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ABSTRACT 

 

This work is committed to explore the integration of airborne 

LiDAR data and WorldView-2 (WV-2) images to classify land 

cover and land use in a rural area with the presence of a 

subtropical forest. Different methods were used for this purpose: 

two artificial neural networks (ANN) and three decision trees 

forests. The results demonstrated that the inclusion of LiDAR data 

significantly improved the classifications in all methods. 

Excluding the Convolutional Neural Network, the classification 

algorithms had a nearly similar performance, and none of them 

achieved the best accuracy for all adopted classes. Forest by 

Penalizing Attributes (FPA) attained the best general result, with a 

Kappa index of 0.92, while Rotation Forest obtained the best 

result in the classification of the two vegetation classes. 

 

Index Terms— Forest succession stages, Artificial Neural 

Network, Decision Forest, Data fusion. 

 

1. INTRODUCTION 

 

The Mixed Ombrophilous Forest (MOF) or Araucaria Moist 

Forest is one of the main phytophysiognomies of the Atlantic Rain 

Forest in Southern Brazil [1]. It is characterized by the presence of 

Araucaria angustifólia (Parana´s pine tree) as an emerging species 

over the canopy, actuating as an indicator of this forest 

phytophysiognomy. It is regarded as one of the country´s most 

threatened forest category, for only 7% of its original cover is still 

standing [2]. The greatest part of its remnants is composed of 

small isolated patches (<50 ha) of secondary forests in initial (SS1) 

and intermediate succession stages (SS2) [3]. Nevertheless, 

although Araucaria angustifólia is on top of MOF main species 

ranking, it is declared as “vulnerable” in Brazil´s Official List of 

Plants Extinction Endangered Species [4]. Considering this, a 

precise mapping of its few remaining forest remnants becomes 

crucial, so as to ease the implementation of management, 

surveillance, administration, and conservation strategies.  

In this respect, field surveys are efficient; however, they tend to be 

time-consuming and costly to be executed at a large scale and in a 

systematic way. These restraints have fostered initiatives based on 

remote sensing as an effective means to map the vegetation 

succession stages [5-7] and tree species, as those at risk of 

extinction [8].  

Data fusion, i.e. the integration of data coming from manifold 

sources, is still a challenging topic in Remote Sensing and Digital 

Image Processing [9]. A promising approach for the land cover 

and land use classification, especially in the case of different forest 

classes, is the combined use of passive multispectral data with 

active sensors data, like Light Detection and Ranging (LiDAR), 

since they provide complementary information on the targets of 

interest (spectral response and vertical structure, respectively) [10]. 

Besides these data, the choice of the classifier is also decisive for a 

reliable land cover and land use mapping. In this sense, machine 

learning is a relatively new scientific field, which is yet constantly 

evolving in a fast way and likely to yield ever better results [11]. 

The increasing use of such methods in latest years is due to several 

factors: their capacity to learn complex patterns, which makes it 

possible to apply them to faulty or noisy data; the possibility of 

incorporating a priori information in the analysis; and its 

independence in relation to the data statistical distribution. This 

latter advantage renders available the addition of data from 

multiple sensors, auxiliary variables and even categorical variables 

[12]. 

In face of what has been previously exposed, the goal of this work 

is to analyze the integration of WorldView-2 (WV-2) 

multispectral data with airborne laser scanning (ALS) data for the 

semiautomatic land cover and land use mapping in a subtropical 

forest area of the Atlantic Rain Forest. The specific goals are: i) 

analyze the performance attained in classifications relying on the 

use of multispectral data alone and compare them with 

classifications also using LiDAR data and; ii) test and compare 

different machine learning methods, like those more often used, 

such as Random Forest (RF) [13] and Multilayer Perceptron 

(MLP), as well as barely explored algorithms in forest 

applications, like Rotation Forest (RotF) [14], Forest by Penalizing 

Attributes (FPA) [15], and Convolutional Neural Network (CNN). 

 

2. MATERIAL AND METHODS 

 

The study area is located in the municipality of Painel, Santa 

Catarina state, south of Brazil. The area belongs to the Atlantic 

Rain Forest biome and shelters the Araucaria Moist Forest 

phytophysiognomy, characterized by the presence of the 

Araucaria angustifólia species. 

The WV-2 scenes used in this work were acquired in May of 

2012. Initially, they were converted to radiance images, using the 
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command Radiometric Calibration of ENVI 5.0. Next, the images 

were once again converted to surface reflectance using the tool 

Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH). After atmospheric correction, the WV-2 multispectral 

bands with 2 m of spatial resolution were pansharpened with the 

WV-2 panchromatic band, with 0.5 m, by means of the Gram-

Schmidt method. Finally, the WV-2 scene was orthorectified 

based on the rational polynomial coefficients, using parameters 

provided by the images metadata and the LiDAR-derived Digital 

Terrain Model (DTM). For geocoding the data, an orthoimage 

with 0.39 m of spatial resolution acquired by the Airborne System 

for Acquisition and Post-processing Images (SAAPI) was used as 

reference together with 15 ground control points. 

The LiDAR data, on their turn, were acquired by the Leica ALS-

60 sensor onboard of a flight undertaken in January of 2011, with 

an average density of 7 points/m². Firstly, outliers were removed 

and then the DTM and the Digital Surface Model (DSM) were 

generated using the Adaptive TIN filter. Next, the Canopy Height 

Model (CHM) was extracted by the subtraction between the DSM 

and DTM. 

The following stage consisted in the feature extraction from both 

datasets. From the WV-2 images, texture metrics were calculated 

based on the four multispectral bands (red, green, blue and near 

infrared), with a 5x5 window and southwest direction, using the 

grey-level co-occurrence matrix (GLCM) proposed by Haralick et 

al. [16]. Four vegetation indices (VI) were computed (IV): the 

Normalized Difference Vegetation Index (NDVI), the Simple 

Ratio (SR), the Red-edge Normalized Difference Vegetation Index 

(NDVI-RedEdge) and the Optimized Soil Adjusted Vegetation 

Index (OSAVI). 

As to the LiDAR data, besides the CHM, seven elevation and 

intensity-derived metrics were extracted with the LidR  package of 

R: percentage of intensity returned below the 90th percentile of 

height (ipcumzq90), intensity mean (imean), maximum intensity 

(imax), 10th percentile of height distribution (zq10), kurtosis of 

height distribution (zkurt), skewness of intensity distribution 

(iskew), mean height (zmean). The spatial resolution of all 

LiDAR-derived attributes was 1 m, so as to make their resolution 

compatible with that of the WV-2 data and to assure that there 

were no missing values in the resulting images. Two datasets were 

then created: one solely composed by the original bands of WV-2 

and their attributes (texture & VI), named as WV2, and the other 

one composed by these data together with the ALS-derived 

attributes, named as full. 

The multiresolution segmentation available at eCognition software 

was applied to the second dataset. A weight value of 1 was 

assigned to the original bands of WV-2 and to the LiDAR-derived 

CHM band, while a weight value of 0 was applied to the 

remaining bands, in order to avoid an oversegmentation. The 

segmentation parameters were heuristically defined and the scale 

factor was set to 15, the shape factor to 0.2 and the smoothness 

factor to 0.5. After this stage, training samples were collected for 

the eight classes based on the SAAPI orthoimage and field 

observations. The classes and the number of respective segments 

used as training samples were: natural vegetation in a secondary 

intermediate stage of recovery (SS2) (61), natural vegetation in a 

secondary early stage of recovery (SS1) (59), reforestation 

(corresponding to areas with the exotic species Pinus sp.) (63), 

araucaria (dominant tree species in the region) (40), agriculture 

(crops) (68), bare soil (21), fields (109) and water bodies (31). The 

samples as well as all remaining segments were exported as a 

shapefile containing all the attributes previously mentioned and the 

layer mean of all bands, totalizing 52 attributes for the full dataset 

and 44 attributes for the WV2 dataset.  

In the sequence, two databases were created in Attribute-Relation File 

Format (ARFF) in order to drive the software Waikato 

Environment Knowledge Analysis (WEKA), version 3.7. The 

next stage concerned the supervised classification of both datasets. 

For this task, five machine learning classifiers were selected, two 

ANNs (MLP and CNN) and three based on decision trees forests 

(RF, RotF and FPA). Initially, preliminary tests were carried out 

using a cross-validation process, in which different parameter 

settings were evaluated in relation to the default values of WEKA. 

It was observed that in the great majority of cases, the default 

values had a slightly higher performance and they have been kept 

in the final classifications. Only for the FPA algorithm, 50 trees 

were employed instead of the default value of 10, and for the 

CNN, a convolutional layer of values 100-3-3-2-2 was assigned, 

respectively corresponding to the number of feature maps, patch-

width, patch-height, pool-width, and pool-height. 

For the accuracy assessment, polygons meant for analyses were 

delimited in the image for each class, with the aid of the 

orthoimage and field observations. Based on these polygons, 50 

pixels were randomly selected in each class. This procedure was 

repeated for each classification, so as to keep the independence 

among the validation samples. The number of samples was 

defined according to Congalton and Green [17], who recommend 

a minimum of 50 samples for maps of less than one million acres 

in size and fewer than 12 classes. After the samples collection, 

error matrices were elaborated based on a cross-checking between 

the classified maps and their respective validation samples. The 

following indices were extracted from such matrices: a) overall 

accuracy (OA); (b) producer´s accuracy (PA), (c) user´s accuracy 

(UA); (d) Kappa index and conditional Kappa per class (Kc) [17]. 

The z tests for the Kappa indices were executed with a level of 

significance of 5%, i.e., with a confidence interval of 95%. The 

value of the normal distribution z is obtained by the ratio of the 

difference between two distinct Kappa indices to the difference of 

their respective variances. When z > 1.96, the test is significant, the 

null hypothesis is rejected, and hence, there is significantly 

statistical difference between the two values.  

 

3. RESULTS AND DISCUSSION 

 

As expected, the full dataset obtained a significant increase in 

accuracies for all classifiers. In the case of the WV2 dataset, the 

Kappa values ranged from 0.59 to 0.81 for CNN and MLP, 

respectively, while for the full dataset, the Kappa values oscillated 

from 0.68 to 0.92 for CNN and FPA, respectively (Figure 1b). It 

was observed that LiDAR data was mainly important for the 
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discrimination between the two succession stages classes (SS1 and 

SS2) and also between SS2 and araucaria. When located amidst 

the forest, araucaria tends to be a dominant species in the canopy, 

and the use of LiDAR data, which provide information on the 

forest vertical structure, increased the accuracy of this class. The 

same thing happened in the discrimination of the two succession 

stages, since SS1, besides differences in the species composition, 

has a shorter height and a smaller number of vertical strata than 

SS2. Other authors also observed that the inclusion of LiDAR data 

in the classification process was advantageous, chiefly in the case 

of spectrally similar classes, like forest species and typologies [10, 

18]. 

Regarding the classifiers, in the case of the full dataset, FPA 

attained the best general result (Figure 1a), with a Kappa index of 

0.92 (Figure 1b), although it did not significantly differ from MLP, 

RF, and RotF, which also reached good results: Kappa of 0.88, 

0.88 and 0.91, respectively. Adnan and Islam [15], idealizers of 

FPA, compared it with other methods, such as RF and RotF. The 

authors clarified that FPA, contrary to RF, uses the whole feature 

space, and hence, generates trees with high individual precision. 

When the algorithms performances were compared for the WV2 

dataset, it was observed that MLP (Kappa of 0.81) was 

significantly superior to CNN, FPA and RF, not differing much 

from RotF (Kappa of 0.77). CNN, on its turn, was significantly 

inferior to further classifiers, both for the full and WV2 datasets. 

According to Pasupa and Sunhem [19], CNN needs a great 

number of training samples, in order to avoid overfit, what may 

have been one of the reasons for the poor performance of this 

algorithm. Moreover, its parameters have not been widely 

explored in this study. 

None of the algorithms obtained the best results for all classes 

(Figure 1c). The RotF classifier with the full dataset (RotF_full) 

attained the best results for two vegetation classes: SS2, with Kc of 

0.98, and araucaria, with Kc of 0.96. For SS1, the best result was 

reached with FPA_full, Kc of 0.81. The reforestation class had a 

Kc value of 1.0 with FPA_full, MLP_full and RF_full. Only the 

class field had a better performance in an experiment without 

LiDAR data, what can be explained by the fact that this class 

shows a reduced elevation range. In this case, the best result was 

attained with MLP_WV2, Kc of 0.93. As to the processing time, 

the decision trees forests showed to be faster than ANN (MLP and 

CNN), what represents an advantage of such methods, especially 

when dealing with datasets of bulky dimension. 

 

4. CONCLUSION 

 

This study showed that the integration of LiDAR data with WV-2 

multispectral data led to a significant increase in classifications 

accuracies for all tested algorithms. This increase was mainly 

observed in the case of spectrally similar classes owing marked 

elevation differences, like the vegetation succession stages and the 

tree species araucaria. 

The machine learning algorithms have a great potential for 

classifying datasets coming from manifold sources. With the 

exception of CNN, all other classifiers had a similar performance, 

and none of them attained the best accuracy for all land cover and 

land use classes. In spite of that, it is worth mentioning that the 

decision trees forests are advantageous in terms of processing 

time, particularly in the case of large datasets. In general terms, 

FPA had the highest Kappa for the full dataset (0.92), while MLP 

obtained the highest Kappa for the WV2 dataset (0.81).  
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