the software architecture, CAST has designed and 

developed all its components (CCSDS, 2016). Based on the hardware 

platform of avionics system requirements, these components were 

assembled and tested. 

The FSW was assembled using general-purpose software components, 

with accordingly customizations in the runtime parameters and processes. 

The total code size of the prototype software was 54542 lines, of which the 

code size of software components was 45995 lines, accounting for 84.3% 

of the total code lines (CCSDS, 2016). The code was programmed in C 

language (XIONGWEN, 2015). 

A number of test cases showed that CAST flight software architecture 

based on CCSDS standard cannot only provide richer, more practical and 

powerful functions than traditional spacecraft software system, but also 

bring the change of whole software development mode, which can 

improve efficiency and reliability of software development (CCSDS, 2016).  

The CAST source-code architecture was not found as open-source and 

the author also found no evidence of flight heritage. 
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Figure 3.6 – CAST Software Reference Architecture. 

 

The CAST software reference architecture presented in layers and unit blocks. 
 
Source: Obtained from CCSDS (2016). 
 

3.3.6. NanoSat MO framework (NMF) 

The NanoSat Mission Operations service Framework (NMF) is a flight 

software project that will be flying on an experimental ESA sponsored 

nanosatellite called OPS-SAT (to be launched in Dec 2019). This mission 

is intended to demonstrate the improvements in mission control 

capabilities that will arise when satellites can fly more powerful on-board 

computers. 

NMF provides a standard on-board software framework for nanosatellites 

based on the CCSDS MO framework, that facilitates not only the 

monitoring and control of the nanosatellite software applications, but also 
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the interaction with the platform peripherals. This is achieved by using the 

CCSDS Mission Operations Monitor and Control services included in the 

MO service suite and by defining a set of new Platform services 

(COELHO, 2016). 

The CCSDS MO framework is defined in CCSDS 520.0-G-3 green book 

standard and consists of end-to-end services based on a service-oriented 

architecture and is intended to be used for mission operations of future 

space missions. 

The layered MO service framework allows mission operation services to 

be specified in an implementation and communication agnostic manner. 

The core of the MO service framework is its Message Abstraction Layer 

(MAL) which ensures interoperability between mission operation services 

deployed on different framework implementations. 

OPS-SAT spacecraft provides an experimental platform composed of a 

MityARM device with 1 GB of RAM, an ARM processor with 925 MHz and 

a lightweight version of Linux (COELHO, 2016). The increase of 

computing power, a trend for CubeSat projects, allowed the NMF 

framework to shift from usual embedded C or C++ light-weight software to 

Java multi-platform agnostic applications.  

Figure 3.7 presents NMF architecture with one application only. For 

deploying multiple applications, that can be concurrent in the use of 

peripherals, NMF proposed the use of two new components: the NanoSat 

MO Supervisor and NanoSat MO Connector. The first one is responsible 

for managing the apps and providing Platform services that can be utilized 

by different applications. 

The second is responsible for connecting to the Platform services, 

exposing them to the business logic of the application and exposing 

interfaces to monitor and control the app from ground or from other 

applications. The inter-apps architecture is shown in Figure 3.8. 

Coelho (2016) mentioned that the main difference between NMF and 

classical FSW frameworks is that NMF is developed for systems that are 

not scarce in resources but can run complete Operating Systems. 



 

34 
 

NMF framework is open-sourced in a GitHub public repository and comes 

along with an SDK, OPS-SAT satellite simulator, and technical 

documentation for running the software. 

 

Figure 3.7 – NanoSat MO Framework monolithic simplified architecture. 

 

NanoSat MO Framework architecture showing one application only (monolithic) 
stack, on top of the basic framework services. 
 
Source: Obtained from Coelho (2016). 
 

Figure 3.8 – NanoSat MO Framework inter-application architecture. 

 

NanoSat MO Framework architecture showing multiple applications interacting 
through NanoSat MO Connector and MO Supervisor components. 
 
Source: Obtained from Coelho (2016). 



 

35 
 

3.4. Software architectures comparison 

It is not hard to notice a great similarity between the frameworks presented 

in Section 3.3. As a matter of fact, the space organizations that developed 

them had to overcome similar problems while developing their spacecraft 

missions, and probably investigated each other’s projects. 

The return of experience of space agencies and space system experts in 

their mission’s software were already systematized and standardized by 

competent institutions, such as CCSDS and ECSS, through working 

groups, in space software standards (some of them will be detailed in 

Chapter 5). That’s why most of the frameworks are based on or mention 

the same applicable space standards. 

Even with these similarities, some differences among the frameworks 

were noticed and will be compared subsequently. The conformance to 

each selection criteria presented in Section 3.1 was individually assessed. 

Some of the frameworks (GERICOS and CAST) are not open-source yet, 

being available only to their developing organizations, making difficult 

further technical analysis over them. 

The comparison chart between the flight software frameworks is presented 

in Table 3.2. 
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Table 3.2 – Software Architectures Comparison Chart. 

Criteria cFS 
COrDeT/SAVOIR 

(through C2) 
CAST GERICOS KubOS NanoSat MO 

1.1 Open-Source Yes (GitHub) 
Yes (C2 
implementation, in 
GitHub) 

No No Yes (GitHub) Yes (GitHub) 

1.2 
Technical 
Documentation 

Yes Yes No No Yes Yes 

1.3 Demo/Training Yes (OpenSatKit) 
Yes (There is a 
demo in C2) 

No No 
Yes (KubOS 
SDK) 

Yes (NMF SDK) 

2 Flight Heritage Yes 
No (ESA’s 
CHEOPS to be 
launched in 2019) 

Not found 
Yes (PicSat 
launched in Jan 
2018) 

No (TBC) 
No (ESA's Ops-
Sat to be 
launched in 2019) 

3 Small Footprint Yes Yes Yes Yes Yes 

No (This 
implementation 
requires a 
powerful OBC) 

4.1 Reliability Yes Yes Not found Not found  Yes Not found  

4.2 
Specification 

Traceability 

Partially 
Compliant (no 
centralized cFS 
architectural rules 
document. Rules 
are spread 
through 
documentation) 

Yes (The 
CORDET 
Framework 
C2 
Implementation 
- User 
Requirements) 

Partially 
Compliant 
(Framework 
claims to be fully 
compliant with 
CCSDS SOIS 
and ECSS PUS) 

Partially Compliant 
(Framework 
claims to be 
compliant with 
some ECSS PUS 
services) 

Partially 
Compliant (no 
KubOS 
architectural rules 
document. Rules 
are found through 
API's 
documentation) 

Partially 
Compliant (no 
centralized NMF 
architectural rules 
document. But, 
framework claims 
to be fully 
compliant with 
CCSDS 520.0-G-
3) 
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Criteria cFS 
COrDeT/SAVOIR 

(through C2) 
CAST GERICOS KubOS NanoSat MO 

4.3 
Well-Defined 

Semantics 

Partially 
Compliant (there 
is no semantics 
model or 
document. There 
is a cFS Sample 
App which 
contains the basic 
API calls and a 
Developers 
User's Guide) 

Yes (CORDET C1 
Framework 
Profile) 

Not found 
Yes (GERICOS 
UML Profile) 

Partially 
Compliant (there 
is no semantics 
model or 
document. There 
are some 
template Mission 
applications 
which contains 
the basic KubOS 
API calls) 

Partially 
Compliant (there 
is no semantics 
model or 
document. There 
is a NMF app 
Development 
Guide) 

4.4 
Requirements 

Traceability 

Partially 
Compliant (cFE 
and cFS suite 
requirements 
exist, but are not 
traced to the 
code) 

Yes (Documented 
in The CORDET 
Framework 
C2 
Implementation 
- User 
Requirements) 

Not found Not found Not found 

Partially 
Compliant (a very 
short list of NMF 
software 
requirements 
exist, but are not 
traced to the 
code) 

4.5 
Modularity 

(component-
based design) 

Yes Yes Not found  Yes Yes Yes 

4.6 

Portability (to 
several RTOS 
and 
Processors) 

Yes (cFS OSAL 
allows that) 

N/A (C2 
implementation 
goes on top of a 
non-defined 
message-passing 
middleware) 

Yes (according to 
the CCSDS 
CAST 
Architecture 
documentation) 

Yes 
(GERICOS::CORE 
allows that) 

Yes (Portability to 
FreeRTOS, Linux 
and to some 
CubeSat OBC's) 

Yes (Due to Java 
capabilities) 
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Criteria cFS 
COrDeT/SAVOIR 

(through C2) 
CAST GERICOS KubOS NanoSat MO 

5 
Long-Term 
Support 

Yes (NASA 
Support) 

Yes (ESA 
Support) 

Yes (CAST 
Support) 

 Yes (LESIA 
Support) 

Yes (KubOS 
company 
Support) 

Not found (No 
explicit mention in 
ESA's 
documentation) 

6 
User-
Community 
Collaboration 

Yes (through 
GitHub tickets) 

Yes (because 
CORDET C2 
implementation is 
in GitHub) 

No  No 
Yes (through 
GitHub tickets) 

Yes (through 
GitHub tickets) 

7 
CCSDS 
Standardization 

Yes Yes Yes  No No 

Partially 
Compliant (Not 
standardized as a 
reference 
architecture by 
specific working 
group, but it is a 
spin-off of 
CCSDS 520.0-G-
3 standard) 

 
Source: Made by the author. 
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Among the open-source frameworks (NASA cFS, COrDeT C2, NanoSat 

MO and KubOS), the amount of documentation each one provides is 

different. COrDeT for example traces individually each software 

requirement to the code and to verification evidence, while NanoSat MO 

relies mostly on the CCSDS 520.0-G-3 documentation that inspired the 

framework creation. 

Regarding semantics, GERICOS and COrDeT are the only ones that 

created their own semantics that fully specify their architecture behavior. 

The others have their syntax spread over the documentation and 

sometimes one has to look into the code to get the correct comprehension 

about the software architectures. 

NASA cFS and GERICOS are the frameworks that currently have 

successfully flown on previous missions. The others will acquire flight 

heritage soon. 

A comparison on each software SDK reveals that cFS OpenSatKit is the 

most “turn-key” solution. It provides not only a running instance of cFS 

software suite but also an open-source ground control software tailored to 

interface with cFS and a CubeSat simulator example, providing then great 

insights on the framework functionality. 

The CCSDS Application Support Services Working Group is currently 

conducting some projects called “CCSDS Onboard Reference 

Architecture” for three particular frameworks: SAVOIR, CAST and NASA 

cFS. 

This evidence shows that these architectures have gained particular 

recognition by CCSDS due to their technical quality and considerable 

utilization. This standardization effort will also contribute to their long-term 

perpetuation and to spread their concepts to other international 

organizations. 

A comprehensive analysis on Table 3.2 leads to three frameworks that are 

compliant with most of the selection requirements: SAVOIR/COrDeT, 

KubOS and cFS. 
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SAVOIR/COrDeT is the most complete one with respect to software 

documentation and syntax definition but has no flight heritage and it 

depends on a non-defined message-passing middleware to run. 

Therefore, it could not be immediately used as is. 

KubOS is an architecture conceived specifically for the CubeSat world, as 

its name suggests. In terms of code footprint and portability, it is a very 

suitable architecture with a turn-key software package. However, besides 

its absence of flight heritage, the reference mission is also looking for a 

framework with assured long-term support. Some ways to ensure that are 

by public-access standards (CCSDS is an accredited agency) and the 

existence of an established software control board committee. 

Regarding software quality and long-term technical support, cFS is 

managed by a dedicated NASA Configuration Control Board that controls 

and approves future changes to cFS core and main applications. Software 

core maintenance and evolution is then done by NASA, which is also the 

main user of cFS. The long-term support criteria is key for space 

organizations that want to rely on a 3rd-party framework. 

Held since 2007, the Flight Software Workshop is considered the most 

important conference in spacecraft flight software in the USA and since 

2015 there is an entire day dedicated to cFS, which shows the growing 

interest and utilization of cFS among space software developers. It is 

interesting to add that due to its notable capabilities, cFS is gradually 

becoming a wide-NASA standard, with growing interest from the American 

and international community. 

 

3.5. NASA cFS adoption for the reference mission 

According to the results presented in the frameworks comparison table 

and the criteria defined in previous section, NASA cFS was the most 

compliant framework to the nanosatellite reference mission needs and 

constraints. It was therefore adopted by VCUB1 mission as design 

baseline. 
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cFS adoption in the reference nanosatellite mission involved a detailed 

understanding of the framework. An analysis of the cFS architecture, 

existing cFS core applications and cFS available high-level open-source 

applications was performed subsequently in order to allow the 

customization of cFS and the creation of mission-specific applications for 

VCUB1 mission. Next chapter will present the results of this study. 
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4 NASA cFS FRAMEWORK   

This Section will present details about cFS, its architecture and layers, the 

open-source available applications and the concepts that will be used 

throughout this dissertation. 

 

4.1. cFS heritage 

4.1.1. cFS heritage at NASA 

Prokop (2014) points out that several NASA science missions have been 

using cFS as framework for their flight software since 2009. Some 

missions are presented below along with their launch dates: 

 Goddard Space Flight Center (GSFC) Missions: 

o Lunar Reconnaissance Orbiter (LRO) (2009) 

o Solar Dynamics Observatory (SDO) (2010) 

o Magnetospheric Multiscale Mission (MMS) (2014) 

o Global Precipitation Measurement (GPM) (2014) 

 Ames Research Center Missions: 

o Lunar Atmosphere and Dust Environment Explorer (LADEE) 

(2013) 

 Applied Physical Lab (APL) Missions 

o Radiation Belt Storm Probes (RBSP) (2012) 

o Solar Probe Plus (SPP) (2018) 

 

The oldest technical article about cFS found on the literature research is 

Wilmot (2005). At that time the cFS core, the cFE, was still under 

development and testing and only the OSAL, which is a NASA GSFC 

stand-alone project, was open-sourced. Nevertheless, Ganesan et al. 



 

44 

(2009) mention that the development of the cFE/cFS flight software 

product line started even earlier, in 2003. 

An interesting return of experience about cFS use in NASA projects was 

done by McComas (2015). He presents there some feedbacks from his 

experience as NASA Flight Software expert for 30 years, including cFS 

history, release process and cFS lessons. 

McComas et al. (2015) pointed that OSAL, cFE and the cFS Applications 

Suite were then mature software products, classified as TRL 9, the highest 

level of technology maturity. 

 

4.1.2. cFS heritage outside NASA 

cFS is being adopted in several space organizations besides NASA, 

including the private sector, especially in the USA. For example, Lockheed 

Martin, the biggest defense company in the world in 2017 and 20187, 

adopted cFS as the flight software framework on its LM 50 small 

spacecraft platform series. They started to use cFE/cFS in 2014 (AKRE, 

2017). 

Outside the USA, there are few mentions found about cFS adoption. 

Some causes for this are that cFS public release is relatively recent and 

that some countries have their own software paradigm, as was presented 

in Chapter 3. Nevertheless, an interesting application outside the USA was 

found in South Korea, in Korean space agency KARI nanosatellite 

programs (CHOI, 2016). 

 

4.1.3. cFS adoption in cubesat missions   

VCUB1 mission is not the first CubeSat mission to adopt cFS as FSW 

framework. A search on the literature revealed that some nanosatellite 

                                                        
 

7 According to http://people.defensenews.com/top-100/ 
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missions such as NASA’s Dellingr, CERES and STF-1, have already used 

cFS. 

Dellingr is a GSFC engineering demonstration CubeSat mission, 

containing two heliophysics science instruments: a boom-mounted 

fluxgate magnetometer, and a novel gated time-of-flight ion-neutral mass 

spectrometer (INMS). This mission was deployed from ISS in Nov 2017 

and faced several hardware anomalies and failures during its time in orbit 

(KEPTO et al., 2018). Some cFS built-in features enabled spacecraft 

maintenance, including: 

 Upload files to the on-board file system; 

 Verify the size and CRC of a file on the file system; 

 Manage on-board files; 

 Individually replace cFS applications; 

 Compress cFS applications to reduce uplink bandwidth; 

This return of experience in flight shows cFS flexibility, which allowed 

system maintenance, particularly important in “New Space” missions were 

we typically design for resiliency rather than for reliability. Still on Dellinger 

mission, Cudmore (2017) provided some FSW development feedback 

about cFS usage: 

 Positive Lessons: 

o cFS brought a development environment, FSW framework, 

and process to the project 

o cFS allowed to focus on mission specific code and start to 

work on that immediately 

o cFE and cFS functionality added a lot to the mission with 

little effort 

o cFS cross platform capability allowed to develop and run on 

desktop Linux, Raspberry Pi, and other targets 
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 Negative Lessons: 

o The cFS was a poor fit for the chosen CubeSat COTS OBC, 

which had 2 MB of RAM and File System could hold at most 

64 files. Experience was used to work around limitations of 

the platform 

o cFS experience helped with the selection and configuration 

of applications. Learning the cFS is beneficial before trying to 

develop a system 

Among these negative lessons, particularly regarding the minimum size for 

running the full cFS bundle, McComas (2016) stated that on Global 

Precipitation Measurement (GPM) mission, an operational NASA Class B 

project that used cFS, there were 4 MBs of EEPROM and 24 MBs of 

SRAM on the main OBC. Nowadays, most CubeSat OBCs have memory 

performances far above those requirements, so cFS footprint will likely no 

longer be an issue for most nanosatellite missions. 

A CubeSat mission launched on Dec 2018, called CeREs (the Compact 

Radiation belt Explorer), on the opposite side, made use of a high 

processing-power computer for its OBC and cFS as its FSW framework. 

Kanekal et al. (2018) stated that a computer called CSP (CHREC Space 

Processor), a development based on Xilinx Zynq 7020 platform, was used 

on-board and that all cFS applications were successfully reused with 

minor project-specific configuration changes. 

Aphelion Orbitals, an American space start-up company, developed an 

Operating System called Perihelion, which is based on cFS. According to 

Aphelion (2018), users can benefit from an SDK and a software package 

repository where Perihelion applications can be downloaded and used in 

customers’ nanosatellite missions. 

A CubeSat called NUTS (NTNU Test Satellite) was developed by NTNU 

(Norwegian University of Science and Technology) students aiming at 

educational purposes. 

Normann (2016) stated in his master’s dissertation that Component-Based 

Software Engineering (CBSE) and Service-oriented Architecture (SOA) 
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are popular engineering methods of constructing software for small 

satellites. As part of his studies, he examined both NASA cFE/cFS and 

ESA SAVOIR as FSW framework candidates. 

He stated that these two frameworks could be “advantageous to use for 

the NUTS satellite, but after further investigation it was discovered that 

neither of these systems had official support for the target operating 

system (FreeRTOS). Also, both of these projects are ‘quite large’ and may 

add a level of complexity that wasn’t required for the NUTS mission”. 

cFS official support for FreeRTOS is not yet open-sourced, but was 

already performed in Dellingr mission (CUDMORE, 2017). Moreover, after 

technical investigation on NUTS satellite, it was noticed that Normann 

(2016) was considering as OBC candidates two very resources-

constrained microcontrollers: UC3C and SAM V71, which is very 

uncommon in current CubeSat missions, with only 2 MB of external 

SRAM, same as Dellingr mission. 

cFS isn’t indeed a good fit for microcontrollers. It was designed for 

microprocessors systems with operating systems that contain at least file 

systems support, as detailed in Section 4.2.1. 

Nevertheless, Wilmot (2017) affirms that cFS footprint using FreeRTOS is 

less than 1 MB, which makes it suitable even for resource constrained 

processors. 

Another NASA CubeSat called STF-1 (Simulation-To-Flight), launched in 

the same flight as CeREs, also used cFS as its FSW framework. This 

mission main goal was to develop and demonstrate the life-cycle value of 

a software-only small satellite simulator, called NOS3 (MORRIS et al., 

2016). This simulator was developed to interface with cFS and has now 

been released open-source. 

Araguz et al. (2018), in his Cat-1 CubeSat project from Technical 

University of Catalonia, launched in Nov 2018, stated that adopting cFS as 

middleware may ameliorate the robustness of the system since this 

product have been exhaustively tested and verified in-flight. 
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Nevertheless, he continues saying that “Regardless of this suite already 

being tested in NASA’s nanosatellite missions, its adoption is still not 

broad enough and many current developments are still implemented on 

top of simpler, commonly known operating systems (e.g. FreeRTOS or 

standard Linux kernels), which lack most of the reliability guarantees of 

additional, space-qualified middleware”. 

Section 4.2.1 will present OSAL cFS port to commonly used RTOS 

systems. RTEMS and VxWorks are systems already used in several 

critical space missions worldwide. cFS port to them was already 

performed for some OBC processors, but not for most CubeSat’s COTS 

OBCs. Moreover, CubeSat community is used to work with simpler RTOS 

such as FreeRTOS and some Linux kernels. 

Therefore, the effect of simpler RTOS overall effect on system reliability 

must be deeper analyzed in order to assess if it does not jeopardize cFS 

reliability guarantees. On the other hand, Dellingr mission used cFS over 

FreeRTOS for the first time in orbit with considerable success, cFS 

maintenance capabilities being required several times in spacecraft 

operations, aggregating resilience to the system (KEPTO et al., 2018). 

 

4.2. cFS architecture overview 

4.2.1. OSAL 

The Operating System Abstraction Layer (OSAL) is one of the constituents 

of the cFS lower level software layer. It started as a stand-alone project at 

NASA GSFC, as mentioned in Section 4.1.1, conducted by computer 

engineer expert Alan Cudmore. The first OSAL release was in 2004 

(YANCHIK, 2007). This dissertation uses OSAL v4.2.1, issued in 2016, as 

obtained from NASA open-source repository. 

OSAL is a powerful software wrapper that isolates higher flight software 

layers from the underlying RTOS. With the OS Abstraction Layer, flight 

software such as cFS can run on several operating systems without 
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modification. It also allows execution of FSW on simulators and desktop 

computers. 

The most common RTOS used in spacecraft flight software, such as 

RTEMS and VxWorks, have already been ported and are available open-

source (CUDMORE, 2016). Also, there is an OSAL port for Linux, which 

allows to run cFS and develop cFS applications in a host machine. 

More details about OSAL can be found in section A.1 of APPENDIX A. 

 

4.2.2. PSP 

PSP is a cFS software product that allows port and memory based I/O 

access to provide a common way of accessing hardware resources. This 

dissertation uses open-source PSP v.1.3.0.0 of May 24, 2016. PSP 

purpose is to isolate higher cFS layers from specific processor and 

memory calls. 

More details about PSP can be found in Section A.2 of APPENDIX A. 

 

4.2.3. cFE 

After OSAL and PSP, which according to Figure 3.2, compose the 

Abstraction Library Layer, the subsequent upper layer in the cFS system is 

the core Flight Executive (cFE). This dissertation uses open source cFE 

v6.5.0. 

cFE is composed of five core applications that provide the underlying 

services for mission applications to be built on. They were briefly 

explained in Section 3.3.2. McComas, Wilmot and Cudmore (2016) stated 

that cFE provides five services that were determined to be common 

across most FSW projects at NASA GSFC. 

Each one of the five services are detailly explained in sections from A.3 to 

A.8 of APPENDIX A. The cFE API’s knowledge is crucial to develop new 

cFS applications and to operate a spacecraft that is cFS-compliant. 
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4.2.4. cFS applications suite 

Besides the cFE core applications mentioned in previous Section 4.2.3, 

NASA also open sourced on its GitHub page8 some cFS applications that 

were judged to be recurrent in space missions (NASA, 2014). These 

applications have a strong correspondence with flight software standards 

proposed services, as will be shown in Chapter 5. 

The cFS applications suite are presented in Table A.2 of APPENDIX A, 

along with the version used in this dissertation and a summary of their 

functionalities, which were extracted and adapted from NASA GitHub 

page. 

Along this document, in all subsequent applications mentions, the implicit 

software versions are the ones referenced in Table A.2 if not otherwise 

specified. 

 

4.2.5. cFS architecture design rules verification 

Ganesan et al. (2009) performed a study in order to verify architectural 

design rules of the NASA cFS product line implementation. The goal of the 

verification was to check whether the implementation was consistent with 

the cFS’ architectural rules derived from the cFE developer’s guide, 

cFE/cFS requirements documents and cFS deployment guide documents. 

The scope of the study was a subset of rules that were related to the cFS 

structure and its development environment, that could be statically verified 

(i.e., without executing the system). 

Overall, 45 architectural rules were checked (e.g. a higher-layer 

component is allowed to call a lower-layer component, but the opposite is 

not allowed), most of them were indeed followed, but 14 violations were 

detected. Even though cFS is a safety-critical software, and consequently 

                                                        
 

8 https://github.com/nasa?utf8=%E2%9C%93&q=cfs&type=&language= 
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undergoes extensive code reviews, still some of the detected violations 

escaped the manual review process. High-priority issues were addressed 

at the time and corrected on subsequent cFE/cFS versions. 

 

4.3. cFS unit tests 

In the context of a Software Product Line (SPL) such as cFS, unit testing 

is especially important and complex because of the challenges imposed 

by testing core modules and application modules without being dependent 

on the behavior of any other module. 

The unit testing approach developed and used by the cFS product line 

team at the NASA GSFC incorporates practical and useful solutions such 

as allowing for unit testing without requiring hardware and special OS 

features in-the-loop by defining stub implementations of dependent 

modules (GANESAN et al., 2013). cFS open-source v6.5.0 code come 

along with a comprehensible unit testing framework, that contains unit 

tests and respective stubs for each software application. 

Ganesan et al. (2013) considered cFS unit testing framework an example 

of good software engineering. For instance, NASA addressed the problem 

of modules dependability by introducing stubs, counter-value pattern and 

abstraction layers for handling variability in SPLs, even with C language 

lack of built-in assertion capabilities and dependency injection. Even 

though, Ganesan et al. (2013) found some issues that can be optimized. 

For example, he mentioned that one example of possible cFS unit testing 

optimization would be to separate nominal and off-nominal behaviors that 

are currently mixed in several of the unit tests. 

 

4.4. Reliability analysis of a cFS-compliant FSW 

In collaboration with NASA Goddard Space Flight Center (GSFC), 

Sukhwani et al. (2016) analyzed the defect reports for the cFS-based FSW 

of a GSFC space mission that has was recently launched at the time. For 
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their analysis, they used the defect reports collected during the FSW 

development. The software was developed in multiple releases, each 

release spanning across all software life-cycle phases. 

The analysis has shown that some of the major software problems 

included integration issues with new hardware platforms, issues with new 

releases of COTS software (cFE/cFS) and problems encountered in 

hardware test environment. 

Regarding this dissertation scope, it is mostly of greater interest the 

defects that have cFE/cFS as the root cause. Sukhwani et al. (2016) 

pointed that three different releases of cFE were used during the mission 

development. The releases replacement caused some issues such as a 

change in the code directory structure in one occasion and schedule delay 

due to new cFE release await. Even with these minor problems identified, 

Sukhwani et al. (2016) stated that Product line approach in Flight Software 

is the future of flight software development for years to come. 

 

4.5. cFS from a closed environment to an open ecosystem 

The concept of product line for software products is gradually being 

growing. This is particularly true in consumer products electronics and has 

a strong correlation with partially or completely open-sourcing the software 

product (HARTMANN, 2015). 

FSW can also benefit from product line concept. According to Dos Santos 

(2008), the process of developing a complex software can be, due to the 

use of product line, reduced to the comparatively simple activities of 

feature selection and composition. 

Lindvall et al. (2016) considered cFS a good example of system that was 

designed as product line due to its success in being reused by many 

NASA missions. This author also states that cFS was not an a-priori 

established product line that later evolved. On the contrary, it was defined 

after several similar systems were developed and it evolved in parallel and 

where the need for organized and planned reuse was identified. 
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Hartmann (2015) presents 5 types of structure typically adopted by the 

industry for software development, as shown in Figure 4.1, from type 1 

(more closed model) to type 5 (more open model). In this diagram, 

external software is represented as one or more colorful boxes that are 

aggregated to the green original software system developed by the host 

organization. 

cFS environment can be understood as gradually evolving from model 1 to 

model 5 of Hartmann (2015) categorization, which is a trend on software 

development in several areas. 

 

Figure 4.1 – Models of structure for software development. 

 

This figure shows the 5 models proposed by Hartmann (2015) for software 
development in software industry. Type 1 is completely verticalized and entirely 
made by the developing organization while type 5 is a model type that is much 
more flexible, relying on the contributions of 3rd party organizations. 
 
Source: Obtained from Hartmann (2015). 
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4.6. OpenSatKit 

An example of cFS now being projected as an open ecosystem is an 

initiative called OpenSatKit9, which is a complete software suite created to 

address cFS deployment challenges and to serve as a platform training for 

new users. McComas (2018) states that this SDK is freely available, as it 

contains only open-source software, and includes preconfigured cFS 

applications and provides tools for creating and integrating mission-

specific applications. 

The fact that cFS components are maintained separately by NASA gives 

to the user the responsibility to configure, integrate, and deploy them as a 

cohesive functional system. McComas (2018) considered this activity very 

challenging, especially for organizations with minimal FSW development 

experience, such as universities that are building CubeSats. 

OpenSatKit contains, besides a subset of Section 4.2.4 cFS applications 

suite, Ball Aerospace’s command and control system called COSMOS, 

and a flight dynamics simulator called 42. Starting with an operational 

flight and ground systems makes the FSW developer’s job much easier, 

because users can focus on tailoring the kit’s cFS components to their 

needs, adding new cFS-compliant applications, porting the cFS to their 

target platform, and verifying the system. 

OpenSatKit v1.0 is the cFS development kit adopted in this work because 

it was the most “user-friendly” and complete cFS open source distribution 

the author found. Moreover, it is a self-contained environment, allowing 

complete FSW design and testing with no need for external tools. 

The cFS theoretical review presented in this Chapter provides the 

framework background to better understand the cFS conformance with 

space standards, that will be presented in Chapter 5, and mission-specific 

applications generation that will be addressed in Chapter 6. Advanced cFS 

                                                        
 

9 https://github.com/OpenSatKit/OpenSatKit 
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background contained in APPENDIX A provides deeper details that might 

be useful on the continuity of this work. 
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5 cFS AND SPACE SOFTWARE STANDARDS 

This Section is devoted to present the main spacecraft operations 

standards, data communication protocols and flight software standards 

and in which ways cFS responds to or is related to these standards. This 

activity will provide interesting insights on what cFS can and cannot do, 

allowing its users to assess cFS quality and better understand the 

mission-specific applications generation that will be presented in Chapter 

6. 

Standards serve as a common language among specialists and as a 

lessons learned repository. Therefore, they can be used as reference for 

attesting capabilities and functionalities and also as benchmark for 

software projects development. 

As presented in Section 2.1, “New Space” is characterized by private 

sector protagonism, which naturally leads to space projects cost reduction. 

This is an apparent contradiction with extensive space standards 

utilization. Nevertheless, “New Space” missions cannot give up on product 

quality and for that purpose compliance with relevant standards provides 

insightful metrics. 

Also, evaluating cFS product line core compliance, i.e. cFE and cFS 

applications suite, is a one-time task. Next cFS-based FSW projects can 

inherit the analysis performed here and extend it to their mission-specific 

software parts. 

cFS concepts presented in Chapter 4, especially architecture details given 

in Section 4.2, will be extensively used throughout this chapter and should 

be consulted whenever necessary. 

 

5.1. cFS and CCSDS  

Particularly regarding CCSDS standards, a world-wide recognized space 

standardization committee, Wilmot (2017) advocates that they can be 
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used to speed missions’ schedules and reduce their costs. He states that 

cFS has been using several CCSDS standards since its inception.  

In this Section, cFS compliance with CCSDS SOIS will bring up cFS 

existing software services. 

It is important to remark that CCSDS also functions as an ISO 

Subcommittee, which is Subcommittee 13 (SC13 - Space data and 

information transfer systems), part of Technical Committee 20 (TC20 - 

Aircraft and space vehicles). ISO standards numbering differs from 

CCSDS. In this dissertation, however, CCSDS IDs only will be referenced 

due to the likelihood of space community familiarity. 

 

5.1.1. cFS and CCSDS SOIS 

The Onboard Interface Services (SOIS) is one of the 6 CCSDS areas, 

being devoted to developing standard service interfaces that are provided 

to onboard software applications. 

SOIS specification is done in CCSDS (2013), registered with the code 

CCSDS 850.0-G-2. This reference performs an analysis of the cFE 

framework mapping with respect to SOIS services, as shown in the 

highlighted interfaces in Figure 5.1. 

Going further into the analysis of the cFS built-in CCSDS SOIS services, 

each service defined in the standard is associated with the judged 

correspondent cFE application (if applicable). The result is shown in Table 

5.1. 
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Figure 5.1 – CCSDS SOIS services that have potential alignment with NASA 
cFE/cFS framework. 

 

This CCSDS SOIS architecture block diagram shows CCSDS (2013) analysis of 
the potential SOIS services that can be aligned with cFE/cFS functions. 
 
Source: Obtained from CCSDS (2013). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

60 

Table 5.1 – CCSDS SOIS standard correspondence with cFS functions. 

CCSDS SOIS 

Layer 

CCSDS SOIS Services cFS Function 

Applications 

Support Layer 

Command and Data 

Acquisition Services 

(DDPS, DAS, DVS) 

One has to implement by means of 

mission-specific cFS applications 

Not implemented 

Time Access Services cFE Time 

Implemented 

Message Transfer 

Services 

cFE Software Bus 

Implemented 

File and Packet Store 

Services 

cFS Data Storage app, cFS File 

Manager app 

Implemented 

Device Enumeration 

Services 

Not implemented 

SOIS 

Subnetwork 

Services 

Packet Service cFS Software Bus Network app 

Implemented 

Memory Access Service cFS Memory Manager app 

Implemented 

Synchronization Service cFE Time 

Implemented 

Device Discovery 

Service 

Not implemented 

Test Service Applications health check and 

network connectivity using NOOP 

command 

Partially implemented 

N/A Electronic Datasheets Not implemented 

Source: Made by the author. 

 

The Device Discovery (DDS) and the Device Enumeration (DES) services 

are being evaluated for inclusion in the cFE framework (CCSDS, 2013). 

This same standard also mentioned that the “Command and Data 

Acquisition” services are not present by default in cFE/cFS but are 
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commonly implemented by means of software drivers or hardware 

libraries. 

Test service was not judged to be implemented in cFS by CCSDS (2013). 

However, another way to see it is that indeed it is partially performed by 

means of NOOP command presence in every application, which is the 

same idea behind PUS Service 17, that will be explained in Section 5.2. 

Finally, cFE v6.6.0, which was publicly released on May 201910, has 

CCSDS EDS Support (STREGE, 2017). 

 

5.1.2. cFS and CCSDS procotols 

cFS compliance with CCSDS most used data transfer protocols, namely 

the Space Packet Protocol, Data Link Layer Protocols and CFDP are 

complimentary shown in 0. 

This analysis can be used as a reference of cFS natively built-in CCSDS 

protocols functions. McComas (2015) pointed out that NASA cFS 

compliance with CCSDS packet formats is also an advantage for 

interfacing with NASA legacy ground systems. This remark is also true for 

several other CCSDS signatories’ organizations around the world, 

particularly INPE, in Brazil. 

 

5.2. cFS and ECSS PUS services 

The European Coordination for Space Standardization (ECSS) is an 

initiative to uniformize space standards across European organizations. It 

has a broader scope compared to CCSDS, because it proposes standards 

to all areas related to a space project, not only to data systems. 

                                                        
 

10 Mail by David McComas at NASA Core Flight Software Product Mailing List <cfs-
community@lists.nasa.gov> on May 8, 2019 
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One ECSS particular standard, the ECSS-E-ST-70-41C (ECSS, 2016), is 

of great interest to FSW developers, because it is a precursor of CCSDS 

SOIS, being one of the first available standards to deal with FSW services. 

This standard is called “Telemetry and Telecommand packet utilization”, 

also known as PUS (Packet Utilization Standard), whose first issue was 

published in 2003. At the time, 19 services were proposed (3 being 

reserved for future specification), and this number has grown to 23 in 

current issue C (the same 3 services still kept reserved). A comprehensive 

analysis on PUS-C features was performed by Clerigo et al. (2018). 

These services are mission-agnostic aiming at the remote monitoring and 

control of spacecraft subsystems and payloads. The PUS should be 

viewed as a “Menu” from which the applicable services and respective 

levels are selected for a given mission (ECSS, 2016). 

ECSS PUS, besides the on-board services, also specifies the TC and TM 

packet templates that should host a request, or a report derived from the 

intended on-board service. 

The cFS TC and TM packets secondary header is presented in Section 

B.1 in 0, and is not compliant with ECSS PUS proposed secondary header 

format. Also, some services in cFS are done through the uplink of table 

files, as defined in Section A.6 of APPENDIX A, and not necessarily 

through TC packets only. The counterpart TM reports are sometimes cFE 

event messages, information dump to files (that should be later 

downloaded to ground) or should be inferred through user-requested TM 

reports. 

This makes cFS not compliant with ECSS PUS proposed packet formats 

of ECSS (2016) in terms of headers and application data field content. 

Nevertheless, from the services perspective only, many similarities can be 

found, as summarized in Table 5.2. 
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Table 5.2 – ECSS PUS Services correspondence with cFS applications. 

PUS Service cFS 

ID Name cFS Application or Function 

1 Request Verification cFE EVS API’s and cFS application 

template 

Partially compliant 

2 Device Access Not implemented 

3 Housekeeping cFS SCH and TO 

Partially compliant 

4 Parameter Statistics Reporting Not implemented 

5 Event Reporting cFE EVS 

Compliant 

6 Memory Management cFS MM 

Partially compliant 

7 [reserved] N/A 

8 Function Management e.g. cFS wake_up commands 

Compliant 

9 Time Management cFE TIME 

Compliant 

10 [reserved] N/A 

11 Time-based scheduling cFS SCH 

Partially compliant 

12 On-board monitoring cFS LC and cFS HS 

Compliant 

13 Large Packet Transfer cFS CF 

Compliant 

14 Real-time Forwarding Control cFS TO 

Compliant 

15 On-Board Storage and Retrieval cFS DS 

Partially compliant 

16 [reserved] N/A 

17 Test cFS apps contain NOOP commands 

Compliant 

18 On-board Control Procedure 

(OBCP) 

Not implemented 
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PUS Service cFS 

ID Name cFS Application or Function 

19 Event-Action cFS HS 

Compliant 

20 Parameter Management cFE TBL 

Partially compliant 

21 Request Sequencing cFS SC 

Compliant 

22 Position-Based Scheduling Not implemented 

23 File Management cFS FM and cFS CF 

Partially compliant 

Source: Made by the author. 

 

APPENDIX C brings more details about the compliance analysis 

summarized in Table 5.2. 

For comparison purposes, GERICOS framework presented in Section 

3.3.1 implements Services 1, 3, 5, 6, 9 and 17. These services are the 

ones usually required at payload level in ESA missions (PLASSON et al., 

2016). Also, SAVOIR/COrDeT and CAST frameworks implement PUS 

services, as mentioned in Sections 3.3.3 and 3.3.5. 

It is not necessary for a mission to fully implement PUS services in order 

to be successful or operable, as recognized by Clerigo et al. (2018). Each 

mission must tailor the standard to its operational requirements. 

The analysis of cFS conformance to the most used FSW services and 

data protocol standards provides to the cFS developers insights on the 

framework built-in functionalities. cFS users can then focus on non-

standardized functionalities, which will be subsequently exposed in 

Chapter 6. 
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6 MISSION-SPECIFIC APPLICATIONS DEVELOPMENT 

6.1. Overview of FSW design effort in cFS-based missions 

As already presented in cFS architecture described in Sections 3.3.2 and 

4.2, cFS framework provides several generic FSW built-in functionalities, 

based on NASA GSFC experience and legacy missions. These 

functionalities are in strong correlation with the most used FSW standards, 

as exposed in Chapter 5, 0 and APPENDIX C. 

In a mission that uses cFS, FSW developers typically work on the 

following areas: Boot and BSP software; low-level software drivers; OSAL 

and PSP port; cFE/cFS core applications tunning; and Development of 

mission-specific cFS applications. 

Boot and BSP software development is normally a task performed by OBC 

vendors and is cFS agnostic, but occasionally there is some necessary 

tailoring to be performed by mission FSW developers. 

Low-level software drivers development is an activity that is partially 

dependent on the operating system, partially provided by OBC and 

equipment vendors, and some design is still made by FSW developers. 

There is a great dependence on hardware definitions, which makes it hard 

to standardize this part. 

OSAL and PSP port to the target processor and operating system, despite 

requiring considerable engineering effort, is an area that can be delegated 

to 3rd-party, and eventually will be done by NASA or the cFS community 

due to growing framework number of users and subsequent cFS-

developers demands for support. At the end, there is a small number of 

embedded operating systems and processors of interest. 

cFE and cFS core applications parameters tunning is a delicate activity 

that has great correlation with mission definitions. It is complicated to 

develop a process or methodology to standardize this area. Furthermore, 

cFS documentation already brings information on that subject. 

On the other side, development of mission-specific cFS applications and 

libraries to accomplish the mission’s tasks will still be a central software 
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topic because satellite missions can largely vary in objective and 

complexity, even though cFS applications keep the same core 

architecture. This topic is the subject of analysis along this Chapter. 

Figure 6.1 summarizes the development effort associated with each cFS-

based FSW layer or component. 

 

Figure 6.1 – cFS-based FSW components and layers with respective comments 
regarding their development effort. 

 

This figure summarizes the development effort associated with each layer or 
component of a FSW that uses cFS framework. Note that “Mission-Specific Apps” 
development is highlighted (in green box) as the topic of interest, because this is 
the area that the author identified as the best candidate for standardization. 
 
Source: Author adapted from NASA (2014). 
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6.2. Motivation for a systematic development of cFS applications 

While creating new mission-specific cFS applications for the reference 

mission, it was observed a great commonality among them. They have a 

similar architecture, coding schemes and its basic functions make use of 

recurring cFE core API’s. 

Also, when creating new cFS applications, due to the reasonable amount 

of mandatory variable initializations and API calls in specific parts of the 

algorithm, it isn’t hard to eventually forget some of them, causing 

considerable waste of time on troubleshooting and benchmarking with 

other “well-behaved” applications. 

In order to help avoiding such problems, this dissertation brings, as part of 

the proposed “New Space” approach for FSW, design rules that must be 

observed on cFS applications coding and design 

These rules were formulated based on the author analysis on inherited 

cFS applications, space software standards guidelines and the experience 

gained when writing new applications for the reference mission.  

As a return of experience from the reference mission, the adoption of 

design rules by itself wasn’t immediately followed by quality increase on 

new cFS applications development. It was necessary to create a tool that 

facilitated the employment of these rules, sparing the designer of 

memorizing and manually inspecting their adoption on his software 

products. The proposed tool is a tailorable cFS applications template 

generator. 

This systematic approach for cFS applications development, consisting of 

design rules creation, adoption and the use of a corresponding cFS 

template generator, can be abstracted with respect to the standard cFS 

architecture as shown in Figure 6.2. This figure is an adaptation of Figure 

6.1, already described in Section 3.3.2, but adds the proposed systematic 

development approach as the orange box under the mission-specific apps. 

This systematic development objectives are: 
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1. Improve new cFS applications quality, predictability and 

conformance to the standards through a well-defined set of design 

rules. 

2. Help to quickly prototype cFS applications that are in conformance 

with the proposed design rules. 

 

Figure 6.2 – NASA cFS Software Layers and Components along with proposed 
applications development abstraction. 

 

 

The dissertation’s cFS applications development approach is located in the 
“Mission and cFS Application Layer” level, highlighted in orange. 
 
Source: Author adapted from NASA (2014). 
 

Figure 6.3 shows this dissertation’s overall contribution to cFS-compliant 

FSW development, from framework selection up to applications systematic 

development. 
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Figure 6.3 – The dissertation’s contributions for a cFS-based FSW project. 

 

 

 

The dissertation’s contribution is presented as a sequential and logical chain, 
with theoretical contributions from Chapters 3, 4, 5 and the 
implementation/“hands-on” contribution from Chapter 6.  
 
Source: Made by the author. 
 

6.3. Proposed design rules for new cFS applications 

Design rules were created to deal with the complexity of creating cFS 

applications in the reference mission. Differently from the architectural 

rules presented in Section 4.2.5, the rules proposed herein are more 

closely related to cFS applications implementation. 

Table 6.1 organizes all created design rules, their description, rationale 

and categorization. 

Most of them were abstracted from cFS applications suite detailed study 

and cFS Sample application inference and therefore their rationale can be 

described as “cFS best practices” or “registering or handling of core 

services”. Their use is consecrated in cFS framework and they are 
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deemed to be operationally significant and are, therefore, kept as legacy 

design rules. 

There are also original design rules that were created in order to prevent 

development errors, uniformize application schemes and help to improve 

software overall quality. They consist of both guidelines provided by space 

software standards presented in Chapter 5 and lessons learned from the 

reference mission. Each rule is individually justified in Table 6.1. 

The design rules were categorized into two groups: “basic rules” and 

“tailorable patterns”. The basic group congregates design rules that can be 

immediately codified in every cFS application, as they require no particular 

tailoring. Examples of basic rules are some mandatory cFE API calls and 

performance benchmarks placement. 

The second group, tailorable patterns, consists of rules whose 

implementation may vary in each cFS application. Nevertheless, they can 

still be guided by implementation examples, or patterns, to aid developers’ 

job. Examples of these rules are commands implementation and tables 

management. 

In terms of implementation, next section will present “Dan Templates 

Wrapper” (DTW), a tool that facilitates implementation of both design rules 

categories. Basic rules are immediately codified in the templates that are 

made available by DTW. Tailorable patterns are also codified by DTW, 

providing implementation examples and pointing out through comments 

later customizations to be done by the software developer. 
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Table 6.1 – Proposed Design Rules for new cFS Applications. 

Number Name Description Rationale Category 

DR-010 
cFS Application 
Template 

The cFS application shall be generated 
from "Dan Templates Wrapper" (DTW). 

Minimum viable cFS-compliant application, 
containing mandatory calls that guarantee integration 
with rest of cFS and that is operationally significant.  
Available at GitHub page 
https://github.com/DaniloJFMiranda/OpenSatKit. Basic rules 

DR-020 cFE APIs Calls 

The cFS application shall make use of cFE, 
OSAL and PSP available APIs as 
presented in "cFE - FSW Application 
Developers Guide v5.4" reference 
document, instead of referentiating directly 
the underlying operating system. 

Integration of these applications with cFS lower 
layers. Also, direct calls to the Operating System 
API's will prevent the FSW modularity and portability. 

Basic rules 

DR-030 
cFE ES 
Registering 

The cFS application shall be successfully 
registered in cFE ES services in order to be 
started and be integrated in runtime with 
cFE core. 

Mandatory cFE call. 

Basic rules 

DR-040 App Data Struct 
The cFS application shall organize all its 
relevant internal variables in a 
comprehensive app data struct 

A single global data struct facilitates data retrieval in 
memory and optimizes memory allocation efficiency. Tailorable 

patterns 

DR-100 
App Initialization 
and Registration 

The cFS application shall perform 
application specific initialization procedures 
after cFE ES Register and before 
application main process loop 

cFS application's initialization and registration 
procedure that starts all app variables and necessary 
functions before the application main process loop. 

Tailorable 
patterns 

DR-110 
Critical Variables 
Initialization in 
Power-On 

The cFS application shall initialize its critical 
variables with initial values in case of 
power-on start, if application is CDS-
compliant. 

cFS best practice. 
Tailorable 
patterns 

DR-120 
App Data Struct 
Initialization 

The cFS application shall initialize 
application data struct variables in 
application initialization. 

cFS best practice. Tailorable 
patterns 
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Number Name Description Rationale Category 

DR-130 
cFE EVS 
Initialization and 
Registering 

The cFS application shall initialize its event 
filter table and register to cFE EVS core 
services. 

In order to be able to send event messages as per 
PUS 5 service and also to filter EVS messages 
according to user-defined criteria. 

Tailorable 
patterns 

DR-140 
cFE SB Message 
Pipe Creation 

The cFS application shall create a software 
bus message pipe and subscribe to the 
messages that it will be supposed to 
receive. 

This is the way in cFS for the applications to receive 
command messages using cFE SB services. 

Basic rules 

DR-150 
cFE TBL 
Registering and 
Loading 

The cFS application shall register its tables 
and successfully load them using cFE TBL 
services, if application has tables 

This is the way in cFS to register for using cFE Table 
services. This requirement is only applicable for 
table-driven applications. 

Tailorable 
patterns 

DR-160 
cFE ES CDS 
Data retrieval or 
initialization 

The cFS application shall restore its critical 
data, if existent, or register to cFE ES CDS 
services during initialization procedures, if 
application is CDS-compliant. 

This is the way in cFS to register for using cFE ES 
CDS services, in order to recover critical data in case 
of processor reset. This requirement is only 
applicable for applications that make use of these 
services. 

Tailorable 
patterns 

DR-170 
Application 
Version Identifier 
in initialization 

The cFS application shall output an 
informational event-message containing 
application version after a successful 
initialization process. 

cFS best practice. 

Basic rules 

DR-200 
Application Main 
Process Loop 

The cFS application shall contain a main 
process loop, where it shall remain 
indefinitely after successful initialization if 
cFE ES services correctness is confirmed 
every loop. 

Mandatory cFS applications structure. cFS 
applications should be nominally killed only 
by cFE ES service. Also, this is the exit point for cFS 
applications. 

Basic rules 

DR-210 
Idle State 
Indefinitely 

The cFS application shall remain in idle 
state indefinitely while waiting for a software 
bus message reception, in case of 
asynchronous or soft periodic applications.  

In soft periodic applications case, cFS SCH app shall 
contain the respective WAKE_UP message that will 
provide the pace to the desired cFS application. 

Basic rules 
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Number Name Description Rationale Category 

DR-220 
Idle State up to 
Time-Out 

The cFS application shall remain in idle 
state up to a user-defined time-out figure 
while waiting for a software bus message 
reception, in case of time-out periodic 
applications. 

Benchmark extracted from cFS Suite time-out 
applications. Basic rules 

DR-230 Noop Command 
The cFS application shall be capable of 
receiving a no-operations command from 
the ground 

A NOOP function is basically to "ping" a certain 
application to attest its aliveness by increasing the 
APP's command counter. This is aligned with ECSS 
PUS 17. Basic rules 

DR-240 
Application 
Version Identifier 
in TM 

The cFS application version shall be 
outputted in an informational event-
message when the Noop command is 
received. 

cFS best practice. 

Basic rules 

DR-250 
Command 
Success Counter 

The cFS application shall maintain a 
command success counter that is increased 
when a ground command message is 
successfully received. 

cFS best practice. 
Tailorable 
patterns 

DR-260 
Command Error 
Counter 

The cFS application shall maintain a 
command error counter that is increased 
whenever a command message is not 
successfully received or processed. 

cFS best practice. The error sources could be 
command incorrect length or any invalid parameters 
that are out of range or incompatible with the 
expected TC profile. 

Tailorable 
patterns 

DR-270 Reset Command 

The cFS application shall have a reset 
command which causes an 
application's internal counters to reset to 
zero. 

cFS best practice. 

Basic rules 

DR-280 
Bad Command 
Rejection 

The cFS application shall validate the 
format and length of each received 
command and reject the command if the 
validation fails. 

cFS best practice. 
Tailorable 
patterns 
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Number Name Description Rationale Category 

DR-290 
Ground 
Commands 

The cFS application shall be able to 
receive commands from the ground and 
respond to them as defined in the 
applications operations profile. 

This is one of the tailoring points that missions shall 
work on. Tailorable 

patterns 

DR-300 
Housekeeping 
Request 
Command 

The cFS application shall be able to 
periodically receive housekeeping 
request commands from the scheduler 
application. 

cFS best practice. 

Basic rules 

DR-310 
WakeUp 
Command 

The periodic cFS applications shall be able 
to periodically receive wakeup commands 
from the scheduler application and respond 
to them activating one or a fixed number 
of cycles of their internal functions, in case 
of soft-critical or time-out periodic 
applications. 

cFS best practice. 

Tailorable 
patterns 

DR-320 
Housekeeping 
Packet 

The cFS application shall be able to send 
their housekeeping telemetry packets after 
a successful reception of a housekeeping 
command. 

cFS best practice. Housekeeping messages are 
expected to be periodically transmitted by cFS 
applications. They should contain minimum 
application operationally significant information. 

Tailorable 
patterns 

DR-330 
Event Messages 
Reporting 

The cFS application shall report debug, 
informational, error and critical messages 
through EVS services. 

cFE Event Service that are based on ECSS PUS 5 
service. Tailorable 

patterns 

DR-340 

Command 
Reception 
Acknowledgemen
t 

The cFS application shall generate a debug 
or informational event-message to attest a 
command correct reception. 

cFS best practice.  
Tailorable 
patterns 
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Number Name Description Rationale Category 

DR-350 
Command 
Reception Error 

The cFS application shall generate an error 
event-message to attest a command 
incorrect reception, containing an error 
code that identifies the root cause. 

cFS best practice. The error sources could be 
command incorrect length, MID or any invalid 
parameters that are out of range or incompatible with 
the expected TC profile. 

Tailorable 
patterns 

DR-360 
Command Partial 
Execution 

The cFS application shall generate debug 
event-messages to attest a command 
partial execution status report whenever the 
command effect is not immediate. 

Commands that trigger actions that can take a long 
time on-board (like cFS FM Copy File) should issue 
progress event messages. This is a lesson learned 
from ECSS PUS 5 service. 

Tailorable 
patterns 

DR-400 
Performance 
Benchmarks 

The cFS application shall make use of cFE 
ES performance benchmarks. 

This allows to access cFS application CPU usage 
using a same uniform API. Basic rules 

DR-410 

Performance 
Benchmark entry 
after application 
register 

The cFS application shall have a 
performance benchmark entry after 
application registry in initialization 
procedures. cFS best practice.  Basic rules 

DR-420 

Performance 
Benchmark entry 
after cFE SB 
receive message 
API execution 

The cFS application shall have a 
performance benchmark entry after cFE SB 
Receive Message API call 

cFS best practice.  Basic rules 

DR-430 

Performance 
Benchmark exit 
before cFE SB 
receive message 
API execution 

The cFS application shall have a 
performance benchmark exit before cFE SB 
Receive Message API call 

cFS best practice.  Basic rules 

DR-440 

Performance 
Benchmark exit 
before application 
main function end 

The cFS application shall have a 
performance benchmark exit before cFE ES 
Exit API call, in the end of the application 
main function cFS best practice. Basic rules 
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Number Name Description Rationale Category 

DR-500 
Table 
Management 

The cFS application shall make use of cFE 
Table APIs in order to manage binary files 
that can be changed in runtime. 

This is part of cFS architecture. Requirements in this 
section are only applicable for table-driven 
applications. 

Tailorable 
patterns 

DR-510 
Table Update in 
Periodic 
Applications 

The cFS application shall check for table 
updates during its periodic cycles if it's a 
time-out or soft-critical periodic application. cFS best practice. 

Tailorable 
patterns 

DR-520 
Table Update in 
Asynchronous 
Applications 

The cFS application shall check for table 
updates whenever receiving a "send 
housekeeping" request if it is an 
asynchronous application. 

cFS best practice. In case of asynchronous 
applications, "Send HK" message is maybe the only 
periodic request that the app possesses. cFS 
applications may take advantage of that to send their 
housekeeping packets to the ground. 

Tailorable 
patterns 

DR-530 
Table Validity 
Functions 

The cFS application shall validate a new 
table against user defined sanity check 
functions, if applicable, before turning it 
operational. 

cFS best practice. Table validation function is a topic 
that has to be tailored depending on the user-defined 
table. 

Tailorable 
patterns 

DR-600 CDS Data Update 
The cFS application shall update its critical 
data using cFE CDS services whenever 
there is critical data update available.  

cFS best practice. For safety purposes. This 
requirement is only applicable for CDS-compliant 
applications. 

Tailorable 
patterns 

Source: Made by the author. 
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6.4. cFS “Dan templates wrapper” (DTW) 

As explained in previous sections, the existence of the 39 design rules 

presented in Section 6.3, by itself, didn’t satisfactorily improve software 

design lifecycle agility and quality as expected in the reference mission. 

“New Space” missions typically have tight schedule and budget, so there 

is always the counter argument that too many rules, especially those not 

tied to the code, are a burden for software developers. 

A pragmatic and quick solution to address this problem was proposed and 

very well accepted in the reference mission, being to use a cFS templates 

generator tool to aid in the proposed design rules implementation. 

An immediate challenge was encountered in the beginning of the 

templates design, though: a single application template would not be 

enough to deal with the variability of the created design rules, especially 

the “tailorable patterns” category, described in Table 6.1. 

 

6.4.1. cFS template types 

The consistent use of legacy NASA cFS applications, presented in 

Chapter 4.2.4, and the design rules implementation in the reference 

mission led to the perception that a few types of cFS application templates 

would be convenient for FSW design. 

They are very similar in their core, but contain differences depending on 

the application scheduling, critical data storage and tables processing 

needs, which are: 

1. Periodicity: Time-Out Periodic, Soft-Critical Periodic or 

Asynchronous application. 

2. Existence or not of CDS (Critical Data Storage) for storing 

persistent data in case of computer processor reset. 

3. Existence or not of cFS Tables, which are binary files that organize 

information in tables or matrices, being able to be changed in run-

time 
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Time-Out periodic refer to the applications that do not rely exclusively on 

cFS Scheduler in order to receive a periodic pace or wake up message. 

Instead, they count on cFE Software Bus time out service, which is more 

reliable. They execute periodic tasks that shall carry on even on cFS 

Scheduler failure. The Command Ingestor (CI) and the Telemetry Output 

(TO) applications are typical examples of time-out periodic applications. 

Soft-Critical periodic refer to the applications that do rely only on cFS 

Scheduler in order to receive a periodic pace or wake up message. This 

strategy allows to stop application periodicity or even change the 

periodicity rate according to a given spacecraft operational phase. If cFS 

Scheduler temporarily fails, the soft-critical periodic applications will not 

receive expected messages and therefore will not cycle, but due to their 

nature it is not considered a catastrophic event. An example of such type 

of application is CFDP app (CF). 

Asynchronous applications refer to those that do not have periodic tasks 

and are only awaken when there is a ground command or a send 

housekeeping request. The File Manager (FM) application is a typical 

example. 

CDS is a cFE Executive Service (ES) optional service, as shown in 

Section A.3, which preserves user-defined critical data in case of 

computer reset. Applications that make use of it may call a few APIs in 

certain application places. 

cFE Table is also an optional service that applications might or not use. 

The benefits of using it were shown in Section A.6. If chosen to be applied, 

table-driven applications should correctly call cFE Table API’s. 

The correct use of cFE API’s and the basic structure of a cFS application 

were derived from Bartholomew and Kobe (2014). In this reference, there 

is a generic cFS template called “QQ_app”, which formed the basis for the 

dissertation’s proposed templates. QQ_app however doesn’t take into 

account the different applications’ scheduling needs, and the presence or 

not of CDS and Tables. 
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These points of variability lead to 12 types of cFS application templates, 

as shown in Figure 6.4. 

 

Figure 6.4 – The 12 types of cFS application templates rationale. 

 

This figure shows the combinatorial analysis that leads to the 12 required cFS 
applications templates. 
 
Source: Made by the author. 
 

In order to confirm that indeed these 12 templates were useful, the 17 

legacy NASA cFS high-level applications presented in Section A.9 were 

classified according to these templates. Among the 12 identified types, 9 

had at least one representative, as shown in Table 6.2. This shows that in 

fact it is advantageous to have available all 12 foreseen templates. 

 

 

 

 

 

 



 

80 
 

Table 6.2 – NASA cFS legacy applications classified according to the proposed 

template types. 

# cFS Application Type  
NASA Legacy 

Applications 

1 Time-Out Periodic with CDS storage with tables HS 

2 Time-Out Periodic with CDS storage without tables -- 

3 Time-Out Periodic without CDS storage with tables TO 

4 Time-Out Periodic without CDS storage without tables 

CI, CI_lab, 

SBN, TO_lab* 

5 Soft-Critical Periodic with CDS storage with tables CS, LC 

6 Soft-Critical Periodic with CDS storage without tables -- 

7 Soft-Critical Periodic without CDS storage with tables 

CF, HK, MD, 

SC 

8 Soft-Critical Periodic without CDS storage without tables SCH_lab 

9 Asynchronous with CDS storage with tables DS 

10 Asynchronous with CDS storage without tables -- 

11 Asynchronous without CDS storage with tables FM 

12 Asynchronous without CDS storage without tables MM 

Source: Made by the author. 

 

* TO_lab application can be considered a time-out periodic application, but 

with a different implementation, which makes use of OSAL task delay API. 
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cFS Scheduler (SCH) was the only cFS suite application that could not be 

categorized according to the criteria proposed in this work. This is 

expected because typically mission schedulers use operating system 

semaphores or equivalent functions to guarantee its periodicity. 

 

6.4.2. cFS applications UML model 

The UML activity diagram of the proposed generic cFS application 

template is shown in Figure 6.5 and Figure 6.6. 
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Figure 6.5 – cFS Generic Application UML Activity Diagram. 

 

This figure shows cFS Generic Application functional diagram. Functions in green are optional, benchmarks are in brown and errors in red. 
 
Source: Made by the Author.
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Every cFS application starts with “Initialize Applications” procedures, 

which are responsible for registering to the cFE core services and creating 

a global data struct. 

After successful initialization, the application “Initialize Data” with hard-

coded defaults if a computer power on happened, or from cFE ES CDS if 

critical data was preserved. 

Then, the application goes to an infinite loop (“Main Process Loop”) where 

it is supposed to stay for the entire mission if there is no error or deliberate 

operator command to kill that app. First thing in this loop is to check if 

there are incoming command messages (cFE_SB_RcvMsg). 

This Software Bus API is the basic mandatory function that makes an 

application wait until data income, poll a certain pipe or channel for 

messages and, in case of time-out periodic applications, to establish a 

time-out to carry on its tasks even if no messages are received. 

Subsequently to cFE_SB_RcvMsg(), the application will iterate a cycle of 

the “Processing” activity. “Processing” contains all commands, periodic 

tasks, telemetry generation and parameter updates that the application 

performs. After this cycle, the main process loop is restarted. 

Figure 6.5 and Figure 6.6 color code is further detailed below: 

 Activities in yellow are mandatory APIs calls or functions in every 

cFS application. 

 Activities in green are optional functions that should be called if 

application is table-driven or CDS-driven. 

 Activities in red are mandatory APIs calls or functions in every cFS 

application that represent the path in case of errors. 

 Activities in brown represent the location of cFE ES performance 

benchmark APIs. These benchmarks generate time-stamped 

events that can be later post-processed to verify the application 

CPU usage time. 
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Many cFE API’s that are not mandatory in a cFS-compliant application 

were not used on the proposed template. They should be used by FSW 

developers on a case-by-case analysis. 

Two exceptions are cFE Table and CDS APIs, which are optional cFE 

APIs that are recurrently used on several cFS applications and therefore 

were adopted in the proposed tool. In order to assess their applicability to 

a new cFS application, a small questionnaire is queried to the developer, 

before the application creation, as will be explained in Section 6.4.4. 
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Figure 6.6 – cFS Generic Application UML Activity Diagram – 2nd level. 

  

This figure details the cFS Generic Application Activity Diagram by means of expanding “Initialize Application” and “Processing” activities. 
 
Source: Made by the Author.
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6.4.3. DTW tool presentation 

OpenSatKit SDK, already described in Section 4.6, contains a generic cFS 

application generator that implements some proposed templates. None of 

them takes into account the variability explained in Section 6.4.1, but they 

can be used as start point for developing DTW. 

OpenSatKit GitHub project11 was then forked (i.e. copied) to the author’s 

proprietary GitHub page12, which is also open source. This was done to 

facilitate users to check and compare the modifications made on the 

original OpenSatKit code. A local Git version was finally cloned on an 

Ubuntu Virtual Machine for local work, compilation and testing. 

The design activity was performed exclusively on the OpenSatKit cFS 

create app tool version 1.0, part of cFS starter kit branch, which was 

written in the ground control system tool COSMOS. The rest of the legacy 

code was preserved. 

One main advantage to work with this NASA SDK is that it provides a fully 

functional simulated closed loop environment that contains a FSW 

instance that runs cFS and a ground control software that can send 

commands and scripts to test and operate the FSW. This closed-loop 

setup is sufficient to validate the generated cFS applications. 

Two main activities were performed in the template generator design: 

template generator front-end and the 12 cFS application templates 

skeleton elaboration. 

OpenSatKit already provides 5 template options to the user, as shown in 

Figure 6.7. These templates, however, didn’t provide the necessary 

flexibility for the reference mission and, if adopted, would imply in 

applications manually tailored after creation. 

The front-end effort consisted of first modifying the already existing 

“Create App” tool to accommodate a new template configuration, as 
                                                        
 

11 https://github.com/OpenSatKit 
12 https://github.com/DaniloJFMiranda/OpenSatKit 
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shown in Figure 6.7. DTW is not itself a template, but a wrapper that can 

lead to 1 of 12 possible templates, also following the design rules 

described on Table 6.1. 

Therefore, when selecting “Dan Templates Wrapper” and clicking on 

“Create App” button, as shown in Figure 6.8, another screen is presented 

to the user, containing a few checkboxes that will gather information to 

pick up the right cFS template among the 12 possible options listed in 

Section 6.4.1. 

 

Figure 6.7 – OpenSatKit Create App screen with “Dan Templates Wrapper” 
selection. 

 

This is a printscreen from NASA’s OpenSatKit Create App tool version 1.0 front-
end. DTW is a new feature added in there. 
 
Source: Made by the author. 
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Figure 6.8 – “Dan Templates Wrapper” questionnaire. 

 

DTW creation pops-out another screen to the user, which is a questionnaire that 
will gather information to pick up the right cFS application template. 
 
Source: Made by the author. 
 

The second activity regarding DTW design was the elaboration of the 12 

application templates prototypes. They were implemented according to the 

UML profile presented in Section 6.4.2. Design rules were annotated as 

comments along the code. This is particularly important in the case of the 

“tailorable pattern” rules, in order to point out to the developer the parts of 

the software that must be later customized. 

Finally, OpenSatKit code modifications made due to DTW addition were 

submitted as a git pull request to the NASA’s master OpenSatKit 

repository and are waiting for review and approval. 
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6.4.4. DTW questionnaire and apps creation 

A small questionnaire is proposed to the cFS application developer before 

the automatic template generation. It contains the following questions: 

 App name: The application chosen name is used along the 

application template in several variables and functions declarations.  

 Periodicity: A checkbox with three options will appear to the 

developer, being “Hard Periodic”, “Soft Periodic” and 

“Asynchronous”. Their meanings were explained in the beginning of 

Section 6.4. Basically, this function will change cFE_SB_RcvMsg() 

function arguments, and place periodic tasks and table 

management calls accordingly (if application is periodic or tables 

are present). 

 cFS Tables Needed: A checkbox with two options will appear to the 

developer, being “Yes” or “No”. cFE Table APIs will be placed or 

not in the cFS application template depending on user choice. Also, 

table management depends on application periodicity. 

 cFS CDS: A checkbox with two options will appear to the 

developer, being “Yes” or “No”. cFE ES CDS APIs will be placed or 

not in the cFS application template depending on user choice. 

After the developer has filled the check boxes with the corresponding 

information and authorizes application creation, the algorithm 

automatically picks up one of the 12 developed templates depending on 

the choices and fills it with the application chosen name in the markups. 

All necessary files for the minimum viable cFS app are created in a folder 

in the same directory of existing applications.  
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6.4.5. DTW verification strategy in the reference mission 

As explained in Section 6.4.3, NASA OpenSatKit SDK brings all necessary 

features to test the implementation of the proposed templates. The 

verification strategy for DTW in the reference mission was performed in 4 

steps: 

1. Generating an application source code from the existing templates 

and performing visual inspection to check if all expected files were 

correctly created. 

2. Compiling the generated application source code into cFS 

application object files. At this moment, check for errors or warnings 

that the compiler may inform. 

3. Running the FSW including the new cFS application. This will 

account for compatibility with cFS lower layers and discover 

eventual runtime issues. 

4. Performing operability and integration tests in the new cFS 

application sending the available telecommands and checking for 

prompt messages and telemetry status change using OpenSatKit 

ground control software. 

Applications generation (step 1) was presented in Sections 6.4.3 and 

6.4.4. After the developer has filled the questionnaire, the minimum viable 

corresponding cFS application files are generated in the newly created 

app folder. Figure 6.9 shows an example of directory structure for an 

example app, that was created using template #9. A visual inspection can 

be performed in the files created inside example app folder to check if 

there are no files missing and also for files correctness. In example app 

particular case, there were no errors. 

Next, the generated application is compiled into cFS object files and table 

binary files (if present). This is performed using cFS native CMake tool. 

Figure 6.10 shows the resulting files of example app compilation. 
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Figure 6.9 – Example application directory structure. 

 

Example application source code is created in /cfs/apps in OpenSatKit directory. 
Inside this folder, there are all necessary files to have a minimum viable app. 
 
Source: Made by the author. 
 

Figure 6.10 – Example application after compilation. 

 

Example app compilation files (application object file and table files). 
 
Source: Made by the author. 
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The object file “example.so” is the result of compilation of “example_app.c” 

source code plus its header files. The table files “example_tbl_1.tbl” and 

“example_tbl_2.tbl” are the result of compilation of “example_tbl_1.c” and 

“example_tbl_2.c” respectively.  

The compiler showed no warnings or compilation errors for this particular 

example. If any errors were noticed in compilation time, the developer 

should go back to the source code and correct the issues found. 

Subsequently, cFS-based FSW is run with the new applications. In the 

particular case of example_app, Figure 6.11 presents the FSW terminal 

with an event message attesting the correct initialization of the application, 

as per design rule DR-170. 

 

Figure 6.11 – FSW terminal with cFS core running along with example 
app. 

 

Example app running in cFS environment. The highlight shows the cFE EVS 
Event Message that is issued after example_app correct initialization. 
 
Source: Made by the author. 
 

In addition, when an application is correctly running, its telemetry package 

is periodically received on the ground system every 4 seconds (default 
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DTW apps telemetry periodicity). For the example app, it was correctly 

received. 

The last verification step consists of integration tests. As per design rules 

DR-230, DR-270 and DR-290, every application generated with DTW 

comes natively with 3 telecommands, being “Noop Command”, “Reset 

Counters” and “Example Ground Command”. These commands are 

detailed in Table 6.3. 

This minimum set of commands offers a starting point for developers in 

their FSW project. Besides, these commands responses were used as a 

test means to verify generated applications behavior in integration tests. 

The commands correct execution is assessed through application 

telemetry packets or cFE EVS event messages, as explained in Table 6.3. 
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Table 6.3 – Telecommands present in DTW generated cFS applications. 

Command Description Evidence of Execution 

Noop This command is an “are-you-

alive” ping, used to test if 

application is functioning (DR-

230) 

- Command Success Counter is 

increased (DR-250), which can 

be checked on app telemetry 

packet 

- cFE EVS event message is 

issued (DR-240), which can be 

checked on cFE EVS app 

telemetry or on FSW terminal 

Reset 

Counters 

This command sets to 0 the 

internal counters “command 

success counter” and 

“command error counter” 

(DR-270) 

- Command Success Counter 

and command error counter are 

equal to 0, which can be 

checked on app telemetry 

packet 

- cFE EVS event message is 

issued (DR-340), which can be 

checked on cFE EVS app 

telemetry or on FSW terminal 

Ground 

Command 

Example 

This command is an example 

of ground command to be 

tailored by FSW developers 

(DR-290) 

- Command Success Counter is 

increased (DR-250), which can 

be checked on app telemetry 

packet 

- cFE EVS event message is 

issued (DR-340), which can be 

checked on cFE EVS app 

telemetry or on FSW terminal 

Source: Made by the author. 

Figure 6.12 shows a printscreen of the environment used for runtime and 

integration tests (steps 3 and 4) of the generated cFS applications. It is 

possible to see on the figure’s terminal that the 3 telecommands sent to 

example app successfully raised 3 corresponding cFE EVS event 

messages (three last terminal lines). 
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9
5

 

Figure 6.12 – DTW testing environment. 

 

This picture presents a printscreen of OpenSatKit SDK showing on the top left the terminal that runs the FSW, on the top right the ground 
control software server, on the bottom left a ground software telecommand sender GUI and on the bottom right the telemetry packet viewer. 
 
Source: Made by the author. 
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6.4.6. DTW adoption in the reference mission 

In the reference mission, DTW was used to prototype new applications to 

serve several purposes, such as middleware, to emulate faults, to emulate 

equipment response, and serve to other system-level testing purposes. 

Table 6.4 presents three relevant reference mission applications created 

using DTW, their purpose and the corresponding DTW template ID. 

 

Table 6.4 – Three relevant DTW generated applications used in the 

reference mission. 

cFS 

application 
Purpose 

DTW 

Template  

ID 

Example app First DTW generated cFS application. It has 

no flight purpose but helped to create DTW 

test plan and applications generation 

philosophy 

9 

Equipment 

emulator app 

Simulate a reference mission equipment 

response to commands 

7 

Mode Manager 

app 

Flight application that manages system level 

modes in the reference mission 

10 

Source: Made by the author. 

 

Example app was previosly presented in the last sections. Its purpose was 

to validate the tool usage, to help create applications generation 

philosophy and for new team members training. 

Equipment emulator app was an application created several times at 

software development and also system-level testing. This application is 

soft-periodic (template #7), allowing to emulate equipment periodic 
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response to the On-Board Computer (OBC), and to insert failures in the 

equipment response. 

As a return of experience, equipment emulator apps were very suitable in 

the initial phases of FSW development, when real hardware was not 

available. However, they were not representative enough to evaluate the 

equipment low-level hardware library correctness, only high-level 

commands response. 

cFS applications were realized to be too high level to allow drivers 

comprehensive testing. Nevertheless, using them was interesting as a 

schedule shortcut, especially because they could be, thanks to DTW, 

quickly prototyped. 

Mode manager app, in its turn, is a flight application. In the reference 

mission, it is an asynchronous cFS application that is permanently 

listening to the software bus, waiting for certain pre-defined messages. If it 

realizes that a certain trigger was issued by other application (or even by 

ground command), it modifies spacecraft system mode accordingly. 

Mode manager application template was generated by DTW and further 

tailored by reference mission FSW developers. As a critical FSW 

application, it is being extensively tested and so far, no errors were 

encountered with respect to missing APIs or integration with cFS lower 

layers. 

As a summary, DTW is being used in the reference satellite mission with 

good acceptance, especially because it points out to the user the minimum 

necessary cFE/cFS API calls, helping to mitigate errors and typos, but 

also because it reduces the amount of necessary verification effort in an 

application. These consequences were extremely beneficial in terms of 

development time and product quality. 
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7 CONCLUSIONS 

“New Space” missions are experiencing a growing phase nowadays. In 

Dec 2018, the CEO of the United States Chamber of Commerce said that 

after maritime system and aviation, space is now the new economic 

frontier13. 

On the other side, space engineering technical knowledge is mostly 

residing in government organizations, academia and big corporations. 

There is a significant lack of information in small companies that inhibits 

some of them to develop innovative projects. 

This dissertation tackled a space engineering field that presents one of the 

greatest challenges for newcomers: Flight Software (FSW). The pragmatic 

way found to do so was via a well-established framework. 

 

7.1. Main contributions 

The author started this work by surveying and comparing relevant FSW 

frameworks, adopting selection criteria suitable to “New Space” missions, 

which culminated on the choice for NASA cFS. This analysis can be seen 

as the first of the main contributions, and was published on JATM journal 

[MIRANDA, FERREIRA, KUCINSKIS and MCCOMAS (2019)]. 

Subsequently a technical overview of cFS was given to serve as technical 

review and background, in order to elucidate the concepts that would be 

later applied. 

A new mission that is willing to adopt cFS on its FSW project must first 

know what the framework’s capabilities are and how it can ease the 

engineers’ job. This was presented in the framework background review 

(Chapter 4) as well as in the cFS comparison against relevant space 

software standards (Chapter 5). This description, along with the contents 

of APPENDIX A, 0 and APPENDIX C, is another contribution. 

                                                        
 

13 https://spacenews.com/space-the-new-economic-frontier/ 
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Two standards deserve to be highlighted here: CCSDS SOIS and ECSS 

PUS. They normatize on-board software services that are deemed 

relevant to space missions. It was verified that cFS possesses a strong 

correlation with them, as cFS inherits many years of NASA GSFC 

research and past scientific missions’ errors and successes. 

In the reference mission FSW design activities, the area that was most 

time-consuming was applications design and testing. In order to optimize 

this activity and avoid time waste, this work proposed another contribution: 

a systematic development of cFS applications by means of using well-

defined design rules and an accompanying template generator (DTW). 

This systematic approach is being successfully used in the reference 

mission but could also be useful and applicable to other cFS-based 

missions.  

 

7.2. Future work  

The following topics are a natural evolution of the research performed in 

this dissertation and will be investigated in future work. They are organized 

by subject. 

General FSW Review Topics: 

 cFS impact on operations philosophy, such as files and tables 

driven operations, is a more advanced topic that would need 

special attention 

 cFS impact on ground control software, such as CFDP engine, cFS 

apps compiler, tables interpreter, etc, is a more advanced topic that 

would also need careful attention 

cFS and Space Software Standards: 

 cFS compliance with CCSDS SOIS EDS standard was not deeply 

analyzed because it was implemented only at cFE v6.6.0, and this 

research used cFE v6.5.0 
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 The document “NASA cFS as a CCSDS Onboard reference 

architecture” would be a very interesting reference, in great 

alignment with this work. However, it is still an on-going work by 

CCSDS Application Support Services Working Group and could not 

therefore be analyzed. 

 CCSDS Mission Operations Services Concept is a Green Book 

recommendation (CCSDS 520.0-G-3) which presents a Service 

Oriented Architecture that brings the power of distributed systems 

to space missions. Using this recommendation, it is possible to re-

distribute functionality between space and ground, between 

spacecrafts, or between nodes of the ground system. cFS 

compliance to this standard implied a detailed and perhaps 

interesting study but would not contribute much to this work and 

was therefore postponed. 

 When comparing cFS services to CCSDS SOIS and ECSS PUS, it 

was noticed that a few proposed services are not implemented in 

the framework. This could be a potential topic for further 

development. In especial, cFS tickets could be opened to address 

the following topics: CCSDS SOIS DDS and DES services 

implementation; PUS Services 4, 18 and 22 implementation; cFS 

CF classes 3 and 4 and filestore management capability in 

destination peer implementation; cFS SCH, LC and DS apps 

enhancement by fully implementing PUS Services 11, 12 and 15 

respectively. 

Dan Templates Wrapper (DTW): 

 An interesting increment for the applications generator is to 

automatically create a few unit tests for commands and functions 

that are recurrently present. 

 A 4th-type of cFS application type could exist with respect to 

periodicity in DTW: time-critical periodic. These applications are 

even more critical with respect to their execution deadlines than a 

time-out periodic application and shall rely on an OSAL timer 
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semaphore pace, for example. This idea will be implemented in 

version 2 of DTW. 

 

7.3. Final thoughts 

The FSW development approach proposed here, starting from framework 

choice and justification, followed by comparison to standards, and finally 

utilization facilitation due to systematic development of software 

applications, based on design rules and a tool to help implementing them, 

is a viable path for cFS-based FSW projects. 

If the reference mission had this walk-through review available since its 

beginning, considerable time would have been saved. 

The lack of specialized FSW literature for “New Space” missions was a 

constant difficulty during the whole research. The information organized 

herein condenses three years of research and use of cFS framework and 

applicable FSW literature and standards. 

However, all this information was originally conceived for traditional space 

projects, so there has been a great effort to digest, simplify, adapt and 

keep what is essential to a “New Space” mission, given the applicable 

constraints. 

cFS usage in CubeSat missions is a brand-new topic, the first one of them 

being launched in November 2017. Moreover, as far as the author has 

found, all cFS-based CubeSats launched so far are NASA missions, not 

being then fully applicable to “New Space” categorization. These facts 

help to understand the shortage of available academic literature, 

especially dissertations and thesis. 

The author truly hopes that the work here, besides the academic 

contributions, may be found useful by other “New Space” missions, saving 

time and condensing minimum information for quick start of FSW projects 

and space missions themselves. 
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APPENDIX A – cFS ARCHITECTURE ADVANCED TOPICS 

This appendix brings cFS architecture topics that are complimentary to 

Chapter 4. These advanced topics can be useful to better understand 

Chapters 5 and 6 technical details. 

Moreover, this Chapter brings deeper concepts about cFS utilization and 

structure that might be valuable for missions interested in applying the 

same software development approach described in this research. 

 

A.1. OSAL 

One question that a software expert might ask is why one don’t just create 

a generic POSIX compliant OS interface layer instead of starting a new 

generic operating system abstraction layer from scratch. This question is 

fair since portability among several operating systems is what motivated 

POSIX development. Besides, RTEMS and VxWorks are fully POSIX-

compliant, and Mac OS X, Cygwin and Linux systems are mostly POSIX-

compliant. NASA experts had this same insight more than 2 decades ago. 

Femmer (2012) corresponded with Alan Cudmore, which said that in the 

beginning the OSAL research project was called “POSIX flight software” 

project. Nevertheless, POSIX turned out to not be a sufficient OS 

abstraction layer for space mission purposes and then OSAL was created 

as result. The reasons for that can be found at Femmer (2012). That 

author also addressed the problem of software abstraction layer 

equivalence among the several OSAL ports. OSAL v3.2 POSIX (Unix), 

VxWorks and RTEMS ports were analyzed and some equivalence issues 

were found, most of them of low severity and the others were 

acknowledged as bugs by the OSAL team and fixed in the most recent 

release. 

OSAL v4.2.1 contains approximately 100 APIs, which are divided into 

three major sections: Real Time Operating System APIs, File System 

APIs, and Interrupt/Exception APIs. 
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The Real Time Operating System APIs cover typical operating system 

functions such as Tasks, Queues, Semaphores, Interrupts, etc. 

The File System APIs abstract the file systems that may be present on a 

system and can simulate multiple embedded file systems on a host 

desktop machine for development and testing. It is worth to mention that 

very light embedded systems, for example the ones which uses 

microcontroller systems with limited resources, usually can’t hold a 

filesystem and therefore are not candidates for using OSAL and 

consequently cFS. Also, some RTOS with very small footprint and which 

have no integrated filesystem shall be first combined with a filesystem, 

such as FAT, to then be successfully wrapped by OSAL. This is the case 

for FreeRTOS which is very popular in the CubeSat world. 

The Interrupt/Exception APIs are for configuring interrupt and exception 

handlers. In older OSAL versions, there were also Hardware APIs, which 

purpose was configuring for example I/O and Memory Access APIs. They 

are now part of PSP, that will be detailed in Section A.2. 

An example of OSAL capacity is shown in Figure A.1. Different operating 

systems have different APIs for creating a task. In VxWorks, the function is 

taskSpawn. In RTEMS two functions are necessary, first 

rtems_task_create and then, if successful, rtems_task_start to place the 

task in “ready for scheduling” state. In POSIX, the function is 

pthread_create. In each operating system, the equivalent function has a 

different number of arguments and returns different outputs and error 

codes. OSAL merit is to wrap all that so that cFS developers only have to 

care about a generic function OS_TaskCreate independently of the 

underlying operating system. 

If someone wants to work with an RTOS not already ported to OSAL, it will 

be necessary to develop a specific OSAL port. That’s what Takada et al. 

(2017) did in Japan. They developed an OSAL port to the Japanese 

TOPPERS operating system so that they could use cFS with this system 

that they were familiar with. 
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Figure A.1 – OSAL OS_TaskCreate() API example. 

 

OS_TaskCreate() is an API that wraps RTOS specific calls to create new tasks. 

 
Source: Obtained from NASA (2014). 

 

OSAL has being subject to several independent tests. Schulze et al. 

(2013) showed that OSAL is a high-quality product by means of model-

based extensive testing. The generated test cases achieved about 96% of 

code coverage. Some few previously unknown “corner-case” bugs and 

issues were found, but with minor impact in OSAL overall reliability. 

 

A.2. PSP 

As mentioned in Section A.1, the Platform Support Package (PSP) layer is 

a cFS software layer forked from OSAL. Now it is a standalone cFS 

product. PSP contains about 30 API’s such as: 

 Memory read, write, copy and critical memory area management 

functions 

 Processor reset functions 

 Watchdog functions 

 Timer functions 

The functions PSP wraps are usually found in the BSP (Board Support 

Package). A BSP is developed by a hardware or computer manufacturer 

who wishes to support a particular RTOS. 
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Each mission is supposed to get the BSP for its target RTOS from the on-

board computer vendor and then customize PSP with BSP content. An 

example of this task can be seen in Figure A.2. 

 

Figure A.2 – PSP CFE_PSP_WatchdogEnable() API example. 

/****************************************************************************** 
**  Function:  CFE_PSP_WatchdogEnable() 
** 
**  Purpose: 
**    Enable the watchdog timer 
** 
**  Arguments: 
** 
**  Return: 
*/ 
void CFE_PSP_WatchdogEnable(void) 
{ 
 //Put specific BSP Watchdog calls here 
 

//For IBM PowerPC750 processor family with BSP for Windriver’s 
VxWorks v6.4, the specific calls would be: 
 /* Arm the WDT2 control register */ 
  //PCI_OUT_BYTE(0xFEFF0068, 0x55); 
   /* The enable/disable bit is bit 15, a setting of 1 enables the timer.*/ 
   //PCI_OUT_LONG(0xFEFF0068,0xFFFFFFAA); 
 
} 

CFE_PSP_WatchdogEnable() is a BSP function wrapper. For PowerPC750 
processor with VxWorks 6.4 as RTOS, the calls to enable processor watchdog 
timer are the ones inside the function. 
 
Source: Obtained from PSP v.1.3.0.0 code. 
 

Some PSP ports come by default in PSP open-sourced v.1.3.0.0, such as 

the port for PowerPC750 processor and VxWorks 6.4 RTOS. This port for 

instance is a legacy development made by NASA GSFC for its Global 

Precipitation Measurement (GPM) mission. Some other legacy ports can 

be found in the PSP open-source version. 

As for the OSAL, if someone wants to port PSP for a specific set of 

processor card plus operating system not already done, a customization 

effort is necessary. Takada et al. (2017) for example ported PSP to their 

space-grade system-on-a-chip processor SOISOC3 and TOPPERS 

RTOS. 
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A.3. cFE executive services (ES) 

The cFE Executive Services (ES) provides the runtime environment that 

allows applications to be managed as an architectural component 

(MCCOMAS et al., 2016). It is responsible for: 

 cFE startup (power-on or processor reset); 

 Start, restart and delete cFS applications; 

 Manage the Critical Data Storage (CDS) which can be used to 

preserve data in case of processor reset; 

 Load shared libraries; 

 Device Drivers support; 

 Log information related to resets and exceptions; 

 Manage a system log for capturing information and errors; 

 Performance Analysis support 

It is composed of approximately 40 API’s as of cFE v6.5.0. An example of 

cFE ES API is shown in Figure A.3. The cFE ES API’s can be used by 

cFS application developers in order to call specific cFE ES services. For 

example, cFE ES CFE_ES_GetResetType() function returns the type of 

the last cFE reset, which can be helpful to see if the on-board computer 

was last reset in power-on mode, meaning that volatile memory was 

erased, or in processor-reset mode, meaning that a specific part of volatile 

memory, known as Critical Data Storage (CDS), was preserved if 

configured. This kind of knowledge is important, for example, for the 

initialization of variables in cFS applications. 
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Figure A.3 – cFE ES CFE_ES_GetResetType() API example. 

/* 
** Function: CFE_ES_GetResetType 
** 
** Purpose:  Return The Type of reset the cFE had. 
**        The function will return the start type  
** which is CFE_PSP_RST_TYPE_POWERON or 
**CFE_PSP_RST_TYPE_PROCESSOR. 
**           The sub-type is optional and will be returned if a non-NULL 
** pointer is passed in to the function. 
*/ 
int32 CFE_ES_GetResetType(uint32 *ResetSubtypePtr) 
{ 
    if ( ResetSubtypePtr != NULL ) 
    { 
       *ResetSubtypePtr = CFE_ES_ResetDataPtr->ResetVars.ResetSubtype; 
    } 
 
    return(CFE_ES_ResetDataPtr->ResetVars.ResetType); 
 
} /* End of CFE_ES_GetResetType() */ 

CFE_ES_GetResetType() is a cFE ES API which returns the last reset type cFE 
had (CFE_PSP_RST_TYPE_POWERON or 
CFE_PSP_RST_TYPE_PROCESSOR). 
 
Source: Obtained from cFE v6.5.0 Executive Service code. 
 

The relationship between cFE Executive Services and the remaining cFS 

products can be seen in its context diagram, presented in Figure A.4. 
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Figure A.4 – cFE ES Context Diagram. 

 

This context diagram shows the relationships between cFE ES, OSAL, PSP and 
the cFS applications. 
 
Source: Obtained from NASA (2014). 
 

A.4. cFE event services (EVS) 

The cFE Event Services (EVS) allows applications to send time-stamped 

parameterized text messages. Four message classes based on severity 

are defined and filtering can be applied on a per-message and per-class 

basis (MCCOMAS et al., 2016). 

The four message classes ordered by crescent severity are: Debug, 

Information, Error and Critical. Event messages are sent asynchronously, 

i.e., whenever a defined trigger occurs and are forwarded to the software 

bus or even to user-defined hardware message ports. An example of 

event message is shown in Figure A.5. 
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Figure A.5 – cFE EVS Event Message example. 

 

This event message is an example of error type event message generated by 
cFE_TBL application due to a certain invalid action. 
 
Source: Obtained from NASA (2014). 
 

cFE EVS is composed of 7 API’s as of cFE v6.5.0. The relationship 

between cFE Event Services and the remaining cFS products can be seen 

in its context diagram, presented in Figure A.6. 

 

Figure A.6 – cFE EVS Context Diagram. 

 

This context diagram shows the relationships between cFE EVS, OSAL and the 
cFS applications. 

Source: Obtained from NASA (2014). 
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A.5. cFE software bus (SB) 

The cFE Software Bus (SB) is the cFE core service that provides a 

publish-and-subscribe CCSDS standards-based inter application 

messaging system that supports single and multi-processor configurations 

(MCCOMAS, WILMOT and CUDMORE, 2016). 

cFE SB routes a certain application message to all applications that have 

subscribed to the message. Subscriptions are done at application startup, 

but message routing can be added or removed at runtime. 

cFE SB contains 23 API’s as of cFE v6.5.0. The Software Bus application 

implements the CCSDS Space Packet Protocol standard (CCSDS, 2003). 

A packet primary header, containing 6 bytes, is fully-compliant with 

CCSDS (2003) standard, as shown in 0, Section  B.1. 

The secondary header, which is variable as per the standard, is 

implemented in SB according to cFE specificities: 2 bytes for 

telecommands (containing the command function code and a checksum, 

calculated by ground system) and 6 or 8 bytes for telemetries (containing 

time-stamp information). 

Time-information is compliant with CCSDS Unsegmented time Code 

(CUC) (CCSDS, 2010), with 4 bytes for the elapsed time in seconds as the 

basic time unit and 2 or 4 bytes for subseconds (1 second = 2^32 

subseconds) representing the elapsed binary fraction of the basic time 

unit. 

Information exchange between applications is primarily done via Software 

Bus messages. This feature enhances cFE/cFS modularity. Also, this 

characteristic allows spacecraft operators to easily perform override 

commands, because cFE Software Bus publish-subscribe method is to 

subscribe to a message ID and not to a message sender. As an example, 

application A subscribing to a certain type of message typically sent from 

application B could receive this same message sent from the ground 

segment without application A knowledge. 
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The relationship between cFE Software Bus and the remaining cFS 

products can be seen in its context diagram, presented in Figure A.7. 

 

Figure A.7 – cFE SB Context Diagram. 

 

This context diagram shows the relationships between cFE SB, OSAL and the 
cFS applications. 
 
Source: Obtained from NASA (2014). 
 

A.6. cFE table services (TBL) 

Tables are binary files containing groups of application defined parameters 

that can be changed during runtime. The cFE Table Services (TBL) 

provides an interface for loading and dumping an application’s table 

(MCCOMAS et al., 2016). 

In cFE, each application is not required to manage its own tables. It can 

make use of the 16 cFE TBL API’s as of cFE v6.5.0 in order to manage its 

tables. 
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cFS applications can be table driven, which allows for scalable system 

integration and parameters set patch at runtime. For instance, Guidance, 

Navigation and Control (GNC) or AOCS (Attitude and Orbit Control 

System) applications generally make use of a large quantity of tunable 

parameters (control gains, filter gains, control flags, control bias, etc). 

When one wishes to change this set of parameters, cFE allows to validate 

and update a new table at runtime instead of sending a software patch 

with hard-coded or statically configured parameters, and then stopping 

and restarting AOCS application. 

An example of typical cFS table is shown in Figure A.8. 
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Figure A.8 – cFS Table Example. 

/* 
** Default schedule table data 
*/ 
SCH_ScheduleEntry_t SCH_DefaultScheduleTable[SCH_TABLE_ENTRIES] = 
{ 
 
/* 
** Structure definition... 
**uint8 EnableState -- SCH_UNUSED, SCH_ENABLED, SCH_DISABLED 
** uint8    Type         -- 0 or SCH_ACTIVITY_SEND_MSG 
** uint16   Frequency    -- how many seconds between Activity execution 
** uint16   Remainder    -- seconds offset to perform Activity 
** uint16   MessageIndex -- Message Index into Message Definition table 
** uint32   GroupData    -- Group and Multi-Group membership definitions 
*/ 
 
  /* slot #0 */ 
/*{  SCH_DISABLED, SCH_ACTIVITY_SEND_MSG,  1,  0, 24, 
SCH_GROUP_MD_WAKEUP }, */  /* MD Wakeup */ 
  {  SCH_UNUSED,   0,      0,  0, 0,  SCH_GROUP_NONE},                                         
  {  SCH_UNUSED,   0,      0,  0, 0,  SCH_GROUP_NONE},                                         
  {  SCH_UNUSED,   0,      0,  0, 0,  SCH_GROUP_NONE},                                         
  {  SCH_UNUSED,   0,      0,  0, 0,  SCH_GROUP_NONE},                                         
  {  SCH_UNUSED,   0,      0,  0, 0,  SCH_GROUP_NONE}, 
 
/* slot #1 */  /* (…) */  
/* slot #99 */ 
}; 

This piece of code shows a typical cFE/cFS table. This particular case is the cFS 
Scheduler (SCH) table data, responsible for periodically generating software bus 
messages. This table unitary information is the struct SCH_ScheduleEntry_t, 
which contains five times the following information ‘uint8 EnableState, uint8 Type, 
uint16 Frequency, uint16 Remainder, uint16 MessageIndex, uint32 GroupData’. 
This table contains 100 instances of the struct SCH_ScheduleEntry_t. 
 
Source: Obtained from cFS Scheduler (SCH) v2.2.1 source code (2019). 
 

The relationship between cFE Table Services and the remaining cFS 

products can be seen in its context diagram, presented in Figure A.9. 

 

 

 

 

 

 

 



 

127 
 

Figure A.9 – cFE TBL Context Diagram. 

 

This context diagram shows the relationships between cFE TBL, OSAL and the 
cFS applications. 
 
Source: Obtained from NASA (2014). 
 
 
A.7. cFE time services (TIME) 

The cFE Time Services (TIME) is the cFE core service that provides time 

services for applications (MCCOMAS et al., 2016). It contains 25 API’s as 

of cFE v6.5.0, mainly for cFS applications to query the time. cFE TIME 

also distributes a “time at the tone” command packet, containing the 

correct time at the moment of the tone signal, typically at 1Hz. 
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Table A.1 – cFE TIME Definitions. 

Concept Definition 

Mission Epoch An absolute time reference that remains fixed. 
Example: January 1, 2000 

MET (Mission Elapsed 
Time) 

The number of seconds since an arbitrary epoch and 
is maintained by an on-board oscillator.  This is the 

raw source of time on the spacecraft, because 
represent a running count of clock ticks since the 

hardware was initialized 

STCF (Spacecraft Time 
Correlation Factor) 

A numeric value used to correlate the MET with the 
Mission Epoch to obtain the current time 

TAI (International 
Atomic Time) 

MET + STCF 

UTC (Coordinated 
Universal Time) 

TAI - Leap Seconds 

Source: Obtained from Bartholomew and Kobe (2014). 

The cFE Time Service nominally correlates time to the International 

Atomic Time (TAI), but nothing in the cFE Time Service precludes the user 

from setting the epoch and STCF (Spacecraft Time Correlation Factor) to 

correlate to a time standard other than TAI (BARTHOLOMEW and KOBE, 

2014). The cFE Time Service defines a Spacecraft Time Correlation 

Factor (STCF) that is applied to the Mission Elapsed Time (MET) to relate 

the MET and the epoch to the current time. 

In addition to TAI, Coordinated Universal Time (UTC) is also commonly 

desired, so the cFE Time Service provides a UTC value as well.  Universal 

Time (UT) is based on the Earth’s rotation and TAI is based on highly 

precise atomic clocks (BARTHOLOMEW and KOBE, 2014). 

The relationship between cFE TIME Services and the remaining cFS 

products can be seen in its context diagram, presented in Figure A.10. 
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Figure A.10 – cFE TIME Context Diagram. 

 

This context diagram shows the relationships between cFE TIME, OSAL, PSP 
and the cFS applications. 
 
Source: Obtained from NASA (2014). 
 

 

A.8. cFE file services (FS) 

The cFE File Services (FS) is a cFE core service that is part of cFE core 

implementation as of cFE v6.5.0. It is not generally mentioned as the 6th 

cFE core application because its API’s are only used by cFE core services 

to edit and manipulate file headers and also by cFS File Manager (FM) 

application to decompress gzip zipped files sent by the ground on-board. 

 

A.9. cFS applications suite 

Table A.2 shows cFS applications suite used in this research. 
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Table A.2 – cFS Open Source Applications Suite. 

Acronym Name Version Function 

CF CCSDS File 

Delivery Protocol 

(CFDP) 

2.2.1 Exchange file data with the ground system using Protocol Data Units (PDUs), being partially 

compliant with the CFDP standard protocol defined in the CCSDS 727.0-B-4 Blue Book. More 

information on Section B.3. 

CI Command Ingest 1.0.0 Receive CCSDS TC frames from an external source (such as the ground station or AIT EGSE) 

over a transport channel and forward the commands to the appropriate application over the cFE 

Software Bus (SB). More details can be seen on Section B.1. 

CI_lab Command Ingest 

(lab version) 

2.2.0 This is a simplified version of CI application and is not intended for flight. It accepts CCSDS 

telecommand packets over a UDP/IP port, for quick laboratory tests. It does not provide a full 

CCSDS Telecommand stack implementation such as CI application. 

CS Checksum 2.4.0 Ensure the integrity of onboard memory. CS calculates Cyclic Redundancy Checks (CRCs) on the 

different memory regions and compares the CRC values with a baseline value calculated at 

system start up. CS can ensure the integrity of cFE applications, cFE tables, the cFE core, the 

onboard operating system (OS), onboard EEPROM, as well as, any memory regions specified by 

the users. 
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Acronym Name Version Function 

DS Data Storage 2.5.1 Store user-defined software bus messages in files. These files are generally stored on a device 

such as a solid-state recorder, but they could be stored on any file system. Another cFS 

application, such as CF, must be used in order to transfer the files created by DS from their 

onboard storage location to where they will be viewed and processed. 

FM File Manager 2.5.2 Provide onboard file system management services by processing ground commands for copying, 

moving, and renaming files, decompressing files, creating directories, deleting files and directories, 

providing file and directory informational telemetry messages, and providing open file and directory 

listings. 

HK Housekeeping 2.4.1 Build and send combined telemetry messages (from individual applications) to the software bus for 

routing. Combining messages is performed in order to minimize overhead and therefore downlink 

telemetry bandwidth and is also useful for organizing certain types of data packets together. 

HS Health and Safety 2.3.0 Provide functionality for Application Monitoring, Event Monitoring, Hardware Watchdog Servicing, 

Execution Counter Reporting (optional), and CPU Aliveness Indication (via UART). 

LC Limit Checker 2.1.0 Monitor telemetry data points in a cFS system and compares the values against predefined 

threshold limits. When a threshold condition is encountered, an event message is issued and a 

Relative Time Sequence (RTS) command script, from cFS SC, may be initiated to respond/react to 



 

132 
 

1
3
2

 

Acronym Name Version Function 

the threshold violation. 

MD Memory Dwell 2.3.1 Monitor memory addresses accessed by the CPU. This task is used for both debugging and 

monitoring unanticipated telemetry that had not been previously defined in the system prior to 

deployment. 

MM Memory Manager 2.4.1 Load and dump system memory via command parameters, as well as, from files. MM provides an 

operator interface to the memory manipulation functions contained in the PSP (Platform Support 

Package) and OSAL (Operating System Abstraction Layer). It supports symbolic addressing.  

SBN Software Bus 

Network 

1.0.0 Extend the cFE Software Bus (SB) publish/subscribe messaging service across partitions, 

processes, processors, and networks. 

SC Stored Command 2.5.0 Allow a system to be autonomously commanded 24 hours a day using sequences of commands 

that are loaded to SC. Each command has a time tag associated with it, permitting the command to 

be released for distribution at predetermined times. SC supports both Absolute Time tagged 

command Sequences (ATSs) as well as multiple Relative Time tagged command Sequences 

(RTSs). 

SCH Scheduler 2.2.1 Provide a method of generating software bus messages at pre-determined timing intervals. This 
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Acronym Name Version Function 

allows the system to operate in a Time Division Multiplexed (TDM) fashion with deterministic 

behavior. The TDM major frame is defined by the Major Time Synchronization Signal used by the 

cFE TIME Services (typically 1 Hz). The Minor Frame timing (number of slots executed within each 

Major Frame) is also configurable. 

SCH_lab Scheduler (lab 

version) 

2.2.0 This is a simplified version of SCH application and is not intended for flight. It generates periodic 

hard-coded defined messages with one second resolution, for quick laboratory tests.  

TO Telemetry Output 1.0.0 Transmits CCSDS TM frames to an external destination (such as the ground station or AIT EGSE) 

over a transport channel, containing programmable cFE Software Bus (SB) messages. More 

details can be seen on Section B.1. 

TO_lab Telemetry Output 

(lab version) 

2.2.0 This is a simplified version of TO application and is not intended for flight. It sends CCSDS 

telemetry packets over a UDP/IP port, for quick laboratory tests. It does not provide a full CCSDS 

Telecommand stack implementation such as TO application. 

Source: Made by the author. 
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APPENDIX B – cFS AND CCSDS DATA PROTOCOLS  

B.1. cFS and CCSDS space packet protocol 

CCSDS Space Packet Protocol (CCSDS 133.0-B-1) standardizes the data 

protocol to be exchanged over a network that involves a ground-to-space 

or space-to-space communications link (CCSDS, 2003). 

The protocol data unit is the Space Packet, presented in Figure B.1. It is 

composed of a mandatory primary header of 6 bytes (or octets), presented 

in Figure B.2, an optional variable-size secondary header and the variable-

size user data field. 

The secondary header, if present, is positioned contiguously after the 

primary header. It is composed of at least time or ancillary information, or 

both, as shown in Figure B.3, in that order. 

 

Figure B.1 – CCSDS Space Packet.  

 

CCSDS Space Packet is the protocol data unit to be used in message exchanges 
according to the protocol. 
 
Source: CCSDS 133.0-B-1, CCSDS (2003). 
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Figure B.2 – Space Packet Primary Header. 

 

The Space Packet Primary Header constitutes the first 6 bytes of the CCSDS 
Space Packet. It contains packet identification, sequence control and data length. 
 
Source: CCSDS 133.0-B-1, CCSDS (2003). 
 

Figure B.3 – Space Packet Secondary Header. 

 

The Space Packet Secondary Header, if present, comes just after the primary 
header in the CCSDS Space Packet. It is of variable size and contains time code 
or/and ancillary information. 
 
Source: CCSDS 133.0-B-1, CCSDS (2003). 
 

The CCSDS headers definitions used in cFS are present in cFE Software 

Bus core application, which can be seen in Section A.5. This application 

intermediates all message exchanges between software applications in 

cFS framework. 

It is possible to see in ccsds.h include file of cFE that cFS command 

headers (CCSDS_CmdPkt_t) are constituted of a compliant CCSDS 

Primary Header (CCSDS_PriHdr_t) and a tailored secondary header 

(CCSDS_CmdSecHdr_t), comprised of 2 bytes, that contains function 

code and checksum. 
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Also, cFS telemetry headers (CCSDS_TlmPkt_t) are constituted of a 

compliant CCSDS Primary Header (CCSDS_PriHdr_t), same as for 

commands, and a secondary header (CCSDS_TlmSecHdr_t) that contains 

time information only. 

It is immediate to conclude then that cFS Software Bus is fully compliant 

with CCSDS Space Packet Protocol. 

 

B.2. cFS and data link layer CCSDS protocols 

CCSDS Space Data Link Protocol (SDLP) is a Data Link Protocol that was 

designed to meet the requirements of space missions for efficient transfer 

of space application data (CCSDS, 2015). The TM and TC SDLP 

corresponds to the Logical Link Sublayer, as shown in Figure B.4, and 

provides functions of transferring various data using a fixed-length protocol 

data unit called the Transfer Frame. 

Immediately below Data Link Protocol Sublayer, there is the 

Synchronization and Channel Coding Sublayer. This is the last layer 

before physical layer, responsible for error-control coding/decoding, 

Transfer Frame delimiting/synchronizing, and bit transition 

generation/removal (CCSDS, 2017). 

TM Space Data Link Protocol (SDLP) is defined in standard reference 

CCSDS 132.0-B-2 (CCSDS, 2015a). This procedure is a Data Link Layer 

protocol to be used over space-to-ground or space-to-space 

communications links by space missions. At the synchronization sublayer 

level, there is the CCSDS 131.0-B-3 (CCSDS, 2017), which standardizes 

TM synchronization and channel coding. 
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Figure B.4 – Equivalence between CCSDS and OSI layers. 

 

 

The equivalence between CCSDS and OSI (Open System Interconnection) 
reference model layers. 
 
Source: CCSDS 132.0-B-2, CCSDS (2015). 
 

In cFS Applications Suite, there is an application called Telemetry Output 

(cFS TO), along with its supporting I/O Library (cFS IO_LIB), which is 

devoted to subscribing to other cFS applications telemetry data, 

multiplexing and formatting them and finally sending TM frames over user-

defined physical channels. 

cFS Telemetry Output (TO), along with its accompanying library IO_LIB, 

contains a highly parameterized CCSDS SDLP implementation. User can 

define several CCSDS options, telemetry routing and protocol stacks to be 

applied on each route. 

This application, in “multi_tf” example configuration, has the following 

characteristics: 

 It doesn’t implement Space Data Link Security (SDLS) option. 

 User can define the following parameters: VC_ID, SC_ID, TM 

Frame Length, size of overflow buffer, etc. 

 It implements only one Virtual Channel per Master Channel, to 

simplify the design. 
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 It implements Virtual Channel Packet (VCP) format. 

 Operational Control Field (OCF) is implemented using CLCW Type-

1-Report and associated to the Master Channel, but its use is 

optional. 

 Error Control Field Encoding is implemented using CRC of 16 bits 

as per CCSDS scheme, but its use is optional. 

 Secondary Frame Header, which is optional according to the 

standard, is not implemented. 

 ASM marker (1ACFFC1D) attached in the frame for synchronization 

purposes. 

 No TM coding technique is applied. 

 (Optional) Pseudo-randomizer applied in the CADU frame. 

It is important to emphasize that TO and IO_LIB applications can be 

customized if the user wants to add CCSDS SDLP and CCSDS TM 

Synchronism functionalities not already implemented. 

On the telecommand chain, there is a reciprocal protocol called TC SDLP, 

which is defined in standard reference CCSDS 232.0-B-3 (CCSDS, 

2015b). It defines the Data Link Layer protocol to be used over ground-to-

space or space-to-space communications links. At the frame synchronism 

level, there is also the reciprocal CCSDS 231.0-B-3, which standardizes 

TC synchronization and channel coding. 

cFS Command Ingest (CI), along with its accompanying library IO_LIB, is 

the reciprocal application to cFS TO. This application does all necessary 

format translation on received uplink command frames such that 

commands sent to the software bus are CCSDS Space Packet Protocol 

packets. 

This application, in “multi_tf” example configuration, has the following 

characteristics: 

 It presupposes BCH coding, identifying CLTU start sequence 

(EB90) and tail sequence (C5C5 C5C5 C5C5 C579). 
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 Transfer frame extraction from CLTU, extracting 7 information bytes 

out of 8 total bytes in each code block. 

 Decoding procedures on parity bits at each code block for error 

control are not implemented. 

 Process frame with COP-1 protocol, creating CLCW message and 

sending it to TO application that will transmit it back over to the 

ground segment. 

 (Optional) De-randomize frame, if applicable. 

 Extract commands from the frame and sending them to the 

software bus, which will then forward messages to subscriber 

applications. 

The same comment of TO app applies here: CI application can be 

customized if the user wants to add CCSDS SDLP and CCSDS TC 

Synchronism functionalities not already implemented. 

The following CCSDS protocols are thus deemed to be partially or totally 

implemented in cFS, through TO, CI and IO_LIB routines, as shown in 

Table B.1. 
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Table B.1 – CCSDS Data Link protocols comparability with cFS functions. 

Protocol Function Correspondence in cFS 

applications 

TM SDLP 

(CCSDS 132.0-B-2) 

Transfer Frame Handling TO (to_custom.c) 

Implemented 

Transfer Frame Secondary 
Header (Optional) 

TO (to_custom.c) 

Implemented, but not used 

Master and Virtual 
Channel Handling 

Only one virtual channel 
implemented per master 
channel 

TO (to_custom.c) 

Partially implemented 

VCA Services TO (to_custom.c) 

Implemented, but not used 

Operational Control Field 
(Optional) 

TO (to_custom.c) 

Implemented 

Frame Error Control Field 
(Optional) 

IO Lib (tmtf.c) 

Implemented, but not used 

TM Sync and Coding 

(CCSDS 131.0-B-3) 

Coding Method 
implementation 
(Convolutional, Reed-
Solomon, Turbo, LDCP) 

IO lib (tm_sync.c) 

Not implemented 

ASM Marker inclusion in 
Transfer Frame 

IO lib (tm_sync.c) 

Implemented 

Pseudo-Randomizer 
implementation 

IO lib (io_lib_utils.c) 

Implemented 

TC SDLP 

(CCSDS 232.0-B-3) 

TC Frame Primary Header 
Handling 

IO lib (tctf.c) 

Implemented 

SDLS Option (optional) CI (ci_custom.c) 

Not implemented 

Master and Virtual 
Channel Handling 

Only one virtual channel 
implemented per master 
channel 

CI (ci_custom.c) 

Partially implemented 

CLCW Generation (COP-
1) 

IO lib (cop1.c) 

Implemented 

MAP Services (along with 
Segment Header) 

CI (ci_custom.c) 
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Protocol Function Correspondence in cFS 

applications 

(optional) Not implemented 

Frame Error Control Field 
(optional) 

CI (ci_custom.c) 

Not implemented 

TC Sync and Coding 

(CCSDS 231.0-B-3) 

Search for start sequence The start sequence 
0xEB90 is localized and 
synchronized. 

IO lib (tc_sync.c) 

Implemented 

BHC or LDCP decoding BHC is expected, but parity 
check decoding not 
implemented 

IO lib (tc_sync.c) 

Not implemented 

Random Sequence 
Removal (optional) 

IO lib (io_lib_utils.c) 

Implemented 

COP-1 

(CCSDS 232.0-B-2) 

FARM-1 (Type A and Type 
B) 

IO lib (cop1.c) 

Implemented 

Source: Made by the author. 

 
 
B.3. cFS and CCSDS CFDP protocol 

CCSDS File Delivery Protocol (CFDP) is standardized in the document 

CCSDS 727.0-B-4 (2007). This recommendation defines a protocol 

suitable for the transmission of files to and from spacecraft data storage. 

In addition to the purely file delivery related functions, the protocol also 

includes file management services to allow control over the storage 

medium (CCSDS, 2007). 

This protocol classes 1 and 2 in immediate mode have been implemented 

and used in cFS framework, through cFS CF application, at several 

missions, including NASA GSFC Global Precipitation Measurement 

(MCCOMAS, 2016). CFDP relies on the existence of a file system in the 

FSW, which is also mandatory as per OSAL requirements as shown in 

Chapter 4.2.1. 
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cFS CF does not support filestore requests, i.e., file management services 

such as create directories, copy files, etc. There is another cFS application 

devoted to these services (cFS FM). 

Wilmot (2012) makes a balance of the advantaged of using CFDP in 

NASA Flight Software architecture: 

 CFDP provides a standard protocol to reliably transfer files over 

higher bit-error links 

 CFDP works well over highly asymmetric links 

 CFDP has been shown to deliver more complete science data over 

a shorter contact time 

 File systems and CFDP have reduced operations cost in NASA 

missions 

CFDP classes 3 and 4, which aim is to support file transfer through the 

mediation of one or more waypoints, a use-case that can for example 

happen in satellite constellations, were not implemented in cFS CF app 

v2.2.1. 

 

 

 

 

 

 

 

 

 

 

 

 



 

144 
 

 

 

 

  



 

145 
 

APPENDIX C – REMARKS ON cFS COMPLIANCE WITH ECSS PUS 

This appendix provides additional remarks about cFS compliance with 

ECSS PUS services, as a complement to Section 5.2. 

Service 1: 

 Using cFE EVS API’s in TC receipt and handling should be analog 

to a report of request verification. It become is a design rule 

proposed in Section 6.3. 

 During operations, it is considered simpler to just verify command 

correct receipt through each application command counter and 

command error counter, as proposed in Section 6.3 

Service 2: 

 This service is analog to CCSDS SOIS Command and Data 

Acquisition Services, mentioned in Section 5.1.1. Same comment 

applies here 

Service 3: 

 The parameter report structures used by the housekeeping service 

is predefined on-board through cFS SCH tables definition. The 

tables telemetries groups and super groups can be changed in run-

time through table upload and activation 

 Super commutated parameters not implemented 

 No difference between housekeeping and diagnostic parameters 

 Telemetries should be enabled in cFS TO table in order to be 

downloaded to the ground 

Service 4: 

 There is no cFS built-in functionality that provides the maximum, 

minimum, mean and standard deviation values of on-board 

parameters during a specified time interval 
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 This service could be used to reduce the quantity of data that is 

systematically reported to the ground and could be a potential 

subject for a new cFS application or cFS DS app upgrade 

 In current cFS version, cFS DS app filters the packages that will be 

stored by means of sub-sampling the incoming data according to 

user-defined rates 

Service 5: 

 Fully compliant  

Service 6: 

 Almost fully compliant, except for the scrubbing memory sub-

service. Nevertheless, this is a functionality that is well known to be 

mission-specific, being hard to propose a generic reusable 

implementation in cFS. This is a topic that can be further explored 

by cFS developers 

Service 8: 

 This service states that a given application process can support one 

or more functions that are invoked from the ground 

 ECSS (2016) says that this function remains in the current version 

only for backward compatibility reasons and encourages to develop 

mission-specific service types to supersede this capability 

 For instance, some cFS applications like cFS CF need a pace 

message (wake_up command) to execute their functions. 

Originally, these messages are supposed to be issued by cFS SCH 

app, but nothing prevents it to be sent from ground 

Service 9: 

 cFS is compliant with CCSDS CUC time format as presented in 

Section A.5 

 cFE TIME was presented in Section A.7 and has more built-in 

functions than Service 9 recommends, such as time correlation 

commands 
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Service 11: 

 No sub-schedules (optional) implemented 

 In cFS SCH app, groups are created in compilation time and cannot 

be created or changed in run-time 

 Time-shifting all scheduled activities involves a new cFS SCH table 

upload 

 There is no cFS SCH implemented report that provides visibility of 

each scheduled activity details, such as release time, group 

identifier, etc. 

Service 12: 

 cFS LC implements the minimum capabilities specified by Service 

12 parameter monitoring subservice 

 cFS LC has no implemented capability of detecting delta change 

(optional) in parameter value 

 cFS HS implements the minimum capabilities specified by Service 

12 functional monitoring subservice, understood as cFS 

applications execution monitoring 

Service 13: 

 This service is a generic version of the CCSDS CFDP protocol. cFS 

compliance to this protocol was already performed in Section B.3 

Service 14: 

 cFS TO application can provide real-time forward control 

capabilities to any cFE SB existing message, which can virtually be 

any on-board parameter or cFS CF PDU message for large file 

transfers 

 cFS TO doesn’t provide the Service 14 optional subservice that 

define specific control conditions for housekeeping, diagnostic and 

event reports. There is no differentiation of cFE SB message 

treatment based on its origin. 
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Service 15: 

 cFS DS constantly checks if a packet storage file maximum age or 

maximum size has been reached. If so, this file is closed, and a 

new file is opened to accommodate new incoming messages. 

Therefore, Service 15 bounded management policy is implemented, 

but circular management is not 

 cFS doesn’t implement a turn-key version for Service 15 “open 

retrieval” and “by-time-range” modes. Retrieving files is a multi-step 

process that starts by closing packet store files by ground or on-

board requests using cFS DS functions and subsequently 

downloading these files to the ground segment using cFS CF 

services (Service 13) 

Service 17: 

 The capability to perform an end-to-end test under ground control in 

the form of an “are-you-alive” function is implemented in cFS as 

NOOP command. This command only effect is to increase the on-

board application counter of successful received commands and 

also returns a successful event message 

 In Section 6.3, the presence of a NOOP (No-Operations) command 

as the first one (function code = 0) in every cFS application is 

proposed as mandatory design requirement 

Service 18: 

 OBCP is a separate ECSS standard, identified by code ECSS-E-

ST-70-01C, and is also recommended by Service 18 service 

 cFS has no dedicated runtime engine interpreter of operational 

scripts on-board 

 So far, what one operator can do is upload a new cFS application 

and start it in runtime or chose an easier path and upload a cFS SC 

time-sequenced commands table (which is implementation of 

Service 21). OBCPs would be a middle-term operational solution in 
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terms of flexibility that could be implemented in a future cFS 

application 

Service 19: 

 cFS HS application is fully compliant with this service 

Service 20: 

 Parameters can be changed in runtime using cFE TBL services. 

Although, a variable in a table shall be created in compilation time 

(fixed-size tables). New variables cannot be created in runtime 

though 

 Tables in cFS are decentralized, i.e., they are tied to a certain cFS 

application. There is no Service 20 recommended parameter ID 

property that is unique within the context of the spacecraft 

Service 21: 

 cFS SC is fully compliant with this service 

Service 22: 

 There is a deterministic relation between orbit-position and time, 

which can be found through flight dynamics calculation. This 

service is therefore very much similar to Service 21, except that 

instead of directly relying on time as the trigger for the sequenced 

commands, it has an indirect dependence on time, because Service 

22 counts on orbit position 

 This service is currently not supported by cFS. Although, it is an 

interesting proposition that could be further investigated to be 

implemented in a cFS application. This application could start from 

cFS SC app implementation associated perhaps with a generic 

flight dynamics engine 

Service 23: 

 cFS FM application is fully compliant with Service 23 file handling 

subservice 
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 cFS FM application is compliant with Service 23 file copy 

subservice provided that it is between files systems on-board the 

spacecraft 

 cFS CF application, as explained in Section B.3, doesn’t implement 

filestore requests to manage files in destination peer after file 

transfer between ground to space. Therefore, copying a file from 

space to ground or vice-versa is possible but not through a turn-key 

service. This could be a future upgrade on cFS CF 
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