
remote sensing  

Article

Classification of Australian Waterbodies across a
Wide Range of Optical Water Types

Elizabeth J. Botha 1,* , Janet M. Anstee 1 , Stephen Sagar 2 , Eric Lehmann 3 and
Thais A. G. Medeiros 4

1 CSIRO Oceans & Atmosphere, Canberra, ACT 2601, Australia; janet.anstee@csiro.au
2 Geoscience Australia, Symonston, ACT 2601, Australia; stephen.sagar@ga.gov.au
3 CSIRO Data61, Canberra, ACT 2601, Australia; eric.lehmann@csiro.au
4 National Institute for Space Research (INPE), Remote Sensing Division, Av. dos Astronautas 1758,

São Jose dos Campos 12227-010, Brazil; thais.medeiros@inpe.br
* Correspondence: elizabeth.botha@csiro.au

Received: 25 August 2020; Accepted: 14 September 2020; Published: 16 September 2020
����������
�������

Abstract: Baseline determination and operational continental scale monitoring of water quality are
required for reporting on marine and inland water progress to Sustainable Development Goals (SDG).
This study aims to improve our knowledge of the optical complexity of Australian waters. A workflow
was developed to cluster the modelled spectral response of a range of in situ bio-optical observations
collected in Australian coastal and continental waters into distinct optical water types (OWTs).
Following clustering and merging, most of the modelled spectra and modelled specific inherent
optical properties (SIOP) sets were clustered in 11 OWTs, ranging from clear blue coastal waters to
very turbid inland lakes. The resulting OWTs were used to classify Sentinel-2 MSI surface reflectance
observations extracted over relatively permanent water bodies in three drainage regions in Eastern
Australia. The satellite data classification demonstrated clear limnological and seasonal differences
in water types within and between the drainage divisions congruent with general limnological,
topographical, and climatological factors. Locations of unclassified observations can be used to
inform where in situ bio-optical data acquisition may be targeted to capture a more comprehensive
characterization of all Australian waters. This can contribute to global initiatives like the SDGs and
increases the diversity of natural water in global databases.

Keywords: optical water types; Sentinel-2 MSI; water quality; spectral classification; cluster analysis;
inherent optical properties

1. Introduction

Operational continental scale monitoring and baseline determination of water quality are
fundamental for reporting on marine and inland water Sustainable Development Goals (SDG).
Surface water is an important global resource and plays an essential role in biochemical cycling,
maintenance of biodiversity, human wellbeing, and prosperity [1,2]. In the Australian context, existing
water quality information is often limited, and inland water, in particular, is not well represented in
global datasets or even nationally. Incompatibilities in the content and scale of state and territory
environment reports confound attempts to integrate water resource data into a consistent national
reporting framework [3–5]. In addition, existing monitoring practices do not encompass the breadth of
temporal and spatial scales required for standardized baseline establishment (SDG indicator 14.1.1) or
reporting on continental scale indicators (SDG indicator 6.3.2) germane to human health, environmental
sustainability, and economic prosperity.
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Earth observation (EO) methods have the potential to provide a consistent reporting mechanism,
providing synoptic coverage of spatial and temporal variations in water quality [2,6–8]. Water quality
parameters that can be derived from EO data include chlorophyll and phycocyanin concentrations [6,8],
coloured dissolved organic matter (CDOM) [9], the concentration of total suspended solids (TSS) [10,11],
and descriptors of the light environment of the water column, such as Secchi disk depth (SDz) [7],
vertical attenuation (Kd), water clarity [12,13], and water colour [14–16], among others. However,
their application at a continental scale is restricted by a lack of regional data for parameterization and
validation of water quality information [4].

Quantitative use of EO data for the synoptic assessment of aquatic water quality has increased
in recent times. Retrieval of water quality information from EO data can provide an improved
understanding of the spatial and temporal variability within water bodies for the resource managers
by filling temporal gaps between periodic in situ observations. Freely available, medium resolution
EO data, such as from the Landsat suite of sensors and Sentinel-2 provide a useful platform in which
to investigate temporal changes in water quality across wide geographic scales, e.g., [11,17–21].

Methods implemented to retrieve water quality parameters are strongly determined by the scale
under consideration (local, regional, or global). At the local scale, a locally tuned empirical algorithm
can be successfully implemented to retrieve water quality data. Due to spatial variability in optically
active water column constituents, empirical tuning using geographically limited, in situ data fail at the
regional or global scale in areas with unique optical properties [22] or where the optical complexity of
extreme events such as floods, blackwater events, or algal blooms are not captured in the empirical
model [4]. For example, the SeaWiFS global chlorophyll algorithm (OC4) failed to accurately retrieve
chlorophyll from satellite data in Antarctic waters [23] and sediment plumes off the Santa Barbara
Channel [24].

The application of physics-based (analytical) methods to retrieve environmental variables from
EO data offers a solution across a range of scales in optically complex aquatic regions. This approach is
strongly driven by an understanding of the relationship between inherent optical properties (IOPs)
and the water-leaving radiative signal, which is ultimately detected by the satellite borne sensor.
Several quasi-analytical algorithms have been tested and specifically tuned to local water bodies, e.g.,
Tokyo Bay [25], Venice Lagoon [26], and Lake Constance [27]. Physics-based algorithms have also
been implemented on a more regional basis in the English Channel and French Guiana [28], coastal
Australia [29,30], the Adriatic Sea [31], and Florida and the Arabian Sea [32].

Optical water types (OWT) is one method implemented to facilitate the retrieval of water column
constituent data. OWTs are defined as different water masses that are represented by a collection
of similar optical characteristics of the water components, resulting in similar reflectances [33].
Classifications based on OWTs can provide information about the concentration of optically significant
constituents in each class, offering the possibility to observe the trends and status of important
biogeochemical and biological variables. OWTs can be implemented to empirically retrieve water
column constituents, e.g., [31,34,35], train neural networks, e.g., [35,36] or parameterize bio optical
models, as suggested by [34,37]. This knowledge can then be implemented into monitoring strategies
that support the assessment metrics of the UN SDGs related to aquatic ecosystems, such as water
quality retrieval, algal bloom detection, estimation of primary production, refining the distributions of
biogeographic provinces, and developing indices of marine biodiversity.

Various methodologies were developed in aquatic remote sensing studies to classify OWTs.
Most often, some form of cluster analysis is implemented in the process. Cluster analysis groups water
into sets based upon differences in the magnitude and shape of reflectance using different degrees of
implicit or explicit knowledge [1]. A selection of recent studies, classifying reflectance data of water
into generalized OWTs on scales ranging from local to global is presented in Table 1.

Coastal and inland waters are generally considered optically complex ‘Case 2′waters [6]. Therefore,
the observed reflectance spectra from different Case 2 waters share common features, as their optics
are a function of a high variability in the concentrations of different optically active constituents [38,39].
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Due to the range of bio-optical properties in these zones, classifying these waters is a challenge [33].
In addition, atmospheric correction algorithm failures [40,41] and the high spatio-temporal variability
in hydrodynamics and biological processes [38] makes the classification of these waters more arduous.
Due to this complexity, much effort has been focused on classification of coastal and inland waters.

Table 1. Selected literature on optical water type classification.

Spectral Data Classification Dataset Reference

SeaWiFS data ED a

Eigenvector Northwest Atlantic [42]

Normalized SeaWiFS data ISODATA b Global [43]
In situ Rrs

c hierarchical English Channel [37]
In situ Rrs FCM d Global [44]
In situ Rrs FCM d Chinese lakes [45]
In situ Rrs FCM d Global lakes [46]
In situ Rrs thresholding Yellow Sea [47]

Normalized In situ Rrs hierarchical
Eastern English Channel

North Sea
French Guiana

[33]

Normalized In situ Rrs k-means Global [1]

Simulated rrs
e WFCM f Estonia

Finland [48]

a ED: Euclidian Distance, b ISODATA: Iterative Self-Organizing Data Analysis Technique, c Rrs: Remote sensing
reflectance, d FCM: Fuzzy-c Means, e rrs: subsurface reflectance, f WFCM: Weighted Fuzzy-c Means.

Several studies have successfully implemented optical classification techniques to formulate
OWTs at a global scale (e.g., [1,43,44,46]). However, apart from incorporating data from three Southern
African reservoirs [35], most of these global studies used data collected predominantly in the Northern
hemisphere. Most of the regional studies also report on areas in the Northern Hemisphere (Table 1).
This study aims to improve our knowledge of the optical complexity of Australian coastal and
continental waters. Although several regional datasets have been reported on, e.g., [49–53], this will be
the first attempt at analysing the data at a continental scale in Australia. To this end, a database of
observations, capturing a range of optical data based on seasonality and geography, was used to:

1. Develop a method to define distinct OWTs.
2. Create a set of synthetic generalized inherent optical properties (GIOPs), based on the key features

of each unique OWT.
3. Present a case study as an example of a potential application of implementing the GIOPs water

quality monitoring at a drainage basin scale.

2. Materials and Methods

2.1. In Situ Data

2.1.1. Datasets

The observed reflectance spectra from coastal and inland waters share common features of
Case 2 waters. Therefore, [44] proposed that coastal and inland waters may benefit from a common
classification scheme, using aggregate data that provide continuity from fresh waters to marine
environments. Thus, a database of 396 in situ measurements of specific inherent optical properties
(SIOPs) and water quality concentrations of optically active water column, acquired in waterbodies
around the Australian coast (Table S1) and along a latitudinal gradient in Eastern Australia (Table S2),
was collated for analysis in this study. Figure 1 Shows the spatial distribution of sampling locations.
Each record in the database represents quality assured observations collected at a single location with
a complete description of optically active water column constituents and IOPs. A complete dataset
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comprises of in situ absorption and backscattering measurements as well as laboratory analysis of
total suspended sediments, pigment analysis, and CDOM absorption. The protocols for sampling and
sample analyses are comprehensively described in [54]. Figure 2a,b and Table 2 summarize the ranges
of the IOPs used in this study while Figure 2c shows the absorption budget, demonstrating the range
of the optically active water column constituents within the dataset.
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Figure 1. Locations of the in situ data used in this work. Coastal regions are labelled in black, and inland
waterbodies are labelled in grey.
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Figure 2. Ranges (grey) and median (black line) of phytoplankton specific absorption (a*PHY) used as
input for analysis in the (a) coastal dataset and (b) inland dataset. (c) Absorption budget of optically
active constituents used as input for analysis. Black dots indicate the coastal/marine waters data
(n = 286), and grey dots indicates the inland waters dataset (n = 110).
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Table 2. Ranges of optically active water column constituents used as input for analysis. Black text
indicates the coastal/marine waters data (n = 286), and grey text indicates the inland waters dataset
(n = 110). Refer to Table A2 for a description and units of water column constituents presented in
this table.

Max Min Mean Median SD

CCHL 12.78 0.03 0.86 0.48 1.50
603.60 0.92 25.98 9.87 67.26

CNAP 90.85 0.10 4.57 2.69 7.17
82.98 0.51 9.52 4.08 14.14

a*PHY(440 nm) 0.4838 0.0192 0.0875 0.0728 0.0598
0.1953 0.0023 0.0365 0.0331 0.0249

a*PHY(676 nm) 0.1907 0.0072 0.0293 0.0260 0.0148
0.1286 0.0013 0.0203 0.0190 0.0135

γ aCDOM 0.0373 0.0002 0.0143 0.0147 0.0045
0.0211 0.0073 0.0170 0.0178 0.0026

aCDOM(440 nm) 5.3877 0.0053 0.2452 0.0851 0.5299
4.4714 0.2023 1.0740 0.8383 0.7586

a*NAP(440 nm) 0.2457 0.0010 0.0245 0.0170 0.0271
0.3342 0.0030 0.1009 0.0948 0.0480

γ aNAP 0.0153 0.0044 0.0098 0.0111 0.0031
0.0158 0.0042 0.0103 0.0107 0.0027

b*bNAP(555 nm) 0.1984 0.0005 0.0112 0.0075 0.0183
0.3767 0.0062 0.0564 0.0212 0.0821

γ bbNAP −0.0220 −3.3386 −1.0197 −0.9000 0.5804
−0.2862 −3.1108 −1.1317 −1.0313 −0.4703

2.1.2. Spectral Clustering

Most studies related to generalized OWTs are based on optical classification of in situ hyperspectral
surface reflectance data (Rrs) (Table 1). However, surface reflectance, as an apparent optical property
(AOP), is affected by water column optical properties and, to a lesser degree, on other environmental
factors, such as sun and observations angles, atmospheric conditions, and sea-surface state [55,56].
There are also a diversity of radiometers and measurement protocols that can be implemented to
measure AOPs, some of which are reviewed by [57]. This can potentially introduce spectral variations
into an in situ dataset collated from numerous field campaigns. To ensure that the surface reflectance
data used for this analysis represents the effects of only the water column, a modelling approach was
implemented. This approach is like that of [48,58] where the authors classified coastal and open ocean
waters, respectively, using simulated remote sensing reflectance (rrs). A summary of the data analysis
approach used in this work is presented in Figure 3.

A four-component optical model (IOPs of the waterbody, water surface state, sky spectral radiance
distribution, and the nature of the bottom boundary) was parameterized in Ecolight 5.0 (Sequoia
Scientific, Inc., Bellevue, WA, USA) [59,60]. For all simulations, the sun zenith angle was set at 30◦

from nadir, wind speed was fixed at 0 m s−1, and the water column was assumed to be optically deep
and homogeneous. Inelastic scattering was excluded. The IOP inputs, obtained from the bio-optical
database, were thus the only factors contributing to spectral variability within the simulated spectra.
The simulated surface reflectance spectra (Rrs) were produced at 5 nm spectral intervals between
350 nm and 800 nm.

Spectral clustering is usually based on one of two approaches: hierarchical or non-hierarchical.
Hierarchical methods initially cluster the two most similar spectra together and then iterates, forming
higher clusters until all the spectra are combined into a single cluster [37,61]. Non-hierarchical methods
consider the overall distribution of spectral pairs and classifies them into a prescribed number of
clusters. The most popular non-hierarchical clustering techniques is k-means and fuzzy-c means
(e.g., [1,44–46]).

The simulated Rrs spectra in this study were subjected to hierarchical agglomerative
clustering [61,62] where each spectrum was initially considered as a single-element cluster. At each
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step of the algorithm, a Euclidian distance (ED) metric was used to determine the two clusters that are
the most similar [62,63]. These clusters were then combined into a new bigger cluster. This procedure
was iterated until all points were members of just one single big cluster. A centroid linkage function
was used to group pairs of objects into clusters based on their similarity [61]. This process was iterated
until all the objects in the original dataset were linked together in a hierarchical tree.
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Figure 3. Classification approach undertaken.

To ensure the shape of the spectrum is adequately taken into consideration, the spectra were
scaled prior to clustering. To preserve the shape of the spectra across the entire spectral range by not
artificially giving a greater weight to a defined part of the Rrs spectra, normalization was based on the
mean (µ) and standard deviation (σ) of the entire database [1,33]:

(Rrs − µ)/σ (1)

After spectral clustering, the SIOP data, used as input for each spectrum was analysed to determine
whether the spectral clusters could be translated into unique SIOP groupings. A one-way ANOVA
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was applied to all the SIOP parameters in each of the spectral clusters to determine which parameters
had the most significant effect on the spectral variability between classes. The parameters contributing
most to spectral variability within the simulated spectral dataset were used to determine the SIOP
separability between the different spectral clusters.

The SIOPs of clusters were compared with each other using a Tukey HSD test with a 95%
family-wise confidence level [64]. Where the SIOPs closely resembled each other, clusters were merged
into larger groupings. The resulting clusters were used to classify satellite-derived surface reflectance
observations extracted over selected waterbodies in Eastern Australia.

2.2. Satellite Data

To capture enough variability in continental water quality to demonstrate the applicability of
implementing the derived OWTs for temporal water quality monitoring at a drainage basin scale,
a large temporal and spatial dataset is required [17,20,65]. Digital Earth Australia (DEA) provides
analysis-ready (ARD) satellite data in the form of stacks of consistent, time-stamped surface reflectance
observations. Using high-performance computing power provided by the National Computational
Infrastructure (NCI) and commercial cloud computing platforms, DEA organizes and prepares
the satellite data using Open Data Cube (ODC) technology [66]. Preparation includes geometric
correction [67,68], atmospheric correction [69], and pixel quality flags [70–72].

For the purpose of this study, Sentinel-2 MSI satellite data were used. The Copernicus Sentinel-2
mission comprises a constellation of two polar-orbiting satellites placed in the same sun-synchronous
orbit, phased at 180◦ to each other. Sentinel-2A was launched in June 2015 and Sentinel-2B in March
2017, creating a revisit time of 5 days. Sentinel-2 MSI has six spectral bands that are potentially useful
for this study: Coastal aerosol (442 nm), blue (B, 490 nm), green (G, 560 nm), red (R, 665 nm), red-edge
1 (RE-1, 705 nm), and red-edge 2 (RE-2, 740 nm). However, the atmospheric correction protocol
implemented on DEA is based on standard terrestrial aerosol climatology model parameters and
processing. Consequently, it was found to have a large positive bias across the surface reflectance of all
bands due to uncorrected aquatic specific influences such as sky and sun-glint. In addition, a shape
distortion of the spectra between the coastal aerosol and blue bands of the Sentinel-2 MSI images is
observed with the application of a terrestrially parameterized atmospheric correction process [73].
To limit the effect of this distortion in the blue region of the spectrum, only five of the Sentinel-2 MSI
bands were used for further analysis (B, G, R, RE-1, RE-2).

A workflow was developed to select suitable sampling locations at which to extract Sentinel-2
MSI data from DEA. The aim was to extract data from all the relatively permanent inland waterbodies
of sufficient size. For this purpose, the Water Observations from Space (WOfS) dataset [74] was used to
identify pixel locations with a high percentage (above 80%) of observed water. Selected locations had to
be in the centre of a window of at least 9× 9 WOfS pixels with similar high percentage of observed water
and was a minimum distance (two or more pixels) away from the edges of the waterbody, to minimize
any adjacency effects from nearby vegetation. These criteria led to the definition of several rules that
were applied to the WOfS dataset (25m pixel resolution) to select the sampling locations. The resulting
algorithm can be summarized as described below and was applied to a series of overlapping (spatial)
windows covering the region of interest, in a parallelized implementation executed on the NCI:

1. Create a mask of permanent waterbodies over the current (spatial) window by thresholding the
WOfS dataset at the specified percentage limit (80%).

2. Erode the water mask (by 2 pixels) and then re-expand it (by 2 pixels) in order to remove thin
features connecting several main waterbodies: this allows for the selection of more than one
sampling location where several waterbodies are connected by, e.g., thin river channels (would
otherwise be counted as a single waterbody in the next step).

3. Identify and count all the spatially distinct waterbodies in the current window. Discard any
waterbody whose boundary extends beyond the edge of the window. The window size
(1.0 × 1.0 degree) and overlap (0.7 degree) are selected such that these split waterbodies are
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ultimately processed (as a whole) in a different (overlapping) window, resulting in an unbiased
selection of sampling location for these waterbodies. The window overlap is selected such that
the largest waterbodies over the region of interest are properly captured.

4. For each identified waterbody, erode the water mask (by 2 pixels) to remove the potential influence
of nearby vegetation on the edges of the waterbody.

5. Further erode the water mask (by 4 pixels) to ensure that the selected pixel is at the centre of a
window of at least 9 × 9 pixels.

6. For the remaining pixels, gradually erode the mask further until it cannot be eroded any more
without removing all pixels. The resulting pixel(s) represent the most central location(s) for the
considered waterbody. If more than one pixel remains, select the location closest to centre of
gravity of the remaining pixels.

An area of interest (AOI) for data extraction was defined that covered three major drainage
divisions in eastern Australia: The Murray-Darling drainage basin (MDB), the North East Coast (NEC),
and the South East Coast (SEC). These three drainage regions cover a latitudinal gradient along the east
coast of Australia and straddles the Great Dividing Range, which serves as a watershed, dividing the
two coastal drainage divisions from the large inland drainage region of the MDB. This AOI represents
a wide range of limnological, climatological, and land-use factors. Table A3 presents a summary of the
main characteristics of each of the three drainage regions.

ARD Sentinel-2A and Sentinel-2B surface reflectance observations were extracted from DEA at
885 locations, over a period spanning 2016–2019. The data represent water quality variability over a
wide variety of seasonal and limnological conditions.

The spectral observations were filtered using the pixel quality flags provided by the DEA dataset
to ensure that only pure water pixels were analysed. An additional SWIR threshold was applied to
limit the number of glint-affected pixels included in the final dataset [75]. Each location was tagged as
coastal (estuaries and coastal lakes) or inland (fresh water) using the Australian coastal waterways
map layer [76]. Inland locations were also tagged as rivers (bodies of mainly flowing water) and
lakes (bodies of mainly static water/reservoirs), using GEODATA TOPO 2.5M 2003 map layers [77].
All locations were also tagged with the associated drainage basin and with an elevation class using
GEODATA TOPO 2.5M 2003 map layers.

2.3. Data Analysis

The modelled Rrs spectra, corresponding to the spectral shape of each of the observations that
describe the OWT clusters, were convolved to the spectral response of the Sentinel-2 MSI bands.
The surface reflectance of the Sentinel-2 MSI pixel observations was compared to each convolved
modelled spectrum in each of the clusters using the normalized Spectral Similarity Metric (nSSM) [78]
and assigned to the cluster that yielded the lowest nSSM metric.

The nSSM combines the spectral shape and a normalized Euclidean distance (nED) between
spectra, accounting for differences in albedo, to determine the level at which spectra can be separated
from each other. This metric enables objective determination of the similarity between spectra, where a
smaller nSSM value represents a better match.

Observations where the smallest nSSM value exceeded a maximum threshold were considered
unclassified. To define the nSSM threshold, the modelled Rrs spectral response of each in situ
observation was compared with each other and the threshold was determined by determining the
lowest nSSM value where most of the modelled OWT spectra were assigned to their original cluster.

3. Results

Concurrent in situ AOP measurements for 73 of the 110 inland data points shows a relatively good
comparison between model derived and measured Rrs (Figure 4). Linear percentage error [28] indicates
wavelength-dependent differences, introduced by the confounding effects of environmental factors,
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such as atmospheric variability, the water surface state (with swell-, wave-, and wavelet-induced
reflections), and refraction of diffuse and direct sky and sunlight [55]. Errors are larger where the signal
is smallest, e.g., below 450 nm and above 700 nm. The agreement between modelled and measured Rrs

gave us confidence to use the modelled spectra to analyse spectral variability on Australian waters.
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Figure 4. Comparison between model-estimated and in situ measured Rrs over the inland dataset
(n = 75), presented as wavelength dependent linear percent error.

Spectral clustering resulted in 32 and 17 unique clusters for the coastal and inland waters datasets,
respectively. The results of the analysis of variance test applied to the SIOP data for each cluster
are listed in Table 3. The test showed that the spectral slope constant of NAP absorption coefficient
(γ aNAP) contributed significantly to spectral variability within both the coastal and inland waters
dataset while chlorophyll concentration contributed significantly to spectral variability within the
coastal dataset and NAP concentration contributed significantly to spectral variability within the
inland dataset. The absorption of CDOM at 440 nm (aCDOM(440 nm)) had a strongly significant effect
on spectral variability within the coastal dataset and a lesser effect on spectral variability within the
inland dataset.

Table 3. Analysis of variance of the input specific inherent optical properties (SIOP) parameters between
the spectral classes returned by the hierarchical clustering of the simulated Rrs data. Black text indicates
the coastal/marine waters dataset (n = 32), and grey text indicates the inland waters dataset (n = 17).
Refer to Table A2 for a description and units of water column constituents presented in this table.

N Sum Sq Mean Sq F Value Pr(>F)

CCHL 32 289.60 9.05 6.50 <0.001
17 16796 988 0.19 1.000

CNAP 32 1196 37.38 0.70 0.884
17 5159 303.45 3.42 <0.001

a*PHY(440 nm) 32 7.81E−02 2.44E−03 0.66 0.925
17 5.46E−03 3.21E−03 0.48 0.958

a*PHY(676 nm) 32 2.82E−03 8.81E−05 0.37 0.999
17 5.64E−04 3.32E−05 0.157 1.000

γ aCDOM 32 06.00E−04 1.87E−05 0.93 0.576
17 1.08E−04 6.36E−06 0.96 0.509

aCDOM(440 nm) 32 19.62 0.6132 2.57 <0.001
17 15.33 0.9016 1.75 0.047

a*NAP(440 nm) 32 1.53E−02 4.79E−04 0.63 0.944
17 5.74E−02 3.38E−03 1.52 0.105

γ aNAP 32 6.67E−4 2.09E−05 2.60 <0.001
17 3.03E−4 1.78E−05 3.20 <0.001

Following clustering and merging, most of the modelled spectra and modelled SIOP sets were
clustered in five groups within the coastal dataset (240 of the 286 observations) and six groups within
the inland dataset (102 of the 110 observations). The remaining 54 spectra represents small clusters
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(n < 4) or individual in situ observations that were too distinct, both spectrally and bio-optically, to be
grouped with any of the bigger clusters or each other. Figure 4 shows the variability in optically active
water column constituents (a–c) and SIOPs (d–h) of the 11 clusters that emerged from the data analysis.
Figures 5 and 6 shows the variability in the concentration, absorption and scattering characteristics of
the optically active water column constituents of the 11 clusters. A summary of the main features of
the 11 clusters is presented in Table 4.
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Figure 5. Probability density plots of (a) chlorophyll-a concentration, (b) NAP concentration,
(c) absorption of CDOM at 440 nm, (d) spectral slope constant of CDOM absorption coefficient,
(e) specific absorption coefficient of NAP at 440 nm, (f) spectral slope constant of NAP absorption
coefficient, (g) specific backscattering due to NAP at 555 nm, (h) spectral slope constant of NAP
backscattering coefficient for each of the 11 combined clusters. Clusters 01–05 are derived from the
coastal dataset, and clusters 06–11 are derived from the inland dataset.
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Table 4. Summary of the main characteristics of the major optical water types (OWT) clusters in this study Clusters 01–05 are derived from the coastal dataset,
and clusters 06–11 are derived from the inland dataset. Clusters 07, 08, and 10 are comprised of merged groupings from smaller, similar clusters.

Cluster# N Reflectivity Rrs Characteristics 1 SIOP Characteristics 2 Dominant Absorber 3 Description

01 135 low broad plateau peaking between 400 nm and 500 nm lowest Chl CDOM oligotrophic coastal waters with low
amounts of suspended material

02 39 moderate maximum peak between 480 nm and 500 nm
smaller peak around 545 nm highest aCDOM(440 nm) of coastal waters CDOM coastal waters with a strong

estuarine influence

03 55 low broad plateau peaking between 475 nm and 575 nm lowest NAP of coastal waters CDOM
open coastal waters with higher
amounts of suspended organic

material than c3

04 6 moderate broad plateau peaking between 500 nm and 600 nm highest chl and a*PHY (440 nm) of
coastal waters PHY eutrophic tropical coastal waters

05 6 moderate steep increase from 350 nm to 560 nm followed by a
sharp decrease to 600 nm highest γ aNAP of coastal waters NAP and CDOM

relatively turbid tropical coastal
waters containing organic particulate

material
06 42 low broad plateau peaking between 500 nm and 600 nm lowest b*bNAP (555 nm) of inland waters CDOM clear inland lake waters

07 5 high
steep increase from 350 nm to a peak at 570 nm,

followed by a decrease to an absorption peak at 680 nm
with a smaller peak around 700 nm

highest chl and very low NAP PHY eutrophic waters with high
phytoplankton content

08 6 high steep increase from 350 nm to a peak at 570 nm,
followed by a gradual decrease to around 700 nm low NAP and relatively high Chl CDOM CDOM rich waters

09 27 moderate steep increase from 350 nm to a peak at 570 nm,
followed by a gradual decrease to around 700 nm

relatively high NAP and low b*bNAP
(555 nm) CDOM and NAP relatively clear inland waters with

small suspended particles

10 4 high steep increase from 350 nm to a peak at 580 nm,
followed by a more gradual decrease to around 700 nm

high NAP, high aCDOM(440 nm) and
largest γNAP CDOM sediment laden waters containing

organic particulate material

11 21 moderate steep increase from 350 nm to a peak at 590 nm,
followed by a broad shoulder between 590–700 nm

Highest NAP, relatively low b*bNAP
(555 nm) NAP and CDOM Sediment laden waters with small

suspended particles
1 Figure 7, 2 Figure 5, 3 Figure 6
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Figure 7 captures the variability in spectral shape of each of the observations that describe the
11 OWTs in the dataset. There is a clear distinction between the clusters that made up the coastal
dataset (01–05) and those of the inland dataset (06–11). The coastal spectra tend to be dominated by
response curves that peaks in the blue region of the spectrum while the inland spectral responses peak
predominantly within the green and red region of the spectrum.

Figure 8 shows the spatial distribution of 885 locations with relatively permanent water bodies
of sufficient size to not be affected by adjacency effects. The colour scale indicates the number of
Sentinel-2 MSI observations retrieved from each point, while the three major drainage regions in the
AOI are delineated in shades of grey. There were generally fewer observations on the western and
northern sides of the MDB and in the far north of the NEC.Remote Sens. 2020, 01, x FOR PEER REVIEW 14 of 26 
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Figure 8. Spatial distribution of waterbodies used in the spatial and temporal analysis. Colour scale
indicates the number of Sentinel-2 MSI observations retrieved at each location from the launch of
Sentinel-2 A and B until 31/05/2019. Grey polygons show the extent of the three drainage regions
(MDB: Murray-Darling drainage basin, NEC: North East Coast, SEC: South East Coast).

To determine to what extent the nSSM could match Sentinel-2 MSI surface reflectance data to the
11 OWTs, each convolved Rrs spectrum was compared to the cluster medians and ranges and assigned
to the cluster that yielded the lowest nSSM metric. Ideally, the input spectra would be matched
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back to the original groupings that they were clustered to. However, with the reduced number of
spectral bands implemented for the Sentinel-2 MSI spectra (compared to the 90 spectral bands used
for the cluster analysis), some of the finer spectral differences between the clusters will be degraded.
Table 5 shows an overall classification accuracy of 69% with a Kappa of 62%. Some clusters are more
uniquely separable than others (e.g., 11). A few of the clusters with smaller sample sizes are more often
mis-classified (e.g., 05, 07, 08, and 10). It should be noted that 08, 07, and 10 are comprised of smaller
clusters that were bio-optically similar, thus compromising the spectral uniqueness of the groupings.
Within the clusters with a higher number of observations, generally data belonging to the coastal
dataset is most often misclassified into another coastal OWT. OWT 06, representing deep, clear inland
lakes is often confused with coastal clusters, representing clear coastal waters. Cluster 09 appears to
not be spectrally unique with misclassifications into several other classes.

Table 5. Confusion matrix of simulated spectral response of the SIOP observation in the Australian
water database, convolved to five Seninel-2 MSI bands, matched to the convolved spectral response of
the OWT cluster medians and ranges.

01 02 03 04 05 06 07 08 09 10 11 Accuracy (%) Sensitivity Precision (%)

01 102 0 18 0 0 15 0 0 0 0 0 89 0.91 76
02 0 25 1 0 11 3 0 0 2 0 0 79 0.64 60
03 4 7 39 0 0 5 0 0 1 0 0 78 0.63 70
04 0 0 0 4 1 0 0 0 1 0 0 75 0.50 67
05 0 1 0 2 3 0 0 0 0 0 0 57 0.16 50
06 6 0 3 0 0 30 0 0 2 0 0 76 0.56 73
07 0 0 0 0 0 0 2 1 0 1 0 75 0.50 50
08 0 0 0 0 0 0 1 3 0 2 0 68 0.38 50
09 0 6 1 2 4 1 0 0 13 0 0 82 0.68 48
10 0 0 0 0 0 0 1 3 0 0 0 49 0.00 0
11 0 0 0 0 0 0 0 1 0 0 19 100 1.00 95

Overall
Accuracy: 69%

Kappa: 62%

Of the 69% of the convolved Rrs spectra that were correctly matched to the original OWT
clusters, 20% were matched with an nSSM value of 1.0 or larger. 40% of the convolved Rrs spectra
that were incorrectly matched to the original OWT clusters had an nSSM value exceeding 1.0.
This value was selected as the maximum threshold where matches with a larger nSSM value were
considered unclassified.

The surface reflectance of the Sentinel-2 MSI pixel observations was compared to each convolved
modelled spectrum in each of the 11 clusters and assigned to the cluster that yielded the lowest nSSM
metric. An nSSM threshold was defined by determining the lowest nSSM where most of the modelled
OWT spectra were assigned to their original cluster. Any match greater than 1.00 was considered
spectrally distinct from all the existing OWTs and labelled “unclassified”.

Figures 9 and 10 show the limnological, landscape, and temporal distribution of OWTs matched to
Sentinel-2 MSI observations over each waterbody within the three drainage regions. The observations,
which were not matched with the existing OWTs, are labelled a red colour. There appear to be more
unclassified observations in the inland lakes and rivers class than in the coastal waters (Figure 9).

The inland lake and river classes show a clear limnological split east and west of the Great
Dividing Range (Figure 9). Waterbodies in the west (MDB) have a larger proportion of observations
with dominant spectral responses in the green and red part of the spectrum and waterbodies in the
east (NEC and SEC) have a higher proportion of observations with dominant spectral responses in the
blue part of the spectrum.



Remote Sens. 2020, 12, 3018 15 of 24

Remote Sens. 2020, 01, x FOR PEER REVIEW 16 of 26 

 

The SEC has a temperate climate with predominantly moderate summer rainfall (Table A3), 
resulting in an increase in the observation frequency of more sediment dominated water types in the 
summer months (December, January, February, Figure 10). It has many coastal waterways, 
characterized by estuarine waters (Figure 9). The lakes in this region are predominantly clear while 
many of the rivers in the lower elevations have water that is dominated by suspended sediments 
(Figure 8). This region has relatively similar proportions of unclassified observations within the 
coastal, lake, and river classes. The rivers class in the lower elevations has the most unclassified 
observations within this class in this drainage region. 

The monsoonal climate of the NEC (Table A3) results in a lower observation frequency in the 
summer months when conditions are cloudy (Figure 9). This region comprises of numerous drainage 
basins with predominantly natural waterways in the north. The southern drainage basins have more 
man-made water storages. There is also a climatological gradient with wet tropical conditions in the 
north and drier savannas towards the south and west. The coastal waterways in this region is 
characterized by estuarine waters (Figure 9). The lakes and rivers in this region are predominantly 
clear during the observation period while some rivers in the lower elevations have water that is 
dominated by suspended sediments (Figure 9). This region has relatively similar proportions of 
unclassified observations within the lake and river classes, while the coastal waterways have a 
relatively low proportion of unclassified observations. 

 
Figure 9. Distribution of OWT classes into elevation classes in three broad limnological categories 
(coastal: coastal waterways, lakes: predominantly static fresh water, rivers: predominantly flowing 
fresh water), retrieved from Sentinel-2 MSI observations over the three drainage regions. Y axis 
denotes frequency counts in each class and is scaled for clarity. 

0

500

1000

1500

2000

co
as

ta
l

Murray Darling Basin

0

1000

2000

3000

4000

South East Coast

0

200

400

600

North East Coast

0

500

1000

1500

2000

la
ke

s

0

1000

2000

3000

4000

0

200

400

600

0

500

1000

1500

2000

1: 
0-2

00
m

2: 
20

0-5
00m

3: 
50

0-1
000

m

4: 
>10

00
m

riv
er

s

0

1000

2000

3000

4000

1: 
0-2

00
m

2: 
20

0-5
00m

3: 
50

0-1
000

m

4: 
>10

00
m

0

200

400

600

1: 
0-2

00
m

2: 
20

0-5
00m

3: 
50

0-1
000

m

4: 
>10

00
m

01 02 03 04 05 06 07 08 09 10 11 unclassified

Figure 9. Distribution of OWT classes into elevation classes in three broad limnological categories
(coastal: coastal waterways, lakes: predominantly static fresh water, rivers: predominantly flowing
fresh water), retrieved from Sentinel-2 MSI observations over the three drainage regions. Y axis denotes
frequency counts in each class and is scaled for clarity.

The MDB is a predominantly inland drainage basin with a wide range of climatic and
geohydrological conditions (Table A3 in Appendix A). There is a strong bimodal clustering of
OWTs within the lakes and rivers class in this region (Figure 9) The observations in the lakes in
the lower elevations (<200m) falls predominantly in OWT classes where absorption is CDOM and
NAP dominated with high amounts of suspended sediment (11) or chlorophyll (08). Lakes in higher
elevations generally have clearer waters with a spectral response dominated by blue reflectance (02, 03,
06). Similarly, rivers in the lower elevations are more dominated by OWT classes with higher NAP
and chlorophyll concentrations, while the higher elevations are predominantly clearer waters that are
dominated by CDOM absorption (Figure 9). There appears to be a seasonal shift in water quality across
the MDB drainage region with the frequency of NAP dominated OWTs decreasing during the winter
months (June, July, August), and with an increase in the observation frequency of clearer OWTs during
this period (Figure 10). The lake class in the higher elevations has the most unclassified observations in
this drainage region.

The SEC has a temperate climate with predominantly moderate summer rainfall (Table A3),
resulting in an increase in the observation frequency of more sediment dominated water types in
the summer months (December, January, February, Figure 10). It has many coastal waterways,
characterized by estuarine waters (Figure 9). The lakes in this region are predominantly clear while
many of the rivers in the lower elevations have water that is dominated by suspended sediments
(Figure 8). This region has relatively similar proportions of unclassified observations within the coastal,
lake, and river classes. The rivers class in the lower elevations has the most unclassified observations
within this class in this drainage region.
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The monsoonal climate of the NEC (Table A3) results in a lower observation frequency in the
summer months when conditions are cloudy (Figure 9). This region comprises of numerous drainage
basins with predominantly natural waterways in the north. The southern drainage basins have more
man-made water storages. There is also a climatological gradient with wet tropical conditions in
the north and drier savannas towards the south and west. The coastal waterways in this region is
characterized by estuarine waters (Figure 9). The lakes and rivers in this region are predominantly clear
during the observation period while some rivers in the lower elevations have water that is dominated
by suspended sediments (Figure 9). This region has relatively similar proportions of unclassified
observations within the lake and river classes, while the coastal waterways have a relatively low
proportion of unclassified observations.Remote Sens. 2020, 01, x FOR PEER REVIEW 17 of 26 
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Figure 10. Distribution of OWT classes retrieved from Sentinel-2 MSI observations over the three
drainage divisions. Observations are clustered per calendar month, showing the frequency of
observations matched to each OWT over the observation period (2016–2019). Y axis denotes frequency
counts in each class and is scaled for clarity.

4. Discussion

The objective of this study was to improve our knowledge of the optical complexity of Australian
waters. A workflow was developed to cluster the modelled spectral response of a range of in situ
bio-optical observations collected in Australian coastal and continental waters.

Coastal and inland Case 2 waters share common features and represents a continuum from fresh
waters in catchments to coastal marine environments [1,2]. Despite this continuum, there is a clear
distinction between the clusters that made up the coastal dataset and those of the inland dataset in this
study. Similar to a global study by [1], the coastal spectra tend to be dominated by response curves
that peaks in the blue region of the spectrum, while the inland spectral responses peaks predominantly
within the green and red region of the spectrum.
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The coastal clusters represent Australian coastal waters ranging from clear blue to more turbid
estuarine waters. The first three coastal OWTs (01, 02, 03) have a strong blue reflectance signal,
relative to the rest of the spectrum with absorption budgets dominated by CDOM absorption. The 01
OWT most closely resembles open ocean waters, with NAP absorption affecting the absorption
budget to a small degree and very low inputs from phytoplankton. The 02 OWT represents coastal
waters with a strong estuarine influence. It has the lowest γaNAP, suggesting a higher proportion
of large organic particles [79,80]. The 02 OWT closely resembles the 01 OWT but has a higher
phytoplankton component. The remaining two coastal OWTs (04, 05) represents moderately reflective
tropical waters [49]. The 04 OWT is dominated by phytoplankton absorption and has relatively high
chlorophyll content, suggesting that this represents eutrophic lagoonal waters. The higher aCDOM

(440 nm) and smaller γaCDOM of the OWT indicates a coral reef matrix influence [49,81]. The higher
NAP concentration and large γaNAP of the 05 OWT implies that this OWT represents tropical waters
with a stronger coastal influence than 04.

The inland clusters represent eastern Australian continental waters ranging from relatively clear
alpine reservoirs to turbid shallow lakes. All these OWTs have a maximum reflectance peak around
570–585 nm. The first inland OWT (06) has relatively low reflectivity and low concentrations of water
column constituents, denoting clear waters with high transparency. The two green inland OWTs (07, 08)
are both highly reflective water types with high chlorophyll concentrations. They are spectrally very
similar with spectral differences mainly limited to a difference in the 705 nm reflectance peak and a lower
reflectance in the blue region by 08, characteristic of the stronger CDOM absorption in this OWT. The 07
OWT has a smaller median γ bbNAP and a larger median γ aNAP than 08, suggesting a predominance
of larger organic particles in the water column [79,80]. The last three OWTs represents waters that are
dominated by NAP and CDOM absorption with a relatively small phytoplankton component. The 09
OWT has a moderate reflectivity and represents fairly clear inland waters. The comparatively high
NAP absorption and low b*bNAP suggests a water column that is characterized by small suspended
particles. Both the 10 and 11 OWTs are highly reflective sediment-laden water types with high NAP
concentrations and high CDOM absorption. The large γaNAP of 10 suggests larger amounts of organic
particulate material [79] while the relatively low b*bNAP of the 11 OWT suggests waters with smaller
suspended particles [82].

To test the applicability of the 11 derived OWTs for water quality monitoring at a drainage basin
scale, temporal analysis was undertaken on Sentinel-2 MSI surface reflectance observations. A total of
885 sample locations across three drainage regions were used in the case study. The satellite-derived
surface reflectance observations, sourced from DEA, captured a wide range of climatological and
limnological conditions. The analysis demonstrated clear limnological and seasonal differences in
water types within and between the drainage divisions, which corresponds with general limnological,
topographical, and climatological factors. Due to the operational period of the Sentinel-2 satellite
platforms coinciding with severe drought conditions [83], there were generally fewer observations
on the western and northern sides of the MDB, as surface water extents were significantly reduced.
There were also fewer observations collected over this region before the Sentinel-2 platform was fully
operationalized, which further confounded the analysis. Less observations in the far north of the NEC
are predominantly due to cloud cover. As much of this region is subjected to monsoonal conditions
in summer [84], there are larger proportions of observations made in winter, which will affect any
analysis of seasonal water quality trends from satellite data in this region.

The DEA Landsat archive, representing more than 30 years of ARD observations, is ideal to
capture natural water quality variations caused by seasonal, limnological, and climatological factors
as well as anthropogenic factors, such as land-use change [85]. However, the atmospheric correction
protocol implemented on DEA satellite data is based on standard terrestrial aerosol climatology
model parameters. Atmospheric correction over water bodies is challenging because waterbodies
are dark, and about 90% of the signal received by the sensor is not caused by the water itself [86,87].
The large positive bias in the shape of the reflectance in the blue bands over water targets, which
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is introduced by this model [73], renders the Landsat data unsuitable for the purpose of this study.
With future reprocessing, incorporating a maritime aerosol type, in combination with the Landsat-8 top
of atmosphere (TOA) reflectance-calibrated product and a glint-correction algorithm [73], the spectral
shape of the blue bands will be more suitable for aquatic applications on DEA datasets.

Although the Sentinel-2 MSI data on DEA are corrected with the same atmospheric correction
parameterization as the Landsat data, the increased number of spectral bands and finer spatial
resolution somewhat alleviates the existing issues with the spectral shape of the surface reflectance
spectra. To further limit the confounding effects of the existing atmospheric correction protocol on the
spectral shape of aquatic targets, the coastal blue band of the Sentinel-2 MSI sensor was excluded from
the analysis.

The optical cluster analysis was carried out on hyperspectral modelled Rrs spectra whilst the
spectral matching of the case study was applied to five multispectral bands. The reduced spectral
coverage of multispectral sensors limits the separability of water types because some water column
constituents have characteristic absorption features in narrow sections of the spectrum [88]. The reduced
number of spectral bands implemented for the Sentinel-2 MSI spectral analysis degraded some of the
finer spectral differences between the clusters. Due to the limited spectral resolution of the Sentinel-2
satellite data, the spectral signatures of some of the OWTs in this study became less uniquely separable
than others. To mitigate the confounding effect of the reduced spectral resolution of the Sentinel-2
bands, a threshold metric was defined. An optimal threshold is a compromise between maximizing
the probability of a correct match and minimizing the rate of false positive matches [89]. The threshold
defined for the nSSM metric balances the requirement to capture the maximum number of correct
spectral matches with the need to identify areas where there are genuine gaps in the existing water
quality database. To limit the confounding effect of environmental factors on the accuracy of results,
care was taken to select only observations that were not affected by atmospheric variability, sun glint,
and the effects of the brighter response of adjacent terrestrial targets [56].

The OWT classification of waterbodies demonstrates clear limnological and seasonal differences in
water types within and between the drainage divisions, which corresponds with general limnological,
topographical, and climatological factors in those regions [84]. Unclassified observations were clustered
predominantly in lakes within the alpine regions and east of the Great Dividing Range. Observations
within rivers (flowing water) are less frequently labelled unclassified. Targets with a higher albedo
were more often matched to an OWT, suggesting that some of the unclassified observations in the
deep, clear lakes in the alpine regions [84] may be due to low target albedo. The water leaving signal
at the satellite sensor is a small part of the total measured signal [86,88]; this potentially constrains the
ability of the Sentinel-2 sensor to record a sufficient amount of water leaving light through a set of
atmospheric and air water interface conditions to allow a clearly distinguishable spectral signature
that can be matched to an existing OWT.

5. Conclusions

The OWTs defined in this study were based on in situ observations capturing the bio-optical
response of a wide range seasonal and geographical variability. The extent of the Australian coastline
and diversity of continental landscape and climatic features implies that there may still be gaps in
our knowledge. For example, the current coastal dataset, except for the Great Barrier Reef, lacks the
temporal range to fully understand the variability associated with seasons [90]. Similarly, the inland
dataset has been sourced exclusively from eastern Australia and lacks data associated with unique
limnological features further west [91].

The deficiency in capturing the full variability of water quality across the Australian landscape
can be observed in the clustering of waterbodies that regularly do not match to any of the existing
OWTs in the study area of the case study. The locations of the unclassified observations can be used to
inform where investment for in situ bio-optical data acquisition may be better targeted to achieve a
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more comprehensive objective characterization of all Australian waters, which can contribute to global
initiatives like the SDG.
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Appendix A

Table A1. Glossary of acronyms used in this manuscript.

Acronym Description

AOI Area of Interest
ARD Analysis ready data
DEA Digital Earth Australia
ED Euclidian Distance
EO Earth Observation

FCM Fuzzy-c Means
GIOP Generalized Inherent Optical Properties
IOP Inherent Optical Properties

IOSODATA Iterative Self-Organizing Data Analysis Techniques
Kd Vertical Attenuations

MDB Murray-Darling Basin
NAP Non-algal particulates
NCI National Computing Infrastructure
NEC North East Coastal
nSSM normalized Spectral Similarity Metric
ODC Open Data Cube
OWT Optical Water Types

Rrs Remote Sensing reflectance
rrs Subsurface reflectance

SDG Sustainable Development Goals
SDz Secchi Depth
SEC South East Coastal
SIOP Specific Inherent Optical Properties
TOA Top of Atmosphere
TSS Total Suspended Solids

WFCM Weighted Fuzzy-c Means
WOfS Water Observations from Space

http://www.mdpi.com/2072-4292/12/18/3018/s1
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Table A2. Glossary of water column constituents presented in this study.

Parameter Description Unit

CCHL Chlorophyll concentration (a proxy for phytoplankton) µg L−1

CDOM Coloured dissolved organic matter
CNAP Non algal particulates concentration mg L−1

PHY Phytoplankton
a*PHY(440 nm) Chlorophyll-a specific absorption at 440 nm m2mg−1

a*PHY(676 nm) Chlorophyll-a specific absorption at 676 nm m2mg−1

γ aCDOM Spectral slope constant of CDOM absorption coefficient nm−1

aCDOM(440 nm) Absorption of CDOM at 440 nm m−1

a*NAP(440 nm) Specific absorption of NAP at 440 nm m2g−1

γ aNAP Spectral slope constant of NAP absorption coefficient nm−1

b*bNAP(555 nm) Specific backscattering due to NAP at 555 nm m2g−1

γ bbNAP Spectral slope constant of NAP backscattering coefficient nm−1

Table A3. Summary of the main characteristics of the three drainage regions in Eastern Australia used
as the area of interest (AOI) of the case study.

Basin Area
(km2)

Mean Rainfall
(mm)

Mean
Elevation (m) Climate Hydrogeology Land Use

MDB 1,061,000 458 260

Range of climatic
conditions: cool and

humid eastern
uplands;

temperate southeast;
subtropical northeast
with monsoonal rain;

hot, dry semi-arid;
arid western plains.

Basinal aquifers in
sedimentary deposits

within the flatter
landscapes; fractured

rock aquifers and
valley-fill alluvium in

the highlands
bordering the basin.

Dryland pasture,
dryland and irrigated
cropping, and urban

land use.

NEC 451,000 827 173

Subtropical to tropical
with hot,

wet summers and
cooler, dry winters.

Monsoonal summer
rainfall in the north,

winter rainfall
the south.

Topographically
diverse terrain with
high relief in coastal

ranges and tablelands
and coastal alluvial
plains. Outcropping
fractured basement
rock, alluvial valley
systems, and coastal

sand deposits.

Native pasture,
dryland and irrigated
agriculture, and urban

land use.

SEC 129,500 995 323
Warm temperate

climate with
moderate rainfall.

Outcropping
fractured basement
rock, alluvial valley,

and coastal sand
aquifers.

Nature conservation,
dryland pasture,

irrigated and dryland
cropping, and urban

land use
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