

CONCENTRAÇÕES DAS ESPÉCIES QUÍMICAS LIBERADAS DURANTE A COMBUSTÃO DE BIOMASSA

RELATÓRIO PARCIAL DO PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Rodrigo Andrade Oliveira (EEL - USP, Bolsista PIBIC/CNPq) E-mail: rodrigo.andrade@hotmail.com

Dr. Turíbio Gomes Soares Neto (LCP/CTE/INPE, Orientador) E-mail: turibio@lcp.inpe.br

COLABORADORES

Ely Vieira Cortez Edson Anselmo José Carlos dos Santos

FOLHA DE APROVAÇÃO

A meus pais, Fernando Pimenta de Oliveira e Maria das Graças de Andrade Oliveira, e a minha irmã Fernanda Andrade de Oliveira

AGRADECIMENTOS

Agradeço a todas as pessoas envolvidas neste trabalho de Iniciação Científica.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, pelo auxilio financeiro de bolsa de Iniciação Científica.

Ao Laboratório Associado de Combustão e Propulsão - LCP pela oportunidade de estudos e realização de experimentos em suas instalações.

Ao Instituto Nacional de Pesquisas Espaciais - INPE pela oportunidade de estudos e utilização de suas instalações.

Ao orientador Prof. Dr. Turíbio Gomes Soares Neto pelo conhecimento passado, pela orientação e dedicação neste projeto.

Aos bolsistas anteriores a mim: Rodrigo Gomes Azevedo e Weriton Renan Rodrigues Fidalgo.

Ao Dr. Jurgen M. Lobert pela ajuda dada ao Dr. Turíbio na montagem do Dispositivo Experimental.

Ao Eng. Edson Anselmo pelo apoio na realização dos testes.

À minha família pelo apoio em meus estudos e por estarem ao meu lado nesta importante etapa da minha vida.

RESUMO

O presente trabalho foi iniciado em fevereiro do ano de 2007 e tem como objetivo identificar as diversas fases da queima de amostras bem caracterizadas quanto ao teor de umidade e composição em termos de CHN, quantificar as emissões dos principais gases e relacionar estes dados com as fases da combustão, assim como comparar com os dados obtidos em campo. Procurou-se simular as condições de queimadas na floresta e os ensaios foram efetuados em um dispositivo experimental de queima de 1 m² montado dentro de um trailer. Este dispositivo foi posicionado sobre uma balança para o registro da massa e, sob uma coifa acoplada a uma chaminé, para a condução dos gases para o exterior do trailer. Na chaminé foi instalado um exaustor axial, com controle de rotação, para exaustão dos gases de combustão e sensores para quantificar a vazão na chaminé. Uma bomba de diafragma succiona amostras dos gases através de sondas instaladas nesta chaminé e os conduz por uma tubulação onde existem filtros para retenção de particulados e banhos térmicos para retenção de umidade e alcatrão. Após este tratamento, as amostras fluem para os analisadores de gases onde são determinados concentrações dos gases CO₂, CO, NO_x e hidrocarbonetos não queimados (UHC). Todas as variáveis medidas são transmitidas em tempo real para um sistema de aquisição de dados onde são registradas de maneira contínua durante o ensaio. Em cada experimento, a biomassa queimada foi constituída de apenas uma espécie nativa da Floresta Amazônica. A massa da amostra foi constituída de 90 % de galhos com seção inferior a 2 cm² e o restante é constituído de liteira (ramificações finas e folhas). A ignição é realizada com um maçarico alimentado de GLP. Os experimentos foram efetuados com o leito inclinado à 10°. Foram obtidos os seguintes fatores de emissão médios em gramas da espécie X por kilogramas de biomassa seca queimada: CO₂ - 1567 ± 61 ; CO -35.3 ± 8.05 ; NO_x -2.67 ± 0.9 ; HC -14.11 ± 6.6 . Esses valores apresentaram uma boa concordância com os fatores de emissão obtidos em campo no ano de 2004.

CHEMICAL SPECIES CONCENTRATIONS RELEASED DURING BIOMASS COMBUSTION

ABSTRACT

The present work was initiated in February of the year 2007 and has as objective to identify the diverse phases of the burning of well characterized samples about humidity level and composition in CHN terms, to quantify the emissions of the main gases and to relate these data with the combustion phases, such as comparing with the data gotten in field. It was looked to simulate the conditions of forest fires and the essays had been performed in an experimental burning device of 1 m² assembled inside a trailer. This device was located on a scale for the mass record and, under an extractor hood connected to a chimney, for the gases conduction outside the trailer. In the chimney was installed an axial exhaust fan, with rotation control, for exhaustion of combustion gases and sensors to quantify the flow in the chimney. A diaphragm bomb suctions samples of the gases through probes installed in this chimney and leads them through a pipeline where are filters for particulate retention and heat bath for humidity retention and tar. After this treatment, the samples flow to the gas analyzers where are determined the concentrations of CO₂, CO, NO_x and hydrocarbons not burnt (UHC). The entire measured variables are transmitted in real time to a data acquisition system where they are registered in a continuous way during the essay. In each experiment the burnt biomass was constituted of only one native species of the Amazonian Forest. The sample's mass was constituted of 90% of twigs with inferior section than 2 cm² and the remaining is constituted of litter (thin ramifications and leaves). The ignition is performed with a blowpipe fed with GLP. The experiments had been performed with a stream bed inclined to 10°. The following average factors of emission in gram of species X for kilograms of dry burnt biomass had been gotten: CO₂ - 1567±61; CO - 35.3 ± 8.05 ; NO_x - 2.67 ± 0.9 ; HC - 14.11 ± 6.6 . These values had presented a good agreement with the gotten factors of emission in field in the year of 2004.

SUMÁRIO

	PÁG.
LISTA DE FIGURAS	1
LISTA DE TABELAS	2
LISTA DE SÍMBOLOS	4
LISTA DE SIGLAS E ABREVIATURAS	5
CAPÍTULO 1 – INTRODUÇÃO	6
1.1 - Considerações Iniciais	6
1.2 - Estudos e Objetivos	9
CAPÍTULO 2 – FUNDAMENTAÇÕES TEÓRICAS	10
2.1 – Revisão Bibliográfica	10
CAPÍTULO 3 – TÉCNICAS EXPERIMENTAIS	12
3.1 – Dispositivo Experimental	12
3.2 – Analisadores	14
3.3 – Sistema de Aquisição	15
3.4 – Ensaios	15
3.5 – Cálculo do Fator de Emissão	16
CAPÍTULO 4 – RESULTADOS E DISCUSSÃO	18
4.1 – Resultados Experimentais das Espécies Ensaiadas	18
4.2 – Discussão dos Resultados Obtidos	40
CAPÍTULO 5 – CONCLUSÕES E TRABALHOS FUTUROS	44
REFERÊNCIAS BIBLIOGRÁFICAS	45

LISTA DE FIGURAS

		PÁG
1	Desenho ilustrativo do dispositivo experimental.	12
2	Visão geral do equipamento experimental.	13
3	Balança e prato para testes de queima de biomassa, e boca da chaminé.	13
4	Vista Geral dos Analisadores dos Gases CO ₂ , CO, NO _x e UHC.	14
5	Expressão para cálculo do Fator de Emissão.	16
6	Dados Normalizados do Experimento 1 em função do tempo.	20
7	Dados Normalizados do Experimento 2 em função do tempo.	21
8	Dados Normalizados do Experimento 3 em função do tempo.	23
9	Dados Normalizados do Experimento 4 em função do tempo.	24
10	Dados Normalizados do Experimento 5 em função do tempo.	26
11	Dados Normalizados do Experimento 6 em função do tempo.	27
12	Dados Normalizados do Experimento 7 em função do tempo.	29
13	Dados Normalizados do Experimento 8 em função do tempo.	30
14	Dados Normalizados do Experimento 9 em função do tempo.	32
15	Dados Normalizados do Experimento 10 em função do tempo.	33
16	Dados Normalizados do Experimento 11 em função do tempo.	35
17	Dados Normalizados do Experimento 12 em função do tempo.	36
18	Dados Normalizados do Experimento 13 em função do tempo.	38
19	Fatores de Emissão de CO ₂ .	41
20	Fatores de Emissão de CO.	42
21	Fatores de Emissão de NO _x .	42
22	Fatores de Emissão de UHC.	43

LISTA DE TABELAS

		PÁG
1	Concentração dos Principais Gases na Atmosfera.	6
2	Umidade das Espécies de Biomassa.	15
3	Porcentagem de CHN nas Espécies de Biomassa.	15
4	Dados gerais do experimento 1 – Quina.	19
5	Dados de emissões gasosas do experimento 1 – Quina.	19
6	Dados gerais do experimento 2 – Canela.	20
7	Dados de emissões gasosas do experimento 2 – Canela.	21
8	Dados gerais do experimento 3 – Amescla.	22
9	Dados de emissões gasosas do experimento 3 – Amescla.	22
10	Dados gerais do experimento 4 – Táxi.	23
11	Dados de emissões gasosas do experimento 4 – Táxi.	24
12	Dados gerais do experimento 5 – Ingá.	25
13	Dados de emissões gasosas do experimento 5 – Ingá.	25
14	Dados gerais do experimento 6 – Embaúba Vermelha.	26
15	Dados de emissões gasosas do experimento 6 – Embaúba Vermelha.	27
16	Dados gerais do experimento 7 – Leiteira.	28
17	Dados de emissões gasosas do experimento 7 – Leiteira.	28
18	Dados gerais do experimento 8 – Embaúba Branca.	29
19	Dados de emissões gasosas do experimento 8 – Embaúba Branca.	30
20	Dados gerais do experimento 9 – Guarantan.	31
21	Dados de emissões gasosas do experimento 9 – Guarantan.	31
22	Dados gerais do experimento 10 – Marfim.	32

23	Dados de emissões gasosas do experimento 10 – Marfim.	33
24	Dados gerais do experimento 11 – Liteira.	34
25	Dados de emissões gasosas do experimento 11 – Liteira.	34
26	Dados gerais do experimento 12 – Liteira 2.	35
27	Dados de emissões gasosas do experimento 12 – Liteira2.	36
28	Dados gerais do experimento 13 – Liteira 3.	37
29	Dados de emissões gasosas do experimento 13 – Liteira 3.	37
30	Médias dos Fatores de Emissão Obtidos nos Testes com Maçarico.	38
31	Principais Resultados Experimentais.	39
32	Emissões Máximas e Médias dos gases durante o experimento.	40
33	Médias e Desvios Padrão para Fatores de Emissão Obtidos.	40
34	Fatores de Emissão Obtidos pelo sistema FASS.	41

LISTA DE SÍMBOLOS

ppmv Parte por milhão volume.

Pg 10¹⁵ gramas.

m² Metro quadrado.

cm² Centímetro quadrado.

 $V_{total - chamin\acute{e}}$ Vazão total na chamin\acute{e}.

V_x Volume do gás X.

 M_x Massa molar do gás X.

g Gramas.

Kg Kilogramas.

atm Atmosfera.

mg Miligrama.

s Segundos

LISTA DE SIGLAS E ABREVIATURAS

LCP Laboratório Associado de Combustão e Propulsão.

INPE Instituto Nacional de Pesquisas Espaciais.

HC Hidrocarbonetos Não Queimados.

CNTP Condições Normais de Temperatura e Pressão.

CHN Carbono Hidrogênio e Nitrogênio.

GLP Gás Liquefeito de Petróleo.

FE Fator de Emissão.

FASS Fire Atmosphere Sampling System.

CAPÍTULO 1

INTRODUÇÃO

1.1 – Considerações Iniciais

A atmosfera terrestre é constituída por várias espécies químicas. A Tabela 1 apresenta as abundâncias relativas de algumas dessas principais espécies na baixa atmosfera, onde as concentrações são expressas em razão de mistura por volume (na forma de fração) e no caso dos gases minoritários é expressa em ppmv (parte por milhão em volume) (Wayne, 1991).

 H_2 He Gás H_2O CH_4 NH_3 Ne H_2S C^{a} $5,3(-7)^{b}$ 5,2(-6) 0 a 0,04 1,7(-6)< 1(-8)1,8(-5)1(-10)Gás CO_2 N_2 O_2 CO SO_2 Ar N_2O C^{a} 3,35(-4)0,781 0,209 4 a 20(-8) 1,1(-10) 9,3(-3) 3,0(-7)

Tabela 1 – Concentração dos Principais Gases na Atmosfera.

b – no caso dos gases minoritários, o número entre parêntesis é expoente – por exemplo 5,3(-7) representa 5,3x10⁻⁷ ppmv.

A concentração desses gases minoritários tem sido alterada pela ação do homem, pelas atividades industriais e agrícolas, bem como pelas mudanças na forma de uso do solo. Por exemplo, foram observados aumentos nas concentrações de N₂O, CH₄ e CO₂ em taxas de 0,2%, 1% e 0,4% ao ano, respectivamente (Hao *et al.*, 1988), provocando impactos significativos no ozônio estratosférico, na fotoquímica da troposfera e no clima (Crutzen, 1971; McElroy and McConnell, 1971; Wang et al., 1976).

O CO e o CH₄ controlam a distribuição do ozônio e do radical hidroxila (OH), as principais espécies oxidantes da troposfera e, portanto, determinam muitos aspectos da fotoquímica desta troposfera (Crutzen, 1987).

A queima de biomassa é uma das mais importantes fontes de poluição atmosférica do planeta (Crutzen et al., 1979, Crutzen e Andreae, 1990). Esta queima global de biomassa tem um importante papel no balanço de muitas espécies químicas na atmosfera. Estimativas sugerem que de 3 a 5 Pg (10¹⁵ g) de carbono são queimados globalmente como biomassa anualmente (Crutzen e Andreae, 1990; Seiler e Crutzen, 1980), sendo uma quantidade comparável em magnitude ao carbono queimado como combustível fóssil.

a - concentração (fração em volume ou ppmv no caso de gases minoritários)

A biomassa é queimada para aquecimento, cozimento e na agricultura. A queima de vegetação controlada e incêndios florestais atingem a milhões de hectares anualmente, onde o fogo consome cerca de 6 Pg de biomassa (Reinhardt e Ward, 1995). Nos Estados Unidos cerca de seis milhões de hectares são queimados anualmente (Ward et al., 1993). Acredita-se que essa quantidade de biomassa queimada represente apenas cerca de 2 a 3% da biomassa queimada globalmente (Hao e Liu, 1994). No Brasil, são queimados anualmente 1,7 milhões de hectares de florestas primárias (Andreae e Merlet, 2001).

O fogo é amplamente utilizado em escala global para: a) desflorestamento; b) rotação de culturas; c) limpeza de galhos, ervas daninhas, e resíduos acumulados em áreas de pastagens e áreas onde foi efetuada uma colheita; d) regeneração de nutrientes em áreas colhidas e de pastagens; e) controle de combustível acumulado em florestas; f) produção de carvão para indústria e uso doméstico; g) produção de energia para cozimento e aquecimento (Andreae, 1991).

A queima de biomassa emite uma mistura complexa de gases e particulados na atmosfera. Muitos desses compostos podem ser tóxicos e/ou cancerígenos, especialmente, se o nível de exposição das pessoas for muito elevado (Ward e Hao, 1992; Ward et al., 1993). Alguns hidrocarbonetos de baixo peso molecular (CH₄) contribuem para o aumento do conhecido efeito estufa (Crutzen e Andreae, 1990). Pode-se destacar que outros gases CO, CO₂, N₂O e CH₃Cl também emitidos contribuem para o agravamento do problema do efeito estufa (Ramanathan et al., 1985), sendo estimado que os gases provenientes das queimadas de biomassa contribuem com cerca de 20% para o aquecimento do planeta (Ward et al., 1994).

A composição desses gases provenientes da queima de biomassa é dependente do tipo de combustível e das características do fogo. Estas características incluem parâmetros como composição do combustível e teor de umidade, carga de combustível e intensidade de chama, meteorologia (condições de ventos) e tipo de combustão, ou seja, na forma de uma chama e/ou na forma de um carvão incandescente queimando (Griffith et al., 1991). Todos estes fatores determinam a eficiência global de queima, a qual é definida como a fração de CO₂ emitido em relação ao carbono total existente na biomassa, sendo a unidade indicando a completa conversão de todo o carbono para CO₂. Entretanto, em queimas de biomassa em sistemas abertos, nunca é alcançada eficiência de 100%. Assim, muitos compostos derivados desta combustão ineficiente podem ser encontrados em quantidades significantes. Um outro aspecto a ser destacado é que a

composição elementar dos bio-combustíveis exerce uma importante influência na emissão de compostos que contenham nitrogênio, enxofre e halogênios.

Vários trabalhos foram publicados para identificar e quantificar os principais produtos da queima de biomassa (Andreae et al., 1988; Griffith et al., 1991; Hao et al., 1991; Ward et al., 1992; Ward e Hao, 1992; Hao e Ward, 1993; Ward et al., 1994; McKenzie et al., 1994; Reinhard e Ward, 1995; McKenzie et al., 1995; Yokelson et al., 1995; Ward et al., 1996; Hao et al., 1996; Yokelson et al., 1997a, b, c; Kaufman et al., 1998; Hoffa et al., 1999; Goode et al., 1999; Yokelson et al., 1999; Goode et al., 2000). Sabe-se que os principais produtos produzidos na queima de biomassa são CO₂ e vapor de água. Em se tratando de óxidos nitrogenados, o principal produto é o óxido nítrico (NO) (Andreae et al., 1988). Em presença de luz solar, o NO emitido simultaneamente com hidrocarbonetos não queimados durante a queima de biomassa iniciam uma série de reações fotoquímicas que produzem o ozônio (O₃) (Graedel e Crutzen, 1997):

NO + HC + luz solar
$$\rightarrow$$
 NO₂ + outros produtos,
$$NO_2 + h\nu \rightarrow NO + O,$$

$$O + O_2 + M \rightarrow O_3 + M,$$

onde HC denota hidrocarbonetos não queimados (etileno, butano e outros) e M é alguma molécula dos constituintes do ar (N₂ ou O₂) para dissipar o calor formado. Como o NO tem vida média de cerca de 1 dia (Seinfeld, 1986), boa parte deste gás pode ser oxidado a HNO₃ (chuva ácida), formar peroxiacetilnitrato (PAN) e outros nitratos orgânicos constituintes do chamado "Smog urbano" (Andreae et al., 1988).

Metano, CO e outros hidrocarbonetos são principalmente emitidos durante a combustão incompleta da biomassa durante a fase de queima na forma de incandescência ("smoldering"), enquanto a maior parte de CO₂ é emitido durante a fase de queima na forma de chama ("flame") (Lobert et al., 1991; Ward and Hardy, 1991).

Cerca de mais de trinta e três produtos foram identificados e quantificados, resultantes da queima de madeira pelo processo de incandescência (Mckenzie et al.,1994). Os autores acreditam que os produtos condensáveis são produzidos a partir da pirólise de lignina e polissacarídeos, sendo que os principais produtos emitidos em ordem decrescente de concentração são: água, ácido acético, metanol, acetato de vinila, 1 - hidroxy - 2 - propanona, aldeído pirúvico, etc. Entre os produtos não condensáveis

pode-se destacar CO₂, CO, CH₄, C₂H₄ e C₂H₆, sendo também produzido traços de etino e outros HC de maior peso molecular que não foram identificados.

A queima de biomassa no continente africano contribui com cerca de 35% de toda emissão dos gases poluentes (Lobert et al., 1999). Substanciais aumentos absolutos e percentuais desta emissão são projetados para o futuro, baseados nas previsões de aumento demográfico (Crutzen e Andreae, 1990). Como citamos acima, a queima de biomassa emite uma vasta variedade de compostos gasosos e particulados com significativa implicação nos ciclos atmosféricos e biogeoquímicos. Logo, a quantificação desta emissão é essencial para predizer impactos ambientais. Apesar de vários estudos científicos nesta área nas últimas duas décadas, emissões globais e regionais de alguns desses compostos ainda não são bem conhecidas. Tal raciocínio pode ser extrapolado para o Brasil, um país de extensão continental, onde está ocorrendo um aumento demográfico e certamente ocorrerão aumentos de emissão de gases para atmosfera provenientes da queima de biomassa.

1.2 - Estudos e Objetivos

Este trabalho tem como objetivo:

- Estudar em laboratório as concentrações das principais espécies químicas liberadas durante a combustão de diferentes espécies de biomassa;
- Identificar as diversas fases da queima de amostras bem caracterizadas quanto ao teor de umidade e composição em termos de CHN;
- Quantificar as emissões dos principais gases e relacionar estes dados com as fases da combustão, assim como comparar com os dados obtidos em campo.

CAPÍTULO 2

FUNDAMENTAÇÕES TEÓRICAS

Inicialmente foi realizado um estudo a fim de se familiarizar com o assunto. Foram consultados artigos que permitiram a aprendizagem de conceitos básicos técnicocientíficos.

2.1 Revisão Bibliográfica

Abaixo serão citados alguns artigos que auxiliaram na familiarização com o assunto de Queima de Biomassa onde se procurou citar as partes mais importantes.

Lobert et al. (1990) queimaram biomassa em laboratório para avaliar os compostos de nitrogênio emitidos na queima de vegetação seca. Descobriram que a emissão de NO_x, HCN e CH₃CN são suficientes para contribuir significantemente para o balanço atmosférico dos compostos. Além disso, possivelmente metade do nitrogênio na biomassa pode ser convertida para nitrogênio molecular (N2). Nas queimas realizadas produziu-se principalmente CO₂, 10% CO e aproximadamente 2% de CH₄ e outros hidrocarbonetos. Utilizaram um mecanismo de escala pequena de queima construído para simular fogo aberto. Determinaram CO₂, CO, hidrocarbonetos não metanos (NMHC) e CH₄ assim como a maioria das importantes espécies de compostos de nitrogênio: NO_x (NO e NO₂), amoníaco (NH₃), alguns compostos de cianeto tal como HCN e CN₃CN, e óxido nitroso (N₂O). Observaram também diferentes estágios da queima separadamente. Dividiu-se a queima em uma fase de chama emitindo compostos oxidados tal como CO2, NOx e N2O, e um de incandescência, queima incompleta, com menos substâncias oxidadas tal como CO, hidrocarbonetos, amoníaco e nitritos. Observaram que aproximadamente 90% do nitrogênio na biomassa e 95% do carbono foram volatilizados durante a queima, com média de perda de peso de 75% na fase chama e 25% no estágio de brasa. Os combustíveis mais importantes na emissão de em conteúdos originais de nitrogênio foram: NO_x (13%), amoníaco (4%), HCN (2,4%) e CN₃CN (1%). Menores contribuições foram feitas por N₂O, outros óxidos nitrosos (principalmente HNO₃). Notaram que as emissões de NO_x na queima de biomassa tropical é responsável por aproximadamente 20% do balanço global enquanto emissões de amoníaco representa aproximadamente 10% da fonte global.

Alvarado et al. (2006) fizeram experimento no arco de desflorestamento, próximo à cidade de Alta Floresta, no estado do Mato Grosso, Brasil. A Média do conteúdo de carbono de biomassa seca usada foi de 48% e a média estimada de conteúdo úmido de biomassa foi de 42% em base úmida. O teste com a biomassa em campo foi estimado 528 toneladas por ha e a soma de carbono e a soma de carbono no chão antes da queima foi 147 toneladas por ha. Obtiveram uma eficiência de combustão para o experimento de 23,9%. Mediram-se: CO₂, CO, CH₄, C₂ e C₃ (hidrocarbonetos), e particulados. As concentrações de emissões de CH₄ e C₂ – C₃ (hidrocarbonetos) foram correlacionados linearmente com aquelas de CO. As eficiências de combustão para as fases de chama, transição e incandescência foram 0,949, 0,889 e 0,844 respectivamente. Obtiveram os Fatores de Emissão médios de CO₂, CO, CH₄, NMHC e PM2,5 respectivamente 1,599, 111,3, 9,2, 5,57 e 4,84 gramas por kg de biomassa seca queimada. Um hectare de floresta queimada liberou 117,000 Kg de CO₂, 8,100 Kg de CO, 675 Kg de CH₄, 407 Kg de NMHC e 354 Kg de particulados.

CAPÍTULO 3

TÉCNICAS EXPERIMENTAIS

3.1 – Dispositivo Experimental

Os ensaios foram efetuados em um dispositivo experimental de queima de 1 m² montado dentro de um trailer. Este dispositivo foi posicionado sobre uma balança para o registro da massa e, sob uma coifa acoplada a uma chaminé, para a condução dos gases para o exterior do trailer como é mostrado nas figuras 1, 2 e 3.

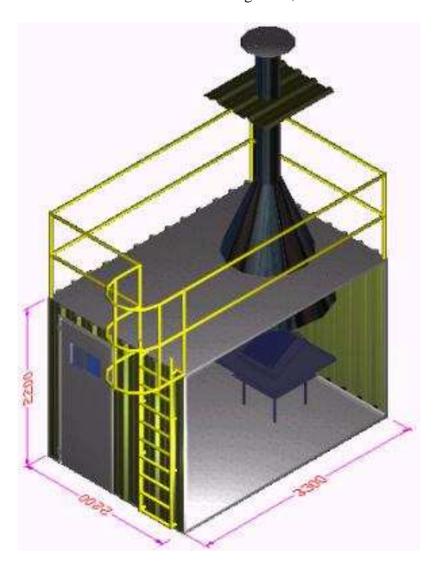


Figura 1 - Desenho ilustrativo do dispositivo experimental.

Figura 2 - Visão geral do equipamento experimental.

Figura 3 - Balança e prato para testes de queima de biomassa, e boca da chaminé.

Na chaminé foi instalado um exaustor axial, com controle de rotação, para exaustão dos gases de combustão e sensores para quantificar a vazão na chaminé. Uma bomba de diafragma succiona amostras dos gases através de sondas instaladas nesta chaminé e os conduz por uma tubulação onde existem filtros para retenção de particulados e banhos térmicos para retenção de umidade e alcatrão.

3.2 - Analisadores

Após este tratamento, as amostras fluem para os analisadores de gases onde são determinados as concentrações dos gases CO₂, CO, NO_x e hidrocarbonetos não queimados (HC). Os analisadores estão ilustrados na figura 4.

Figura 4 – Vista Geral dos Analisadores dos Gases CO₂, CO, NO_x e UHC.

3.3 – Sistema de Aquisição de Dados

Todas as variáveis medidas são transmitidas em tempo real para um sistema de aquisição de dados onde são registradas de maneira contínua durante o ensaio. O software usado para esta aquisição é o LabView.

3.4 - Ensaios

Em cada ensaio, a biomassa queimada foi constituída de apenas uma espécie nativa da Floresta Amazônica. A queima de amostras foi caracterizada quanto ao teor de umidade e composição em termos de CHN, os quais estão listadas na Tabela 2 e 3:

Tabela 2 – Umidade das Espécies de Biomassa.

Biomassa	Umidade (%)		
	Galhos Liteira		
Quina	9,80	8,77	
Canela	10,53	9,66	
Ingá	9,68	9,58	
Taxi	9,19	9,62	
Amescla	8,86	8,17	
Embaúba Vermelha	11,20	13,55	
Leiteira	10,12	10,05	
Embaúba Branca	10,23	10,02	
Guarantan	9,88	9,79	
Marfim	10,20	10,08	

Tabela 3 – Porcentagem de CHN nas Espécies de Biomassa.

Espécie	C (%)	H (%)	N (%)
Ingá	46,11	6,16	0,78
7 Pernas	43,39	5,68	1,15
Quina	47,16	6,09	1,13
Marfim	44,33	6,24	0,69
Leiteira	45,78	5,95	0,67
Guarantan	47,67	6,32	1,37
Embaúba Vermelha	45,22	6,08	0,5
Embaúba Branca	45,40	6,05	0,54
Canela	46,55	6,39	0,68
Caroba	46,09	5,88	0,47
Cacau	45,55	5,97	0,82
Amescla	44,74	5,97	0,69
Média	45,69 ±1,52	$6,04 \pm 0,22$	$0,73 \pm 0,31$

A massa foi constituída de 90 % de galhos com seção inferior a 2 cm² e o restante é constituído de liteira (ramificações finas e folhas). A ignição é realizada com um maçarico alimentado de GLP. Os experimentos foram efetuados com o leito inclinado à 10° com ignição na parte frontal.

3.5 - Cálculo do Fator de Emissão.

Fator de Emissão é um parâmetro amplamente utilizado no ramo de pesquisa de combustão de biomassa e que significa a quantidade de massa emitida de um gás quando é consumido um kilograma de biomassa na combustão. O Fator de Emissão de uma espécie X, ou FE_X, é calculado através da Equação ilustrada a seguir:

$$FE_X = \frac{V_{Total - cha \min \acute{e}}}{m_{(combustivel \ base \ sec \ a)}} \frac{[]_X . M_X}{V_{X(1mol \ a \ 1atm \ e \ 0 \ °C)}} \left[\frac{g_X}{kg_{combustivel}} \right]$$

Figura 5 – Expressão para cálculo do Fator de Emissão.

O Fator de Emissão é calculado para um determinado período de tempo em que a combustão ocorre. Na equação, o termo []_x representa a concentração média do gás X durante o período de tempo estudado. Para os nossos cálculos, essa concentração média foi determinada pela concentração média registrada nos experimentos subtraída pelo valor de background determinado para cada experimento.

Para obter-se o volume total do referido gás X que foi emitido durante todo o experimento, multiplicou-se a concentração média registrada em ppmv ([]_x) pelo volume total de amostra gasosa que fluiu pela chaminé durante o tempo de experimento. Esse volume é indicado pelo termo V_{total} - $_{chaminé}$ e indica o volume normalizado para temperatura de 0° C e pressão de uma atmosfera que fluiu durante o experimento. O computador de vazão Digiflux.j já inclui em seus cálculos essa normalização.

Integrando-se a vazão no intervalo de tempo do experimento, sendo que o início desse intervalo é considerado a ignição da biomassa, obteve-se o volume normalizado V_{total} - $c_{\text{haminé}}$ que se aplicou no cálculo do Fator de Emissão.

Com o volume total que fluiu de um determinado gás durante o experimento, basta dividir este valor pelo volume molar do gás $(V_{x(1 \text{ mol a } 1 \text{ atm e } 0^\circ)})$ referente à temperatura no qual o volume foi normalizado para determinar-se o número de mol do gás que foi

emitido no experimento. Com uma simples multiplicação deste número de mol com a massa molar do gás (M_X) , obtém-se a massa do referido gás que foi emitida durante o experimento. Ao se dividir esse último valor pela massa consumida de biomassa $(m_{\text{combustão base seca}})$, obtém-se o valor do Fator de Emissão.

Deve-se lembrar que a massa consumida deve ser corrigida para base seca, ou seja, deve ser descontada a umidade da biomassa pois a água evapora durante a combustão e não participa do processo de combustão.

CAPÍTULO 4

RESULTADOS E DISCUSSÃO

Os resultados dos experimentos realizados com a ignição da biomassa feita na parte frontal com a bandeja de queima inclinada de 10°, ou seja, no mesmo sentido da entrada de ar, encontram-se nas tabelas e gráficos mostrados a seguir. Foram realizados dez experimentos com as seguintes espécies:

- Quina Experimento 1;
- Canela Experimento 2;
- Amescla Experimento 3;
- Táxi Experimento 4;
- Ingá Experimento 5;
- Embaúba Vermelha Experimento 6;
- Leiteira Experimento 7;
- Embaúba Branca Experimento 8;
- Guarantan Experimento 9;
- Marfim Experimento 10;

Foram realizados também três testes apenas com Liteira e cinco com Maçarico na boca da chaminé.

• Liteira – Experimento 11 à 13;

Vale ressaltar que foram realizados outros testes, cujos resultados foram descartados devido a problemas nos analisadores de gases e na balança, os quais já foram solucionados.

Para estes testes serão apresentadas tabelas de dados gerais do experimento, tabelas com os dados de emissões gasosas e os gráficos com as curvas normalizadas. Nestes testes foram efetuadas algumas correções, a saber: no background dos analisadores de CO₂; adotou-se o valor de 23g/mol como peso molecular médio para UHC em todos os testes realizados, sendo que este valor foi calculado a partir da composição média dos gases emitidos na queima da floresta; no valor medido das concentrações de gases emitidos

levando-se em consideração a umidade do ar; e nos Fatores de emissão de CO_2 devido à interferência do maçarico.

Tabela 4 – Dados gerais do experimento 1 - Quina.

Dados do experimento		Porcentagem
Massa inicial total (kg)	1,51	100,00%
Massa inicial de galhos (kg)	1,354	89,67%
Massa inicial de liteiras (kg)	0,156	10,33%
Massa final (kg)	0,342	
Umidade dos galhos	10%	
Umidade das liteiras	9%	
Umidade da amostra	9,67%	
Massa consumida - base seca (kg)	1,06	
Volume total - Digiflux (m3)	235,13	

Tabela 5 – Dados de emissões gasosas do experimento 1- Quina.

Dados das emissões	CO ₂	СО	NO_X	UHC
Emissão máxima (ppmv)	9966,87	237,00	24,23	176,60
Concentração média (ppmv)	4152,97	140,77	10,24	53,34
Background (ppmv)	380,00	0,30	0,44	1,00
Concentração real (ppmv)	3772,97	140,47	9,80	52,34
Massa Molar g/mol	44,00	28,00	46,00	23,00
Emissão Real 0°C e 1 atm (mg/m3)	7406,88	175,48	20,11	53,71
Massa Emitida 0°C e 1 atm- Digiflux (mg)	1741605,80	41261,83	4728,34	12628,22
Massa Emitida 0°C e 1 atm - Digiflux (g)	1741,61	41,26	4,73	12,63
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg)	1650,72	39,11	4,48	11,97
Água no ar (mg/m3)	17425,00	17425,00	17425,00	17425,00
Água nos compostos (mg/m3)	2,44	2,44	2,44	2,44
Concentração real (ppmv) de água no ar	21681,62	21681,62	21681,62	21681,62
Concentração real corrigida (ppmv) Cor.	3692,90	137,49	9,59	51,23
Emissão Real 0°C e 1 atm (mg/m3) Cor.	7249,69	171,76	19,68	52,57
Massa Emitida 0°C e 1 atm- Digiflux (mg) Cor.	1704646,31	40386,20	4628,00	12360,23
Massa Emitida 0°C e 1 atm - Digiflux (g) Cor.	1704,65	40,39	4,63	12,36
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg) Cor.	1615,69	38,28	4,39	11,72
Fator de Emissão 0°C e 1 atm (g/kg) - Cor. (GLP)	1594,76			

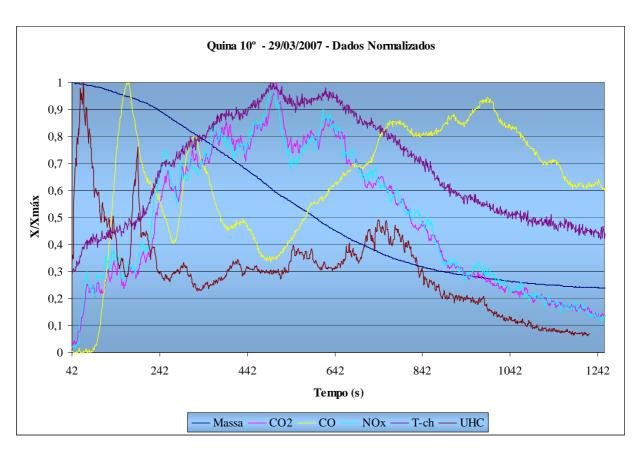


Figura 6 – Dados Normalizados do Experimento 1 em função do tempo.

Tabela 6 – Dados gerais do experimento 2 - Canela.

Dados do experimento		Porcentagem
Massa inicial total (kg)	1,513	100,00%
Massa inicial de galhos (kg)	1,359	89,82%
Massa inicial de liteiras (kg)	0,154	10,18%
Massa final (kg)	0,33	
Umidade dos galhos	11%	
Umidade das liteiras	9,6%	
Umidade da amostra	10,44%	
Massa consumida - base seca (kg)	1,06	
Volume total - Digiflux (m3)	205,16	

Tabela 7 – Dados de emissões gasosas do experimento 2 - Canela.

Dados das emissões	CO ₂	СО	NO _X	UHC
Emissão máxima (ppmv)	9996,78	243,97	19,12	174,07
Concentração média (ppmv)	4534,18	148,12	7,67	64,68
Background (ppmv)	380,00	0,30	0,44	1,00
Concentração real (ppmv)	4154,18	147,82	7,23	63,68
Massa Molar g/mol	44,00	28,00	46,00	23,00
Emissão Real 0°C e 1 atm (mg/m3)	8155,24	184,66	14,83	65,34
Massa Emitida 0°C e 1 atm- Digiflux (mg)	1673139,95	37885,62	3042,81	13406,16
Massa Emitida 0°C e 1 atm - Digiflux (g)	1673,14	37,89	3,04	13,41
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg)	1579,10	35,76	2,87	12,65
Água no ar (mg/m3)	15167,0	15167,0	15167,0	15167,0
Água nos compostos (mg/m3)	2,81	2,81	2,81	2,81
Concentração real (ppmv) de água no ar	18872,88	18872,88	18872,88	18872,88
Concentração real corrigida (ppmv) Cor.	4077,230264	145,08	7,09	62,50
Emissão Real 0°C e 1 atm (mg/m3) Cor.	8004,18	181,24	14,56	64,13
Massa Emitida 0°C e 1 atm- Digiflux (mg) Cor.	1642147,89	37183,85	2986,45	13157,83
Massa Emitida 0°C e 1 atm - Digiflux (g) Cor.	1642,15	37,18	2,99	13,16
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg) Cor.	1549,85	35,09	2,82	12,42
Fator de Emissão 0°C e 1 atm (g/kg) - Cor. (GLP)	1535,03			

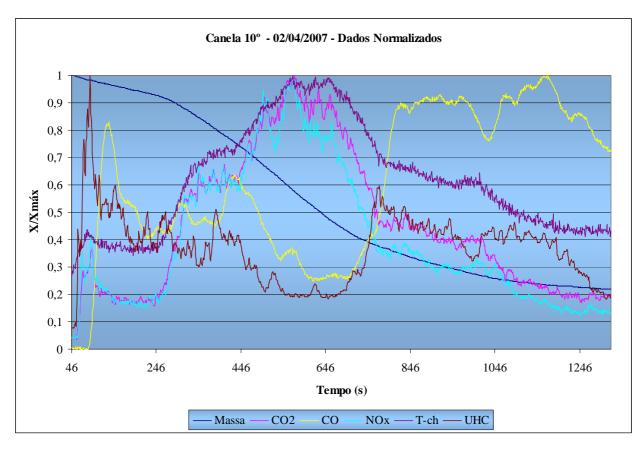


Figura 7 – Dados Normalizados do Experimento 2 em função do tempo.

 $Tabela\ 8-Dados\ gerais\ do\ experimento\ 3-Amescla.$

	_	
Dados do experimento		Porcentagem
Massa inicial total (kg)	1,542	100,00%
Massa inicial de galhos (kg)	1,387	89,95%
Massa inicial de liteiras (kg)	0,155	10,05%
Massa final (kg)	0,377	
Umidade dos galhos	11,05%	
Umidade das liteiras	11,35%	
Umidade da amostra	11,08%	
Massa consumida - base seca (kg)	1,04	
Volume total - Digiflux (m3)	226,40	

Tabela 9 – Dados de emissões gasosas do experimento 3 - Amescla.

Dados das emissões	CO ₂	СО	NO _X	UHC
Emissão máxima (ppmv)	10948,36	234,12	10,83	100,82
Concentração média (ppmv)	4085,56	119,43	3,22	43,14
Background (ppmv)	380,00	0,30	0,44	1,00
Concentração real (ppmv)	3705,56	119,13	2,78	42,14
Massa Molar g/mol	44,00	28,00	46,00	23,00
Emissão Real 0°C e 1 atm (mg/m3)	7274,54	148,83	5,71	43,24
Massa Emitida 0°C e 1 atm- Digiflux (mg)	1646973,69	33694,78	1292,14	9790,60
Massa Emitida 0°C e 1 atm - Digiflux (g)	1646,97	33,69	1,29	9,79
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg)	1589,87	32,53	1,25	9,45
Água no ar (mg/m3)	14825,0	14825,0	14825,0	14825,0
Água nos compostos (mg/m3)	2,49	2,49	2,49	2,49
Concentração real (ppmv) de água no ar	18447,00	18447,00	18447,00	18447,00
Concentração real corrigida (ppmv) Cor.	3638,439833	116,97	2,73	41,38
Emissão Real 0°C e 1 atm (mg/m3) Cor.	7142,77	146,13	5,60	42,46
Massa Emitida 0°C e 1 atm- Digiflux (mg) Cor.	1617142,27	33084,47	1268,73	9613,27
Massa Emitida 0°C e 1 atm - Digiflux (g) Cor.	1617,14	33,08	1,27	9,61
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg) Cor.	1561,07	31,94	1,22	9,28
Fator de Emissão 0°C e 1 atm (g/kg) - Cor. (GLP)	1539,71			

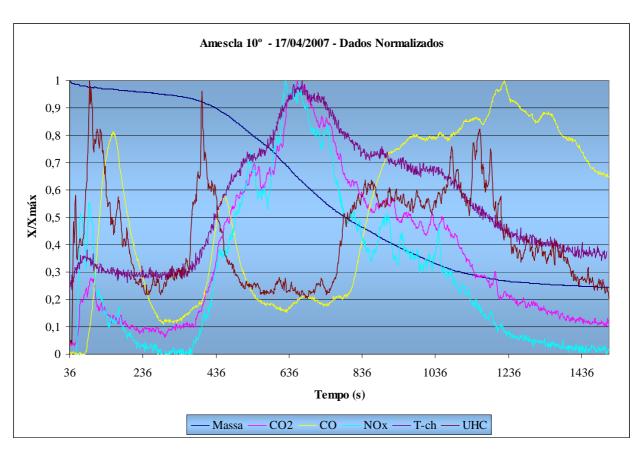


Figura 8 – Dados Normalizados do Experimento 3 em função do tempo.

Tabela 10 – Dados gerais do experimento 4 - Taxi.

	_	
Dados do experimento		Porcentagem
Massa inicial total (kg)	1,51	100,00%
Massa inicial de galhos (kg)	1,352	89,54%
Massa inicial de liteiras (kg)	0,158	10,46%
Massa final (kg)	0,173	
Umidade dos galhos	10,69%	
Umidade das liteiras	9,62%	
Umidade da amostra	10,58%	
Massa consumida - base seca (kg)	1,20	
Volume total - Digiflux (m3)	248,71	

Tabela 11 – Dados de emissões gasosas do experimento 4 - Taxi.

Dados das emissões	CO ₂	CO	NO_X	UHC
Emissão máxima (ppmv)	4691,49	276,99	5,89	49,86
Concentração média (ppmv)	3791,00	194,25	4,94	36,06
Background (ppmv)	380,00	0,30	0,44	1,00
Concentração real (ppmv)	3411,00	193,95	4,50	35,06
Massa Molar g/mol	44,00	28,00	46,00	23,00
Emissão Real 0°C e 1 atm (mg/m3)	6696,28	242,30	9,24	35,98
Massa Emitida 0°C e 1 atm- Digiflux (mg)	612813,30	22173,82	845,92	3292,52
Massa Emitida 0°C e 1 atm - Digiflux (g)	612,81	22,17	0,85	3,29
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg)	2182,38	78,97	3,01	11,73
Água no ar (mg/m3)	12525,0	12525,0	12525,0	12525,0
Água nos compostos (mg/m3)	1,67	1,67	1,67	1,67
Concentração real (ppmv) de água no ar	15584,53	15584,53	15584,53	15584,53
Concentração real corrigida (ppmv) Cor.	3358,658146	190,97	4,43	34,52
Emissão Real 0°C e 1 atm (mg/m3) Cor.	6593,52	238,58	9,10	35,43
Massa Emitida 0°C e 1 atm- Digiflux (mg) Cor.	603409,45	21833,56	832,94	3241,99
Massa Emitida 0°C e 1 atm - Digiflux (g) Cor.	603,41	21,83	0,83	3,24
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg) Cor.	2148,89	77,75	2,97	11,55
Fator de Emissão 0°C e 1 atm (g/kg) - Cor. (GLP)	2119,25			

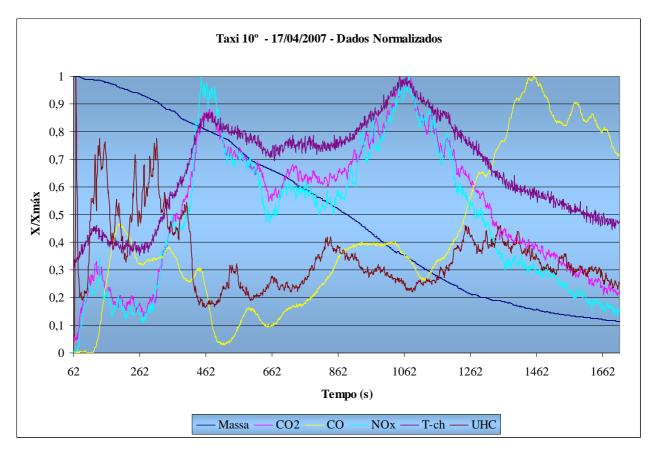


Figura 9 – Dados Normalizados do Experimento 4 em função do tempo.

Tabela 12 – Dados gerais do experimento 5 - Ingá.

	_	
Dados do experimento		Porcentagem
Massa inicial total (kg)	1,51	100,00%
Massa inicial de galhos (kg)	1,36	90,07%
Massa inicial de liteiras (kg)	0,15	9,93%
Massa final (kg)	0,236	
Umidade dos galhos	11%	
Umidade das liteiras	11%	
Umidade da amostra	11,31%	
Massa consumida - base seca (kg)	1,13	
Volume total - Digiflux (m3)	197,16	

Tabela 13 – Dados de emissões gasosas do experimento 5 - Ingá.

Dados das emissões	CO ₂	СО	NO_X	UHC
Emissão máxima (ppmv)	9862,92	464,99	18,51	207,74
Concentração média (ppmv)	5379,28	209,18	8,33	76,69
Background (ppmv)	380,00	0,30	0,44	1,00
Concentração real (ppmv)	4999,28	208,88	7,89	75,69
Massa Molar g/mol	44,00	28,00	46,00	23,00
Emissão Real 0°C e 1 atm (mg/m3)	9814,30	260,94	16,20	77,67
Massa Emitida 0°C e 1 atm- Digiflux (mg)	1934957,24	51446,52	3194,55	15312,92
Massa Emitida 0°C e 1 atm - Digiflux (g)	1934,96	51,45	3,19	15,31
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg)	1712,54	45,53	2,83	13,55
Água no ar (mg/m3)	14267,0	14267,0	14267,0	14267,0
Água nos compostos (mg/m3)	3,12	3,12	3,12	3,12
Concentração real (ppmv) de água no ar	17753,57	17753,57	17753,57	17753,57
Concentração real corrigida (ppmv) Cor.	4912,074247	205,23	7,76	74,37
Emissão Real 0°C e 1 atm (mg/m3) Cor.	9643,10	256,39	15,92	76,31
Massa Emitida 0°C e 1 atm- Digiflux (mg) Cor.	1901204,09	50549,10	3138,83	15045,80
Massa Emitida 0°C e 1 atm - Digiflux (g) Cor.	1901,20	50,55	3,14	15,05
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg) Cor.	1682,66	44,74	2,78	13,32
Fator de Emissão 0°C e 1 atm (g/kg) - Cor. (GLP)	1651,27			

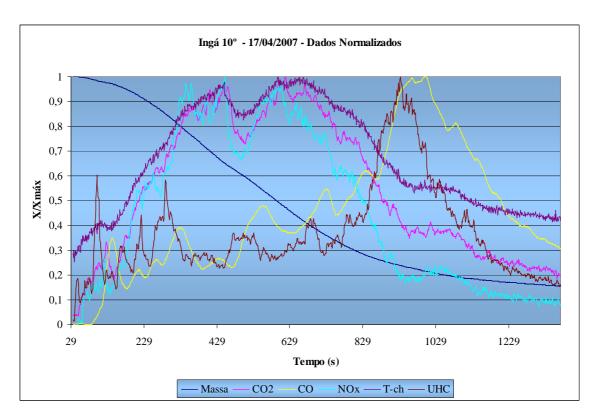


Figura 10 – Dados Normalizados do Experimento 5 em função do tempo.

Tabela 14 – Dados gerais do experimento 6 – Embauba Vermelha.

	7	
Dados do experimento		Porcentagem
Massa inicial total (kg)	1,498	100,00%
Massa inicial de galhos (kg)	1,348	89,99%
Massa inicial de liteiras (kg)	0,15	10,01%
Massa final (kg)	0,218	
Umidade dos galhos	11%	
Umidade das liteiras	14%	
Umidade da amostra	11,44%	
Massa consumida - base seca (kg)	1,13	
Volume total - Digiflux (m3)	168,95	

Tabela 15 – Dados de emissões gasosas do experimento 6 – Embauba Vermelha.

Dados das emissões	CO ₂	СО	NO _X	UHC
Emissão máxima (ppmv)	12635,53	379,95	26,49	194,08
Concentração média (ppmv)	6327,81	236,00	10,91	71,77
Background (ppmv)	380,00	0,30	0,44	1,00
Concentração real (ppmv)	5947,81	235,70	10,47	70,77
Massa Molar g/mol	44,00	28,00	46,00	23,00
Emissão Real 0°C e 1 atm (mg/m3)	11676,40	294,45	21,49	72,62
Massa Emitida 0°C e 1 atm- Digiflux (mg)	1972756,48	49747,83	3630,56	12269,34
Massa Emitida 0°C e 1 atm - Digiflux (g)	1972,76	49,75	3,63	12,27
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg)	1740,22	43,88	3,20	10,82
Água no ar (mg/m3)	13967,0	13967,0	13967,0	13967,0
Água nos compostos (mg/m3)	3,65	3,65	3,65	3,65
Concentração real (ppmv) de água no ar	17381,00	17381,00	17381,00	17381,00
Concentração real corrigida (ppmv) Cor.	5846,200338	231,67	10,29	69,56
Emissão Real 0°C e 1 atm (mg/m3) Cor.	11476,92	289,42	21,12	71,38
Massa Emitida 0°C e 1 atm- Digiflux (mg) Cor.	1939053,79	48897,93	3568,53	12059,73
Massa Emitida 0°C e 1 atm - Digiflux (g) Cor.	1939,05	48,90	3,57	12,06
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg) Cor.	1710,49	43,13	3,15	10,64
Fator de Emissão 0°C e 1 atm (g/kg) - Cor. (GLP)	1687,38			

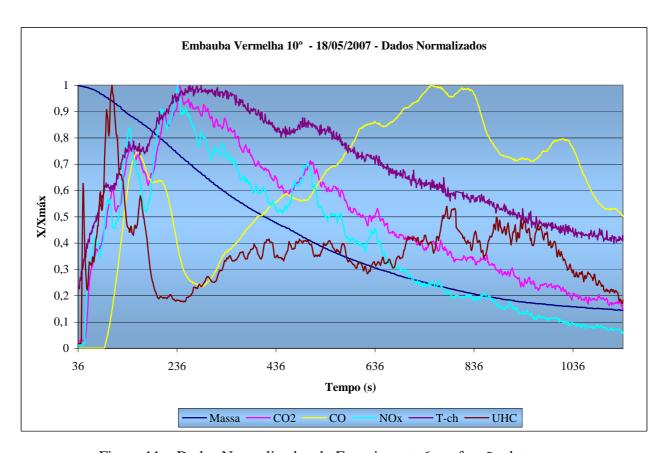


Figura 11 – Dados Normalizados do Experimento 6 em função do tempo.

 $Tabela\ 16-Dados\ gerais\ do\ experimento\ 7-Leiteira.$

Dados do experimento		Porcentagem
Massa inicial total (kg)	1,396	100,00%
Massa inicial de galhos (kg)	1,201	86,03%
Massa inicial de liteiras (kg)	0,196	14,04%
Massa final (kg)	0,573	
Umidade dos galhos	10%	
Umidade das liteiras	10%	
Umidade da amostra	10,12%	
Massa consumida - base seca (kg)	0,74	
Volume total - Digiflux (m3)	171,99	

Tabela 17 – Dados de emissões gasosas do experimento 7 – Leiteira.

Dados das emissões	CO ₂	СО	NO_X	UHC
Emissão máxima (ppmv)	11074,16	600,69	30,18	313,18
Concentração média (ppmv)	3765,31	150,20	7,34	93,93
Background (ppmv)	380,00	0,30	0,44	1,00
Concentração real (ppmv)	3385,31	149,90	6,90	92,93
Massa Molar g/mol	44,00	28,00	46,00	23,00
Emissão Real 0°C e 1 atm (mg/m3)	6645,84	187,27	14,16	95,37
Massa Emitida 0°C e 1 atm- Digiflux (mg)	1143011,19	32208,39	2435,04	16402,01
Massa Emitida 0°C e 1 atm - Digiflux (g)	1143,01	32,21	2,44	16,40
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg)	1545,17	43,54	3,29	22,17
Água no ar (mg/m3)	10500,00	10500,00	10500,00	10500,00
Água nos compostos (mg/m3)	2,34	2,34	2,34	2,34
Concentração real (ppmv) de água no ar	13066,04	13066,04	13066,04	13066,04
Concentração real corrigida (ppmv) Cor.	3341,648247	147,97	6,81	91,73
Emissão Real 0°C e 1 atm (mg/m3) Cor.	6560,13	184,85	13,98	94,14
Massa Emitida 0°C e 1 atm- Digiflux (mg) Cor.	1128269,18	31792,98	2403,63	16190,46
Massa Emitida 0°C e 1 atm - Digiflux (g) Cor.	1128,27	31,79	2,40	16,19
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg) Cor.	1525,24	42,98	3,25	21,89
Fator de Emissão 0°C e 1 atm (g/kg) - Cor. (GLP)	1485,56			

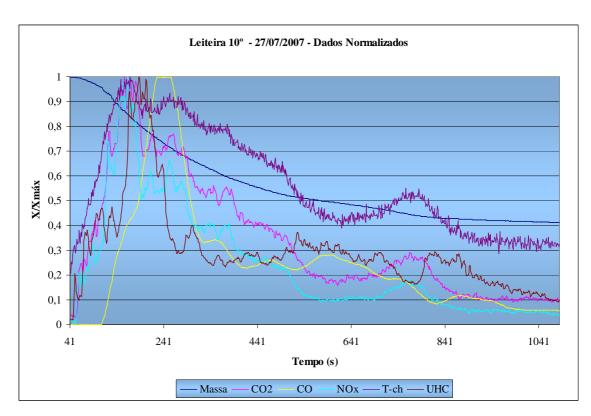


Figura 12 – Dados Normalizados do Experimento 7 em função do tempo.

Tabela 18 – Dados gerais do experimento 8 – Embaúba Branca.

Dados do experimento		Porcentagem
Massa inicial total (kg)	0,978	100,00%
Massa inicial de galhos (kg)	0,87	88,96%
Massa inicial de liteiras (kg)	0,108	11,04%
Massa final (kg)	0,231	
Umidade dos galhos	10%	
Umidade das liteiras	10%	
Umidade da amostra	10,21%	
Massa consumida - base seca (kg)	0,67	
Volume total - Digiflux (m3)	259,33	

Tabela 19 – Dados de emissões gasosas do experimento 8 – Embaúba Branca.

Dados das emissões	CO ₂	СО	NO _X	UHC
Emissão máxima (ppmv)	6087,24	220,02	14,85	293,59
Concentração média (ppmv)	2590,20	93,95	4,46	73,07
Background (ppmv)	380,00	0,30	0,44	1,00
Concentração real (ppmv)	2210,20	93,65	4,02	72,07
Massa Molar g/mol	44,00	28,00	46,00	23,00
Emissão Real 0°C e 1 atm (mg/m3)	4338,94	117,00	8,25	73,96
Massa Emitida 0°C e 1 atm- Digiflux (mg)	1125227,68	30341,43	2140,08	19179,51
Massa Emitida 0°C e 1 atm - Digiflux (g)	1125,23	30,34	2,14	19,18
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg)	1677,55	45,23	3,19	28,59
Água no ar (mg/m3)	15167,00	15167,00	15167,00	15167,00
Água nos compostos (mg/m3)	1,41	1,41	1,41	1,41
Concentração real (ppmv) de água no ar	18871,13	18871,13	18871,13	18871,13
Concentração real corrigida (ppmv) Cor.	2169,26521	91,92	3,95	70,74
Emissão Real 0°C e 1 atm (mg/m3) Cor.	4258,58	114,83	8,10	72,59
Massa Emitida 0°C e 1 atm- Digiflux (mg) Cor.	1104386,65	29779,46	2100,44	18824,27
Massa Emitida 0°C e 1 atm - Digiflux (g) Cor.	1104,39	29,78	2,10	18,82
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg) Cor.	1646,48	44,40	3,13	28,06
Fator de Emissão 0°C e 1 atm (g/kg) - Cor. (GLP)	1620,76			

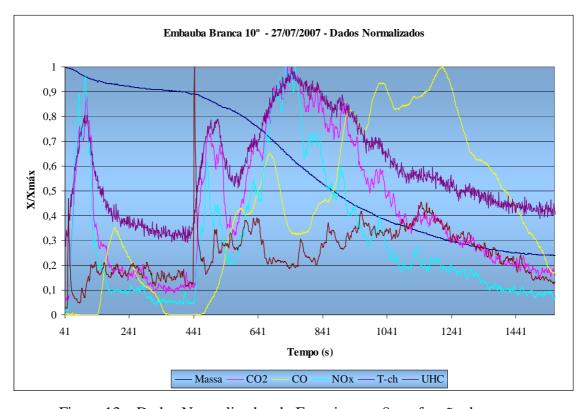


Figura 13 – Dados Normalizados do Experimento 8 em função do tempo.

Tabela 20 – Dados gerais do experimento 9 – Guarantan.

Dados do experimento		Porcentagem
Massa inicial total (kg)	1,04	100,00%
Massa inicial de galhos (kg)	0,92	88,46%
Massa inicial de liteiras (kg)	0,12	11,54%
Massa final (kg)	0,335	
Umidade dos galhos	10%	
Umidade das liteiras	10%	
Umidade da amostra	9,87%	
Massa consumida - base seca (kg)	0,64	
Volume total - Digiflux (m3)	285,88	

Tabela 21 – Dados de emissões gasosas do experimento 9 – Guarantan.

Dados das emissões	CO ₂	СО	NO_X	UHC
Emissão máxima (ppmv)	4273,52	116,28	9,26	316,94
Concentração média (ppmv)	2273,10	64,46	3,13	39,19
Background (ppmv)	380,00	0,30	0,44	1,00
Concentração real (ppmv)	1893,10	64,16	2,69	38,19
Massa Molar g/mol	44,00	28,00	46,00	23,00
Emissão Real 0°C e 1 atm (mg/m3)	3716,43	80,15	5,53	39,19
Massa Emitida 0°C e 1 atm- Digiflux (mg)	1062471,56	22912,84	1579,57	11204,67
Massa Emitida 0°C e 1 atm - Digiflux (g)	1062,47	22,91	1,58	11,20
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg)	1672,08	36,06	2,49	17,63
Água no ar (mg/m3)	14325,00	14325,00	14325,00	14325,00
Água nos compostos (mg/m3)	1,21	1,21	1,21	1,21
Concentração real (ppmv) de água no ar	17823,35	17823,35	17823,35	17823,35
Concentração real corrigida (ppmv) Cor.	1859,953956	63,03	2,64	37,52
Emissão Real 0°C e 1 atm (mg/m3) Cor.	3651,35	78,74	5,43	38,51
Massa Emitida 0°C e 1 atm- Digiflux (mg) Cor.	1043866,37	22511,61	1551,91	11008,46
Massa Emitida 0°C e 1 atm - Digiflux (g) Cor.	1043,87	22,51	1,55	11,01
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg) Cor.	1642,80	35,43	2,44	17,32
Fator de Emissão 0°C e 1 atm (g/kg) - Cor. (GLP)	1606,61			

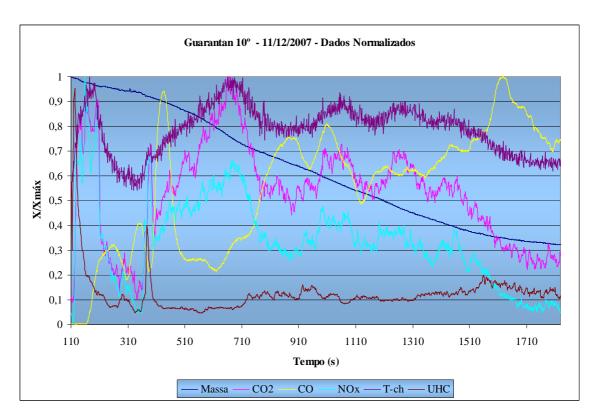


Figura 14 – Dados Normalizados do Experimento 9 em função do tempo.

Tabela 22 – Dados gerais do experimento 10 – Marfim.

Dados do experimento		Porcentagem
Massa inicial total (kg)	1,508	100,00%
Massa inicial de galhos (kg)	1,344	89,12%
Massa inicial de liteiras (kg)	0,164	10,88%
Massa final (kg)	0,564	
Umidade dos galhos	10%	
Umidade das liteiras	10%	
Umidade da amostra	10,19%	
Massa consumida - base seca (kg)	0,85	
Volume total - Digiflux (m3)	305,34	

Tabela 23 – Dados de emissões gasosas do experimento 10 – Marfim.

Dados das emissões	CO ₂	СО	NO _X	UHC
Emissão máxima (ppmv)	4472,18	178,20	5,51	312,20
Concentração média (ppmv)	2774,38	74,78	2,06	36,06
Background (ppmv)	380,00	0,30	0,44	1,00
Concentração real (ppmv)	2394,38	74,48	1,62	35,06
Massa Molar g/mol	44,00	28,00	46,00	23,00
Emissão Real 0°C e 1 atm (mg/m3)	4700,51	93,04	3,33	35,98
Massa Emitida 0°C e 1 atm- Digiflux (mg)	1435232,82	28408,98	1017,09	10986,76
Massa Emitida 0°C e 1 atm - Digiflux (g)	1435,23	28,41	1,02	10,99
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg)	1692,82	33,51	1,20	12,96
Água no ar (mg/m3)	12525,00	12525,00	12525,00	12525,00
Água nos compostos (mg/m3)	1,51	1,51	1,51	1,51
Concentração real (ppmv) de água no ar	15584,33	15584,33	15584,33	15584,33
Concentração real corrigida (ppmv) Cor.	2357,640258	73,33	1,60	34,53
Emissão Real 0°C e 1 atm (mg/m3) Cor.	4628,38	91,61	3,28	35,43
Massa Emitida 0°C e 1 atm- Digiflux (mg) Cor.	1413208,90	27973,04	1001,48	10818,16
Massa Emitida 0°C e 1 atm - Digiflux (g) Cor.	1413,21	27,97	1,00	10,82
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg) Cor.	1666,84	32,99	1,18	12,76
Fator de Emissão 0°C e 1 atm (g/kg) - Cor. (GLP)	1630,22			

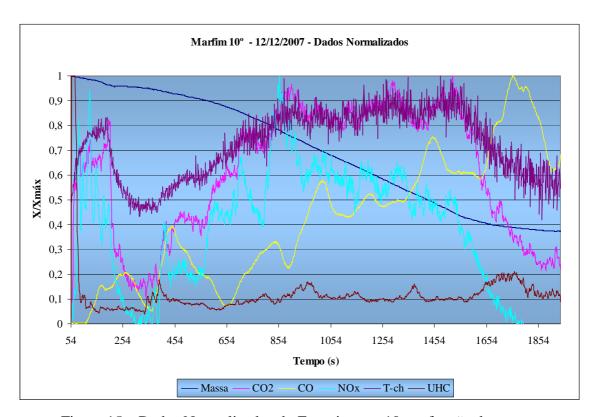


Figura 15 – Dados Normalizados do Experimento 10 em função do tempo.

Tabela 24 – Dados gerais do experimento 11 – Liteira.

Dados do experimento		Porcentagem
Massa inicial total (kg)	0,502	100,00%
Massa inicial de galhos (kg)	0	0,00%
Massa inicial de liteiras (kg)	0,502	100,00%
Massa final (kg)	0,083	
Umidade dos galhos	0%	
Umidade das liteiras	10%	
Umidade da amostra	10,00%	
Massa consumida - base seca (kg)	0,38	
Volume total - Digiflux (m3)	107,23	

Tabela 25 – Dados de emissões gasosas do experimento 11 – Liteira.

Dados das emissões	CO ₂	СО	NO_X	UHC
Emissão máxima (ppmv)	9310,51	553,95	31,50	229,95
Concentração média (ppmv)	3447,14	254,95	9,67	91,84
Background (ppmv)	380,00	0,30	0,44	1,00
Concentração real (ppmv)	3067,14	254,65	9,23	90,84
Massa Molar g/mol	44,00	28,00	46,00	23,00
Emissão Real 0°C e 1 atm (mg/m3)	6021,24	318,12	18,94	93,22
Massa Emitida 0°C e 1 atm- Digiflux (mg)	645649,47	34111,83	2030,58	9995,90
Massa Emitida 0°C e 1 atm - Digiflux (g)	645,65	34,11	2,03	10,00
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg)	1712,14	90,46	5,38	26,51
Água no ar (mg/m3)	13825,0	13825,0	13825,0	13825,0
Água nos compostos (mg/m3)	1,91	1,91	1,91	1,91
Concentração real (ppmv) de água no ar	17202,17	17202,17	17202,17	17202,17
Concentração real corrigida (ppmv) Cor.	3015,274381	250,34	9,07	89,31
Emissão Real 0°C e 1 atm (mg/m3) Cor.	5919,41	312,74	18,62	91,64
Massa Emitida 0°C e 1 atm- Digiflux (mg) Cor.	634730,73	33534,96	1996,24	9826,85
Massa Emitida 0°C e 1 atm - Digiflux (g) Cor.	634,73	33,53	2,00	9,83
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg) Cor.	1683,19	88,93	5,29	26,06
Fator de Emissão 0°C e 1 atm (g/kg) - Cor. (GLP)	1673,12			

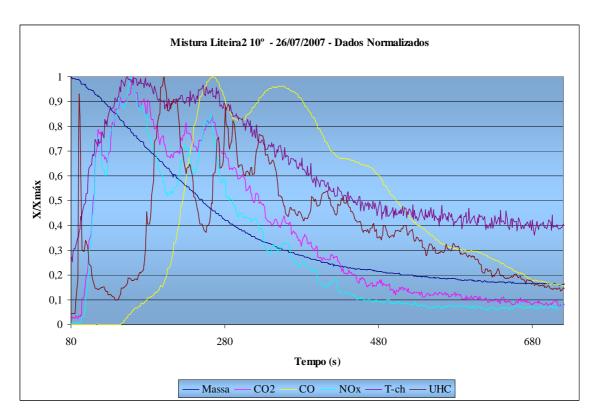


Figura 16 – Dados Normalizados do Experimento 11 em função do tempo.

Tabela 26 – Dados gerais do experimento 12 – Liteira 2.

Dados do experimento		Porcentagem
Massa inicial total (kg)	1,527	100,00%
Massa inicial de galhos (kg)	0,813	53,24%
Massa inicial de liteiras (kg)	0,714	46,76%
Massa final (kg)	0,521	
Umidade dos galhos	11%	
Umidade das liteiras	10%	
Umidade da amostra	10,67%	
Massa consumida - base seca (kg)	0,90	
Volume total - Digiflux (m3)	276,84	

Tabela 27 – Dados de emissões gasosas do experimento 12 – Liteira 2.

Dados das emissões	CO ₂	СО	NO _X	UHC
Emissão máxima (ppmv)	7771,72	295,07	19,02	110,25
Concentração média (ppmv)	3143,42	157,23	6,35	44,52
Background (ppmv)	380,00	0,30	0,44	1,00
Concentração real (ppmv)	2763,42	156,93	5,91	43,52
Massa Molar g/mol	44,00	28,00	46,00	23,00
Emissão Real 0°C e 1 atm (mg/m3)	5424,99	196,04	12,13	44,66
Massa Emitida 0°C e 1 atm- Digiflux (mg)	1501861,29	54272,76	3357,49	12363,09
Massa Emitida 0°C e 1 atm - Digiflux (g)	1501,86	54,27	3,36	12,36
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg)	1671,30	60,40	3,74	13,76
Água no ar (mg/m3)	11267,00	11267,00	11267,00	11267,00
Água nos compostos (mg/m3)	1,77	1,77	1,77	1,77
Concentração real (ppmv) de água no ar	14019,56	14019,56	14019,56	14019,56
Concentração real corrigida (ppmv) Cor.	2725,21359	154,76	5,83	42,92
Emissão Real 0°C e 1 atm (mg/m3) Cor.	5349,98	193,33	11,96	44,04
Massa Emitida 0°C e 1 atm- Digiflux (mg) Cor.	1481096,96	53522,40	3311,07	12192,17
Massa Emitida 0°C e 1 atm - Digiflux (g) Cor.	1481,10	53,52	3,31	12,19
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg) Cor.	1648,19	59,56	3,68	13,57
Fator de Emissão 0°C e 1 atm (g/kg) - Cor. (GLP)	1615,93			

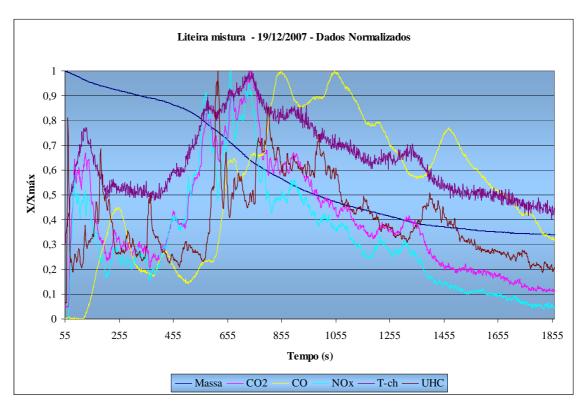


Figura 17 – Dados Normalizados do Experimento 12 em função do tempo.

Tabela 28 – Dados gerais do experimento 13 – Liteira 3.

Dados do experimento		Porcentagem
Massa inicial total (kg)	2,13	100,00%
Massa inicial de galhos (kg)	0,71	33,33%
Massa inicial de liteiras (kg)	1,42	66,67%
Massa final (kg)	0,934	
Umidade dos galhos	12%	
Umidade das liteiras	11%	
Umidade da amostra	11,31%	
Massa consumida - base seca (kg)	1,06	
Volume total - Digiflux (m3)	399,00	

Tabela 29 – Dados de emissões gasosas do experimento 13 – Liteira 3.

Dados das emissões	CO ₂	СО	NO_X	UHC
Emissão máxima (ppmv)	6153,96	434,14	12,12	143,74
Concentração média (ppmv)	2394,46	160,36	4,14	57,28
Background (ppmv)	380,00	0,30	0,44	1,00
Concentração real (ppmv)	2014,46	160,06	3,70	56,28
Massa Molar g/mol	44,00	28,00	46,00	23,00
Emissão Real 0°C e 1 atm (mg/m3)	3954,68	199,96	7,60	57,75
Massa Emitida 0°C e 1 atm- Digiflux (mg)	1577915,75	79784,21	3031,41	23041,75
Massa Emitida 0°C e 1 atm - Digiflux (g)	1577,92	79,78	3,03	23,04
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg)	1487,52	75,21	2,86	21,72
Água no ar (mg/m3)	13625,00	13625,00	13625,00	13625,00
Água nos compostos (mg/m3)	1,45	1,45	1,45	1,45
Concentração real (ppmv) de água no ar	16952,77	16952,77	16952,77	16952,77
Concentração real corrigida (ppmv) Cor.	1980,88	157,39	3,64	55,34
Emissão Real 0°C e 1 atm (mg/m3) Cor.	3888,75	196,63	7,47	56,79
Massa Emitida 0°C e 1 atm- Digiflux (mg) Cor.	1551611,64	78454,19	2980,87	22657,64
Massa Emitida 0°C e 1 atm - Digiflux (g) Cor.	1551,61	78,45	2,98	22,66
Fator de Emissão 0°C e 1 atm - Digiflux (g/kg) Cor.	1462,72	73,96	2,81	21,36
Fator de Emissão 0°C e 1 atm (g/kg) - Cor. (GLP)	1422,61			

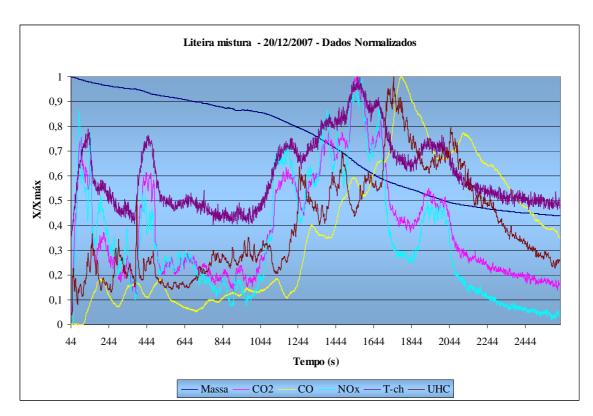


Figura 18 – Dados Normalizados do Experimento 13 em função do tempo.

A tabela 30 apresenta os valores médios obtidos em cinco experimentos, apenas com o maçarico aceso, onde foi determinado os valores dos fatores de emissão obtidos(em g/s), para os diferentes gases que são quantificados durante os experimentos. Nos ensaios realizados apenas com o maçarico na boca da chaminé percebeu-se que ele influencia apenas nas emissões de CO₂. As emissões de CO, NO_x e UHC nesta queima não são significativas. Obteve-se um Fator de Emissão em gramas da espécie química em função do tempo em segundos. Calculou-se a média desses Fatores (g/s) e foi descontado nos Fatores de Emissão (g/Kg) de cada experimento de acordo com o tempo em que durou a ignição. O Valor médio obtido dos fatores de Emissão na queima com maçarico foi de 0,438 g/s.

Tabela 30 – Média dos Fatores de Emissão Obtidos nos Testes com Maçarico.

	CO_2	CO	NO_X	UHC
Média [g/s]	0,438	0	0	0

Na tabela 31 é apresentado um resumo dos principais resultados experimentais obtidos em todos os ensaios realizados, onde foram queimados gravetos e liteira das diferentes espécies na proporção de 90% de gravetos e 10% de liteira. Convém ressaltar que foram feitas algumas correções no background medido pelos analisadores de gases, bem como correções na concentração das espécies químicas levando-se em consideração a umidade do ar, a emissão do maçarico e a normalização do volume molar para as condições da CNTP.

Tabela 31 – Principais Resultados Experimentais.

Resultados Experimentais - Projeto Biomassa														
Ensaio	Biomassa	Massa Inicial [kg]	Massa Final [kg]	T.Máx. Chaminé [°C]	Vazão média [m3/h]	Tempo de ensaio [s]	Bacl	kgrou CO	ınd [p		Fator o	le Emi	ssão [Nox	
1	Quina	1,51	0,34	116,31	569,11	1529,47	380	0,3	0,4	1	1594,8	38,3	4,4	11,7
2	Canela	1,51	0,33	120,88	579,41	1319,69	380	0,3	0,4	1	1535	35,1	2,8	12,4
3	Amescla	1,54	0,38	126,71	552,39	1511,21	380	0,3	0,4	1	1539,7	31,9	1,2	9,3
4	Taxi	1,51	0,18	109,03	550,06	1713,54	380	0,3	0,4	1	1544,2	29,4	2,3	7,6
5	Inga	1,51	0,24	118,29	531,23	1371,13	380	0,3	0,4	1	1651,3	44,7	2,8	13,3
6	Embauba Ver.	1,5	0,22	126,96	552,61	1137,75	380	0,3	0,4	1	1473,9	18,1	3,1	6,7
7	Leiteira	1,396	0,573	91,97	593	1085	380	0,3	0,4	1	1483,7	42,9	3,3	21,9
8	Emb. Branca	0,978	0,231	73,81	601	1601	380	0,3	0,4	1	1617	44,3	3,1	28
9	Guarantan	1,04	0,335	68,9	602	1829	380	0,3	0,4	1	1609	35,5	2,5	17,4
10	Marfim	1,508	0,564	75,39	584	1939	380	0,3	0,4	1	1626,8	32,9	1,2	12,7
11	Liteira	0,502	0,083	83,8	625	721,61	380	0,3	0,4	1	1673,1	88,9	5,3	26,1
12	Liteira	1,527	0,521	78,55	613	1863	380	0,3	0,4	1	1615,9	59,6	3,7	13,6
13	Liteira	2,13	0,934	68,96	667	26,25	380	0,3	0,4	1	1422,6	74	2,8	21,4

As Emissões Máximas e Médias dos gases registradas durante o experimento estão listadas na Tabela 32.

Tabela 32 – Emissões Máximas e Médias dos gases durante o experimento.

Emissões Máximas e Médias										
Ensaio	Biomassa	Emissõ	ses Máxi	pmv]	Emiss	ões Méd	lias [ppmv]			
		CO2	CO	Nox	UHC	CO2	CO	Nox	UHC	
1	Quina	9966,87	237,00	24,23	176,60	4152,97	140,77	10,24	53,34	
2	Canela	9996,78	243,97	19,12	174,07	4534,18	148,12	7,67	64,68	
3	Amescla	10948,36	234,12	10,83	100,82	4085,56	119,43	3,22	43,14	
4	Taxi	8046,61	276,99	12,19	108,22	4294,09	115,33	6,00	37,26	
5	Inga	9862,92	464,99	18,51	207,74	5379,28	209,18	8,33	76,69	
6	Embauba Ver.	12635,53	379,95	26,49	194,08	6327,81	236,00	10,91	71,77	
7	Leiteira	11074,16	600,69	30,18	313,18	3765,31	150,2	7,34	93,9	
8	Emb. Branca	6087,24	220,02	14,85	293,59	2590,2	93,95	4,46	73,1	
9	Guarantan	4273,52	116,28	9,26	316,94	2273,1	64,46	3,13	39,2	
10	Marfim	4472,18	178,2	5,51	312,2	2774,38	74,78	2,06	36,1	
11	Liteira	9310,51	553,95	31,50	229,95	3447,14	254,95	9,67	91,84	
12	Liteira	7771,72	295,07	19,02	110,25	3143,42	157,23	6,35	44,52	
13	Liteira	6153,96	434,14	12,12	143,74	2394,46	160,36	4,14	57,28	

A tabela 33 apresenta os valores médios e seus desvios padrão relativos aos resultados mostrados na tabela 31 para as quatro espécies químicas medidas. Estes valores médios e seus respectivos desvios padrão podem ser melhor visualizados nas figuras 19 a 22.

Tabela 33 – Médias e Desvios Padrão para Fatores de Emissão Obtidos.

	CO_2	CO	NO_X	UHC
Média [g/kg]	1567	35,3	2,67	14,11
Desvio Padrão [g/kg]	61	8	0,9	6,6

Estes valores podem ser comparados com os resultados obtidos na queimada real na floresta cujos resultados são apresentados na tabela 34. Observa-se uma boa concordância entre esses valores, exceto para o CO e hidrocarbonetos não queimados. Alguns experimentos efetuados em laboratório, com a queima apenas de liteira mostrou valores de fatores de emissão de CO e de hidrocarbonetos não queimados na ordem de 88 g/Kg e de 13 g/Kg de biomassa seca respectivamente. Tais valores, sendo mais

próximo dos valores obtidos em campo. Isto sugere que na floresta devemos ter mais liteira do que os 10%, em massa, utilizados nos experimentos em laboratório.

Tabela 34 – Fatores de Emissão Obtidos pelo sistema FASS.

	CO_2	CO	CH ₄	NMHC
Média [g/kg]	1599	111,3	9,2	5,57

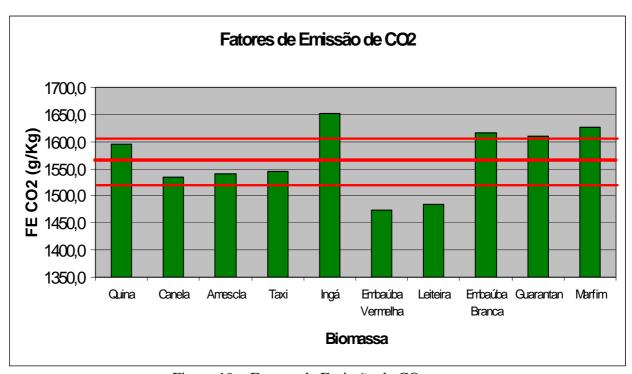


Figura 19 – Fatores de Emissão de CO₂.

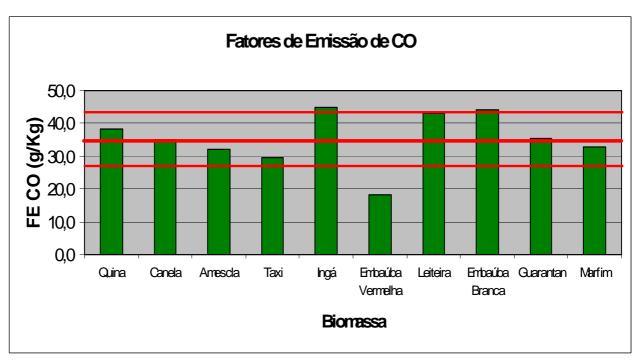


Figura 20 – Fatores de Emissão de CO.

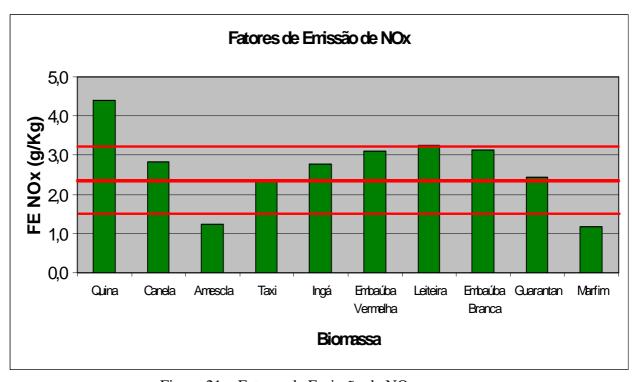


Figura 21 – Fatores de Emissão de NO_x.

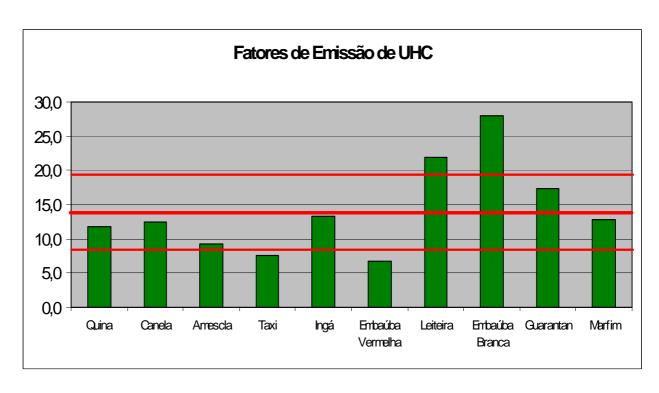


Figura 22 – Fatores de Emissão de UHC.

CAPÍTULO 5

CONCLUSÕES E TRABALHOS FUTUROS

Observou-se uma boa concordância entre os resultados obtidos na queimada real na floresta com os obtidos em laboratório para o CO₂. Obteve-se valores mais baixos para CO e UHC devido a menor proporção de liteira.

Observou-se também a facilidade de obtenção dos fatores de emissão em laboratório sem ter a necessidade de ir até a floresta para realizar a queima e a relativa simplicidade do dispositivo experimental.

A quantidade de experimentos em andamento nos deixará aptos a gerar uma base de dados sobre as emissões desses gases na combustão de biomassa de diversas espécies, permitindo em futuras pesquisas estimar a emissão de gases de uma queimada real em campo.

Nos ensaios realizados apenas com o maçarico na boca da chaminé observou-se que ele influencia apenas nas Emissões de CO₂, nas outras espécies químicas analisadas as emissões não são significativas, sendo necessárias correções apenas no fator de emissão de CO₂.

Recentemente fez-se uma adaptação do cromatógrafo, tornando-o apto a analisar CO₂, CO, CH₄, C₂ e C₃ em uma única corrida. Adquiriu-se algumas garrafas de inox eletropolida internamente para armazenagem de gás. Assim poder-se-á analisar os principais gases nas diferentes etapas da queima de biomassa e quantificá-los em cada fase.

Pretende-se queimar as espécies variando alguns parâmetros como umidade da amostra e a vazão na chaminé. Posteriormente deve-se correlacionar com os dados de campo obtidos.

REFERÊNCIAS BIBLIOGRÁFICAS

Andreae, M.O.; Browell, E.V.; Garsiang, M.; Gregory, G.L.; Harriss, R.C.; Hill, G.F.; Jacob, D.L.; Pereira, M.C.; Sachse, G.W.; Setzer, A.W.; Silva Dias, P.L.; Talbot, A.L.; Torres, A.L.; Worsy, S.C., 1988, Biomass burning emissions and associated haze layers over Amazonia. J. Geophys. Res., 93, 1509-1527.

Andreae, M.O., 1991, Biomass burning: Its history, use, and distribution and its impact on environmental quality and global climate. In: J. S. Levine (editor). Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, pp 3- 21. MIT Press. Cambridge, Massachusetts, London, England.

Andreae, M.O. and Merlet, P., 2001, Emissions of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles, 15, 955-966.

Araújo, T.M.; Carvalho, J.A.; Higuchi, N.; Brasil, A.C.P.; Mesquita, A.L.A., 1999a, A tropical rainforest clearing experiment by biomass burning in the state of Pará, Brazil. Atmos. Environ., 33(13), 1991-1998.

Araújo, T.M.; Higuchi, N.; Carvalho, J.A., 1999b, Comparison of formulae for biomass content determination in a tropical rainforest site in the state of Pará, Brazil. For. Ecol. Manage., 117(1-3), 43-52,

Carvalho, E.R.; Carvalho, J.A.; Veras, C.A.G.; Ferreira, M.A.; Sandberg, D.V., 2002, Estudo paramétrico sobre incandescência em biomassa, Submetido para apresentação no IX Congresso Brasileiro de Engenharia e Ciências Térmicas.

Carvalho, J.A.; Santos, J.M.; Santos, J.C.; Leitão, M.M.; Higuchi, N.; 1995, A tropical rainforest clearing experiment by biomass burning in the Manaus region, Atmos. Environ.. 29, 2301-2309.

Carvalho, J.A.; Higuchi, N.; Araújo, T.M.; Santos, J.C., 1998, Combustion completeness in a rainforest clearing experiment in Manaus, Brazil. J. Geophys. Res., 103, 13195-13200.

Carvalho, J.A.; Costa, F.S.; Veras, C.A.G.; Sandberg, D.V.; Alvarado, E.C.; Gielow, R.; Serra, A.M., Santos, J.C., 2001, Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in Northern Mato Grosso, Brazil. J. Geophys. Res., 106, 17877-17877.

Crutzen, P.J., 1971, Ozone production rates in an oxygen, hydrogen, nitrogen-oxide atmosphere. J. Geophys. Res., 76, 7311-7327.

Crutzen, P.J.; Heidt, L.E.; Krasneck, J.P.; Pollock, W.H.; Seiler, W., 1979, Biomass burning as a source of atmospheric trace gases: CO, H₂, N₂O, NO, CH₃Cl and COS. Nature, 282, 253-256.

Crutzen, P.J., 1987, Role of the tropics in atmospheric chemistry, In: The Geophysiology of Amazonia Vegetation Climate Interaction, edited by R. E. Dickinson, pp. 107-131, John Wiley, New York.

Crutzen, P.J. and Andreae, M.O., 1990, Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250, 1669-1678

Goode, J.G.; Yokelson, R.J.; Susott, R.A., Ward, D.E., 1999, Trace gas emissions from laboratory biomass fires measured by open-path Fourier transform infrared spectroscopy: Fires in grass and surface fuels. J. Geophys. Res., 104, 21237-21245.

Goode, J.G.; Yokelson, R.J.; Ward, D.E.; Susott, R.A.; Babbitt, R.E.; Davies, M.A.; Hao, W.M., 2000, Measurements of excesss O₃, CO₂, CO, CH₄, C₂H₄, C₂H₂, HCN, NO, NH₃, HCOOH, CH₃COOH, HCHO, and CH₃OH in 1997 Alaskan biomass burning plumes by airborne Fourier transform infrared spectroscopy (AFTIR), J. Geophys. Res., 105, 22147-22166.

Graedel, T.E.; Crutzen, P.J., 1997, In: Atmosphere, Climate, and Change. Scientific American Library, New York.

Griffith, D.W.T.; Mankin, W.G.; Coffey, M.T.; Ward, D.E.; Riebau, A., 1991, FTIR remote sensing of biomass burning emissions of CO₂, CO, CH₄, CH₂O, NO, NO₂, NH₃,

and N_2O , In: J. S. Levine (editor). Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, pp 3 - 21. MIT Press.

Hao, W.M.; Scharffe, D.; Crutzen, P.J., 1988, Production of N₂O, CH₄, and CO₂ from soils in the tropical savanna during the dry season. J. Atmos. Chem., 7, 93-105.

Hao, W.M.; Scharffe, D.; Lobert, J.M.; Crutzen, P.J., 1991. Geophys. Res. Lett., 18, 999-1002.

Hao, W.M. and Ward, D.E., 1993, Methane production from global biomass burning. J. Geophys. Res., 98, 20657-20661.

Hao, W.M. and Liu, M.H., 1994, Spatial and temporal distribution of tropical biomass burning. Global Biol. Cycles, 8, 495-503.

Hao, W.M.; Ward, D.E.; Olbu, G.; Baker, S.P., 1996, Emissions of CO₂, CO, and hydrocarbons from fires in diverse African savanna ecosystems. J. Geophys. Res., 101, 23577-23584.

Hoffa, E.A.; Ward, D.E.; Hao, W.M.; Susott, R.A.; Wakimoto, R.H., 1999, Seasonality of carbon emissions from biomass burning in a Zambia savanna. J. Geophys. Res., 104, 13841-13853.

Kaufman, Y.J.; Hobbs, P.V.; Kirchhoff, W.J.H.; Artaxo, P.; Remer, L.A.; Holben, B.N.; King, M.D.; Ward, D.E.; Prins, E.M.; Longo, K.M.; Mattos, L.F.; Nobre, C.A.; Spinhirne, J.D.; Ji, Q.; Thompson, A.M.; Gleason, J.F.; Christopher, S.A.; Tsay, S.C., 1998, Smoke, clouds, and radiations-Brazil (SCAR-B) experiment. J. Geophys. Res., 103, 31783-31808.

Lin, A.C.; Martins, M.A.; Farhat, S.L., Pope III, C.A.; Conceição, G.M.S., Anastácio, M.V., 1999, Air pollution and respiratoty illness of children in São Paulo, Brazil. Pediatr. Perinat. Epidemiol., 13, 475-487.

Lobert, J.M.; Scharffe, D.H.; Hao, W.M.; Crutzen, P.J., 1990, Importance of biomass burning in the atmospheric budgets of nitrogen-containing gases. Nature, 346, 552-554.

Lobert, J.M.; Scharffe, D.H.; Hao, W.M.; Kuhlbusch, T.A.; Seuwen, R.; Warneck, P.; Crutzen, P.J., 1991, Experimental evaluation of biomass burning emissions: nitrogen and carbon containing compounds. In: J. S. Levine (editor). Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, pp 289 - 304. MIT Press.

Lobert, J.M.; Keene, W.C.; Logan, J.A.; Yevich, R., 1999, Global chlorine emissions from biomass burning: reactive chlorine emissions inventory. J. Geophys. Res., 104, 8373-8390.

Martins, L.C.; Latorre, M.R.D.O.; Cardoso, M.R.A.; Gonçalves, F.L.T.; Saldiva, P.H.N.; Braga, A.L.F., 2002, Poluição atmosférica e atendimentos por pneumonia e gripe em São Paulo, Brasil. Revista de Saúde Pública, 36(1), 88-94.

McElroy, M.B. and McConnell, J.C., 1971, Nitrous oxide: a natural source of stratospheric NO. J. Atmos. Sci., 28, 1095-1098.

McKenzie, L.M.; Hao, W.M.; Richards, G.N.; Ward, D.E., 1994, Quantification of major components emitted from smoldering combustion of wood. Atmos. Environ., 28, 3285-3292.

McKenzie, L.M.; Hao, W.M.; Richards, G.N.; Ward, D.E., 1995, Measurement and modeling of air toxins from smoldering combustion of biomass. Environ. Sci Technol., 29, 2047-2054.

Ramanathan, V.; Cicerone, R.J.; Singh, H.B.; Kiehl, J.T., 1985, Trace gas trends and their potential role in climate change. J. Geophys. Res., 90, 5547-5566.

Reinhardt, T.E. and Ward, D.E., 1995, Factors affecting methyl chloride emissions from forest biomass combustion. Environ. Sci. Technol., 29, 825-832.

Ritz, B. and Yu, F., 1999, The effect of ambient carbon monoxide on low birth weight among children born in Southern California between 1989 and 1993. Environ. Health Perspect, 107, 17-25.

Ritz, B.; Yu, F.; Fruin, S.; Chapa, G.; Shaw, G.M.; Harris, J.A., 2002, Ambient air pollution and risk of birth defects in Southern California. Amer. J. Epidemiol., 155, 17-25.

Ross, P.J., 1991, Aplicações das Técnicas Taguchi na Engenharia da Qualidade, McGraw-Hill Ltda., São Paulo.

Seiler, W. and Crutzen, P.J., 1980, Estimates of grass and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 2, 207-247. Seinfeld, J.H., 1986, In: Atmospheric Chemistry and Physics of Air Pollution. John Wiley & Sons, Inc., New York.

Susott, R.A.; Ward, D.E.; Babbitt, R.E.; Latham, D.J., 1991, The measurement of trace emissions and combustion characteristics for a mass fire, In: J.S. Levine (editor). Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, pp 245 - 257. MIT Press.

Schwartz, J., 1992, Particulate air pollution and daily mortality: a synthesis. Public Health Review, 92(19), 39-60.

Wang, W.C.; Yung, Y.L.; Lacis, A.A.; Mo, T.; Hansen, J.E., 1976, Greenhouse effect due to manmade perturbations of trace gases. Science, 194, 685-690.

Ward, D.E. and Hardy, C.C., 1991, Smoke emissions from wildland fires. Environ. Int., 17, 117-134.

Ward, D.E. and Hao, W.M., 1992, Air toxic emissions from burning of biomass globally – Preliminary estimates. In Proceedings of the 85th annual Meeting and Exhibition of the Air and Waste Management Association, Kansas City, Missouri Ward, D.E.; Susott, R.A.; Kauffman, J.B.; Babbitt, R.E.; Cummings, D. L.; Dias, B.; Holben, B.N.; Kaufman, Y.J.; Rasmussen, R.A.; Setzer, A.W., 1992, Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B experiment. J. Geophys. Res., 97, 14601-14619.

Ward, D.E.; Peterson, J.; Hao, W.M., 1993, An inventory of particulate matter and air toxic emissions from prescribed fires in the USA for 1989. In Proceedings of the 86th annual Meeting and Exhibition of the Air and Waste Management Association, Denver, Colorado.

Ward, D.E.; Shea R.; Hao, W.M., 1994, Fires in tropical savanna ecosystems – The need for mitigation. In: Proceedings of the Air & Waste Management Association International Specialty Conference. Global Climate Change – Science, Policy, and Mitigation Strategies, Phoenix, Arizona.

Ward, D.E.; Hao, W.M.; Susott, R.A.; Babbitt, R.E.; Shea, R.W.; Kauffman, J.B.; Justice, C.O., 1996, Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems. J. Geophys. Res., 101, 23569-23576.

Wayne, R.P., 1991, Chemistry of Atmospheres. Oxford University Press Inc., New York.

Yokelson, R.J.; Griffith, D.W.T.; Burkholder, J.B.; Ward, D.E., 1995, Accuracy and advantages of synthetic calibration of smoke spectra. In: Optical remote sensing for environmental and process monitoring - Proceedings of the 87th annual Meeting and Exhibition of the Air and Waste Management Association, San Francisco.

Yokelson, R.J; Griffth, D.W.; Ward, D.E., 1996, Open-path fourier transform infrared studies of large-scale laboratory biomass fires. J. Geophys. Res., 101, 21067-21080.

Yokelson, R.J.; Susott, R.A.; Babbitt, R.E.; Hao, W.M.; Ward, D.E., 1997a, Trace gas emissions from specific biomass fire-types. START Synthesis Workshop on Greenhouse Gas emission, Aerosols and Land Use and Cover Change in Southeast Asia, Taipei.

Yokelson, R.J.; Goode, J.G.; Susott, R.A.; Babbitt, R.E.; Ward, D.E.; Baker, S.P.; Hao, W.M.; Griffth, D.W.T.; 1997b, Smoke chemistry measurements by airborne fourier transform infrared spectroscopy (AFTIR). In: IGAC International Symposium on Atmospheric Chemistry and Future Global Environment, Nagoya, Japan.

Yokelson, R.J.; Ward, D.E.; Reardon, J.; Griffith, D.W., 1997c, Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy. J. Geophys. Res., 102, 18865-18887.

Yokelson, R.J.; Goode, J.G.; Ward, D.E.; Susott, R.A.; Babbitt. R.E.; Wade, D.D.; Bertschi, I.; Griffith, D.W.T.; Hao, W.M., 1999, Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy. J. Geophys. Res., 104, 30109-30125.