%0 Journal Article %@nexthigherunit 8JMKD3MGPCW/3ESR3H2 %3 souza_evolution.pdf %4 sid.inpe.br/mtc-m21c/2019/03.01.17.01 %8 Mar. %9 journal article %@issn 0925-9635 %A Souza, Camilo Brito de, %A Nakagawa, Milena Arruda, %A Vargas, Ludmila Resende, %A Hilário, Rodrigo Barbosa, %A Impère, Ana Gabriele Dias, %A Matsushima, Jorge Tadao, %A Quirino, Sandro Fonseca, %A Gama, Adriana Medeiros, %A Baldan, Maurício Ribeiro, %A Gonçalves, Emerson Sarmento, %@secondarytype PRE PI %B Diamond and Related Materials %D 2019 %@archivingpolicy denypublisher denyfinaldraft24 %K Reduced graphene oxide, Dielectric properties, Microwave frequencies, Wave-matter interaction, Thermal reduction, Structural properties. %P 241-251 %@secondarymark A1_ENGENHARIAS_IV A1_ENGENHARIAS_II A2_MATERIAIS A2_ENGENHARIAS_III B1_MEDICINA_I B2_QUÍMICA B2_CIÊNCIAS_BIOLÓGICAS_I B2_BIOTECNOLOGIA B2_ASTRONOMIA_/_FÍSICA %T Evolution of dielectric properties of thermally reduced graphene oxide as a function of pyrolisis temperature %V 93 %X Reduced grapheneoxide (rGO) is a derivative of graphene and its properties allow several applications, such assupercapacitors, sensors,filters, among others. The rGO was obtained at 400 °C and 1000 °C. These materialswere analysed using Scanning Electron Microscopy, Transmission Electron Microscopy, ThermogravimetricAnalysis, Differential Exploratory Calorimetry, X-Ray Diffraction, Raman Scattering Spectroscopy, FourierTransform Infrared Spectroscopy and Vector Network Analyzer. The sample treated at 400 °C resulted in a moreexfoliated material, presenting six sheets in the interlayer, with well-distributed aromatic symmetry and moreelectroactive groups. Thus, it showed higher electric permittivity in agreement with RamanGsymmetry results,implying an increase of C]C aromatic ring quantities, enabling this material to be used in electronic devices andnanocomposites with electromagnetic properties. This article aims to study the influence of structural andconsequent changes in the dielectric properties of rGO samples as a function of pyrolysis temperature. %@area FISMAT %@electronicmailaddress %@electronicmailaddress %@electronicmailaddress %@electronicmailaddress %@electronicmailaddress %@electronicmailaddress %@electronicmailaddress %@electronicmailaddress %@electronicmailaddress mauricio.baldan@inpe.br %@electronicmailaddress emersonesg@fab.mil.br %@documentstage not transferred %@group %@group %@group %@group %@group %@group %@group %@group %@group LABAS-COCTE-INPE-MCTIC-GOV-BR %@dissemination WEBSCI; PORTALCAPES; COMPENDEX; SCOPUS. %@usergroup simone %@resumeid %@resumeid %@resumeid %@resumeid %@resumeid %@resumeid %@resumeid %@resumeid %@resumeid 8JMKD3MGP5W/3C9JHTA %@affiliation Instituto Tecnológico de Aeronáutica (ITA) %@affiliation Instituto Tecnológico de Aeronáutica (ITA) %@affiliation Instituto Tecnológico de Aeronáutica (ITA) %@affiliation Instituto Tecnológico de Aeronáutica (ITA) %@affiliation Instituto de Aeronáutica e Espaço (IAE) %@affiliation Faculdade de Tecnologia de São José dos Campos (FATEC) %@affiliation Universidade Federal de São Paulo (UNIFESP) %@affiliation Instituto de Aeronáutica e Espaço (IAE) %@affiliation Instituto Nacional de Pesquisas Espaciais (INPE) %@affiliation Instituto Tecnológico de Aeronáutica (ITA) %@versiontype publisher %@holdercode {isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S} %@doi 10.1016/j.diamond.2019.01.015 %2 sid.inpe.br/mtc-m21c/2019/03.01.17.01.15