UMA HEURISTICA PARA REDUCAO DO NUMERO DE CICLOS DA
SERRA NO CORTE DE CHAPAS

HORACIO H. YANASSE

INSTITUTO NACIONAL DE PESQUISAS ESPACIATS .
LABORATORIO ASSOCIADO DE COMPUTACAO E MATEMATICA
APLICADA

SAO JOSE DOS CAMPOS, S £0 PAULO

BRASIL

REGINALD G. HARRIS

ALAN 8.1 ZINOBER

DEPARTAMENTO DE MATEMATICA APLICADA E COMPUTACIONAL
UNIVERSIDADE DE SHEFFIELD

SHEFFIELD, INGLATERRA

RESUMO

© custo operacional de uma maquina de serra estd diretamente relacionado com o niunero de ciclos da
miquina, Quanto maior o nimero de ciclos da maquina, mais termpo de maquina ¢ utilizado e um maior custo
operacional ¢ incorrido. Em diversos ambientes procutivos, tais custos podem ser significativos comparados
com os custos da propria matéria prima sendo cortads, Assim, para minimizar os custos totais de produgEo é
necessario reduzir as sobras de material resultantes dos cortes realizados bem comn reduzir o ntimero de ciclos
da miquina, Neste trabalho prop _e-se um procedimento heuristico que tenta balaticear as perdas com sobras de
material ¢ o tempo de mdquina. O método opera de maneira sequencial redefininde problemas de corte
auxiliares que Ao utilizados para gerar padr_es de corte que podem ser repetidos diversas vezes no problema
original. Numa serra, véarias chapas que obedecem um mesmo padr&o de corte podem ser cortadas de wma
tnica vez economizando-s¢ o tempo de utilizag&o da méaquina. Os padr_es de corte podem ser gerados
utilizando-se qualquer otimizador padr&o para problemas de corte de estoque. Testes computacionais foram
realizados com alguns problemas testes e os resuitados obtidos foram bastante promissores.

ABSTRACT

The reduction of saw cycles decreases the machine cutting costs which can be as important as the reduction of
waste in many cutting settings. We proposc a procedure that attempts to balance the waste and the machine
time. 1t warks by sequentially redefining cutting probletis which are used to generate patterns that can be
repeated many times in the nriginal problem. The patterns can be generated using a standard optimiser for
cutting stock problems. Limited computational tests performed in a fow test problems showed promising
results.

Keywords; cutting stock problem; cycle reduction; minimization of the number of patterns. heuristics
Acknowledgements: This work was partially funded by SERC'GRANT GR'F 68942 and CNPg grant
number 502405/91-0,

879

1. INTRODUCTION

For many customers the reduction of the number of cycles of the saw in a cutting stock problem is of great
importance, that is machine costs are significant cotitpared with the costs of material.

Many practical microcomputer based cutting stock optimiser algorithms generate cufting patterns in
sequence, until all required parts are cut (see Dyckhoff et al, 1985; Hinxman, 1980; Yanasse et al, 1991 and
1992). If the optimiser algorithm does not account at all for a complete solution when establishing costs of a
pattern, the resulting sohitions might be quite poor.

Consider, for instance, a furniture manufacturing setting where rectangular panels of different sizes and
quantitites are to be cut from large rectangular boards. The objective of the cutting stock problem is still to
produce a solution of lowest possible cost. A simple tradeoff function between the number of cycles and waste
wiuld be: 1 cycle = 1 sheet (or some other ratio), that is, we are prepared to accept the use of one extra sheet of
material (board) if it reduces the number of cycles by 1. In this case, our objective function is to minimise the
Number of boards + Number of cycles. Therefore, we are also assuming that our problem has only nne type of
board from where panels are tn be cat.

The mumber of cycles of the machine is reduced by decreasing the total number of different cutting patierns
in a solution. If the number of different cutting patterns is reduced in a complete solution, this means that some
pattems are being repeatediy cut in nrder to produce all the required parts. The saw maching can cut more than
one board at a time; it can cut a stack of boards up to a maximum height. Repeated patterns, hence, can be cut
in a single saw cycle reducing the machine cutting costs.

The number of times a patiern is repeated in a solution is denoted its mn quantity. For many users it is
desirable that the ran quantity be equal to a multiple of the maximum stack height, This implics that if the
maximum stack height is 5 boards, the tun quantities must be 5, 10, 15, and so on. If the mn quantity nf a
pattern is 21 (5 cycles with last cycle not full) the nser might prefer a run quantity of 20 (under-production) or
even 25 (over-production).

We are assuming here an exact quantity problem, that is, all demands have to be exactly met. Hence, if for
instance, the run quantity is 21 we will have 5 cycles with the last cycle not full.

In this paper we present a heuristic procedure for solving the reductinn of the saw cycles problem. The
method proposed is quite simple. Since it is desirable tn have as little cycles as possible while maintaining the
number of boards as low as possible, we try tn define patterns containing only panels with high demands so that
they can be repeated many times. This discriminative pattern building strategy is maintained as long as the
waste of the patterns obtained are not large enough.

2. ALGORITHM FOR THE REDUCTION OF SAW CYCLES

The basic idea used is quite simple. From the original problem Py, we define a surrogate problem Py with
the same panels as the original problem Py but with the demands adjusted according to a factor Fy. If
dy.dy,....dp, are the requiremems for panels 1, 2, ..., n, respectively, in problem Py, problem Py is obtained by
dividing d,,d5.....d;, by Fy and taking only the integer part. Any cutting pattern feasible to problem Py is also
feasible to Py and, in additinn, can be cut at least Fy times without having over-production.

880

By using a pattern generator optimiser algorithm, patterns are generated for problem Py in sequence and if
the pattern is "good" envugh it is accepted. This pattern will be part of the overall solution for problem Py
having a stack height of Fy.

When a pattern generated for problem Py is not "goed” enough then we reduce conveniently the panel
requirements of problem Py according to the patiern(s) chosen and the stack size Fy. If no pattern was chosen,
0o reduction is made. A new stack size Fy is defined and the process is repeated as from the beginning. The
process ends when all panel requirements are met.

We next describe in detail what we mean by a "good" pattern and how we define the stack size Fy.

2.1 Definition of "good" pattern

Qur objective is to minimise the number of cycles and to get a solution with the least possible waste. The
criterion for deciding whether a pattern is "good or not" must fake into consideration the stack size. It is
obvious that 2 pattern, which is repeated many times, will produce a poor overall solution if it has lots of waste.
On the other hand, a "bad" pattern can be acceptable if it is not going to be repeated many times since its
contribution to the overall solution will be minimal,

We try to incorporate in our algorithm, hence, the condition that patterns which are to be repeated many
times must have a high efficieocy. If the stack size is high we accept a pattern only if its efficiency (total panel
area in pattern/ board area) is greater than a cutoff value "effref”.

The definition of the cutoff value "effref" is quite important. In the problems we tested we have been usiog
as "effref* the value given by the best previously known overall results of the problems. Tests using different
cutoff values showed that the final solutions are sensitive to this value.

Hence, a multiple pass scheme is suggested where this parameter is updated according to the previous pass
results, For the initial pass, when this cutoff value is unknown, a fixed predetermined value is used.

We implemented an algorithm with 5 passes that produced quite good results in the tests performed. In
each one of the passes, a different target efficiency "effref was used. The target cfficiencies were defined as
follows:

Pass 1 effref = 80%. Call the efficiency achieved

El (e.g., E1 = 83%)
Pass2 effref = 90%. Call the efficiency achieved
E2. {e.g., E2 = 86%)
Pass 3 effref = max {E1,E2}. Call this E3 (e.g., E3 = 86%)
and the efficiency achieved E4.
ES = max {E3,E4},
E6 = min {E5+2.5%,100%3}.
Pass 4 effref = E6. 'Call the efficiency achieved E7.
E8 = max {ES,E7}.
IF (E8 > ES)
E9 = min (E8+2.5%,100%]}

881

ELSE
E9 = min {E5+5%.100%}.
Pass § effref = E9.
The best overall solution of the 5 passes is kept.
The reasoning for choosing such efficiency reference values is the following, The first two passes are just
"guesses”, we do not know anything about what we can expect from the solution of the problem. The higher
reference value of the second pass is an attempt of the algorithm of driving the search towards a potential good
solution with higher efficiency. The third pass is an opportunity to correct the previous passes guesses, In many
of the cases tested, after this pass a good solution was already generated. Passes 4 and 5 are refinements. They
just attempt to identify possible better efficiency solutions to the problem.
As the staus size decreases, we can afford to be less restrictive with respect to the acceptable patterns'
efficiencies for their contribution to the overall solution waste will be smaller.
We have been using the following cutoff values in our problem tests with relative good success:
cuteff value = effref « correctinnfactor,
where
correctionfactor = |, if stack size is greater or equal to the maximum stack allowed per cutting cycle
(MAXSTACK),

correctionfactor = 1.0 (MAXSTACK + 1 - stacksize)+0.02,
if stack size is greater than 1 and smaller than the maximum
stack allowed per cutting cycle,

correctionfactor =0, if stack size is equal to 1.

When the stack size is equal to one, any generated pattern is chosen even if it has a
low efficiency for otherwise, we would be unable to satisfy att panel requirements
¢xactly at the end,

The correstionfactor may be adjusted when the relative weights of boards and cycles differ in the objective
function. For instance, if a sheet of board is worth three cycles, then we could be even more restrictive in
accepting patterns that are repeated many times, therefore, enforcing our priority nn the number of boards
rather than the number of cycles.

2.2 Definition of the stack height F

The definition of the stack height FO is based on the threg largest requirements of the panels and the
maximum stack size per cutting cycle (MAXSTACK).

Let maxy, maxy, maxy be the 150 largest, the 279 largest and the 37 largest requirements of the pancls in
problem Py. Let maxdemand be the smatlest multiple nf MAXSTACK which is greater or equal to max;/2;
maxdemand; be the largest multiple of MAXSTACK smalter or equal to max; and maxdemand,y be the Jargest
multiple of MAXSTACK smaller or equal to max3. Therefore, if Fy) is equal to maxdemand, then the demand
for the panel that has the largest requirements in problem Py, will be equal to | in problem Py. Ohserve that

882

this is the smallest value for F, multiple of MAXSTACK, that will still keep the demand of the panel having
the largest requirement in problem Py equal to 1 in problem Py. The first value of Fy is maxdemand,

The subsequent values of Fy are defined as follows: every time after 2 stack size Fy is tried and at least one
pattern is accepted, the next value of Fy is maxdemand) of the new updated Py problem (obtained from the
previous Py with the pancl requirements reduced accordingly to the accepted patterns and corresponding stack
size); if no patterns is accepted for the current stack size Fy, the pext value of Fy is maxdemand,, if the current
valug is greater than maxdemands and, the current value - MAXSTACK, otherwise. This process goes on until
the stack size Fyy reaches the MAXSTACK valug. In this case the next stack size Fy is one less the current one.

As we previously discussed, it is important that we get “good” patterns when the stack size is large. We
requirc the use of a good generating pattern program in conjunction with our proposed scheme. Many
generating pattern programs sort the panels according to some criteria (see Yanasse et al, 1991) and impose
that the first panel in the sorted list (a particular, perhaps odd sized - large, long, wide - panel) has got to be in
the pattern being generated. This might lead only to "bad" pattemns in terms of the criterion we are using. In
this case, it is important to have some mechanism that relaxes this imposition so that other, perhaps more
promising patterns are generated.

The correcting factor we propose is quite arbitrary. From the limited tests we performed we observed that
the solution is also sensitive to this parameter value. A reduction of the efficiency by the factor of (n-1)/n seems
to produce also good results for small demang problems, where n is the current Fy value and n is smaller than
MAXSTACK.

For small sized problems we observed that some panels may ideally belong to patterns with smaller run
quantities although their requirements compared to the others in the problem are large. They, therefore, tend to
be inserted in patterns with large run quantities when applying our proposed method. A perturbation of the
method above might be tried, consisting of temporarily inverting the order of the run quantities. Suppose. for
instance, that some panels may ideally belong to patterns with a run quantity of 4 but are partially used in the
Tun quantity of 5. A perturbation of the method would be to force the first pattern to have a run quantity of 4
(that is the dividing constant of the demands is 4) before starting at 5. Several passes could be tried, forcing the
first pattern to have run quantities of 1,2,3,4 etc. and keeping the best overall solution.

The scheme proposed to minimise the number of cycles can be very advantageous mainly when the
Tequirements of the panels are large. By dividing the demands by a constant the new problem can be cuite
small sized, hence, getting a solution for this problem is quite fast. If good patterns are obtained, the overall
performance of the method in terms of computer time can be very good.

3. COMPUTATIONAL RESULTS OF THE REDUCTION OF SAW CYCLES
ALGORITHM

The algorithm for reducing the number of saw cycles has been applied to a few test problems and a typical
example of the type of results obtained is presented in Tables 1 and 2.

Table 1
Sumumary of previously obtained results
{using a comercial pattern generation optimiser)

Problem No. of Beards No. of Patterns No.of
Cycles

1 126 49 49

2 130 77 78

3 260 4 29

4 7 5 5

5 17 10 10

[} 21 11 12

Totai boardst+cycles = 744

Tabhle 2
Summary of the results obtained by saw reduction
algorithm
Problem No. of Boards No. of Patterns No.of
Cycles
1 131 6 15
2 135 [15
3 260 5 28
4 7 4 4
5 19 6 6
6 22 7 7

Total boards+eycles = 649
As can be seen the results are promising with an average improvement over the previous solutions around
13%. The best possible value of the function (Total boards+cycles) for these problems, taking into consideration
the area of the panels, area of the boards and maximum possible stack height is 551.

4. CONCLUSIONS

The proposed procedure for reducing the number of saw cycles assumed that the cutting problem has only a
single type of board from where the pancls are to be cut. Algorithms for maltiple type board pmblems have yet
to be studied.

In practice there are still other cutting restrictions that were not explicitly taken into consideration, for
instance, there are cases where the users want to minimise the order spread, and/or the number of open stacks
during the production run is limited. A modified procedure can be used in these cases, We just need to provide
a regeneration mechanism for the value of the stack size so that when an order is finished andfor a stack is
closed the stack size is allowed to increase again. This can be done without much effort.

884

The method might become slow for large data set problems, and in practice, 2 mechanism that limits the
number of passes can be incorporated so that the running time is kept within desired values. .As we stated
before, in most of the tests performed we had obtained quite good resulis afier 3 passes. Also, we should
obscrve that if the target efficiency is higher it is more likely that the ruaning time for the pass is increased.
This is so because it is more likely that a patiern generated is not accepted at the early stages and hence, it is
mote likely that the total number of patterns generated until the algorithm finishes will be higher. As we kmow
the running time of the algorithm is directly related to the number of patterns gencrated. Therefore, we are not
being optimistic if we expect a reduction of aboul 20% per pass in running time if we decide to stop the
algorithm before all 5 passes.

It was brought 1o our attention recently that a quite similar idea had been proposed previcusly (sce
Haesster, 1975) to reguce the number of patterns in a one dimensional trim problem, while still minimising the
trim loss.

5, REFERENCES

YANASSE, Horacio H., ZINOBER, Alan 8.1, HARRIS, Reginald G. Two dimensjonal cutting stock: board length
determination, Instituto Nacional de Pesquisas Espaciais, S/Eo José dos Campos, INPE-5383-PRE/1749, April 1992.

DYCKHOFF, H., ABEL, D, GAL, T., KRUSE, H.J. Trim loss and related problems. OMEGA, v.13, n.1, p.59-72,
1985.

HINXMAN, A1 The trim loss and assortment problems a survey. EJOR, v.5, p8-18, 1980.

YANASSE, Horacio H., ZINOBER, Alan 5.1, HARRIS, Reginald G. Twodimensional cutting stock with multiple board
sizes. Journal of the Operational Research Society, v.42, n.8, p.673-683, 1991,

HAESSLER, R.W. Controlling cutting pattern changes in one- dimensional trim problems. Operations Research, v.23, 0.3,

p483-493, 1975.

885

