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RESUMEN

En este trabajo se analiza la variabilidad espacio-temporal de las sequías en Cali, Colombia, y sus principales 
relaciones con El Niño-Oscilación del Sur (ENOS). El índice de precipitación estandarizada (SPI) se utilizó 
para detectar eventos de sequía a partir de los datos de precipitaciones mensuales de 24 estaciones bien 
distribuidas en Cali durante 1971-2011. El SPI proporcionó la intensidad, magnitud, frecuencia y umbrales 
mínimos de la sequía, principalmente en escala anual (SPI-12). El 80% de las estaciones reportaron cuatro 
eventos con condiciones secas en Cali: 1976-1977, 1983-1984, 1990-1992 y 2009-2010. La influencia de ENOS 
fue evaluada usando los análisis de correlación y la transformada de wavelet. Se observaron correlaciones 
negativas significativas (no significativas) entre el SPI-12 en el norte (sur) de Cali, y el índice multivariado 
de ENOS (MEI), y los índices Niño 3.4 y Niño 4 de la temperatura de la superficie del mar (TSM). El análisis 
de coherencia de wavelet mostró coherencias significativas entre ENOS y SPI-12: a escala interanual (4-6 
años), la diferencia de fase de –135º genera un retraso de 6-9 meses entre el pico mínimo del SPI-12 y el 
pico máximo de los índices. Para la escala cuasi-bienal (2-3 años), la diferencia de fase de –180º sugiere que 
las condiciones máximas de humedad (secas) coinciden con la etapa de madurez del evento de La Niña (El 
Niño); y para la escala decadal (8-16 años), las disminuciones (aumentos) en la precipitación preceden a la 
etapa de madurez de El Niño (La Niña) en aproximadamente 10-18 meses. Estos resultados son relevantes 
para el pronóstico estacional, ya que los cambios en la TSM del Pacífico ecuatorial pueden ocurrir 6-18 meses 
antes de las condiciones secas de Cali.

ABSTRACT

This paper analyzed the spatio-temporal variability of droughts in Cali, Colombia and their primary rela-
tions to the El Niño Southern Oscillation (ENSO). The Standardized Precipitation Index (SPI) was used to 
detect drought events from monthly rainfall data of 24 stations well spread over Cali during 1971-2011. The 
SPI provided the drought intensity, magnitude, frequency, and the minimum rainfall thresholds, mainly on 
an annual scale (SPI-12). Eighty percent of the stations reported four events with dry conditions in Cali: 
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1976-1977, 1983-1984, 1990-1992 and 2009-2010. The ENSO influence was evaluated using the correlation 
and wavelet transform analyses. Significant (non-significant) negative correlations between SPI-12 in the 
northern (southern) part of Cali, the multivariate ENSO Index (MEI), and Sea Surface Temperature (SST) 
Niño 3.4 and Niño 4 indices were observed. The wavelet coherence analysis showed significant coherencies 
between ENSO and SPI-12: at interannual scale (4-6 years), the phase difference of –135º generates a lag 
of 6-9 months between the minimum peak of the SPI-12 and the maximum peak of the indices. On the qua-
si-biennial scale (2-3 years), the phase difference of –180º suggests that the maximum wet (dry) conditions 
coincide with the mature stage of the La Niña (El Niño) event; and on the decadal scale (8-16 years), the 
decreases (increases) in rainfall precede the El Niño (La Niña) mature stage by approximately 10-18 months. 
These results are relevant for seasonal forecasting, since changes in SST in the equatorial Pacific may take 
place 6-18 months ahead of the dry conditions in Cali.

Keywords: El Niño Southern Oscillation-ENSO, standardized precipitation index, wavelet analysis, mu-
nicipality of Cali.

1.	 Introduction
Colombia has considerable geophysical, geological, 
and hydroclimatic diversity. In the past 40 years 
(1970-2011), it has experienced losses due to so-
cio-natural disasters estimated at more than USD 
7.100 billions (Campos et al., 2012). The rainy 
period of 2010-2012 and the La Niña phenomenon 
(Blunden et al., 2011) affected 1027 municipalities 
(Sedano-Cruz et al., 2013), four million people and 
caused economic losses of approximately USD 7.8 
billions (Hoyos et al., 2013a). On the other hand, 
the El Niño Southern Oscillation (ENSO) of 1997-
1998 generated damages to the agricultural sector 
estimated at more than USD 101 millions in the 
year 2000 in addition to 124 million USD in indirect 
losses produced by adverse effects on the balance of 
payments and the absence of exports (Campos et al., 
2012). The total amount of damages caused in the 
Latin American Andean Community (Peru, Ecuador, 
Colombia, Bolivia, and Venezuela) was estimated at 
USD 7.543 billions (Jovel, 2000).

The warm phase of ENSO, known as El Niño, has 
been associated with droughts in the Colombian regions 
(Montealegre and Pabón, 2000; Poveda, 2004; Poveda 
et al., 2011; Hoyos et al., 2013b). Zuluaga (2009), us-
ing the Standardized Precipitation Index (SPI) found 
that the strongest droughts in the Colombian Andean 
region occurred during the El Niño years of 1997-
1998, 1991-1992, 1982-1983, 1976-1977 and 1987-
1988. This condition was repeated in other areas of 
Colombia, with some variations in the order of events. 
In the Pacific region (western Colombia), the most 
important events occurred in the following periods: 
1984-1985, 1997-1998, 1991-1992, and 1987-1988. 

During these events, there was a consistent pattern of 
climatic and hydrological anomalies in the tropical 
regions of South America (SA), which during the 
warm phase (El Niño) produces negative anomalies 
of precipitation, soil moisture and river discharge, 
as well as positive anomalies of air temperature, and 
consequently droughts (Poveda et al., 2000, 2001).

Severe or recurrent droughts can result in signifi-
cant environmental and economic damage, with neg-
ative effects on human and ecological water demand, 
soil degradation, hydropower, agriculture, human 
resources and ecosystems (Patrick, 2003; Seth, 2005; 
Wilhite and Buchanan, 2005; Guenang and Kamga, 
2014; Ionita et al., 2016). Below et al. (2007) report 
that droughts were responsible for more than 50% of 
deaths from natural disasters between 1900 and 2004, 
representing 35% of the total population affected, 
and 7% of economic losses, after losses incurred by 
floods and earthquakes (Loaiza et al., 2015).

However, the physical mechanism of drought is 
complex and difficult to establish because its multi-
scale character adds much complexity to any analysis. 
McKee et al. (1993) presented the characteristics of 
droughts by considering available water resources: 
soil moisture, groundwater, snow, river discharges, 
and stored deposits. The time scale in which deficits 
accumulate is very important and separates the differ-
ent types of drought into meteorological, hydrolog-
ical, and agricultural. This multitemporal character 
makes it difficult to identify clear relationships be-
tween atmospheric circulation patterns and drought 
variability (Vicente-Serrano and López-Moreno, 
2005; Patel et al., 2007; Lorenzo-Lacruz et al., 2010; 
Vicente-Serrano et al., 2011).
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The strong influence of the Pacific and Atlantic 
oceans and the Amazon basin makes the Andean 
and Pacific Colombian regions sensitive to several 
phenomena, such as the Tropical Easterly Waves, 
the North Atlantic Oscillation (NAO), ENSO, the 
Madden-Julian Oscillation (MJO), and the Atlantic 
Multidecadal Oscillation (AMO), among others 
(Mesa et al., 1997; Hoyos et al., 2013b). However, 
ENSO is perhaps the ocean-atmosphere coupling 
phenomenon with the most significant influence on 
climate in the interannual time scale. It is associated 
with exceptional hydroclimatic events and is consid-
ered a notable source of climatic variability (Waylen 
and Poveda, 2002; Carvajal-Escobar et al., 2007; 
Puertas and Carvajal-Escobar, 2008; Poveda et al., 
2011; Rojo, 2011; García et al., 2012).

Given its geographical location, Colombia re-
ceives the direct influence of the ocean-atmosphere 
coupling system in the tropical Pacific Ocean asso-
ciated with the ENSO (Tedeschi et al., 2013, 2015); 
in the El Niño phase, ENSO causes hydrological 
deficits in most of the national territory of Colombia, 
particularly in the Atlantic and Andean regions. The 
Colombian Andes are prone to hazards due to the 
complexity of the geographic terrain combined with 
the spatial and temporal climate variability (Hoyos 
et al. 2013b; Ávila et al., 2019). The rainfall decrease 
restricts the availability of water for agriculture, ener-
gy generation, and the supply to population (Poveda 
et al., 2002; Montealegre, 2009; Reboita et al., 2012).

The climate in the municipality of Cali is repre-
sentative of the Alto Cauca basin, which is considered 
as one of the regions with greatest potential for social 
and economic development in Colombia, in terms 
of the natural resources, since it comprises a wide 
valley characterized by fertile lands and abundant 
water sources, among other resources (Velásquez and 
Jiménez, 2004). Previous studies indicate that this 
region represents the climatic conditions of the west-
ern slope of the Andes, with a bimodal precipitation 
cycle with a maximum in April-May and a second 
more intense peak in October-November, alternated 
with lower precipitation periods in January-February 
and June-August (Guzmán et al., 2014; Enciso et al., 
2016; Estupiñán, 2016). The double-crossing of the 
Intertropical Convergence Zone (ITCZ), the transport 
of moisture from the Pacific and Atlantic Oceans and 
the Amazon basin, the three branches of the Andean 

Cordillera and the superficial hydrological processes 
determine the variability of the precipitation in the 
area. In the geographical valley and the eastern slope 
of the Western Cordillera of the Andes, the dryness 
predominates due to the steep slope that characterizes 
this slope and the passage of air masses from the 
Pacific, devoid of moisture that has already been dis-
charged upwind (Poveda, 2004; Guzmán et al., 2014).

In addition, several studies have shown different 
global influences of ENSO due to the location of 
the sea surface temperature (SST) anomaly in the 
central Pacific Ocean (CP) or in the eastern Pacific 
Ocean (EP) (Weng et al., 2007; Kug et al., 2009; Li 
et al., 2011; Tedeschi et al., 2013). The EP El Niño 
causes a decrease in rainfall in northern SA and 
increases in the southeastern part of the continent, 
mainly between September and November and from 
December to February (Larkin and Harrison, 2005; 
Grimm and Tedeschi, 2009). Tedeschi et al. (2015) 
found a decrease in the occurrence of extreme rainfall 
events in the tropical region of SA during the CP El 
Niño compared to normal years and the EP El Niño. 
The opposite occurs in the southeast area of the con-
tinent, increasing the occurrence of extreme events 
during the EP El Niño compared to CP El Niño. This 
indicates that ENSO episodes have considerable 
importance in modulating the frequency of extreme 
precipitation events in SA; although there are studies 
relating the climate variability associated with ENSO 
in Cali’s area of influence (Carvajal-Escobar et al., 
1998; Poveda et al., 2005; Enciso et al., 2016), there 
are no studies that quantify the influence of different 
types of El Niño.

Therefore, the objective of this paper is to analyze 
the semi-annual and annual rainfall variations in Cali, 
Colombia, and their relationship to the ENSO through 
the SPI, correlation analysis, and wavelet transform. 
The following section describes the data and meth-
odology. The results are shown in section 3, and 
discussion and conclusions are drawn in section 4.

2.	 Data and methodology
Precipitation data from 24 stations with common 
records from 1971 to 2011 were used. The data were 
supplied by the Corporación Autónoma Regional of 
Valle del Cauca (CVC). The selection criteria con-
sidered the location of the station and the percentage 
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of missing data (which should be less than 10%, 
according to the normal proportions method). The 
station locations are illustrated in Figure 1. Among 
the most used drought indices during recent decades, 
the SPI, considered the most robust and effective 
index (Mckee et al., 1993; Vicente-Serrano and 
López-Moreno, 2005; Livada and Assimakopoulos, 
2007; Vicente-Serrano et al., 2011; Guenang et al., 
2014; Ionita et al., 2016; Santos et al., 2017), allows 
to determine the duration, magnitude and intensity of 
the droughts (Hayes et al., 1999), and can be calculat-
ed in different time scales to quantify various types 
of droughts (Wilhite et al., 2000; Ji and Peters, 2003).

The SPI is defined as the number of standard 
deviations by which a normally distributed random 
variable deviates from its long-term mean (Guenang 
et al., 2014). In this study, the SPI is computed for 
three different accumulation periods:  three months 
(SPI-3, quarterly), six months (SPI-6, semi-annual) 
and 12 months (SPI-12, annual). Data sets are fitted 
to the gamma function to define the relationship of 

probability to precipitation (Mckee et al., 1993), 
which fits very well with precipitation data and 
provides the best model for describing precipitation 
(McKee et al., 1995; Lloyd-Hughes and Saunders, 
2002; Türkeş and Tatli, 2009; Bedoya et al., 2010; 
Krepper and Zucarelli, 2010; Penalba and Rivera, 
2015). Once the series were transformed to a stan-
dardized normal distribution (with mean 0 and vari-
ance 1), the strength of the anomaly was classified 
according to Table I. For precipitation, high positive 
values correspond to wet sequences, and high nega-
tive values correspond to dry periods (Guenang et al., 
2014). Table I also shows the probabilities associated 
with the strength of the anomaly that arises from the 
normal probability density function P.

The SPI of a month n refers to the last month of the 
interval considered for its calculation. Each drought 
event starts when the index is equal to or less than 
–1.00 and ends when it becomes greater; the value 
reached by the SPI for each grouping is the intensity 
of the event, and the magnitude is obtained from the 
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sum of the consecutive values of the SPI indicating 
drought. Since the magnitudes might refer to several 
values, for a drought classification according to the 
magnitude, five types of meteorological droughts 
were considered. The ranges are calculated according 
to the behavior of the data, as seen in Table II.

The normalized anomalies of the monthly vertical 
velocity in the pressure coordinate at 500 hPa (ω) 
data of the period 1971-2011 were used to examine 
the atmospheric conditions that generated the most 
significant drought in the municipality of Cali. 
These data were obtained from the Reanalysis I of 
the National Centers for Environmental Prediction 
(NCEP) and the National Center for Atmospheric 
Research (NCAR) (Kalnay et al., 1996); they have a 
spatial resolution of 2.5º × 2.5º in a global grid. The 
analysis covered the region between 30º N-30º S and 
180º-10º W. The composite analysis was used, and 
the statistical significance of the means was tested 
with the Student t-test and a confidence level of 95%.

The climatic indices used were as follows: SST 
data for the Niño regions 1 + 2 (0º-10º S; 90-80º W), 
Niño 3 (5º S-5º N; 150-90º W), Niño 3.4 (5º S-5º N; 
170-120º W), and Niño 4 (5º S-5º N; 160º E-150º W) 

from the National Oceanic and Atmospheric Ad-
ministration (NOAA); the Southern Oscillation 
Index (SOI), which is calculated as the standardized 
difference in atmospheric pressures between Tahiti 
and Darwin (Trenberth and Caron, 2000); the Oce-
anic Niño Index (ONI) computed as the three-month 
moving average of the SST anomalies in the Niño 
region 3.4 (L’Heureux et al., 2013), and the Multi-
variate ENSO Index (MEI) which uses six variables 
(pressure at sea level, zonal and meridional surface 
wind components, SST, surface air temperature and 
total cloud cover) (Wolter and Timlin, 2011). The 
indices were smoothed for the semi-annual and 
annual scale (moving averages) to be comparable 
with the results of the SPI. Pearson correlations were 
used to analyze the relationships between the ENSO 
indices and SPI. The significance of the correlations 
was tested with Student’s t-test and considering the 
confidence level of 95%.

The wavelet analysis was performed once the 
correlation analysis between the SPI and the climatic 
indices had been completed. Morlet’s wavelet was 
used for the time-frequency analysis of a given time 
series, and the cross-wavelet analysis was used to 
compare two-time series. The computational proce-
dures of the wavelet analysis described by Grinsted 
et al. (2004) and Torrence and Compo (1998) were 
used in this study. The global wavelet power (GWP) 
for a given scale s is the average time of all the local 
wavelet power spectra (WPS) and is quantified using 
equation 22 in Torrence and Compo (1998):

W 2 (s) = ∑ |Wn (s)|21
N

– N–1
n–0 	 (1)

The calculation of the wavelet coherence and the 
phase difference was applied using the methodology 
proposed by Grinsted et al. (2004) and Torrence and 
Webster (1999). Given two time series, X(t) and Y(t), 
with their respective wavelet transforms, WX (t,s) 
and WY (t,s), the wavelet cross-spectrum is defined 
as WXY (t,s) = WX (t,s) WY* (t,s), where (*) indicates 
the complex conjugate. The square of the wavelet 
coherence is defined as the square of the modulus of 
the smoothed cross-wavelet spectrum, normalized 
by the smoothed wavelet spectrum:

〈s–1|WX (t,s)|2)(s–1|WY (t,s)|2〉
|〈s–1WXY (t,s)〉|2

R (s) =2
n 	 (2)

Table I. Classification of SPI and associated probabilities.

SPI Category Probability
(%)

Greater than 2.0 Extreme humidity 2.3
2.0 to 1.5 Severe humidity 4.4
1.5 to 1.0 Moderate humidity 9.2
0 to 1.0 Light humidity 34.1
0 to –1.0 Mild drought 34.1
–1.0 to –1.5 Moderate drought 9.2
–1.5 to –2.0 Severe drought 4.4
Less than –2.0 Extreme drought 2.3

Table II. Types of droughts according to their magnitude.

Category SPI-6 SPI-12

Abnormally dry 1 ≤ M < 5 1 ≤ M < 10
Moderate 5 ≤ M < 10 10 ≤ M < 20
Severe 10 ≤ M < 15 20 ≤ M < 30
Extreme 15 ≤ M < 20 30 ≤ M < 40
Exceptional > 20 > 40
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where 〈〉 denotes the smoothing in time and scale. 
The factor s–1 is used to convert the square of wavelet 
coherence into energy density. Finally, it is observed 
that the wavelet coherence is an accurate represen-
tation of the (normalized) covariance between the 
two times series because the wavelet transformation 
preserves the variance (Torrence and Compo, 1998). 
Additionally, the phase difference in wavelet coher-
ence is indicated by the following Eq. (3):

ℑm{〈s–1WXY(t,s)〉}Фn(s) = tan–1 ( )ℜe{〈s–1WXY(t,s)〉}
	 (3)

where (ℑm) and (ℜe) are the imaginary and real parts 
of WXY (t,s), respectively (Grinsted et al., 2004).

3.	 Results
3.1 Standardized precipitation index
Figure 2 provides an example of the monthly evolu-
tion of the SPI smoothed with the 3-, 6- and 12-month 
averages for the El Topacio station, in which a high 
(low) frequency variability of the quarterly (semi-an-
nual and annual) rainfall is observed. Consistently, 

previous studies have shown that particular systems 
and regions respond to drought conditions at different 
temporal scales (Vicente-Serrano and López-Moreno, 
2005; Quiring and Ganesh, 2010; Vicente-Serrano 
et al., 2011).

The El Topacio station was selected because its 
precipitation time series adequately represents the 
precipitation variability of the other chosen stations 
(Fig. 3). The rainfall time series in El Topacio and 
the average rainfall of the other 23 stations are highly 
correlated (0.84). Also, the rainfall time series in El 
Topacio is significantly correlated with 22 individual 
rainfall time series out of 23 time series (Fig. 3).

As seen in Figure 2c, the SPI-12 for the El Topacio 
station tends to stabilize has fewer fluctuations and 
identifies the 1982-1983, 1991-1992, 1997-1998 and 
2009-2010 as dry years with great efficiency. These 
years coincide with those classified by NOAA as with 
strong El Niño events. The strongest drought in the 
region occurred during 1991-1992, and the moderate 
events, during the periods 1987-1988, 1994-1995 
and 2006-2007. Both high and moderate-intensity 
events can be identified at quarterly, semi-annual, 
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and annual scales of the SPI (Fig. 2). Besides, once 
ENSO is the main inter-annual variability phenome-
non that modulates the spatio-temporal variations of 
the precipitation anomalies in Colombia, it is possible 
to represent these events with greater clarity with the 
12-month temporal smoothing.

The SPI-6 for the El Topacio station indicated 27 
drought events and categorized the 1991-1992 event 
as the longest extreme drought during the period of 
analysis, with a rainfall deficit from October 1990 to 
March 1993 (Fig. 2b). This event was identified in 
90% of the stations between May 1992 and February 
1993 except for the Juanchito and Dapa stations. 
Consistently, Figure 4 shows the percentage of sta-
tions with SPI ≤ –1.0 during the 40-yr study period. 
For the 487 semesters studied, 80% of the stations 
reported four events with substantial deficits in Cali: 
1976-1977, 1983-1984, 1990-1992 and 2009-2010. 
Events are also identified in the annual scale in more 
than 90% of the stations, except the 1983-1984 event, 

which was only reported in 50% of the stations. The 
semi-annual and annual rainfall deficits in August 
1992 were reported in 100% and 95% of the stations, 
respectively, and the annual precipitation deficits in 
March 1992 were registered in 83% of the stations. In 
accordance, using the ONI, MEI and SOI indices, the 
1990-1991 El Niño can be classified as a strong one.

According to the drought classification based 
on the magnitude (Table II), the average number of 
droughts for SPI-6 (SPI-12) recorded at each rain 
gauge station was 21 (13) events. The SPI-6 data 
indicated that 63.5%, 20.2%, 8.5%, 5.0%, 4.0% of 
the semi-annual droughts were, respectively, in the 
categories abnormally, moderate, severe, extreme and 
exceptional. The SPI-12 data indicated that 73.6%, 
12.7%, 8.4%, 2.5%, 2.8% of the annual events were, 
respectively, abnormal, moderate, severe, extreme, 
and exceptional droughts.

Based on the SPI-12 data, the La Teresita station 
reported the longest event, from November 1989 to 
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April 1993 (3.5 consecutive years), followed by the 
Cauca River Plant station, with a rainfall deficit from 
July 1974 to May 1977 (three consecutive years). 
Finally, at the Juanchito station, the longest dry event 
was recorded from April 2004 to April 2006 (two 
consecutive years). These events were also identified 
with SPI-6 data.

The SPI values ≤ –1.0 were rolled back for each 
station analyzed to determine the minimum precipita-
tion limit so that drought does not occur. Accordingly, 
when the annual rain event x fails to store the minimal 
amount of rainfall, conditions would indicate that a 
drought may occur (Loaiza et al., 2015). The results 
show that the minimum precipitation that must be 
accumulated in 12 months to prevent substantial 
deficits in Cali varies with elevation. The average 
threshold in the lowlands is 500 to 1200 mm/year, 
and in the highlands, 1500 to 2500 mm/year.

The dry SPI-12 of 1991-1994 was the most per-
sistent over the municipality of Cali, in comparison 

with more intense events such as El Niño 1997-1998. 
The temporal sequences of the ω anomalies occurred 
from March-May (MAM) of 1991 to December-Feb-
ruary (DJF) of 1994 (Fig. 5) and from MAM of 
1997 to DJF of 2000 (Fig. 6). These maps illustrate 
differences in the Walker and Hadley cells in the 
study region. The 1991-1994 event presented positive 
values (anomalous subsidence) over northwestern 
of SA in all analyzed trimesters except in Septem-
ber-November (SON) of 1993 (Fig. 5). An anomalous 
Walker cell with its ascending branch over the central 
Pacific Ocean caused subsidence over Colombia 
from JJA-1991 to JJA-1992. Once the 1991-1992 El 
Niño was terminated, positive ω anomalies persisted 
over northwestern SA from SON-1992 to JJA-1993, 
which were associated with an anomalous Hadley cell 
with ascending branch over the Caribbean Sea and a 
descending one over central Colombia and Ecuador.

On the other hand, the more intense 1997-1998 
event showed intermittent effects on northwestern 
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SA (Fig. 6). Indeed, an anomalous cell with its de-
scending branch between 10º N-10º S on the South 
American continent, and its ascending branch over 

the eastern Pacific Ocean was observed during the 
El Niño onset stage (JJA to SON-1997), causing 
decreased precipitation in northern SA and increased 
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in the southeast of the continent (Weng et al., 2009; 
Li et al., 2011; Tedeschi et al., 2015). However, from 
DJF-1998 to SON-1998 the descending branch shift-
ed towards the south of the equator, leaving the study 

area on the influence of the upward movements that 
persisted until JJA-1999.

These results show persistent positive ω anoma-
lies in the study domain during the 1991-1994 period 
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(Fig. 5), which indicated the absence of the upward 
movements over the region. This result is consistent 
with the great drought of 1991-1992 indicated by 
the negative SPI-12. For the strong 1997-1998 El 
Niño event (Fig. 6), their persistent character in the 
region was not very clear in comparison with the 
1991-1992 event.

3.2 Standardized precipitation index and its pri-
mary relationships with the ENSO
The relationship between SPI and ENSO events has 
been studied using the correlations and cross-wavelet 
analysis. The correlation coefficients between the an-
nual SPI and the climatic indices SOI, ONI, MEI, and 
Niño regions 1 + 2, 3, 3.4, and 4 (Table III) were cal-
culated. The results show significant correlations in 
the higher-elevation area of the municipality (eastern 
flank of the Western Cordillera, see Fig. 7) between 

Peña Mona (1676 masl) and San Pablo (1871 masl). 
Rain was less (more) abundant during El Niño (La 
Niña) than usual. The strongest relationship was for 
the ONI index (significant correlations greater than 
–0.5 at ten stations) and Niño regions 3.4 and 4 (not 
presented in the maps because they exhibit the same 
spatial pattern as the ONI). The correlations for these 
indices were negative and significant for the central 
and higher-elevation parts of the municipality, in ad-
dition to the southern part of the urban area. Similar 
results were obtained at the semi-annual scale, mainly 
for the part of the municipality with higher elevation.

The MEI (SOI) showed significant negative (posi-
tive) correlations at 80% of the stations, mainly at the 
El Topacio and La Argentina stations (eastern flank of 
the Andean western cordillera in Colombia, see Fig. 7) 
and in the piedmont (stations Los Cristales and 
Cañaveralejo). There were no significant correlations 

Table III. Correlations between the standardized precipitation index and the annual oceanic indices of the Pacific Ocean.

Code Station Elevation
(masl)

Annual

ONI Niño 4 Niño 3.4 Niño 3 Niño 1 + 2 MEI SOI

AG Aguacatal 1649 –0.13 –0.01 –0.12 –0.15 –0.10 0.00 0.02
BR Brasilia 1864 –0.47 –0.45 –0.45 –0.38 –0.18 –0.46 0.47
CA Canaveralejo 1056 –0.57 –0.50 –0.54 –0.50 –0.36 –0.51 0.50
SL Col San Luis 1053 –0.29 –0.19 –0.27 –0.28 –0.22 –0.22 0.26
SJ Col SJ Bosco 1000 –0.35 –0.29 –0.33 –0.31 –0.21 –0.29 0.31
DA Dapa 1716 –0.17 –0.08 –0.16 –0.18 –0.13 –0.09 0.13
PA El Palacio 950 –0.49 –0.50 –0.48 –0.41 –0.23 –0.41 0.39
TO El Topacio 1676 –0.73 –0.71 –0.72 –0.64 –0.40 –0.69 0.70
HE Hda. El Espejo 980 –0.44 –0.38 –0.42 –0.38 –0.19 –0.36 0.35
JU Juanchito 950 –0.02 –0.02 0.00 0.02 0.09 0.09 –0.12
LA La Argentina 1794 –0.65 –0.66 –0.63 –0.53 –0.29 –0.63 0.68
LF La Fonda 1298 –0.53 –0.58 –0.53 –0.47 –0.25 –0.48 0.42
LT La Teresita 1950 –0.46 –0.48 –0.44 –0.35 –0.19 –0.44 0.41
LB Las Brisas 1228 –0.33 –0.32 –0.33 –0.28 –0.17 –0.30 0.36
LC Los Cristales 1312 –0.64 –0.63 –0.61 –0.53 –0.30 –0.57 0.59
MO Montebello 1260 –0.41 –0.37 –0.39 –0.32 –0.17 –0.37 0.40
PM Peña Mona 2100 –0.57 –0.58 –0.54 –0.42 –0.18 –0.47 0.45
PB Peñas Blancas 2158 –0.53 –0.55 –0.49 –0.36 –0.11 –0.49 0.54
PC Río Cali 1070 –0.44 –0.39 –0.43 –0.40 –0.25 –0.41 0.44
RC Río Cauca 956 –0.19 –0.07 –0.18 –0.22 –0.18 –0.11 0.11
SP San Pablo 1871 –0.47 –0.45 –0.43 –0.36 –0.15 –0.40 0.39
SV San Vicente 1442 –0.56 –0.60 –0.56 –0.44 –0.20 –0.47 0.52
UV Univalle 996 –0.50 –0.54 –0.50 –0.41 –0.19 –0.47 0.48
YA Yanaconas 1730 –0.59 –0.60 –0.59 –0.50 –0.29 –0.60 0.64

Values in bold indicate significant correlations at the 0.05 level; shaded values in blue/green indicate correlations 
greater than 0.5
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between Niño region 1 + 2 and any of the stations 
except for Cañaveralejo and El Topacio. Although 
Niño region 1 + 2 indicated a positive correlation 
with the Juanchito station (plains of the Cauca river 
valley), it was not statistically significant.

The coefficient of determination (R2) indicated 
that the ONI, SOI and Niño 4 and Niño 3.4 repre-
sented between 40% and 53% of the annual rainfall 
variability at the El Topacio station. Similar relation-
ships were found for the higher-elevation stations 
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(La Argentina, Peña Mona and San Vicente [30% 
to 41%]) and for the stations in the piedmont of the 
mountain range (Cañaveralejo, La Fonda and Yan-
aconas [28% to 35%]); correlations in the northern 
part of the urban area were not significant (Juanchito, 
Río Cauca Plant and San Luis).

3.3 Wavelet transformation
The time-frequency variations of the time series for 
the ONI and annual SPI at El Topacio station obtained 
from the wavelet transform were analyzed. The ONI 
energy spectrum showed a dominant variability in the 
2-7 years time scale for almost the entire period of anal-
ysis, while the energy spectrum of the SPI indicated 
substantial interannual variations of 2-6 years, mainly 
between 1975-2005 (Fig. 8a), i.e., precipitation at the 
El Topacio station (higher elevation) showed a domi-
nant variability of 2-6 years, which was superimposed 
on the energy spectrum of the ONI time series. There-
fore, at least for this period, variations in precipitation 
were probably related to the variability in SST at the 
central tropical Pacific Ocean. For the lowland zone 
(Univalle and Cali River Plant) and the piedmont (Los 
Cristales), the energy spectrum showed inter-annual 
variations on the scale of 2-3 years, although they were 
for short periods (figures not displayed).

The coherence wavelets between ONI, Niño 4, 
Niño 3.4 and MEI with the SPI-12 showed similar 
relationships, mainly at a time scale of 4-6 years from 
1980 to 2005 with a phase difference from –135º 
to 180º, and at a time scale of 2-3 years from the 
end of 1975 to 1985 with phase difference of 180º 
(Fig. 8b, c, d, e). For the time scale of 4-6 years (in-
ter-annual), the phase difference of –135º generates a 
lag between the maximum peak of the indices and the 
minimum peak of the SPI-12 of 45º (6-9 months). In 
other words, the maximum (minimum) precipitation 
anomalies occur in the development phase of a La 
Niña (El Niño) event. For the time scale of 2-3 years 
(biennial), the phase difference of 180º indicates that 
the maximum wet (dry) conditions coincide with the 
mature stage of the La Niña (El Niño) event. These 
series also exhibited notable coherences for the 
time scale of 8-16 years from 1985 to 2000 with a 
phase difference of –145º, indicating that decreases 
(increases) in rainfall precede the El Niño (La Niña) 
mature stage by approximately 10-18 months at the 
decadal scale.

Significant coherences between the SOI and the 
annual series of precipitation anomalies were noted, 
mainly at the time scale of 4-7 years from 1980 to 
2000, acting in the same phase with a variance of 
45º to 50º; i.e., the negative (positive) precipitation 
anomalies were followed by negative (positive) SOI 
values with a delay of approximately 6-10 months 
(Fig. 8f). This association between the SOI and the 
SPI can be understood in terms of the interannual 
variability of the ENSO such as prolonged periods 
of negative (positive) SOI values that coincide with 
the abnormally warm (cold) ocean waters in the 
eastern tropical Pacific Ocean typical of the El Niño 
(La Niña) episodes. For the 8-16-year time scale, 
the 45º phase difference indicates that a decrease 
(increase) in rainfall precedes a low (high) pressure 
in the eastern tropical Pacific Ocean by approximately 
12 to 24 months.

The relationship between Niño 3 (eastern Pacific) 
and rainfall was not as evident in the coherence wave-
let, and a well-defined pattern cannot be observed 
(Fig. 9a). This result, which is based mainly on the 
1990s with a phase difference of –135º at the scale 
of 4-7 years, indicates that the maximum (minimum) 
precipitation anomalies precede the minimum (max-
imum) SST anomalies of the eastern Pacific Ocean 
by 6-11 months. In the case of Niño region 1 + 2, 
it was not possible to define a significant coherence 
with the rainfall of the region except for the period 
1990-2000, in which a phase difference of –100º 
appears at the scale of 4-6 years, which indicates 
that the maximum (minimum) rainfall precede the 
minimum (maximum) SST anomalies of Niño 1 + 2 
by 11-16 months (Fig. 9b).

4.	 Discussion and conclusions
The SPI proved to be an adequate indicator of the me-
teorological drought for different temporal groupings 
(quarterly [not presented in this work], biannually 
and yearly). In the case of Cali, Colombia, the annual 
grouping tends to stabilize, has fewer fluctuations, 
and dry years corresponded to those classified by 
NOAA as El Niño years, mainly those of strong 
intensity as 1982-1983, 1991-1992 and 1997-1998. 
In addition, it was possible to identify the number of 
drought events, the frequency of occurrence, and the 
minimum rainfall thresholds.
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Fig. 9. Same as Figure 8b, but for the coherence wavelet and phase differences between the annual SPI of El Topacio 
station and (a) Niño region 3, (b) Niño region 1 + 2.
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Also, the correlations analysis between ENSO 
indices and SPI showed stronger relations of rainfall 
with the SST anomalies of the Pacific. This relation 
is consistent with the previous studies. Poveda et 
al. (2001, 2006) also found significant correlations 
(~ 0.7 to 0.8), in the western and central regions of 
Colombia, mainly during the mature phase of ENSO 
(December-February). Carvajal-Escobar (2004) iden-
tified, through cross-correlation analysis, a greater re-
lationship between rainfall in the region and the Niño 
3.4, MEI and SOI indices with a lag of one month. 
On the other hand, in the results presented here, the 
maximum correlations occur with SST anomalies in 
the central Pacific. This result may be associated with 
the increase in frequency and persistence in the last 
decades of El Niño episodes in the central Pacific 
(Lee and McPhaden, 2010; Yu and Kim, 2013).

The results of the cross-wavelet analysis further 
confirmed the relationship between Cali rainfall 
(northern South America) and the SST in the Pacific 
Ocean, with indications that this relation is stronger 
with the SST in the central and western regions 
(Niño 3.4 and Niño 4 regions). Additionally, the 
1991-1992 El Niño event activated a descending 
branch over northwestern South America, while the 
1997-1998 El Niño generated a descending branch 
to the south of the region, resulting in less influence 
on rainfall anomalies in comparison with El Niño 
1991-1992.

The most interesting features revealed in the pres-
ent work are related to the multiscale characteristics 
of the relation between precipitation and SST and 
their phase relations not documented in previous 
studies. For the interannual (4-6 years) and biennial 
(2-3 years) scales, the relations are preferentially 
associated with the SST of the central and western 
Pacific (Niño 3.4, Niño 4, ONI and MEI indices) 
with maximum (minimum) precipitation anomalies 
occurring up to 6-9 months in advanced and simulta-
neously with the minimum (maximum) SST indices, 
respectively. Poveda and Mesa (1996), Poveda (2004) 
and Estupiñán (2016) indicate that climate variability 
at the interannual time scale is strongly related to 
ENSO. But it also has a quasi-biennial component 
with a recurrence time between 2-2.5 years, as well 
as a low frequency of 4-5 years. Their results support 
our analysis.

Finally, extreme events such as the droughts 
resulting from ENSO are a climatic hazard that 
has been little studied in Colombia despite their 
economic impacts in the country and the region, 
especially in agriculture and ecosystems. It con-
stitutes one of the main problems for rural popula-
tions, mainly regarding malnutrition and poverty; 
however, the impacts can be minimized as the 
most susceptible areas are identified, according 
to the intensity and periodicity, confronting them 
through measures of mitigation and adaptation, 
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which are consistent with the sustainability of the 
systems that interact in the affected area. A better 
understanding of extreme droughts is necessary 
to undertake coordinated projects to alleviate the 
response of different productive sectors and reduce 
the risks for local populations. In this study, the SPI 
allowed to classify and quantify the dry periods in 
a simple way. Also, aspects related to the dominant 
scale of the SST variability and the difference of 
phases between the maximum anomalies of the 
SST of the tropical Pacific and the rainfall in Cali 
indicate the importance of monitoring tropical 
SST variations. The result presented here might be 
useful for territorial planning, monitoring of pre-
cipitation anomalies, and comprehensive climate 
risk management.
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