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Abstract
The impact of the data assimilation process of air temperature and relative humidity from surface meteorological sta-
tions and sounding at airports in the terminal area of Rio de Janeiro is evaluated using the Weather Research and Fore-
cast Data Assimilation system. Synthetic data of temperature, relative humidity and wind are generated in the locations
of airport sensors by applying a white-noise perturbation in the forecast data. Results show a positive overall impact of
the assimilation process with the removal of part of the noise in the observation data but keeping the effect of local con-
ditions in the later timesteps of the simulation. In addition, with the assimilation process there is a global reduction of
the error between the analysis data and the observation data. In the future, a neural network will be trained to emulate
the data assimilation process to speed-up the assimilation process in the WRF model.

Keywords data assimilation, 3d Var, surface data, profile data.

Assimilação de Dados Utilizando o WRFDA na Área Terminal
do Rio de Janeiro

Resumo
O impacto do processo de assimilação de dados de temperatura do ar e umidade relativa de estações meteorológicas de
superfície e sondagem em aeroportos na área terminal do Rio de Janeiro é avaliado usando o sistema Weather Research
and Forecast Data Assimilation. Dados sintéticos de temperatura, umidade relativa e vento, são gerados nas localidades
dos sensores dos aeroportos a partir da aplicação de uma perturbação gaussiana nos dados de previsão. Resultados mos-
tram um resultado positivo do processo de assimilação com remoção de parte do ruído nos dados de observação, mas
mantendo o efeito das condições locais nos instantes posteriores da simulação. Além disso, com o processo de assim-
ilação há uma redução global no domínio do erro entre os dados da análise e os dados de observação. No futuro, uma
rede neural será treinada para emular o processo de assimilação de dados para acelerar o processo de assimilação no
modelo WRF.

Palavras-chave: assimilação de dados, 3d Var, dados de superfície, sondagem.

1. Introduction
Numerical weather forecasting is considered an

initial-value problem where the present state of the atmo-
sphere is used as input to a numerical model for simulating
or forecasting its evolution on space and time. The pro-

blem of the initial condition determination for a forecast
model is essential and complex, and has become a science
in itself (Daley, 1991). Several methods have been devel-
oped since the 1950s to tackle this problem. Lorenc
(1986), Daley (1991), Talagrand (1997), Zupanski and
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Kalnay (1999), Kalnay (2002), Barker et al. (2004), Bar-
ker et al. (2012), Lorenc and Jardak (2018), among others
provide a broader review on data analysis and assimilation
techniques.

In meteorology, there is a wide variety of data sour-
ces to be assimilated to accurately estimate the state of the
atmosphere, which includes conventional and non-con-
ventional data. Conventional data include surface meteor-
ological stations, balloon soundings, aircraft and ship
observations. On the other hand, data retrieved from satel-
lites (e.g. radiance), wind profilers (e.g. SODAR, LIDAR),
and radar are usually known as non-conventional. Con-
ventional data are commonly assimilated in global models,
but very often the local conditions they represent are
smoothed due: low-resolution models, data quality control
that let some data sources out of the global model run1 due
to missing data or errors, delay in data transmission to the
global operational centers, many data sources are not part
of the Global Telecommunication System (GTS), such as
local wind profilers (SODAR, LiDAR) and RADAR.
interpolation methods and quality control routines. Also,
not all observations are part of the global observation net-
work and thus are not processed by data assimilation rou-
tines of global models. Therefore, to accurately determine
the state of the atmosphere it is mandatory not to rely only
on the global model's analysis, but also, to assimilate all
the available local data.

The present article is part of a sequence of studies
related to nowcasting that have been executed by the
Applied Meteorological Laboratory at the Federal Uni-
versity of Rio de Janeiro, following Almeida (2009), Silva
et al. (2016), França, Almeida, and Rossete (2016), França
et al. (2018), Paulucci et al. (2019), and Almeida et al.
(2020a, 2020b). All these studies encompass researches
based on artificial intelligence and methods of limited-area
numerical weather forecasts. This work relates to the lat-
ter, exploring the sensibility of the Weather Research and
Forecasting (WRF) regional model for surface and upper-
air data assimilation in the metropolitan area of Rio de
Janeiro.

2. Material and Methods
The study area in the present work is the metropoli-

tan area of Rio de Janeiro and its surroundings (Fig. 1)
located approximately at latitude 22°55’44.3” S and long-
itude 43°24’21.1” W. The most import airports in the
region are highlighted in Fig. 1 by their International Civil
Aviation Organization (ICAO) codes: Santos Dumont Air-
port (SBRJ), Galeão International Airport (SBGL), Santa
Cruz Air Force Base (SBSC), Jacarepaguá Airport and
Afonsos Air Force Base (SBAF).

Each airport is responsible for local hourly routine
and special reports surface observations of several meteo-
rological parameters as surface wind (direction and

speed), visibility, significant weather, cloud cover, air and
dewpoint temperature, and station pressure. Besides, the
SBGL airport has an upper-air (or sounding) station that
produces regularly atmospheric soundings twice a day, the
atmospheric profile of pressure, air and dewpoint tempera-
ture, relative humidity, and wind (direction and speed),
from the surface up to more than 25 km.

The numerical experiments performed using the
NCEP FNL (Final) Operational Global Analysis data for
initial and boundary conditions. The FNL data are avail-
able on 1-degree grids prepared operationally every 6 h.
This product is from the Global Data Assimilation System
(GDAS), which continuously collects observational data
from the Global Telecommunications System (GTS), and
other sources.

2.1. WRF model
The WRF Model is a mesoscale numerical weather

prediction system designed for both atmospheric research
and operational forecasting applications. It features two
dynamical cores, a data assimilation system, and a soft-
ware architecture supporting parallel computation and
system extensibility. The effort to develop WRF began in
the latter 1990s and was a collaborative partnership of the
National Center for Atmospheric Research (NCAR), the
National Oceanic and Atmospheric Administration (repre-
sented by the National Centers for Environmental Predic-
tion (NCEP) and the Earth System Research Laboratory),
the U.S. Air Force, the Naval Research Laboratory, the
University of Oklahoma, and the Federal Aviation Admin-

Figure 1 - Domain and computational grid. The labels SBSC, SBAF,
SBJR, SBRJ and SBGL are the locations of the airports in the metropoli-
tan area of Rio de Janeiro.
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istration (FAA). Please refer to the WRF Users Guide and
the Technical Note document available at WRF website
for completeness of the description of WRF (Skamarock
et al., 2019).

The WRF model solves a set of equations that con-
trol the state and evolution of the atmosphere, including:
(i) conservation of momentum; (ii) thermodynamic energy
conservation; (iii) mass conservation; (iv) geopotential
relation; and (v) the equation of state. Also, several physi-
cal processes are parameterized (e.g. short and longwave
radiation transfer, surface modeling, turbulence, cumulus
convection, cloud microphysics and precipitation),
because these ones are too small, too brief, too complex,
too poorly understood, or too computationally costly to be
explicitly represented.

In our numerical experiments, the WRF model is
integrated into a 2-km grid with 35 levels in vertical, gen-
erating hourly outputs from the surface and pressure-level
variables. Regarding the parametrizations the following
options were chosen: Microphysics - WRF Single-
moment 3 (Hong et al., 2004), Cumulus - Grell-Freitas
Ensemble Scheme (Grell and Freitas, 2014), Radiation -
Dudhia Shortwave Scheme (Dudhia, 1989)/ RRTM Long-
wave Scheme (Mlawer et al., 1997) , Planetary Boundary
Layer - Yonsei University Scheme (YSU) (Hong, 2006)

and Land-Surface model - Unified Noah Land Surface
Model (Tewari et al., 2004).

2.2. Data assimilation method: 3D-Var
The 3D-Var approach was used as implemented in

the Data Assimilation component of the WRF framework.
The basic ideas of variational data assimilation and speci-
fically the WRF Data Assimilation (WRFDA) system is
deeply discussed in Barker et al. (2004) and Barker et al.
(2012).

Among various data assimilation methods, the varia-
tional approaches have been widely used in meteorology,
specifically the method 3D-Var. In the 3D-Var approach, a
cost function (Eq. (1)) is defined which is proportional to
the square of the distance between the analysis (→x

a
) and

both the background (→x
b
) and the observations (→y

O
)

(Sasaki, 1970; Kalnay, 2012). The analysis field is com-
puted by the direct minimization of such function. Impor-
tant to notice that the error matrices for both the
background (B) and observation R are considered in the
minimization process. The operator H mapped the gridded
analysis to the observation space for comparison against

the observation matrix →y
O
. The analysis →x

a
is computed

by minimizing the cost function (J) expressed below:

J =
1
2
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where R is the covariance matrix of the observation errors,
and B is the covariance of the background errors matrix.
The latter matrix is computed as a vector product from the
difference of two WRF executions for a certain initial
condition (Barker et al., 2004). Here, the B matrix was
computed by the NMC method (Parrish and Derber, 1992)
and the R matrix entries are the same from a table of
observation errors for each major observation type, as
used in the US Air Force Weather Agency applications
(Barker et al., 2012).

The 3D-Var approach is described in the details in
Barker et al. (2004), and also in chapter 6 of the WRF
User's Guide.

2.3. Description of Experiments
Experiments with 6h-cycle for 7 days with data

assimilation are performed using the WRFDA in 2014 and
2015 starting on February 1st with 168 h for time-integra-
tion (seven days). February is a very important month in
Southern Hemisphere summer. This month is characterized
by a peak of atmospheric discharges in Rio de Janeiro (Pau-
lucci et al., 2019) and the development of intense con-
vective events. Lastly, after the end-of-the-year holidays,
February has a peak ofmovements in airports, becoming the

period relevant - since our study is a joint research between
the FederalUniversity of Rio de Janeiro and theDepartment
of Airspace Control (DECEA), a division of the Brazilian
Air Force. The data assimilation is carried out every 6 h for
surface variables (air temperature, relative humidity, and
wind direction and speed) at the airport locations, and every
12 h for upper-air variables (air temperature, relative humi-
dity, andwind direction and speed) at SBGL location.

The experiment was performed in the following
steps:
a. White-noise perturbation is applied to GFS analysis

field on Feb, 1st 00 UTC at the airport locations for sur-
face and upper-air data generating synthetic observa-
tions;

b. Synthetic observations are placed on the exact coordi-
nates where real sensors are located;

c. New analysis field is generated from synthetic obser-
vations and background field using the 3D-Var data
assimilation technique;

d. WRF model is integrated for 6-h;
e. Steps (i)-(iii) are repeated until Feb, 8th 00 UTC with

surface data assimilation every 6 h and upper-air data
assimilation every 12 h;

f. Steps (i)-(iv) are repeated for the same period of 168h
for 2014 and 2015.
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3. Results and Discussions
This section presents the results of the experiments

performed in this work showing the characteristics of data
assimilation in the study area.

Before presenting the results, a discussion is neces-
sary regarding the domain definition and the use of a sin-
gle domain instead of nested domains. An experiment
comparing 6-h assimilation cycle was performed con-
sidering a nested experiment (with three grids of 32 km,
8 km and 2 km for horizontal resolutions, respectively),
and a single-domain experiment (with a 2-km grid). Fig-
ure 2 shows the result of a 6-h assimilation cycle for the
single-domain (Fig. 2a) and the nested-domain (Fig. 2b)
experiments at each airport within the study area. The
comparison was performed on the 2-km horizontal resolu-
tion grid. Figure 2 shows the effect of the assimilation
process is very similar for both experiments, in other
words, there is a reduction of the white-noise perturbation
for both analysis. Therefore, the mentioned experiments
allow us to use a single-domain (computationally cheaper)
instead of using nested domains.

Any data assimilation method consists basically in
optimally merging observation and forecast fields to gen-

erate the best approximation of the true state of a dynamic
system. The observations do not represent “the reality” but
the closest estimate of the true state superimposed with
some noise due to the nature of the sensors. Therefore, a
good strategy to evaluate a data assimilation algorithm is
to apply some perturbation in the location of the sensors
and perform a data assimilation process. If this algorithm
is working, the expected result is that the perturbation
would be partially removed and the analysis field would
be closer to the original field (before the perturbation
application), that is, our “true” state of the dynamical sys-
tem.

Figures 3 to 6 present the results of the assimilation
process for air temperature, relative humidity, wind speed
and wind speed profile at SBGL. All figures have the fol-
lowing structure: (a) control - 6-h forecast from initial
field without assimilation; (b) background - 6-h forecast
from initial field with assimilation; (c) analysis - initial
field with surface and upper-air assimilation; and (d) the
difference from analysis and control field.

Figure 3a shows that on Feb 1st, 2014 06 UTC the
process of data assimilation generated an analysis field
(Fig. 3c) with greater temperature values in the surround-

Figure 2 - Experiments for 6-h assimilation cycle at each airport for (a) single domain and (b) nested domain.
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ings of the station locations, mainly close to SBAF. Con-
sidering that the white-noise perturbation magnitude was a
real number between 0 and 3 K the differences between
analysis and control field (Fig. 3d) show that the data
assimilation process removed 80-90% of the noise, and the
resultingmagnitude of innovationwas not greater than |0.6|.

In a similar analysis, Fig. 4 show the impact of data
assimilation process to the 2-m relative humidity field.
Differently from what was observed for the temperature
field in Fig. 3, the resulting innovation matrix generated
by the 3D-Var (Fig. 4d) reached greater values, with
regions with innovations up to 50% of the initial perturba-
tion.

The wind speed (Fig. 5) shows that the data assim-
ilation process generated an innovation (Fig. 5d) of up to

60% of the white-noise perturbation applied to the control
field - which had a magnitude of up to 1 m s-1. The diffi-
culties involved into analyzing a vector field (the wind
variable) in comparison to scalar variables (e.g. air tem-
perature and relative humidity) are noteworthy. As shown
in Fig. 5d, small perturbations in vector fields seem to
cause perturbation in almost the whole domain whereas
the innovation in scalar fields (Fig. 3d and 4d) are more
restricted to surroundings of stations - where the perturba-
tion was applied. The analysis of wind speed profile
(Fig. 6) shows that the difference between analysis and
control (Fig. 6d) was close to zero from 850 hPa upward,
with small increase in the layer between 800 and 650 hPa.
Greater positive impact is observed close to surface, pos-
sibly related to the contribution of the surface data assim-

Figure 3 - Air temperature field for (a) control and observation points, (b) background, (c) analysis and (d) difference from analysis and control, for Feb
1st, 2014 06 UTC.
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ilation. Differently from the surface field, the impact in the
vertical profile does not exceed 20% of the white noise
perturbation. The small effect of the assimilation process
might be related to the way that 3D-Var computes the
impact of the station data in its surroundings, that is, the
process of interpolation from observation grid to the
model grid by the H operator (see eq. 1) after the innova-
tion calculation.

In summary, all figures show a similar behavior, with
small errors between analysis and control field, as expec-
ted, showing that the assimilation process removed most
of the white-noise perturbation existent on the observation
data.

Therefore, the results of data assimilation process
using synthetic data (air temperature, relative humidity

and wind speed), show that the 3D-Var method in the
WRFDA system is able to perform a good estimate of the
control field, here representing the “true” state of the
dynamic system. The implications of such results are
important since it implicitly states that only by using local
data in the regional atmospheric model initialization the
weather forecasts are to be improved. Currently, many
observational data are not used because they are not con-
sidered by the global model assimilation system or
because they are not part of the global observation system.

Figures 7 presents the result of the background and
analysis errors (against synthetic observations) of air tem-
perature assimilation process at SBGL for every 6-h
between Feb 1st to 7th, 2014, and Feb 1st to 7th, 2015. As
expected, the assimilation process removes most of the

Figure 4 - Relative humidity field for (a) control and observation points , (b) analysis and (c) background and (d) difference from analysis and control
field, for Feb 1st, 2014 06 UTC
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white-noise perturbation existent on the observation data,
represented by lower errors in the data (solid line) com-
pared to the forecast (or background) values (dashed line),
as previously discussed in the analysis of Fig. 3.

Table 1 displays the statistics for all grid points and
surface variables used on the assimilation process. The

overall impact of the assimilation is positive for scalar
variables (air temperature and relative humidity) as shown
by the smaller values of analysis error compared to the
forecast error. As discussed in the analysis of Fig. 5-6
there is a difference in the assimilation for vector fields in
comparison to scalar variables. While the standard devia-

Figure 5 - Wind speed field for (a) control and observation points, (b) analysis and (c) background and (d) difference from analysis and control field, for
Feb 1st, 2014 06 UTC.

Table 1 - Statistics for all grid points and surface variables in the study domain. In the table, “std” refers to the standard variation and “error” to the dif-
ference between the background and analysis field to the synthetic observation.

Observation Background Analysis

Mean Std Mean Std Error Mean Std Error

Air temperature 30.13 3.84 27.48 3.45 9.00% 27.74 3.49 8.00%

Relative humidity 69.81 18.71 63.63 17.56 9.00% 65.22 17.46 7.00%

Wind speed 4.80 3.37 4.81 3.40 0.21% 4.79 3.38 0.21%
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tions of scalar variables are around 10% and 30% of the
mean for air temperature and relative humidity, respec-
tively, the standard deviation for wind speed is of the order
of the mean. Although the error is relatively small for

wind speed, the innovation in the wind speed is spread for
almost the whole domain - see from Fig. 5d, whereas the
innovation for scalar variables was closed to the station
locations and their surroundings.

Figure 6 - Profile field of wind speed for (a) control field, (b) analysis (c) background and (d) difference from analysis and observation field at SBGL, for
Feb 1st, 2014 06 UTC.
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4. Conclusions

The 3D-Var approach for data assimilation from the
WRF framework was evaluated for the surface and upper-
air data assimilation of METAR and TEMP at different
airports of the metropolitan area of Rio de Janeiro for a
168-h period in February 2014 and 2015.

Results showed that the assimilation routine was
able to adjust the background field of the airport tempera-
ture, relative humidity, and wind, providing a better esti-
mate of the true state of the atmosphere - closer to the
control field. Even though conventional data are com-
monly assimilated in global models, the local conditions
are smoothed. Therefore, meteorological fields can be
adjusted for improvements in mesoscale forecasts.

This results are in accordance to the results in the
experiments commonly carried out by University Cor-
poration for Atmospheric Research (UCAR) and the
National Center for Atmospheric Research (NCAR),
where numerical experiments are described for 1D sys-
tems and also to the results presented in Almeida et al.
(2020b). From the cited UCAR-NCAR experiments, they
conclude that the data assimilation process reduces the
added noise in the prior forecast and makes the posterior
field closer to the “actual dynamics”, that is, closer to the
true state of the system.

The assimilation method can be effective for the
short-range forecast and nowcasting time-window, under
24-h, removing the white-noise perturbation that is present
in real observations and also adjusting the meteorological
fields to local information.

In the future, the assimilation for real data using
neural networks (Cintra and Campos Velho, 2012) will be
tested to speed up the assimilation process, allowing for
high-frequency assimilation processes (e.g. rapid update

cycle) in the operational environment. The neural network
approach will be trained to emulate the 3D-Var, as descri-
bed in the framework described here.
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