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ABSTRACT

We investigate the synchronization of coupled electrochemical bursting oscillators using the electrodissolution of iron in sulfuric acid. The
dynamics of a single oscillator consisted of slow chaotic oscillations interrupted by a burst of fast spiking, generating a multiple time-scale
dynamical system. A wavelet analysis first decomposed the time series data from each oscillator into a fast and a slow component, and the
corresponding phases were also obtained. The phase synchronization of the fast and slow dynamics was analyzed as a function of electrical
coupling imposed by an external coupling resistance. For two oscillators, a progressive transition was observed: With increasing coupling
strength, first, the fast bursting intervals overlapped, which was followed by synchronization of the fast spiking, and finally, the slow chaotic
oscillations synchronized. With a population of globally coupled 25 oscillators, the coupling eliminated the fast dynamics, and only the syn-
chronization of the slow dynamics can be observed. The results demonstrated the complexities of synchronization with bursting oscillations
that could be useful in other systems with multiple time-scale dynamics, in particular, in neuronal networks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0041488

Oscillatory systems are characterized by underlying timescales

(e.g., period); when such systems interact through coupling, small

heterogeneities (i.e., different periods) can be suppressed through

synchronization. Here, we considered laboratory experiments

with the dissolution of iron wires in sulfuric acid. For each wire,

the dissolution rate can exhibit oscillations with two very differ-

ent timescales: Relatively slow chaotic oscillations are suddenly

interrupted by a burst of very fast spiking. The synchronization

of this very complex system was analyzed to reveal alignments of

the bursting intervals and the synchronization of the oscillations

of the corresponding timescales.

I. INTRODUCTION

Synchronization phenomenon has been reported and inves-
tigated in several areas1–4 and manifests itself in different ways.
Initially, for chaotic oscillators, the main interest was complete
synchronization,5,6 a situation in which two or more relatively
strongly coupled oscillators exhibit identical variations in the time
domain. However, at weaker coupling strengths, phase synchroniza-
tion (PS) can also occur; PS is a weaker form of synchronization,
in which the phase differences are bounded, although the evolution
of the amplitudes over time can remain independent.4,7 Character-
ization of PS requires a phase assignment to the chaotic process.
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For periodic oscillators, the phase variable φ(t) is assigned con-
sidering a monotonic increment equal to 2π for each full period
observed during the temporal evolution. For chaotic oscillators, the
phase variable φ(t) is considered the variable directly related to
the zero Lyapunov exponent of the attractor.4 As an analogy to
periodic oscillators, the Poincaré section can be applied as a phase
marker for chaotic oscillators, but other techniques are also avail-
able, e.g., projection in the phase space,8,9 Hilbert transform,10 or
continuous/discrete wavelet transforms.11–14

In many applications, e.g., in lasers, Faraday waves, climate
models, and biological and chemical systems, the oscillations exhibit
multiple timescales,15–24 and thus, these systems belong to multiple
time-scale dynamical systems (MTSDS). In the simplest example,
there are two different timescales, a fast and a slow. The slow dynam-
ics is characterized by periodic or chaotic oscillations, which displays
the longest wavelengths when compared with the typical oscillations
of the fast dynamics that can exhibit isolated firings (spike) or firing
sets (bursting) that are interrupted by the slow dynamics.

The characterization of synchronization between coupled
MTSDS-type oscillators is a difficult problem; the different
timescales can synchronize differently, and thus, a single phase vari-
able could not be used for characterization of PS.25 Furthermore,
while to synchronization of the slow dynamics can be described
as with the phase coherent oscillators, the fast dynamics can syn-
chronize in two different ways: The bursting synchronization occurs
when the respective burstings exhibit the same number of spikes
even when the spikes be asynchronous, and the spike synchroniza-
tion occurs when bursting synchronization and synchronous spike
patterns are jointly observed.23–27

The characterization of MTSDS synchronization could be facil-
itated if, in general, the different timescales could be separated.
Wavelet transforms provide an excellent for filtering, time-scale
separations,18,28 and phase assignment of the complex systems using
the Discrete Wavelet Complex Approach14,29 (DWCA).

In this paper, we investigate the synchronization of coupled
electrochemical MTSDS-type oscillators. Iron electrodissolution in
sulfuric acid exhibits chaotic slow dynamics interrupted by fast
periodic spiking as measured by the current I(t) (or the rate) of
the dissolution process at constant circuit potential.18 Previously, it
was demonstrated that Continuous Wavelet Transform (CWT) can
effectively separate the slow and fast dynamics.30 Here, the synchro-
nization transitions with 2 and 25 (globally) coupled oscillators are
analyzed. The experiments are performed with different coupling
strengths, and the extent of phase synchronization of the slow and
fast subsystems is calculated.

This article is organized as follows. Section II describes the
experimental setup and the numerical methods based on wavelet
transforms used in the phase assignment. The methodology for the
characterization of synchronization for the slow and fast subsystems
is described in Sec. III. In Sec. IV, the results are shown, separately
for 2 and 25 oscillator setups. Last, Sec. V contains the conclusions.

II. EXPERIMENTAL TECHNIQUES AND NUMERICAL

METHODS

This section describes the experimental setup that was used to
generate the data sets and the numerical methods used in the phase
assignment.

A. Experimental data

The experiments were performed in an electrochemical cell
containing 1 mol/L sulfuric acid with 0.5 mm diameter iron work-
ing, Hg/Hg2SO4 sat. K2SO4 reference, and Pt counter electrodes.
At constant circuit potential V = −0.20 V with respect to the ref-
erence electrode, the current of each wire I(t) can be measured.
(The data acquisition rate was 1000 Hz.) The 2-electrode experi-
ments generated time series data of 60 s–120 s and the 25-electrode
measurements of 50 s. (The two-electrode measurements could be
performed longer because it was easier to maintain the quasistation-
ary chaotic dynamics for 2 electrodes than for 25 due to inherent
heterogeneities in the surface conditions.)

The electrodes were connected to the potentiostat through
individual parallel resistors (Rind) and one series collective resistor
(Rcoll) in such a way that the total resistance Rtot = Rind + NelRcoll

was kept constant, but the collective resistance fraction ε = NelRcoll/

Rtot was changed; Nel = 2 or 25 is the number electrodes (or oscil-
lators). As it was shown previously,31 the collective resistance intro-
duces global electrical coupling among the electrode potentials. The
coupling is linear (potential differences generate coupling currents),
has zero-delay, and thus expected to affect both the slow chaotic
dynamics and the fast spiking. The strength of the coupling can be
controlled with ε through adjustments of the individual and collec-
tive resistances. The coupling strength ε was varied between 0 (no
coupling) and 1 (strong coupling).

The detailed description of this experimental setup was
described in previous studies, where it was shown that the I(t)
presents two dynamics: The slow is chaotic and the fast exhibits
irregular bursts of spiking.18,30

B. Wavelet transforms: Phase assignment and

synchronization detection

Continuous or discrete wavelet transforms with complex basis
have been reported as a useful tool to phase assignment for chaotic
oscillators.12–14,32

A wavelet function is a square-integrable complex function
ψ(t) that has (i) zero mean and (ii) unitary energy in the Fourier
sense. Given the functionψ(t), we can define the continuous wavelet
transform (CWT) of a one-dimensional time series f(t), in time33 and
frequency34 domains, by the equivalent expressions,

W
ψ

f (a, τ) = k

∫ ∞

−∞
f(t)ψ

(

t − τ

a

)

dt (1)

and

W
ψ̂

f̂
(a, τ) = k−1

∫ ∞

−∞
f̂(ω)ψ̂(aω) exp(−ı ωτ) dω, (2)

where k = 1/a (or 1/
√

a) is a normalization constant considering
the L1 (or L2) norm, and a > 0 and τ are real numbers called scale
and translation parameters. The notation ψ(t) indicates the conju-

gate of complex values ψ(t); f̂(ω) and ψ̂(aω) represent the Fourier
transform of f(t) and ψ(t), respectively. Equations (1) and (2) are

equivalent formulations of CWT. Therefore, the values W
ψ

f (a, τ)

are called wavelet coefficients. We notice that the second formula-
tion has advantages to numerical calculations because the point to
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point product has a smaller computational cost when compared to
the convolution in the time domain.

We considered the Morse wavelet, defined directly in fre-
quency by

ψ(β , γ ,ω) = 2(eγβ)β/γ U(ω)ωβe−ωγ, (3)

where U(ω) is the Heaviside function and γ = 3 and β = 20
are typical values in which ψ(β , γ ,ω) exhibits a frequency sym-
metric response with Gaussian behavior and whose bandwidth is
very narrow and, therefore, appropriate to analyze highly periodic
signals.35–37

From wavelet coefficients computed by Eq. (2) or Eq. (1), we
can calculate the global wavelet spectrum defined for each scale
value a and given by

G(a) =
∫ ∞

−∞
|Wψ

f (a, τ)|2 dτ =
∫ ∞

−∞
|Wψ̂

ˆ (a, τ)|2 dτ . (4)

The phase assignment using the CWT is performed as follows:
We identify the scale amax whose spectrum G(a) has global maxi-
mum and calculated the argument of complex wavelet coefficients
to this fixed scale.12,13 Explicitly, we make

φ(τ) = arctan

(

Imag(ψ(amax, τ))

Re(ψ(amax, τ))

)

. (5)

The discrete approach to phase assignment is made using the
dual-tree complex wavelet transform (DT-CWT).38,39 Consider x(t)
a chaotic oscillator decomposed using DT-CWT with M decom-
position levels. In this case, the phase is assigned considering the
application of Eq. (5) of the wavelet coefficients present in the
level J whose discrete wavelet spectrum exhibits the largest
magnitudes.29

We need to make one adaptation of this method to phase
assignment to investigate the synchronization between two chaotic
oscillators x1,2(t): the decomposition level J used for the computa-
tion of the phase according to Eq. (5) must be the same for each
oscillators, and, for this, we choose J = min{J1, J2}, where J1,2 is the
decomposition level whose discrete wavelet spectrum has the largest
magnitudes.14

We adopted the synchronization index R as a measure of
synchronization. Considering two oscillators x1,2(t) whose one-
dimensional time series has length N, the index R is given by40

R =
∣

∣

∣

∣

∣

1

N

N
∑

k=1

exp (ı1φ(k))

∣

∣

∣

∣

∣

, (6)

where1φ is the phase difference. We notice that an R value close to
1 indicates that x1,2(t) is fully synchronized, but in practice, a value
larger than 0.5 can indicate PS.

III. METHODOLOGY

A. Separation of fast and slow dynamics

We have shown in previous work that fast and slow dynam-
ics can be extracted from experimental data sets using wavelet
techniques.30 For this, the CWT Morse wavelet is calculated in each
experimental current I(t); based on the global wavelet spectrum, the

slow and the fast sub-band frequencies are determined. The fast and
slow approximations of the time series are obtained by the inverse of
the wavelet transform from the corresponding sub-bands.30 I(slow)(t)
and I(fast)(t) denote each dynamics extracted from the measured
current I(t) (mA) for the given oscillator.

B. Synchronization of slow dynamics

We characterized the synchronization between slow dynam-
ics using the phase differences of the slow phases φJ

1,2 (slow)(t)
obtained from the slow approximations I1,2 (slow)(t) using the DT-
CWT method described in Sec. II B. The synchronization index is
used as defined in Eq. (6) and denoted by Rslow.

C. Synchronization of fast dynamics

The characterization of synchronization for the fast dynamics
is made considering the time intervals in which the burstings occurs
simultaneously in the approximations I1,2 (fast)(t), that is, considering
the bursting overlaps and an additional restriction for length of the
overlaps as described below; Fig. 1 illustrates the methodology.

Consider two-oscillator pairs with fast dynamics I1 (fast)(t) and
I2 (fast)(t); for each of these are m and n bursting time intervals with
Tp and Tq, p = 1, 2, . . . , m and q = 1, 2, . . . , n.

Analyzing the time intervals Tp and Tq, we looked at the inter-
sections Tk with 0 < k ≤ min{m, n} but discarding all intersections
whose length is smallest than 50% of the smallest bursting that con-
stitutes it. More precisely, if Tk as an intersection between two time
intervals Tp and Tq, we only considered it if

#Tk ≥ 0.5 · min{#Tp, #Tq}, (7)

where the notation #T indicates the length of interval T. This over-
lap restriction is necessary to eliminate small overlapping intervals
whose phase analysis is troublesome.

Let Bover be the set, whose elements are all intervals (Tk) for
which the condition (7) is true. In these overlapping intervals, the
current time series are denoted as Iover

1,2 (fast)(t) (outside the interval,

these approximations are set to zero).
The phases φ1,2(t) are assigned to Iover

1,2 (fast)(t) as described in

Sec. II using the CWT with a Morse wavelet. As fast dynamics
have relevance only in the time intervals Tk, the phases φ1,2(t)

FIG. 1. General scheme to calculate the extent of synchronization of the fast
subsystem (Rfast ).
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are restricted to these intervals. For data analysis purposes, the
phases in the intervals are concatenated. This way, the fast phases
φ1,2 (fast) represent the simultaneous occurrence of fast dynamics in
the approximations I1,2 (fast)(t).

As a synchronization measure for the fast dynamics, the R
index given by Eq. (6) was modified by the introduction of a factor
related to the number of burstings and overlaps as defined by

Rfast = k

min{m, n}

∣

∣

∣

∣

∣

1

N

N
∑

k=1

exp (ı1φ1,2 (fast)(k))

∣

∣

∣

∣

∣

. (8)

When the fast dynamics are fully synchronized, we have
k = min{m, n}. Therefore, in this case, the Rfast index reduces to
R index as defined by Eq. (6). When the fast dynamics fully desyn-
chronized, k = 0 because the set Bover is empty and Rfast index is
zero.

IV. RESULTS AND DISCUSSION

In this section, we present the results of the synchronization
analysis with 2 (Sec. IV A) and 25 (Sec. IV B) oscillators.

A. Synchronization of two oscillators

The currents of two uncoupled oscillators (ε = 0.0) are shown
in Figs. 2(a) and 2(b); for better visualization, only the initial 10 s
are plotted. [For visual inspection, the repeated occurrence of the
spiking waveforms is shown in Fig. 2(c) for Oscillator 2 on a shorter
timescale; the shapes of these fast spiking waveforms were analyzed
previously.18] A zoom to slow and fast dynamics approximations
is shown in the bottom panels [Figs. 2(d) and 2(e), respectively].
As expected, the oscillations of both dynamics are asynchronous;
particularly, notice that the bursting occurs in a different time
interval.

In comparison, Fig. 3 shows the behavior with the strongest
coupling, ε = 1.0. Both the slow and fast dynamics nearly overlap,
and the bursting occurs in the same intervals. These observations
confirm the presence of nearly identical synchronization of the
MTSDS oscillators. Next, we quantified the transition from no syn-
chrony to full synchrony, as the coupling strength was increased
based on the phase differences of the slow and fast approximations
and the fraction of the overlapping bursting intervals.

1. Synchronization of the slow dynamics

For the synchrony analysis, we have calculated the slow phases
for both oscillators; as previously discussed,30 the slow phases corre-
spond to levels 7 or 8 of the discrete wavelet transform. (The more
dominant level was selected for a given analysis.)

The slow phase differences (top) and the corresponding cyclic
phase difference probability density distributions (middle) are
shown in Fig. 4 for coupling strengths ε = 0.0, 0.6, 0.8, and 1.0.

For ε = 0.0 and 0.6, there is no PS: The phase differences
increase nearly linearly, and the corresponding distributions are
flat. (Similar behavior was seen with ε = 0.7.) For ε = 0.8, there is
intermittent synchrony with time periods with constant phase dif-
ferences, which are interrupted by phase divergence; the histogram
shows a preferred phase difference close to 0 (or 2π). Finally, for

ε = 1.0, the phase difference vs time plot is dominated by constant
values with multiple of 2π values interrupted by very quick jumps;
the histogram shows phase locking behavior with phase difference
close to zero.

The synchronization index Rslow vs ε graph is shown in Fig. 5(c).
The values of the R index are smaller than 0.30 with ε ≤ 0.7 and are
larger than 0.6 for ε ≥ 0.8. Notice that the value of the Rslow index
sharply increases when the coupling strength changes from ε = 0.7
to 0.8.

These observations indicate that PS of the slow dynamics
emerges for ε > 0.7, and it is relatively quick transition. In compar-
ison, previous experiments41 with phase coherent electrochemical
oscillators (with nickel dissolution) showed PS at relatively weak
coupling strength (ε≈0.1 – 0.2). Non-phase coherent chaotic elec-
trodissolution with iron (without bursting), similar quick transition
was observed with strong coupling (ε≈0.4 – 0.6).41 The results thus
show that the slow dynamics of the chaotic iron dissolution sys-
tem with bursting showed similar transition to phase synchrony as
without bursting, but at somewhat larger coupling strength.

2. Synchronization of the fast dynamics

a. Bursting occurrence rate, regularity, and overlap. Synchro-
nization of the fast spiking oscillations is only possible when the
bursting intervals overlap. Therefore, before analysis of the fast spik-
ing synchronization, it is useful to explore how often the fast spiking
occurs and what is the length of such bursting events.

Figure 5(a) shows the number of bursting intervals divided by
the length of the time series. Without coupling, the two oscillators
show different rates, about 0.25 and 1.0 s−1. This measurement fur-
ther confirms that there are structural heterogeneities in the two
oscillators with one producing more bursting events than the other.
As the coupling was increased, the average bursting rate of the oscil-
lator first decreased and for stronger coupling (ε > 0.6) increased
again. For the strongest coupling (ε = 1.0), both oscillators have the
same bursting rate of about 0.5 s−1.

In addition to an occurrence rate of the bursting, their length
also changed. Figure 6(a) shows the histograms of the bursting
lengths. Without coupling, the two oscillators have bursting lengths
of 0.13 and 0.10 s with a standard deviation of 0.026 and 0.012 s,
respectively. With strong coupling [ε = 1.0, see the histogram in
Fig. 6(b)], the average length and standard deviations are the same
for both oscillators, 0.08 and 0.011 s, respectively. Note that the
length of the bursting interval of one of the oscillators now has
a smaller standard deviation, which is an indication of a bursting
regularization phenomenon induced by the coupling.

As the coupling strength is increased, more and more burst-
ing intervals overlap. Figure 5(b) shows the fraction of overlapping
bursting intervals as a function of the coupling strength. For cou-
pling strength ε ≤ 0.4, most of the bursting intervals do not overlap
(fraction of overlapping burstings is less than 0.5). However, for
ε ≥ 0.8, most (larger than 80% ) of the bursting intervals overlap.

b. Synchronization of fast spiking. Even for weak coupling, some
bursting intervals overlap, and thus, the extent of synchronization
can be calculated for each coupling strength.
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FIG. 2. Desynchronized current time
series of two uncoupled (ε = 0.0) chaotic
bursting oscillators. (a) Oscillator 1 [I1(t)].
(b) Oscillator 2 [I2(t)]. (c) Three consecutive
bursting events of Oscillator 2. Bottom
panels: Approximations to slow (d) and fast
dynamics (e).

Figure 7(a) shows the time series of such a bursting inter-
val for ε = 0.0. There is no coupling, and the two overlapping
bursting intervals show oscillations typically seen for desynchro-
nized systems. The phase differences [Fig. 7(d)] obtained from the
fast phases [Fig. 7(c)] increase nearly linearly with time. However,
in the strongly coupled case [ε = 1.0, Figs. 7(b), 7(e), and 7(f)],

the oscillations nearly overlap, and the phase difference is mostly
horizontal lines at multiples of 2π corresponding to in-phase syn-
chronization.

By collection of the phase differences for bursting intervals,
the fast synchronization index can be calculated for each cou-
pling strength; see Fig. 5(c). For ε < 0.7, there is little synchrony
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FIG. 3. Synchronized current time series of two strongly coupled (ε = 1.0) chaotic bursting oscillators. (a) Oscillator 1 [I1(t)]. (b) Oscillator 2 [I2(t)]. Bottom panels:
Approximations to slow (c) and fast dynamics (d).

(Rfast < 0.25), and the behavior is similar to the ε = 0.0 case. How-
ever, for ε ≥ 0.7, nearly all bursting intervals are synchronized
(Rfast > 0.8). Therefore, there is sudden transition to full bursting
synchronization at a coupling strength of ε = 0.7.

3. Synchronization transitions: Summary

In summary, the analysis showed rich dynamics in transition
to fully synchrony. For weak coupling, ε < 0.6, neither the slow
dynamics nor the fast spiking is synchronized, and the bursting
intervals do not overlap. At ε = 0.6, the fast bursting intervals over-
lap without any synchrony. At ε = 0.7, the fast spiking synchronizes
without synchronization of the slow oscillations. This state is sim-
ilar to those reported with slow–fast Hindmarsh–Rose oscillator
networks.25 Finally, at ε = 0.8, the slow system also synchronizes.

B. Synchronization of 25 oscillators

In this section, the results about the characterization of syn-
chronization with 25 globally coupled oscillators are presented.

1. Synchronization of the slow dynamics

Figures 8(a)–8(c) show the behavior without coupling (ε =
0.0). The single oscillator time series [Fig. 8(a)] look similar to those
observed with the two oscillators in Fig. 2(a): The slow chaotic
behavior is interrupted with fast spiking bursts. The time series of
the slow approximations in a space-time grayscale plot is shown
in Fig. 8(b); there is no apparent structure that would indicate
a spatial structure. The Rslow indices for all oscillator pairs are
shown in Fig. 8(c); all the values are small (Rfast < 0.25), which
further confirms the lack of synchronization for the uncoupled
case.

The behavior with the strongest coupling (ε = 1.0) is shown
in Figs. 8(d)–8(f). The time series data [Fig. 8(d)] reveal a surpris-
ing feature: The bursts completely disappear, and thus, the slow
dynamics is equivalent to the original time series in the case. The
space-time plot of the currents of the oscillators [Fig. 8(e)] now
shows correlated structures with very similar variations. The high
level of synchronization is further confirmed by the Rslow matrix
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FIG. 4. Phase synchronization of the slow dynamics of two coupled chaotic bursting oscillators. Slow phase differences (top row) and probability density histograms (bottom
row) with ε = 0.0, 0.6 , 0.8 , and 1.0.

in Fig. 8(f) with large values (Rslow > 0.6) for each oscillator pairs.
Therefore, the oscillations exhibit high level of synchronization with
ε = 1.0.

The Rslow indices and their mean for each coupling strengths
are shown in Fig. 9(b). For ε ≤ 0.4, the mean Rslow values are low
(about 0.1); with a further increase of the coupling, there is a tran-
sition to PS. For ε = 0.6, some oscillator pairs are desynchronized
(Rslow < 0.5) and some are synchronized (Rslow > 0.5); note that
there are a large number of oscillator pairs at the border of syn-
chronization; i.e., Rslow ≈ 0.5 . The situation is similar with more
synchronized pairs for ε = 0.80. Finally, the population is fully syn-
chronous for ε = 1.0. The overall picture of this synchronization

transition is similar to the second order phase transition observed
with globally coupled, weakly heterogeneous phase coherent chaotic
electrochemical oscillators.42

2. Fast dynamics

Figure 9(a) shows the bursting occurrence rate as a function
of the coupling strength. Bursting oscillations occur only for weak
coupling (ε = 0.0 and 0.20), with relatively large heterogeneities
across the populations. We thus see that the main effect of cou-
pling on the fast dynamics is the disappearance of bursting oscilla-
tions, which can also be regarded as coupling induced regularization

FIG. 5. Synchronization analysis of two coupled oscillators. Bursting occurrence rates (a) and bursting overlaps (b) as a function of coupling strength (ε). (c) The slow (Rslow )
and fast (Rfast ) phase synchronization indices as a function of the coupling strength.
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FIG. 6. Histograms of bursting interval lengths for two uncoupled [ε = 0.0, panel (a)] and strongly coupled [ε = 1.0, panel (b)] oscillators.

phenomena: For strong coupling, the complexity of the time series
greatly reduces by completely eliminating the fast scales. A qualita-
tive explanation for such behavior could be related to the fact that
complete synchronization in networks of a multiple time-scale sys-
tem is difficult to achieve.27 Qualitatively, the emergence of bursting
oscillations requires well-timed feedback loops; with relatively large
heterogeneities, the strong coupling can destroy the subtle timing

of the loops and the system cannot enter the phase space region for
bursting oscillations simultaneously.

V. CONCLUSIONS

Analysis of a coupled pair and population electrochemical
oscillators that exhibited chaotic slow and periodic fast spiking

FIG. 7. Fast dynamics synchronization of two coupled oscillators. Top row: A representative bursting overlap without [ε = 0.0, (a)] and with strong [ε = 1.0, (b)] coupling.
Bottom row: Fast phases and their difference for ε = 0.0 (c) and (d) and ε = 1.0 (e) and (f).

Chaos 31, 053125 (2021); doi: 10.1063/5.0041488 31, 053125-8

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 8. Synchronization of a population of chaotic bursting oscillators. Current time series of a representative oscillator [left, panels (a) and (d)], space-time grayscale plots of
the currents of the slow approximations [middle, panels (b) and (e)], and the slow synchronization index matrix, Rslow [right, panels (c) and (f)]. Top row: Uncoupled oscillators
(ε = 0.0). Bottom row: Strongly coupled oscillators (ε = 1.0).

FIG. 9. Bursting occurrence rate (a) and slow synchronization indices (b) as a function of coupling strength for the population of oscillators. Dashed lines indicate the mean
values.
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behavior revealed a rich transition to the fully synchronized state.
Wavelet transform methods allowed separation of the dynamics into
fast and slow, and synchronization measures could be constructed
for the two timescales separately.

The two-oscillator system exhibited a progressive transition to
synchronization: First, the bursting intervals overlapped, then the
fast spiking oscillations synchronized, and finally, the slow chaotic
dynamics synchronized. For the globally coupled population, the
fast spiking disappeared with increasing the coupling strength,
which was followed by synchronization of the slow dynamics. This
difference in the behavior may be related to the effect of dynamical
heterogeneities of the oscillators. With two electrodes, it was rela-
tively easy to obtain similar chaotic bursting dynamics, and thus,
the slow and fast subsystems could synchronize. However, with 25
oscillators, the heterogeneities were stronger, and bursting synchro-
nization did not occur. As such, it could be expected that it is the
extent of heterogeneities, and not the number of oscillators, the
determining factor. In general, the oscillators can exhibit hetero-
geneities inherently present (metal impurity, electrode size) or being
developed (O2 bubbles, pitting corrosion, surface oxide thickness,
and porosity) during the course of the reaction; experimental tech-
niques to control these heterogeneities could be required for better
characterization of the synchronization dynamics.

In previous studies,25,27 bursting oscillations systems were con-
sidered with one-variable slow dynamics. In these studies, the syn-
chronization of the slow subsystem (which coincided with bursting
intervals overlaps) preceded the synchronization of the fast sys-
tem. Note, however, that in the presented experimental system,
the slow subsystem is chaotic;18 according to the results, in such a
higher dimensional slow subsystem, overlapping bursting intervals
can occur without PS of slow chaotic oscillations.

The results have implications in other systems, in particu-
lar, neural oscillations, where typically one-dimensional time series
are available for each oscillator and multiple timescales exist that
can interact with each other. The presented experimental results
can also initiate further theoretical studies for bursting oscillations
with slow timescales that are governed by more than one variable
and thus can generate complex dynamics. For example, the kinetic
model for periodic bursting in iron electrodissolution43 could be
extended to account for the chaotic behavior or a phenomenologi-
cal model with a combination of automated attractor state space,44

and global vector field reconstruction45 techniques could be used
to explore the bifurcations underlying the experimentally observed
synchronization effects.
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