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Abstract

Traditionally, water conditions of coffee areas are monitored by measuring the leaf water
potential (W) throughout a pressure pump. However, there is a demand for the develop-
ment of technologies that can estimate large areas or regions. In this context, the objective
of this study was to estimate the Wy by surface reflectance values and vegetation indices
obtained from the Landsat-8/OLI sensor in Minas Gerais—Brazil Several algorithms using
OLI bands and vegetation indexes were evaluated and from the correlation analysis, a qua-
dratic algorithm that uses the Normalized Difference Vegetation Index (NDVI) performed
better, with a correlation coefficient (R?) of 0.82. Leave-One-Out Cross-Validation (LOOCV)
was performed to validate the models and the best results were for NDVI quadratic algo-
rithm, presenting a Mean Absolute Percentage Error (MAPE) of 27.09% and an R? of 0.85.
Subsequently, the NDVI quadratic algorithm was applied to Landsat-8 images, aiming to
spatialize the W,y estimated in a representative area of regional coffee planting between
September 2014 to July 2015. From the proposed algorithm, it was possible to estimate Wy
from Landsat-8/OLI imagery, contributing to drought monitoring in the coffee area leading to
cost reduction to the producers.

Introduction

In Brazil, coffee production has great economic and social importance, generating employ-
ment, and increasing the population’s income. However, such production is threatened by
extreme weather events, such as prolonged droughts and frost. Therefore, coffee plantations
need to be constantly monitored in order to establish adequate management practices to mini-
mize production losses. Traditionally, water conditions of coffee areas are monitored by
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measuring the leaf water potential (W) through a pressure pump. However, measurement is
time-consuming, involves high-cost equipment and maintenance, and is applicable only in
small areas.

Monitoring the water conditions of coffee plantations requires the use of technologies that
allow the evaluation of large areas or regions. In this context, the use of remote sensing pres-
ents as an opportunity to quantify drought stress when there is no in-situ weather station avail-
able (i.e., for time-series creation) [1,2]. In the past years, the new generation of free medium-
resolution satellite imagery such as the Landsat-8/OLI and Sentinel-2/MSI presents suitable
information for drought monitoring in agricultural lands [3,4]. Moreover, efforts such as the
Harmonized Landsat and Sentinel-2 (HLS) to combine both satellites in a virtual constellation
provide a seamless reflectance dataset with a reduced temporal resolution hence offering a
high potential for crop monitoring [5].

Recently, Ramoelo et al. [6] proposed modeling techniques to estimate the ¥'w of crops
using spectral data obtained by remote sensing using the RapidEye sensors. Furthermore, Che-
mura et al. [7] evaluated a model to estimate plant water content (PWC) in Coffea arabica
based on field spectrometry. There are also vegetation indices that correlate well with biophysi-
cal vegetation parameters and are widely used in estimating biomass, changes in crop develop-
ment, and are indicative of biotic and abiotic stress [7,8]. For example, the Normalized
Difference Vegetation Index (NDVI) is one of the most commonly used vegetation indices in
ecological studies as it provides a general measure of vegetation state [9,10]. As these biophysi-
cal parameters are related to climate variability [11], NDVI could be used as a surrogate mea-
sure of its variability [10,12]. Therefore, several works attempted to explore the relationship
between NDVT and other vegetation indices (such as NDWTI) with leaf water potential and
water stress in different crop cultures. Pu et al. [13] evaluated oak leaves with different water
concentrations and observed increased reflectance at wavelengths from 400 to 700 nm and
decreased from 750 nm when submitted to water stress. Ramoelo et al. [6] found moderate val-
ues for the Pearson correlation between NDVI and Ww;, in dry seasons, using RapidEye images
in South Africa, for different species of trees and pasture. As NDVI is sensitive to the presence
of chlorophylls and other plant pigments that are responsible for the absorption of red band
radiation [14], lower NDVTI values under water deficit conditions indicate a decrease in chloro-
phyll concentration in leaves. Despite NDVI, another commonly used vegetation index for
drought monitoring is the Normalized Difference Water Index (NDWT) [1,6,15].

Considering that Ww is a precise parameter for measuring the water condition of the plant
and that the spectral data obtained by remote sensing allows extensive area monitoring, mod-
els that establish a relationship between leaf water potential and remote sensing vegetation
data that can be used as a monitoring technology of the water conditions of coffee plantations.
Therefore, the objective of this study was to propose algorithms to estimate Ww of coffee areas
in Minas Gerais (Brazil) from remote sensing data. To address this objective, the following
procedures were performed: i) in-situ measurements of Ww were carried out between 2013-
2017 over two cities in Minas Gerais state; ii) Landsat-8/OLI surface reflectance and vegetation
indices were correlated with in-situ Ww; iii) Leave-One-Out-Cross-Validation (LOOCV) were
used to obtain the performance and applicability of the algorithms; iv) Best algorithm was
applied to Landsat-8/OLI imageries for spatialization.

Materials and methods
Study area

The study was conducted in experimental Coffea arabica variety Catuali (spacing of 3,40 x 0,65
m) areas located in the municipalities of Santo Antonio do Amparo and Lavras (Fig 1). Both
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Fig 1. Study area.
https://doi.org/10.1371/journal.pone.0230013.9001

cities are located in the south region of Minas Gerais, with an average altitude of approximately
950 m. According to the Képpen-Geiser climate classification, the region has a Cwa climate,
humid subtropical, with hot and humid summers and cold and dry winters, with an annual
average air temperature of 19.4 °C and average annual total rainfall of 1530 mm [16].

Additionally, WYw (in MPa) was determined following Scholander et al. [17], using a Scho-
lander pressure chamber (1000 PMS Instruments Plant Moisture). All measurements were
made in fully expanded leaves of the 3rd or 4th pair from the tip of an actively growing branch
(plagiotropic branch). In order to avoid any inhibitory effects of light or temperature on the
leaf water potential, the measurements were conducted before dawn (between 04:30 and
05:30), at a mean temperature of 18 “C. Moreover, for the matter of this study, coffee plants
were sampled in a 44.2 m” area at each 10 m. P'w was evaluated for 17 dates, using the mean
values of four replicates for the satellite images comparison.

Table 1. Landsat-8/OLI configuration for each spectral band (Barsi et al., 2014).

OLI Bands Spectral Interval (nm) Signal-To-Noise Ratio
B1 435-451 238
B2 452-512 364
B3 533-590 302
B4 636-673 227
B5 851-879 204
B6 1566-1651 265
B7 2107-2294 334

https://doi.org/10.1371/journal.pone.0230013.t001
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Remote sensing data were obtained from Landsat-8 satellite imagery, Operational Land
Imager (OLI). The Landsat-8 satellite was selected due to its spatial resolution and data avail-
ability close to the field campaigns. Launched in 2013, OLI sensor provides imagery with 30 m
spatial resolution in the visible to shortwave infrared wavelengths (See Table 1), with a revisit
time of 16 days [18]. This sensor shows similar characteristics when compared to other sensors
from the Landsat program (i.e., Landsat-5 and Landsat-7) with more advanced radiometric
and geometric quality.

The images were obtained free of charge via the United States Geological Survey (https://
earthexplorer.usgs.gov/) for the path-row 218-75 in surface reflectance (Landsat 8 Surface
Reflectance product-L8SR) [19]. L8SR uses an internal algorithm to provide the user with a
product with atmospheric correction. The correction used in L8SR is based on the 65V (Sec-
ond Simulation of the Satellite Signal in the Solar Spectrum-Vector Version) [19,20] and sev-
eral authors demonstrated the accuracy of such correction for different targets worldwide,
such as vegetation [21,22] and water [23].

Images from the years 2014, 2015, 2016, and 2017 were selected for dates close to the field
Yw collection dates. The spectral bands used are in Table 2. To obtain the surface reflectance
values, a pixel was selected in each of the field experiments: (i) Lavras with 21°13°40” S;
44°57°44” Wi altitude 963 m and (ii) Santo Antonio do Amparo: 20°54’57” S; 44 °51°13” W;
altitude 1090 m. The band values 2, 3, 4, 5 and 6 were extracted in coordinates abovemen-
tioned. With the reflectance values, vegetation indices NDVI [24] and NDWI [25] were calcu-
lated using Eqs 1 and 2 for NDVI and NDWTI, respectively.

R...—R

NDVI = =080 (1)
Rs5o + st

NDWI = Rxso_Rmoo (2)

R850 + Rl 600

Where Rgsg, Reg0, and Ry are the reflectance at bands 5, 3 and 6 of OLI sensor with the
subscript referring to the center wavelength of each spectral band. Moreover, precipitation

Table 2. Regression models and coefficient of determination (R?). Where B represents the satellite’s spectral bands.

Model Name Models Pearson r R?
B2iin Yw =0.1266-33.1014 (B2) -0.85 0.71
B3rin Yw = 0.5308-24.4544 (B3) -0.61 0.33
B4, Yw = 0.4577-24.9085 (B4) -0.84 0.68
B51in Ww =-2.038 + 3.891 (B5) 0.57 0.28
B6in Yw = 1.473-9.955 (B6) -0.56 0.27

NDVI;, Yw =-4.329 + 4.806 (NDVI) 0.91 0.82
NDWI;,, Ww = -1.455 + 2.375 (NDWI) 0.74 0.52
B20uad Pw = -0.2065-10.9849 (B2) - 267.6433 (B2)? - 0.71
B30uad Ww = -3.135 + 107.559 (B3)- 1096.141 (B3)? - 0.48
B4ouad Ww = -0.0988 + 2.5995 (B4)- 193.7306 (B4)> - 0.69
B5Quad Yw =-6.825 + 29.639 (B5)- 32.893 (BS)2 - 0.36
B6quad Yw =-0.8057 + 12.3297 (B6)- 53.3119 (B6)2 - 0.23
NDVIquad Yw =-8.712 + 17.325 (NDVI) -8.739 (NDVI)2 - 0.89
NDWIquaa Yw =-1.865 + 5.539 (NDWI)- 4.693 (NDWI)2 - 0.52

https://doi.org/10.1371/journal.pone.0230013.t002
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data were obtained through a National Institute of Meteorology (INMET) meteorological sta-
tion located in Lavras (-21.75° and -45.00°).

Table 2 shows the regression models and their respective determination coefficients for Yw
estimation using the spectral bands and the NDVI plant index. The quadratic models showed
higher values for the coefficient of determination. For a study in vineyards in the Mediterra-
nean using a field spectroradiometer, Serrano et al. (2010) obtained R* = 0.57. When perform-
ing the multivariate analysis, using the VIF selection, the explanatory variables that best fit the
multivariate model were bands 2 and both vegetation indices (NDWI and NDVI), with VIF
values lower than 5. Therefore, the proposed multivariate model was Ww = -2.4877-13.753
(B2) + 0.26402*NDVT + 0.4254*NDWI, which presented R*=0.83 (p £0.05n=17).

Statistical analysis and algorithm validation

The statistical relationships between Ww and remote sensing data were obtained by the coeffi-
cient of determination (R?) analysis and linear, quadratic, and multivariate models—with vari-
able selected using the Variance Inflation Method (VIF) from R Package [26]. VIF is a widely
used tool to measure the degree of multicollinearity between two or more predictor variables
[27]. To validate the models, Leave One Out Cross-Validation (LOOCV) technique was
applied to all models [28]. LOOCYV is a commonly used statistical method for small sample
sizes that allow whole samples to be used in training and validation procedures [29,30]. At
each step, n-1 samples were used to train the model and another one is used for validation.
This process is repeatedly executed until all sample pairs were validated (n = 18 in this work).
For each model, Mean Absolute Percentage Error (MAPE) (Eq 3), Root Mean Squared Error
(RMSE) (Eq 4), determination coefficient (R*) and Pearson r coefficient were calculated.

me:1m*gﬁf”;*) (3)

RMSE = \/ (X0, (x, ~ )" (4)

Where x; is the field measured Ww values, and y; is the satellite estimated Ww values for
each station after the LOOCYV. Therefore, after the algorithm validation, the one with the best
results was applied to Landsat-8 imagery using a geographic information system (GIS) and
Ww was therefore calculated. To illustrate the spatialization of estimated Ww values, a pilot
area of approximately 13 km?* was selected in Santo Antonio do Amparo, from September
2014 to July 2015.

Results

Variability of remote sensing, PH, and precipitation for the study area

Fig 2 shows the time-series of Landsat-8 reflectance values for both sites of Lavras and Santo
Anto6nio do Amparo for NDVI and NDWI (Fig 2A), and bands 2, 3, 4, 5 and 6 (Fig 2B) for the
dates of field surveys. Note that dates for Lavras and STA are referring to dates were W'w was
measured in each site. In the dates corresponding to the drought period in the region (August
and September), the reflectance values in bands 2, 3, 4, and 6 increase, and the inverse occurs
for band 5 and vegetation indices NDVI and NDWTI. It is also important to note the variability
of the intensity of NDVI values. For the drought season of 2014 (September 29), NDVI pre-
sented a value of 0.48, the lowest value in the analyzed time-series.

Fig 3 shows the monthly rainfall that occurred in the studied period, as well as the average
normal rainfall for the region and the mean values of Ww, measured in the field. The variation
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of Ww values was from 0 up to -1 MPa, except for September 2014, when the value reached
-2.4 MPa. Ww values follow the observed for the vegetation indices and reflectances (Fig 2A
and 2B), as the minimum Ww was for the same date of minimum NDVI value. On the other
dates, Ww follows the tendency of the spectral response, being high in the rainy period and low
at the end of the dry season.

Concerning the precipitation levels, the precipitation in 2014 was much lower than
expected, according to the historical mean. The water potential is a crucial water relation
parameter that describes the energy state of water; low Ww is associated with the extent of
plant dehydration [31]. Therefore, according to the values of W'w, the region has favorable cli-
matic conditions to maintain coffee hydration, but the occurrence of low rainfall in 2014
resulted in a moderate water deficit to the plants. Variations in leaf water status may cause
alterations in photosynthetic pigment concentrations and photosynthetic activity, in turn,
leading to changes in spectral reflectance properties [32].

Leaf water potential algorithms

The best Pearson correlations were between the values of Ww and the spectral bands of the vis-
ible B2 (R =-0.85), B3 (R = -0.61), and B4 (R = -0.84) (Table 2). There was a strong negative
correlation indicating that for smaller P'w values, a higher reflectance occurs in these bands.
The results obtained for the bands of blue and red (bands 2 and 4, respectively), characterize a
higher reflectance in the absorption bands of chlorophyll, indicating a smaller photosyntheti-
cally active area. Drought stress stimulates earlier leaf senescence, particularly in physiologi-
cally older leaves. Besides, this drought stress can decrease the net photosynthetic rate per unit
leaf area. These decreases are strongly associated with stomatal factors, as coffee stomata are
quite sensitive to both soil water availability and evaporative air demand [31].
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LOOCYV results and spatialization

Then, the models were applied to the LOOCYV technique in order to validate the empirically
developed algorithms. The results of the LOOCV were presented in Table 3. For most of the
algorithms, the results were not accurate, with R* values lower than 0.6 and MAPE and RMSE
values high, indicating errors of up to 50% in the ‘P'w estimate (MAPE values higher than 50%
were not shown in Table 3 for brevity).

The best result obtained for the LOOCV was for the Quadratic NDVI algorithm (NDVI-
Quad)»> With errors lower than 30%. Moreover, a good agreement between the field-measured
Ww and the predicted ¥w by OLI sensor (R% = 0.84, Pearson r = 0.92) was observed. These

Table 3. Statistical results obtained through the LOOCV.

Model Name MAPE (%) R? Pearson r RMSE (Mpa)
MV* 48.97 0.18 0.48 0.48
B4y, 44.63 0.39 0.66 0.39
NDVIii, 45.23 0.67 0.83 0.29
NDWI;, 37.18 0.34 0.62 0.41
B4quaa 49.79 0.05 -0.14 0.65
NDVIquad 27.09 0.85 0.93 0.21
NDWlguad 3133 0.24 0.54 0.46

Values in bold indicate the best results for each statistical metric.
*Multivariate Model

https://doi.org/10.1371/journal.pone.0230013.t003
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results are in agreement with the exploratory analysis (See Table 3), in which NDVIqy.q Was
the best regression to estimate ‘P'w. Fig 4 shows the results of the LOOCYV using the NDVIq,a4
algorithm, with the satellite predicted Ww and the values obtained in the field.

Thus, with the best results for the NDVIq,,,q model, it was inserted into the geographic infor-
mation system (GIS) and the values of W'w were estimated from Landsat-8 OLI images between
September 2014 and July 2015, corresponding to a dry and rainy period, respectively. Fig 5
shows the map of estimated Ww values in an area representative of the study region. It was esti-
mated that, during the dry season (September/2014), the mean ¥w value was -0.91 + 0.35 MPa.
For January 2015, as precipitation increases, the mean Ww was -0.70 £ 0.29 MPa. The increase

in Ww values was also observed until June 2015, with mean estimated ¥w of -0.50 + 0.25 MPa.
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Fig 5. Ww estimated (MPa) between September 2014 and July 2015, in an area representative of the study region, in Santo Antonio do
Amparo.

https://doi.org/10.1371/journal.pone.0230013.9005

With the end of the rainy season, mean P'w starts to decrease again (mean values of -0.61 + 0.25
MPa). Furthermore, as orbital remote sensing provides a synoptic view of land areas, the spatial
variability of Ww can be beneficial for planning coffee management.

Discussions

The currently widely used method to assess plant drought and water status is the pressure
chamber. However, this method has the limitations of being destructive, point-based, and
user-dependent, which restricts large areas of monitoring. In this work, we provided a Land-
sat-8/OLI-based Ww algorithm using NDVI to predict Ww with reliable accuracy

(MAPE < 30%, R* > 0.85, RMSE < 0.21 Mpa). Therefore, it was possible to apply the algo-
rithm and obtain a synoptic view of an experiment area, which could contribute to cost reduc-
tion in coffee water status management.

The use of NDVT as an indicator of drought vegetation stress and soil moisture was already
reported by several authors [2,9,10,12] as NDVI provides a general measurement of vegetation
state and health and has been used for accessing drought status since the 1970s when this
index was proposed by Rouse [33]. However, there is also a difficulty in monitoring water
stress using vegetation indices as this response is observed when notable damage to the culture
has already occurred [10].

When the plant is submitted to a water stress condition, NDVI values tend to decrease as
water conditions alter the biophysical conditions in the leaves. Despite near-infrared and red
bands not being directly correlated with the water content, they are linked to chlorophyll and
other biophysical parameters such as aboveground net primary production [34], green leaf
biomass and leaf photosynthetic activity [35] and these variables are linked to water stress [36].
Gu et al. [37] found a high correlation (r = 0.73) between fractional water index (FWI) and
both NDVI and NDWTI for sites surrounded by relatively homogeneous vegetation with silt
loam soils at Oklahoma, USA. Furthermore, Mbatha and Xulu (2018) also demonstrate the
applicability of NDVI to monitor the impact of intense drought in South Africa due to El Nifio
effects. The results obtained for the quadratic NDVI model in this work were better than those
obtained by Ramoelo et al. (2015) and better than those obtained by Rallo et al. (2014), with R?
=0.36 and RMSE of 0.44 MPa, and Cotrozzi et al. (2017), with R* = 0.65 and RMSE of 0.51
MPa, using a field spectroradiometer.

Conclusions

In this work, we provided an empirical algorithm for estimate Leaf Water Potential (Y'w)
using Landsat-8 surface reflectance and vegetation indices data for Coffee Arabica areas in
Minas Gerais state, Brazil. From the validation, a quadratic NDVT algorithm presented the
best result for Ww estimative, with Mean Absolute Percentage Error (MAPE) of 27.09% and an
R? of 0,85, being, therefore, an option to estimate P'w of coffee areas from the surface reflec-
tance obtained from the Landsat-8 satellite OLI sensor. The spatialization of the estimated ¥'w
values in the region is a technology that can enable the satellite monitoring of water conditions
of coffee plants to establish appropriate practices, such as irrigation economics, pest and dis-
ease control, and fertilization management, allowing environmental and economic sustainabil-
ity of coffee plantations in the largest coffee region of Brazil.
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