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Abstract

An evolutionary computation approach is
described for a classical geophysics inverse
problem, namely, magnetotelluric inversion. The
problem’s nature and features are briefly
described, as well as the procedure used to
approach it, based upon the development of three
problem specific operators: local search,
homogenisation and spatial crossover. The latter
is presented in detail and relevant data
comparing its performance with uniform
crossover are provided. Comparison is then
made between the solution obtained with
evolutionary computation and another, a
classical approach, more akin to the inverse
problems field. Conclusions are drawn for the
necessity of using ad-hoc operators in this
problem, and establishes the balance between the
two approaches: evolutionary computation
generates better results while consuming more
computing resources.

1 INTRODUCTION

Evolutionary computation was introduced as a tool for the
solution of complex problems. One of its advantages has
been the ability to tackle problems that have not yet been
completely solved; in these cases, it became unnecessary
to know how to find the solution, but only to recognise
how good a potential solution is, regardless the way it was
generated. Naturally, there is a price to be paid as we
forego prior knowledge. If, on the one hand, one does not
need to dominate 100% of the problem, on the other, one
has to build and adequate evolutionary engine associated

to the abundant computing resources which are consumed
in the process.

Within the universe of evolutionary computation some
practitioners argue for using the same simple and
sufficiently tested evolutionary framework across the
applications. The main justification for this view is the
possibility of obtaining theoretical data (as, for example,
the schema theorem or the building blocks hypothesis
(Goldberg 1989; Forrest and Mitchell 1992) that may
support the use of evolutionary computation procedures.
Such theoretical data have been obtained mainly for
engines that could be called “canonical” and, in principle,
would consist of: a) binary codification; b) fitness-
proportional or rank-based selection; c) 1-, 2-, n-point or
uniform crossover; and d) conventional mutation.

However, as well pointed out in Davies (1991), other
researchers make a case for using hybridisation, where
problem-dependent knowledge is introduced into the
evolutionary computation engine, so as attain an
improved performance. According to Davies (1991) this
can be done using three principles: 1) Algorithms adapted
to the problem can be used to generate some of  the
individuals of the initial population. By using elitism one
can guarantee that the performance of the evolutionary
engine will not be  worse than the already existing
algorithm; 2) Incorporating the already known algorithm
heuristics or procedures to the genetic operators; 3)
Enriching the evolutionary algorithm with specific coding
schemas.

 Kodyalama et al. (1996) say: “the most creative step in
the evolutionary process is creation of appropriate genetic
operators for the particular problem addressed”;
accordingly, they designed a problem-specific operator
(called switching), and obtained good results in the
context of designing satellite components. In a similar
vein, Bruns (1993) defines knowledge-augmented genetic



operators, those that incorporate knowledge of the
problem so as to improve their performance.

Here we report on an evolutionary computation approach
that was able to produce a solution to an inverse problem
only through the design and use of ad-hoc evolutionary
operators.

2  THE PROBLEM

Obtaining the pattern of underground electric
conductivities in some region of the Earth, based on
measurements of the electromagnetic field at the surface,
is a subject of great interest. This problem, called
magnetotelluric inversion, is a classical problem that
appears in many applications in geophysics such as oil
prospection, mining, underground water prospection, etc,
having high relevance for the exploration of regions that
are difficult to study through conventional seismic
methods (Ramos and Velho 1995). Overall, what one
wants to know then is how to obtain underground
(conductivity) data, once surface data (electromagnetic
field) are known. The corresponding forward problem –
obtaining electromagnetic fields at the surface, from
underground patterns of electric conductivity – is solved
through Maxwell’s equations in a way that is much
simpler than the inverse problem. To solve an inverse
problem means to deduce the unknown causes of a
phenomenon from the observation of its effects; this is in
contrast to solving a forward problem, in which the we
look for the effects of a phenomenon, out of the complete
knowledge of its causes (Woodbury 1996).

When the problem being investigated is mathematically
described according to its inverse functions it can be
treated analytically. It suffices to find the inverse
functions and to solve them. But this is rarely the case. In
general, there is no such thing as an inverse function. That
is why one is forced to accept some degree of
degeneration in the results. According to this the inverse
problem theory was called “diagnosis theory” (Sabatier
1985) in which decisions are taken within environments
with varying degrees of uncertainty. A solution of an
inverse problem may be accepted when, even if it does
not represent a single and ultimate result, it eventually
leads to: a) converging answers around a correct result; b)
a larger information set related to this result; c) higher
certainty degree in terms of decisions taken on an applied
problem; and d) any combination of the previous three in
an optimised way, that is, providing an appropriate
balance between computing load required and results
obtained.

Several techniques may be used when looking for inverse
problem solutions. The one discussed here is non-linear
optimisation. The objective function is the difference
between field or synthetically generated data and those
produced by the forward model, which represents an error
measure for the candidate solutions. This function is then
optimised through an evolutionary computation
procedure. This paper follows another, presented by

Ramos and Velho (1995), that also uses an iterative
method (although based on a standard gradient-based
optimiser) in addition to explicit regularisation
procedures. The problem here is the same, but the
optimiser has been replaced by an evolutionary
computation procedure. In either case, the forward model
involved is the same one presented in the original paper,
where its mathematical description was described. This
forward problem is used here on a black-box modality.

Every individual in the population is represented by a
matrix of 7 x 10 real numbers, each one referring to a
rectangular slice of underground material (in fact, a prism
cut by a half-plane) of unknown conductivity. These
conductivities multiply the value 10104 −××ωπ and are
given in mhos/m, and the dimensions of the underground
rectangles are ∆ y = 10 km  and  ∆z  varying from 1 to 10
km. The objective function to be maximised is

where f is the fitness of an individual, K is a parameter
(kept constant, equal to 0.01, in the present case) that
allows for the selective pressure to be tuned, and ε is the
magnetic error given by

In the equation above Hp is the component of the
magnetic field generated by the reference individual
(obtained from field measurement or, as is the present
case, defined synthetic data) and Hc is the calculated
component by the evolutionary engine. For simplicity of
presentation (but with no loss of generality), only the
magnetic field will be considered in this paper. The
number 440 results from the fact that measurements are
being made at 11 points on the surface of the earth, in 20
frequencies (varying from 0.0001 and 0.01 Hz), yielding
both real and imaginary components of the magnetic field
at those points. In a situation with real data ε would be the
only error capable of being obtained. However, since the
present case uses synthetic data, the original individual
the evolutionary process will try to reconstruct is already
known. So although the evolutionary search is guided by
the error ε, it is possible to define a second error measure,
the conductive error, given by

where E is obtained out of the 70 absolute differences

between the reference and the calculated conductivities.
The reason for presenting these two kinds of error resides
in the fact that, due to noise (a typical ocurrence in the
inverse problem context), minimisation of the magnetic
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error not necessarily entails minimisation of the
conductivity error. In fact, pushing minimisation of the
former error too far, may lead to an increase of the latter.
Naturally, the evolutionary search process has to avoid
being misled by this feature.

3 ON PROBLEM SPECIFIC
OPERATORS

Several authors have investigated evolutionary operators
adapted to the problem being studied. What one waists in
terms of generality for not being able to reuse computer
codes is balanced by the increased performance attained
by the evolutionary engine. Guerreiro et al. (1998) affirm
that “in the GA, one is free to devise other operators”; in
tune with this statement, they present the idea of using
three different crossover operators with different rates for
each one.

Discussing structural optimisation of three-dimensional
objects, Kajiwara and Nagamatsu (1996) suggests that the
evolutionary engine should make the conversion of a one-
dimensional chromosome into another, defined in three
dimensions; in this way, spatial relationships derived from
neighbouring elements in the original objects remain
preserved in the chromosomes that represent them. For
that they created two crossover operators (named
scooping out and cutting off), whose common idea is the
generation of three-dimensional blocks that are swapped
over among parents.

Cartwight (1993) introduced UNBLOX (Uniform Block
Crossover), a two-dimensional crossover operator. It
comes from adapting a two point crossover operator to a
two-dimensional chromosome, but represented in only
one dimension. In the conventional crossover central
points from a two-dimensional chromosome that was
stretched out present a higher likelihood of being selected
comparing to peripheral points. This effect has been
called positional bias. UNBLOX corrects this anomaly by
ensuring that all points in the chromosome have the same
probability of generating cuts. The SPAUC operator to be
proposed later in this paper does not present positional
bias since it does not simply handle two-dimensional
chromosomes by stretching them out, but as full two-
dimensional entities.

Tanaka et al. (1993) suggested a coding scheme in a
geomagnetism problem that introduced the concept of
spatial distribution of electric currents. The idea of a
rectangular crossover was sketched, but no further
development was discussed.

Finally, Mitchell (1997) and Bäck (1996) report on
several crossover implementations. The following are
given: a) segment crossover,  in which the total number of
cutting points is not fixed but can vary around some
expected value, perhaps following a Poisson distribution;
b) shuffle crossover, in which the parents are shuffled in
some way, the crossover made, and then the offspring
unshuffled; c) punctuated crossover, in which each
individual carries information about the number of cuts it

will be subjected to, and the actual sites where they
should occur (since these also belong to the genotype,
their tuning is also left for the evolutionary process).

All in all, discussions about the generation of new genetic
operators and their performance is far from over. In fact,
as pointed out in Mitchell (1997), the related pieces of
work presented so far are usually associated with small
sets of test data; worse of all, different investigations give
way to conflicting results.  As Bäck (1993) says: “during
each of the main conferences on GA a few new operators
can be expected, especially when a non-traditional
problem representation is used”.

4 SPATIAL UNIFORM CROSSOVER

Boschetti (1996) textually says: “one of the main
problems in the application of genetic algorithms to
geophysical problems is the high dimensionality”. This is
also the case in the present application, even considering
it is based on synthetic data; in fact, since each individual
is made of 70 real numbers, and assuming the required
precision is in the order of one hundredth, the search
space has approximately  10140 points (with real data the
situation becomes dramatically worse). A canonical
evolutionary engine working on a noiseless synthetic
problem was not able to present appropriate results. A
search for ad-hoc operators was then initiated. Three were
developed: local search, homogenisation, and a specific
crossover operator, named SPAUC (SPAtial Uniform
Crossover).

Initial experiments we performed on this problem soon
suggested  the better performance of the uniform
crossover, comparing to 1-, 2- or n-point crossovers. So,
when the necessity for presenting a new and better
crossover operator came up, the new operator came
naturally from the uniform crossover, through its
generalisation; however, the standard uniform crossover
was not disregarded completely. The choice between
SPAUC and uniform crossover is given by a p
probability, whose value is left for the user, remaining
unchanged through the run. So, when p = 1.0, all calls to
the operator are responded by SPAUC, whereas if p = 0.0,
uniform crossover is fully in charge.

The SPAUC operator considers each individual as a two-
dimensional entity. Accordingly, when genetic material is
interchanged, full rectangular patches of the candidate
solutions are involved. The operator implements the
neighbourhood concept both vertically and horizontally.
This action prevents two common problems that appear
when a two-dimensional individual is represented in one
dimension, that is, the possibility that: a) two
neighbouring vertical positions in the chromosome no
longer be neighbours; and b) originally distant elements
get closer to each other than they should (for example, as
happens when the last value on a row and the first one in
the subsequent row are involved).

In order to implement the SPAUC operator, we used the
following procedure: a) n horizontal cuts and k vertical



cuts are generated on random sites across the individual;
(amounting to r patches, r = (n+1)×(k+1)); b) a V mask of
size r is generated having random binary values; and c)
given the two ancestors that will be operated by SPAUC,
the offspring to be generated will obey the following rule:
patches with a mask value equal to 0 are filled up with
values from the first parent, while patches with a mask
value equal to 1 take their values from the corresponding
patch in the second parent. Notice that the longer the
mask V, the closer SPAUC will resemble the standard
uniform crossover.

What follows is an example showing the operation of
SPAUC. It starts by generating random values that will
indicate the cutting rows across the chromosome. The
total number of cuts is user-defined. Assuming that 2 cuts
have been generated in rows 3 and 4 of an individual  A1,
the situation would look like as follows:

a a a a a a a a a a

a a a a a a a a a a

a a a a a a a a a a

A1 = a a a a a a a a a a

a a a a a a a a a a

a a a a a a a a a a

a a a a a a a a a a

Next, the algorithm generates random cutting columns.
Assuming 3 cuts have been generated at columns 3, 4 and
7, the situation above would become:

a a a a a a a a a a

a a a a a a a a a a

a a a a a a a a a a

A1 = a a a a a a a a a a

a a a a a a a a a a

a a a a a a a a a a

a a a a a a a a a a

Notice that the cuts generated 12 distinctive patches
within the individual. Consequently, the typical V mask
will need to have 12 bits in order to indicate the relation
between parents and patches, that is, which parent will
generate which patch. Assuming the mask  V = 1 1 0 1 1 0
1 0 1 1 1 0, and assuming the existence of a second
parent, named A2 (filled up with with b values), applying
SPAUC would generate the following offspring:

b b b b a a a b b b

b b b b a a a b b b

b b b b a a a b b b

D1 = b b b a b b b a a a

b b b b b b b a a a

b b b b b b b a a a

b b b b b b b a a a

a a a a b b b a a a

a a a a b b b a a a

a a a a b b b a a a

D2 = a a a b a a a b b b

a a a a a a a b b b

a a a a a a a b b b

a a a a a a a b b b

5 OTHER OPERATORS

The numerical results reported here were obtained using
two other operators besides SPAUC: local search and an
homogenisation operator.  While the local search awards
discontinuities, forcing them to appear, homogenisation
creates conditions for equal conductivity regions to
appear. The use of the 2 operators produced good results.

5.1 LOCAL SEARCH

Local search is implemented as a simple hill-climbing
algorithm. At every 5 generations the attempt is made to
improve the fitness of the fittest individual through about
13 cycles, of 140 trials each (the number of cycles is an
average figure, since it starts smaller and increases
throughout the generations). The figure 140 derives from
the fact that the chromosome is 70 points long, and each
one of them is subjected to two small random increments
(one positive and the other negative), that represent
probing two neighbouring positions in the fitness
landscape. These probed positions with higher fitness are
stored until the end of the cycle, when all the changes are
applied at once, thus generating a new, higher fitted
individual  that replaces the original.

5.2 HOMOGENISATION

This operator is based upon the notion that neighbouring
regions will have greater probability of having similar
conductivities. At every 5 generations an attempt is made
to improve the fitness of the fittest individual through an
average of 13 cycles of 3 trials each. Every trial starts
with the generation of a rectangular random patch and



continues, firstly, by replacing all values in the patch, for
one of its values – thus generating an homogeneous patch
– and checking the resulting fitness; secondly, by
repeating the same procedure, individually for all the
other values in the patch. The patch the results the best
(improved) performance, if any, replaces the original.

Additionally to the use of homogenisation alone, this
operator is also used in association with SPAUC. In this
case, with small probability (5%) homogenisation is
applied to the individuals generated out of SPAUC.

6 RESULTS

We used the genetic algorithm package GALLOPS
(Goodman 1996), modified by the 3 operators above that
were added to it. The following parameters were used:
population size of 100, tournament selection of size 15,
3% mutation per conductivity value, and crossover rate of
85%.

In the experiments to follow, two comparisons have been
made. First, SPAUC is compared to uniform crossover,
both with noiseless and noisy synthetic data. Then, the
SPAUC-based evolutionary process  is compared to a
classical iterative approach for the problem, that uses a
sophisticated gradient-based optimiser plus (entropy-
based) regularisation. The second experiment is fully
performed in the presence of noise, at the same amount
for both approaches.

6.1 COMPARISON BETWEEN SPAUC AND
UNIFORM CROSSOVER: NOISELESS
DATA

The parameters summarised in Table 1 were used in the
experiment below, as they provided a fairly acceptable
balance between precision and demand on computer

resources. The first experiment relied on noiseless
synthetic data, and aimed at a comparison between
SPAUC and uniform crossover.

Table 1. Values used in the SPAUC-based  run

SPAUC probability p = 100%

Horizontal cuts n = 2

Vertical cuts k = 3

Total number of patches r = 12

We compared a typical run with pure SPAUC (100% of
cases) with pure uniform crossover (100% of cases). The
runs went through 224 generations, all other parameters
being the same. The initial population was initialised with
individuals representing random conductivity values from
0.0 to 100.0. The 10.0 value stands for a background
conductivity, meant to represent rock.

The problem instance at issue is depicted as Table 2; it
presents a rectangular body embedded in the rock, with a
conductivity of 100.0 (that is, ten times more conductive
than rock). The solutions found using SPAUC and
uniform crossover individually, are shown, respectively,
in Tables 3 and 4.

Table 2. The known answer of the problem that the evolutionary engines should find. It represents a
patch of rock (conductivity 10.0) with a rectangular block of higher conductivity material (100.0) in it.

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

10.0 10.0 100.0 100.0 100.0 100.0 100.0 10.0 10.0 10.0

10.0 10.0 100.0 100.0 100.0 100.0 100.0 10.0 10.0 10.0

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0



Table 3. Fittest individual using uniform crossover only

10.3 9.4 11.3 8.6 13.6 1.9 41.0 2.7 26.0 3.3

8.4 16.3 100.0 96.7 7.8 31.6 73.1 21.6 5.1 18.2

13.0 1.8 89.4 75.0 79.9 71.4 79.1 9.3 3.2 99.1

8.0 18.9 33.0 90.4 1.2 1.2 12.2 10.7 7.3 28.4

9.7 10.1 4.9 5.4 2.2 13.1 12.5 10.3 10.0 5.9

10.1 10.7 2.5 3.8 39.3 2.3 4.6 10.7 10.4 3.1

7.6 15.7 13.6 1.5 70.7 1.8 13.5 8.6 8.1 13.1

Table 4. Fittest individual using SPAUC only

10.0 10.0 9.8 10.2 9.8 10.2 9.7 10.1 9.9 10.1

10.0 9.9 98.4 100.0 100.0 100.0 94.0 10.6 9.5 10.4

10.0 10.0 99.9 100.0 84.5 100.0 100.0 10.4 9.4 10.9

10.1 9.9 10.2 20.5 58.9 21.8 11.1 10.1 10.2 9.8

10.0 10.0 10.0 9.7 7.4 8.3 9.9 9.6 10.0 9.7

10.2 10.0 10.0 12.9 26.4 11.6 10.3 10.2 10.0 10.8

9.7 10.0 10.0 9.9 8.5 9.5 10.1 9.5 9.5 9.8

On a single randomly selected run a conductivity error of
860.4 was obtained when uniform crossover was used and
of 132.8 when SPAUC was used. However, while the run
using uniform crossover requested approximately 150×
103 objective function calls, the one with SPAUC
requested 223×103. Because running the process is
computationally very intensive only a single run was used
in this experiment; however, partial runs were performed
that suggested the same trend reported herein, and also,
other complete runs were performed for the other
experiments (to be described below) which turned out to
be coherent with the observations above.

6.2 COMPARISON BETWEEN SPAUC AND
UNIFORM CROSSOVER: NOISY DATA

Noise was introduced at the magnetic field generated by
the individual represented by Table 2 (the known answer
of the problem). Gaussian noise was used with 0 mean
and 1% standard deviation. The population was randomly
initialised and three runs were performed with different
random seeds using either SPAUC or uniform crossover.
Table 5 presents the results.

Table 5. Comparative data using SPAUC and uniform
crossover, using noisy data

Test performed SPAUC Uniform
Crossover

Lowest conductivity error
(in 4π×ω×10-10 mhos/m)

262.5 600.6

Average conductivity error
(in 4π×ω×10-10 mhos/m)

450.3 744.2

Average number of calls to
the objective function

102×103 60×103

As we can see, the SPAUC-based solution still yields
better results in the presence of noise than that of the
uniform crossover, even though the result is not as good
as in the noiseless case.

6.3 COMPARISON BETWEEN THE PROBLEM-
SPECIFIC EVOLUTIONARY METHOD
WITH A CLASSICAL APPROACH

Ramos and Velho (1995) investigated the same noisy
problem mentioned above using E04UCF, a powerful
gradient-based optimiser of the Numerical Algorithms
library (NAG 1988).



Table 6. Fittest individual in Ramos and Velho (1995)

10.02 10.25 9.64 10.09 10.03 9.58 10.15 10.07 9.97 9.94

10.02 9.64 97.10 100.00 88.98 97.62 100.00 10.07 9.95 9.94

9.79 9.64 97.10 99.97 88.98 97.62 100.00 10.07 9.95 9.93

9.78 9.63 10.08 10.02 12.38 16.85 9.56 10.06 9.95 10.54

9.78 9.62 10.08 10.03 12.38 16.85 9.57 9.97 9.95 10.54

10.25 9.63 10.08 10.02 9.58 10.16 9.57 9.97 9.94 10.55

10.25 9.63 10.09 10.02 9.58 10.15 10.09 9.97 9.94 10.55

Table 7. Fittest individual in the present study

9.89 10.17 9.72 10.34 9.44 10.51 9.73 10.24 10.25 10.19

9.62 9.85 96.78 98.84 90.48 98.27 94.57 10.29 9.16 10.89

10.61 10.98 99.84 99.96 74.33 99.47 92.17 10.43 8.78 10.58

10.26 8.83 8.63 16.27 7.06 11.48 12.91 11.19 11.29 10.20

8.82 11.75 10.60 6.95 11.81 11.81 8.85 10.90 9.73 9.45

12.86 6.99 10.98 12.41 8.28 4.22 6.95 8.22 11.74 11.15

4.20 34.73 5.26 10.29 3.23 9.74 19.85 11.25 10.44 6.43

They ran the model 4 times obtaining a conductive error
average of 453.8. The fittest individual is represented in
Table 6. We ran the same problem 6 times in our
evolutionary, SPAUC-based approach, and obtained a
conductivity error average of 210.5, with the fittest
individual being represented in Table 7.

Considering that the level of noise (1%) was the same for
both techniques, the problem-specific evolutionary
process developed is clearly justified.

7 CONCLUDING REMARKS

Even though it may be tempting to use a canonical
algorithm, that is possibly ready for use (as in Goodman
(1996)) which could warrant correct results in a short
time, practice has demonstrated that this approach is only
appropriate for simple problems. For more complex
problems – in particular, for the high dimensional inverse
problems – satisfactory results have only been obtained
when problem-specific knowledge is explicitly introduced
into the evolutionary engine. However, as we did just that
in the present approach, we tried to keep the amount of
knowledge as minimal as possible in order not to forego
robustness of the procedure.

In the reported case such an attempt was successful, the
only pieces of knowledge used having been the facts that:
individuals are two-dimensional and should be handled as
such; conductivity distributions in the underground of the
earth should follow homogenous patches; and that a
simple hill-climbing algorithm could well be used to help
improve the results. Contrast the first premise with
Bäumer (1996), where an evolutionary approach to
magnetotelluric inversion is also used, but with a more
limited, one-dimensional approach.

Another point to be remarked is that the evolutionary
engine presented better results than a conventional
optimiser, although at higher cost. While the best result
from Ramos and Velho (1995) establishes an approximate
amount of 14×103 objective function calls, our best result
shown here requested approximately 100×103 calls. For
the case we reported on, which relies on synthetic data,
both approaches have an undeniable merit.

However, on real-world data, where accuracy is the
critical concern, the evolutionary technique presented
here is certainly an appealing alternative; another
possibility, as concluded by Bäumer (1996), is using
evolutionary computation in order to find the best region
of the search space, and then performing an efficient local
search so as to find the best point of that region.
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