Close

1. Identity statement
Reference TypeJournal Article
Sitemtc-m21c.sid.inpe.br
Holder Codeisadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S
Identifier8JMKD3MGP3W34R/44NRRQL
Repositorysid.inpe.br/mtc-m21c/2021/05.24.16.15   (restricted access)
Last Update2021:05.24.16.15.35 (UTC) administrator
Metadata Repositorysid.inpe.br/mtc-m21c/2021/05.24.16.15.35
Metadata Last Update2022:04.03.22.28.42 (UTC) administrator
DOI10.1109/LGRS.2020.2986407
ISSN1545-598X
Citation KeyMarettoFoJaKöBePa:2021:SpDeLe
TitleSpatio-Temporal Deep Learning Approach to Map Deforestation in Amazon Rainforest
Year2021
MonthMay
Access Date2025, June 02
Type of Workjournal article
Secondary TypePRE PI
Number of Files1
Size4455 KiB
2. Context
Author1 Maretto, Raian Vargas
2 Fonseca, Leila Maria Garcia
3 Jacobs, Nathan
4 Körting, Thales Sehn
5 Bendini, Hugo do Nascimento
6 Parente, Leandro L.
Resume Identifier1
2 8JMKD3MGP5W/3C9JHLD
ORCID1 0000-0002-4983-2700
2
3 0000-0002-4242-8967
4 0000-0002-0876-0501
Group1 SER-SRE-DIPGR-INPE-MCTI-GOV-BR
2 DIOTG-CGCT-INPE-MCTI-GOV-BR
3
4 DIOTG-CGCT-INPE-MCTI-GOV-BR
5 SER-SRE-DIPGR-INPE-MCTI-GOV-BR
Affiliation1 Instituto Nacional de Pesquisas Espaciais (INPE)
2 Instituto Nacional de Pesquisas Espaciais (INPE)
3
4 Instituto Nacional de Pesquisas Espaciais (INPE)
5 Instituto Nacional de Pesquisas Espaciais (INPE)
Author e-Mail Address1 rvmaretto@gmail.com
2 leilamgfonseca@gmail.com
3
4 contato.tsk@gmail.com
5 hnbendini@gmail.com
JournalIEEE Geoscience and Remote Sensing Letters
Volume18
Number5
Pages771-775
Secondary MarkA1_GEOGRAFIA A1_ENGENHARIAS_IV A2_INTERDISCIPLINAR A2_GEOCIÊNCIAS B1_CIÊNCIA_DA_COMPUTAÇÃO B2_MATEMÁTICA_/_PROBABILIDADE_E_ESTATÍSTICA B2_BIOTECNOLOGIA B3_ASTRONOMIA_/_FÍSICA C_CIÊNCIAS_AGRÁRIAS_I
History (UTC)2021-05-24 16:15:35 :: simone -> administrator ::
2021-05-24 16:15:36 :: administrator -> simone :: 2021
2021-05-24 16:17:14 :: simone -> administrator :: 2021
2022-04-03 22:28:42 :: administrator -> simone :: 2021
3. Content and structure
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
Content TypeExternal Contribution
Version Typepublisher
KeywordsTask analysis
Forestry
Remote sensing
Training
Artificial satellites
Earth
Semantics
Convolutional neural networks (CNNs)
deep learning (DL)
deforestation
spatio-temporal analysis
U-Net
AbstractWe address the task of mapping deforested areas in the Brazilian Amazon. Accurate maps are an important tool for informing effective deforestation containment policies. The main existing approaches to this task are largely manual, requiring significant effort by trained experts. To reduce this effort, we propose a fully automatic approach based on spatio-temporal deep convolutional neural networks. We introduce several domain-specific components, including approaches for: image preprocessing; handling image noise, such as clouds and shadow; and constructing the training data set. We show that our preprocessing protocol reduces the impact of noise in the training data set. Furthermore, we propose two spatio-temporal variations of the U-Net architecture, which make it possible to incorporate both spatial and temporal contexts. Using a large, real-world data set, we show that our method outperforms a traditional U-Net architecture, thus achieving approximately 95% accuracy.
AreaSRE
Arrangement 1urlib.net > BDMCI > Fonds > Produção pgr ATUAIS > SER > Spatio-Temporal Deep Learning...
Arrangement 2urlib.net > BDMCI > Fonds > Produção a partir de 2021 > CGCT > Spatio-Temporal Deep Learning...
doc Directory Contentaccess
source Directory Contentthere are no files
agreement Directory Content
agreement.html 24/05/2021 13:15 1.0 KiB 
4. Conditions of access and use
Languageen
Target Filemaretto_spatio.pdf
User Groupsimone
Reader Groupadministrator
simone
Visibilityshown
Archiving Policydenypublisher allowfinaldraft
Read Permissiondeny from all and allow from 150.163
Update Permissionnot transferred
5. Allied materials
Next Higher Units8JMKD3MGPCW/3F3NU5S
8JMKD3MGPCW/46KUATE
Citing Item Listsid.inpe.br/bibdigital/2022/04.03.22.23 7
sid.inpe.br/bibdigital/2013/10.18.22.34 7
sid.inpe.br/mtc-m21/2012/07.13.14.53.26 1
DisseminationWEBSCI; PORTALCAPES; SCIELO; AGU; MGA; COMPENDEX; IEEEXplore.
Host Collectionurlib.net/www/2017/11.22.19.04
6. Notes
Empty Fieldsalternatejournal archivist callnumber copyholder copyright creatorhistory descriptionlevel e-mailaddress format isbn label lineage mark mirrorrepository nextedition notes parameterlist parentrepositories previousedition previouslowerunit progress project rightsholder schedulinginformation secondarydate secondarykey session shorttitle sponsor subject tertiarymark tertiarytype url
7. Description control
e-Mail (login)simone
update 


Close