@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

A customizable tool for the generation of
production-based systems

G. Bittencourt & M. Marengoni

Instituto Nacional de Pesquisas Espaciais -
INPE/LAC Caiza Postal 515, 12201-970 - Sao
José dos Campos - SP - Brazil

ABSTRACT

A tool is proposed that integrates a modular
graphical interface for image processing and an
expert system shell generator. The tool provides
three knowledge representation formalisms (logic,
frames and semantic nets), forward and backward
control strategies, and several conflict resolution
methods. These features can be combined to construct
expert system shells with different 1levels of
complexity. The tool is intended to facilitate the
implementation of expert systems in the domain of
image processing, and to be used as a teaching and
research laboratory in knowledge representation and
expert system architecture.

INTRODUCTION

The representation of Kknowledge in a declarative
structure, and the resulting separation of control
and knowledge (Schor [26]), characterizes many
knowledge-based systems, specially systems based on
the production rule paradigm (Davis and King ([11]),
as in expert systems (e.g. Buchanan and Shortliffe
(9]). This separation and the methodology used to
build such systems naturally lead to the development
of system building tools: knowledge representation
languages (e.g. Bobrow and Winograd [4]; Laurent et
al. [17])) and expert system shells (e.g. Brownston et
al. (7); Buchanan and Feigenbaum [8]; Van Melle et
al. [30]).

A central problem, when specifying or choosing
a system building tool, 1is to determine which
formalism is more adequate to represent knowledge
about the intended domain. The implementation of a

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517
338 Artificial Intelligence in Engineering

given formalism wusually implies the compromise
between expressiveness and efficiency. The analysis
of how efficiency 1is affected, when expressiveness
increases, is an active research field (e.g. Brachman
and Levesque [5]; Nebel ([20]).

Two solutions are usually available if one
needs a large choice of knowledge representation
formalisms: (i) to have available a large number of
system building tools, or (ii) to use a hybrid system
(e.g. Brachman et al. [6]; Vilain [31]). The first
solution is not practical if the intended application
needs special hardware and software interfaces. The
second implies the use of a large and usually complex
system even when a simpler tool would be sufficient.
A third solution is a tool that provides several
knowledge representation formalisms, control
strategies, and conflict resolution policies, that
allows the user to choose one or more of such
facilities in order to build a customized expert
system shell.

This paper proposes a tool based on this third
solution. The tool also provides a standard graphical
interface for image processing, the intended
application field of the expert systems to be
developed using the tool.

Research and development in image processing is
one of the main activities of the Brazilian Space
Research Institute (INPE). The analysis and
interpretation of images from different sources -
remote sensing satellites, meteorological radars,

aerial photos, etc - 1involve several specialized
activities, presently performed manually or with the
help of a variety of computing systems. These

activities range from almost automatic tasks to
highly complex manipulations involving a 1lot of
specialized knowledge. On the other hand, the
graphical interface needed to implement a
computational tool to help in these activities 1is
rather standard and can be built modularly.

The tool integrates a modular graphical
interface with a shell building tool. 1In this
environment, it 1is possible to build a customized
expert system shell, according to the 1level of
complexity of the intended problem, and then to apply
the usual methodology to develop an expert system to
solve the problem. As for the graphical interface, it
provides graphical primitives, and also allows for
the integration of external algorithms needed for
special image manipulations. This tool represents the

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517
Artificial Intelligence in Engineering 339

artificial intelligence part of a larger project of
developing an intelligent laboratory for image
processing, where research and product development
activities could be performed efficiently.

The paper is organized as follows: in Section
2, the general architecture of the tool is presented.
In Sections 3 to 7, the modules of the tool are
defined. Finally, in Section 8 some conclusions are
presented and directions for future developments are
discussed.

GENERAL DESCRIPTION

The tool was implemented in Common Lisp (Steele Jr.
[28]). The adopted implementation of Common Lisp
permits interfacing with the language C and with the
X Windows systenm.

The tool architecture includes two management

modules - the tool interface and the shell generator
- and three package libraries - the Kkernel, the
knowledge acquisition interface, and the expert

system interface. Each package library consists of a
set of Lisp function packages that can be used as
building blocks to implement an expert system shell.
This architecture is presented in figure 1.

User Needs Expert
A System
A
v Specifications

Tool Shell Expert
Interface > Generator ——» System
Shell
A
1
I I |
Knowledge Expert
Kernel Aquisition System
Interface Interface

l l

Figure 1. Tool Architecture

The use of the tool is divided in three phases.
Initially, the user’s needs are specified
interactively using the tool interface. In the second
phase, these specifications are used by the shell
generator to select, from the package libraries, the

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

340 Artificial Intelligence in Engineering

ones containing the functions needed to build an
expert system shell satisfying the specifications.
These packages are integrated in a stand-alone
system, which 1is compiled. Finally, the compiled
version of the specified shell is used to develop an
expert system to solve the intended problem.

In the following sections, the modules of the
tool are described.

TOOL INTERFACE

The tool interface is a menu driven system that
allows the user to <choose among the facilities
provided by the tool. The expert system shells
generated by the tool consist of the following
modules: knowledge representation, control strategy,
conflict resolution, knowledge acquisition interface,
and system interface. Each of these modules
correspond to a menu entry. To build a customized
shell, the user must choose one option for each of
these entries. The first three modules are built from
packages belonging to the kernel, and should be
specified first because the interface options depend
on these choices.

When the choice is completed the user may store
it in a disk file or proceed to the following phase,
calling the shell generator from the appropriate menu
option. A further option is available: to execute
directly from the tool interface an interpreted
version of the specified shell. This option is useful
if the user has doubts about his/her choices and
wants to perform some preliminary tests.

On line help is provided at all menu levels.
Because of the importance of the choice of the
adequate knowledge representation formalism, the help
associated with this option is the most detailed.
Short descriptions of formalisms, their syntaxes and
reasoning methods, illustrated with examples, are
available. With the aid of examples, the control
strategy and the conflict resolution helps explain
what kind of problems each formalisms is most
adequate to, and how to combine formalisms.

The knowledge acquisition and system interfaces
are largely determined by the fixed rule format and
the chosen Kknowledge representation formalisms.
Choices are only available on syntactic details and
interface layout. Their help options are limited to
examples of how these interfaces should be used.

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517
Artificial Intelligence in Engineering 341
SHELL GENERATOR

The shell generator is a noninteractive program that
takes as input an expert system shell specification,
generated through the tool interface, and produces a
compiled version of a stand-alone system satisfying
the specification.

Basically, the stand-alone system is built up
by putting together the needed packages. However,
some optimization 1s also necessary, mainly to
eliminate unnecessary tests related to options which
are not present in the specification.

KERNEL

The kernel consists of the basic packages needed to
implement an expert system shell: the rule base
manipulation package, the knowledge representation
packages, the control strategy packages and the
conflict resolution packages.

The integration of different types of packages
in coherent expert system shells is achieved through
the definition of an uniform interface for the same
type of packages, and a coherent interface between
different types of packages as will be shown below.
These interfaces are specified as formal 1languages
and their format is intended to be efficient rather
than user-friendly.

Rule Base

There 1is only one rule base package, and the
formalism implemented in this package determines all
the interfaces between packages. This formalism
allows for rule bases consisting of independent rule
sets. Each rule is represented by a structure of the
following form:

(Rule
Name: <string>
Left-hand side: <pattern>
Right-hand side: <pattern>
Next-rules: <list of rule names>
Previous-rules: <list of rule names>

The next and previous attributes are used to
define a partial order among the rules. This partial
order is necessary to implement some of the conflict
resolution methods. Each pattern consists of a
conjunction of 1logical terms, which usually include
variables. The result of matching a pattern against a

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517
342 Artificial Intelligence in Engineering

knowledge base is a list of substitutions, one for
each instance of the pattern present in the knowledge
base. These substitutions are applied to the pattern
in the other side of the rule. How the patterns and
the terms are interpreted depends on the adopted
knowledge representation formalism and control
strategy. The patterns can also include graphical
commands, which are procedure calls to the graphical
interface provided by the tool.

Knowledge Representation

A knowledge representation package consists of an
internal knowledge Dbase, and a set of data
manipulation procedures. Internal knowledge bases are
divided into three independent parts: facts, goals
and hypotheses. How these partitions are interpreted
depends on the control strategy. Each element in the
internal knowledge base is associated to a time
measure. This time measure is based on the fact that
expert systems execution can be divided in cycles.
The cycle number in which a knowledge element is
stored is used as its initial time. This time is used
in some conflict resolution methods. The set of
manipulation procedures implements a knowledge

representation formalism. Three formalisms are
available: 1logic, frames and semantic nets. Each
formalism 1is defined by a <€formal language, a

reasoning mechanism and an interface between the
formalism and the rule bases.

The formal 1language defines the form of the
valid expressions that can be stored in the knowledge
base of the package. The reasoning mechanism
specifies how information not explicitly present in
the knowledge base can be inferred, and depends on
the specific formalism, some examples being term
unification, logical deduction, hierarchical
inheritance, default reasoning and procedural
inference. The rule base interface defines how a term
appearing in a rule pattern 1is interpreted by the
formalism. This usually involves tasks as: matching
information already stored in the knowledge base,
storing and deleting information and executing an
external procedure.

Logic The logical formalism has two main advantages:
the inherent expressiveness of language (Hayes [14]),
and the well defined and studied semantics (Tarski
[29]). It is adequate to domains where the knowledge
is largely unstructured and consists of a collection
of independent facts. The main drawback of the
formalism 1is the 1inefficiency of the inference
method: automatic deduction.

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 343

The tool provides two logical formalisms:
propositional 1logic and first-order logic. The
internal knowledge base of these formalisms consists
of a 1list of 1logical expressions constructed
according to the usual logical syntax.

Two reasoning methods are available to each one
of the formalisms: unification and theorem proving.
The unification method consists of matching a given
logical term, appearing in a rule pattern, with the
contents of the knowledge base. The logical terms and
the knowledge base expressions are always stored in a
canonical form to avoid checking for commutativity
and associativity of operators. This reasoning method
corresponds to a data base access using logical
expressions with variables as a query language.

The theorem proving method consists of using a
resolution process to prove that the set of knowledge
base expressions together with the negation of a
term, appearing in a rule pattern, is unsatisfiable.
Several control strategies for the resolution process
are supplied.

To improve efficiency the 1list of knowledge
base expressions 1is stored using the Common Lisp
facility of hash table. Both methods return a list of
substitutions.

The interfacing process between the formalism
and the rule base consists of choosing the term to be
used in the reasoning process, either from the left-
hand side or from the right-hand side pattern of a
rule, according to the control strategy. The
resulting substitutions are applied to the pattern
from the other side and the result is stored in the
knowledge base.

Frames The frame formalism was first proposed by
Minsky [19]. It consists of a hierarchy of data
structures called frames. Each frame is composed of a
set of slots to which values can be associated. These
values can be any primitive information about the
concept represented by the frame, or another frame.
Three inference mechanisms are integrated into the
formalism: (1) inheritance through the frame
hierarchy, (i) default values that can be used when
no information 1is available, and (iii) procedural
attachment to allow the execution of external
functions.

The formalism 1is adequate to taxonomically

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517
344 Artificial Intelligence in Engineering

structured domains where the inheritance mechanism
can be efficiently explored. The characteristics of

technical knowledge - such as machine descriptions,
process descriptions, technical terms,
troubleshooting strategies, etc - make the frame

formalism a preferential choice when building expert
system knowledge bases for those domains (Fikes and
Kehler [12]).

The internal Kknowledge base of the frame
formalism consists of a forest of graph-like
structures where the nodes are frames. This formalism
uses two different formal languages: the knowledge
acquisition language and the access language.

The knowledge acquisition language is used to
construct an initial frame forest. An empty frame,
called TOP, is available to be used as standard top
of hierarchy. The value of a slot can be a Lisp

object, or a frame name. '"Demons", i.e. Lisp
functions, can be attached to frame slots and
executed when the slot value is accessed, modified or
deleted.

The reasoning process consists of verifying
whether there are frames in the frame forest that
satisfy a term of a rule pattern. The reasoning
algorithm searches for inherited slot values, and
takes 1into account the different types of value
associated to each slot. This process results 1in a
list of substitutions.

As in the 1logical formalism, the interface
process between the formalism and the rule base
consists of choosing which side of the rule to use in
the reasoning process, according to the control
strategy. The resulting substitutions are applied to
the pattern from the other side and the result is
used as a conjunction of knowledge acquisition
expressions. A knowledge acquisition expression
preceeded by the operator NOT 1is interpreted as a
"delete slot value" command.

Semantic Nets The semantic net formalism was
introduced by Quillian [24] as a model for human
associative memory. It consists of a set of nodes
connected by edges. The formalism does not have a
generally agreed semantics: the nodes can be used to
represent concepts, predicates, objects or whatever,
and the edges are associated to arbitrary binary
relations between the nodes. Its main inference
mechanism are inheritance through the net and network
matching. The flexibility of the formalism makes it a

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 345
good choice for expert system knowledge
representation, but the wuser must follow some
discipline in order not to misuse the formalism

capacities.

The internal knowledge base of the semantic net
formalism also consists of a forest of graph-like
structures, but in this case the nodes are just
symbols with associated values and the arcs have
labels. Like the frame formalism, the semantic net
formalism also uses two different formal languages:
the knowledge acquisition language and the access
language.

The knowledge acquisition language 1is used to
construct an initial semantic net forest. The value
of a node can be any Lisp object. For all semantic
net queries appearing in a given expression, the
reasoning process consists of verifying whether there
is a path of edges, labelled with a given edge name,
between two nodes. The positive IS-A query results
true if all edges of the path are labelled with
positive label names. The negative IS-NOT-A query
results true if the exception determination
algorithm, based on the skeptical inheritance
strategy (Horty et al. [16]), returns true. In the
simplest case, this ~corresponds to a path of
positively labelled edges, except the last one.

As in the previous formalisms, the interfacing
process between the formalism and the rule base
consists of chosing the side of the rule to use in
the reasoning process, according to the control
strategy. If the result is true then the pattern from
the other side is used as a knowledge acgquisition
expression.

Control Strateqy

A control strategy package consists of a set of
functions to control the general behavior of the
generated expert system shells. Its tasks are: to
direct the rule applications according to a given
chaining strategy (Rychener [25]), and to apply a
certitude <coeficient mechanism when appropriate
(Pearl [23]).

Rules can be applied either in forward or
backward directions. In the forward direction, the
fact part of the knowledge base is used to match the
left-hand side of the rules and the resulting list of
substitutions is applied to the right-hand sides,
which are interpreted as new facts. This strategy is
suitable for data driven problems. In the backward

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517
346 Artificial Intelligence in Engineering
direction, the hypothesis part of the knowledge base

is used to match the right-hand side of the rules and
the resulting list of substitutions is applied to the

left-hand sides, which are interpreted as new
hypotheses. This strategy 1is used 1in diagnostic
problems.

The 1independence of facts and hypotheses
permits a mixed strategy with the rules being applied
in both directions. The implementation of such a
mixed strategy 1is the task of the expert system
interface package.

Conflict Resolution

To tackle varied and unexpected demands from the
environment, a production system should have two
important characteristics: sensitivity and stability
(McDermott and Forgy [18]). A system displays
sensitivity if it is responsive to changes in the
environment and it displays stability if it is able
to maintain continuity in its behavior. The function
of conflict resolution methods 1is to provide a
mechanism that preserves sensitivity and stability
without loosing production autonomy.

The tool provides four classes of conflict

resolution methods: (1) production order, (ii)
special cases, (iii) recency, and (iv)
distinctiveness.

If the production order method is adopted, the
user should define a partial or total order among the
rules (Georgeff [13]). At execution time, rules with
higher priority are chosen to fire.

A special case method is based on some special
case relationship between the rules. Two special case
methods are available: rule subsumption, and rule
instantiation subsumption. In the former, rule terms
are compared for inclusion before the application of
the matching substitution, and in the 1latter, after
the substitution is applied.

Recency methods use the time measure associated
with each element of the knowledge base to decide
which rule to fire. Three methods are provided, their
difference relying on how the time measure is used to
compare rule recency: (i) the rule to be preferred is
the one that matches the most recent data element,
(ii) the rule that have the most recent element as
its least recent term is to be preferred, and (iii)
all terms in the rules are compared to each other and
an order 1is determined according to the number of

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517
Artificial Intelligence in Engineering 347
matched elements with the same time value.

Distinctiveness methods select rules according
to the similarity of the rules in the conflict set to
the rules already fired. Two distinctiveness methods
are provided, one using uninstantiated rules and the
other using instantiated rules.

conflict resolution methods may be combined
into conflict resolution strategies, where two or
more methods are applied in sequence or in parallel.

KNOWLEDGE ACQUISITION INTERFACE

In order to efficiently provide the integration of
different knowledge representation, control strategy
and conflict resolution methods, it 1is necessary to
specify a formal interface between the different
kernel packages. This interface is not suitable for
human interaction, and the goal of the knowledge
acquisition interface is to provide a front-end able
to translate a wuser-friendly notation 1into the
internal format used by the kernel.

Knowledge acquisition is considered the main
bottleneck in the development of expert systems
(Anjewierden [1]), and there is no general theory of
how it should be done. The Kknowledge acquisition
interface provided by the proposed tool is based on a
natural language tool developed at INPE (Oliveira
[21]). This interface translates a subset of a
natural language to a formal language determined by
the fixed internal rule format and by the formal
language associated with the chosen knowledge
representation formalisms.

EXPERT SYSTEM INTERFACE

The expert system interface is the final user front-
end. It allows the use of an expert system developed
with an expert system shell generated by the tool,
and supposes that all the rules are already acquired.
Its function 1is to control the problem solution
process of the expert system.

This interface 1is controlled through a menu
driven mechanism. Its tasks are: to receive an
initial situation description; to ask questions to
the user when appropriate; to allow browsing into the
rule and knowledge bases; and to explain how the
solutions were found. The interaction between user
and interface 1is done with the help of graphic
information and through the same natural 1language

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517
348 Artificial Intelligence in Engineering
tool used in the acquisition interface.

The interface is connected to the kernel
packages by a general control package. This package
consists of control functions (to be called by the
interface implementation) that manage the behavior of
the expert system, according to the kernel
representation languages. It consists of a set of
auxiliary functions (to access the rule and knowledge
base) used in the browsing and explanation tasks, and
a main function that performs one processing step.
This main function has the following algorithm:

1. Select a rule set to be matched according to the
context control policy.

2. For each rule, select the left or right-hand side
according to the control strategy, and classify
the rule terms according to the knowledge
representation formalisms present in the shell.

3. Call the adequate reasoning methods to generate a
list of substitutions, one for each instance of
the rule pattern present 1in the appropriate
knowledge bases.

4. Execute the conflict resolution method on the set
of rule instances.

5. Execute the graphical primitives associated with
the chosen rules.

6. Call the appropriate functions to apply the other
side rule terms according to the knowledge
representation formalisms present in the shell.

7. Update the confidence measure of the modified
information in the knowledge bases according to
the chosen certitude coeficient mechanism.

APPLICATION

An application developed using an expert system shell
generated by the tool, 1is an expert system to
interpret meteorological radar images (Silva [27]).
Meteorological phenomena appear on a radar image as
cells inside cells, with different intensities. This
hierarchical characteristic led to the choice of the
frame formalism to represent the knowledge of the
domain. The fact that the problem is data-driven
imposed the choice of a forward control strategy.
According to these decisions, the tool was used to
generate an expert system shell with only one

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517
Artificial Intelligence in Engineering 349

knowledge representation formalism (frames) and only
one control strategy (forward). This expert system
shell was compiled in a stand-alone system and was
used as the basis for the development of the expert
systemn.

The goal of the expert system is to receive
successive radar images separated by a time interval,
to determine intensity, distance, area, velocity and
growing rate of the meteorological phenomena; in
addittion, by following specialized interpretation
rules, the expert system decides whether the images
should be catalogued or not, and whether alerts or
alarms should be fired.

The knowledge base 1is organized as a frame
hierarchy. In the first level of the hierarchy, the
frames which contain the description of protection
areas are defined, and the prototypical frames for
image attributes and phenomena evolution data. The
functions ("demons") used to calculate phenomena
characteristics from the raw data are attached to
these frames. Below this fixed, first 1level, the
system constructs a dynamic frame hierarchy
containing the information about particular images
and their phenomena.

The rule base consists of a set of independent
knowledge sources, according to the blackboard model
(Hayes-Roth [15]). Each knowledge source consists of
a set of rules designed to tackle a specific problem.
The knowledge sources are the following: alert,
alarm, cataloging and coordination. The coordination
knowledge source controls the global behavior of the
system.

The first version of the expert system contains
about 50 rules and interprets with success Plan
Position Indicator (PPI) and Range-Height Indicator
(RHI) maps, generating the necessary alerts and
alarms. The system is presently being extended to
interpret also Constant-Altitude Plan Position
Indicator (CAPPI) maps, and its final version should
include about 100 rules.

CONCLUSION

A tool for the generation of expert system shells has
been presented. The tool implementation has been
motivated by the need to construct expert systems
with different levels of complexity in the domain of
image processing. Besides the necessary graphical
interface, the tool ©provides several knowledge

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517
350 Artificial Intelligence in Engineering

representation formalisms, control strategies and
conflict resolution methods. A further motivation was
the possibility of using such a tool as a teaching
and research laboratory in knowledge representation
and expert system architecture. The tool has been
implemented in Common Lisp and is flexible enough to
allow the easy integration of new formalisms, if the
necessary interfaces are developed.

Besides the application described above, two
other applications are being developed using expert
system shells generated with the tool: a remote
sensing satellite image interpretation system and a
mathematical morphology system for image
manipulation.

Planned extensions include the integration of a
full hybrid system as a possible knowledge
representation formalism. The hybrid system to be
adopted, called MANTRA (Bittencourt [3]; Calmet et
al. [101), provides three different knowledge
representation formalisms: four-valued logic (Belnap
[(2]; Patel-Schneider [22]), terminological language,
and semantic nets. The system also provides hybrid
inference algorithms that allow these formalisms to
be used in a combined way. A further possible
extension 1is to include in the tool a rule
compilation module. All the Dbasic primitives
necessary to implement rule compilation methods are
already available in the tool, and these methods can
be very useful to improve efficiency in some types of
production rules.

ACKNOWLEDGEMENT

This work was partially supported by Fundagdo de
Apoio & Pesquisa do Estado de S3do Paulo (FAPESP)
contract No. 91/3532-2.

REFERENCES

1. Anjewierden, A., ‘Knowledge Acquisition Tools.'’
AICOM, Vol. 0, No. 1, pp. 29-38, August 1987.

2. Belnap, N.D., ‘A Useful Four-Valued Logic.’ 1In
"J.M. Dunn and G. Epstein (Editors), Modern Uses
of Multiple-Valued Logics", D. Reidel Pub. Co.,

1977.

3. Bittencourt, G. An Architecture for Hybrid
Knowledge Representation. Ph.D. Thesis,
Universitdt Karlsruhe, 31 Januar 1990.

4. Bobrow, D.G. and Winograd, T., ‘An Overview of

KRL, A Knowledge Representation Language. ’
Cognitive Science, Vol. 1, Num. 1, pp. 3-46, 1977.

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517
Artificial Intelligence in Engineering 351

5. Brachman, R.J. and Levesque, H.J., ‘The
Tractability of Subsumption in Frame-Based
Description Languages.’ Proceedings of AAAI-84,
pp. 34-37, 1984.

6. Brachman, R.J., Gilbert, V.P. and Levesque, H.J.,
‘An Essential Hybrid Reasoning System: Knowledge
and Symbol Level Accounts of KRYPTON.’ Proceedings
of IJCAI 9, pp. 532-539, 1985.

7. Brownston, L., Farrel, R., Kanr, E. and Martin,
N., Programming Expert Systems 1in OPS-5, An
Introduction to Rule-Based Programming. Addison
Wesley, Reading, MA, 1985.

8. Buchanan, B.G. and Feigenbaum, E.A., ‘DENDRAL and
Meta-DENDRAL: Their Applications Dimension.’
Artificial Intelligence, Vol. 11, Num. 1-2, pp. 5-
24, August 1978.

9. Buchanan, B.G. and Shortliffe, E.H., Rule-Based
Expert Systems, the MYCIN Experiments of the
Stanford Heuristics Programming Project. Addison
Wesley, 1984.

10. cCalmet, J., Tjandra, O. and Bittencourt, G.
‘MANTRA: A Shell for Hybrid Knowledge
Representation.’ In: "s. Lee, B. Wah, N.G.

Bourbakis and W.T. Tsai (Editors), Proceedings of
the Third International Conference on Tools for
Artificial Intelligence, I1EEE Computer Society
Press, 1991", San José, California, November 10-
13, 1991.

11. Davis, R. and King, J.J., ‘An Overview of
Productions Systems.’ In "E. Elcock and D. Michie
(Editors), Machine Intelligence 8", Ellis Horwood,
Chichester, England, pp. 300-332, 1977.

12. Fikes, R.E. and Kehler, T., ‘The Role of Frame-
Based Representation in Reasoning.’ Communications
of the ACM, Vol. 28, No. 9, pp. 904-920, September
1985.

13. Georgeff, M.P., ‘Procedural Control in Production
Systems.’ Artificial Intelligence, Vol. 18, pp.
175-201, 1982.

14. Hayes, P.J., ‘In Defence of Logic.’ Proceedings
of IJCAI5, pp. 559-565, 1977.

15. Hayes-Roth, B., ‘A Blackboard Architecture for
Control’. Artificial Intelligence, Vol. 26, No. 3,
pp. 251-, July 1985.

16. Horty, J.F., Thomason, R.H. and Touretzky, D.S.,
A Skeptical Theory of Inheritance in Nonmonotonic
Semantic Nets. Technical Report CMU-CS-87-175,
Computer Science Departnment, Carnegie-Mellon
University, Pittsburgh, PA, October 1987.

17. Laurent, J.-P., Thome, F., Ayel, J. et Ziebelin,
D., ‘Kee, Knowledge Craft et Art: Evaluation
comparative de trois outils de développement de
systémes experts.’ Revue d’Intelligence

@% Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517
352 Artificial Intetligence in Engineering

Artificielle, Vol. 1, No. 2, pp. 25-53, 1987.

18. McDermott, D. and Forgy, C., ‘Production System
Conflict Resolution Strategies.’ In "D. Waterman
and F. Hayes-Roth (Editors), Pattern Directed
Inference Systems", pp. 177-199, Academic Press,
New York, 1978.

19. Minsky, M., ‘A Framework to Represent Knowledge.'’
The Psychology of Computer Vision, McGraw-Hill,
pp. 211-277, 1975.

20. Nebel, B., ‘Computational Complexity of
Terminological Reasoning in BACK.’ Artificial
Intelligence, Vol. 34, pp. 371-383, 1988.

21. Oliveira, C.A. de, IDEAL, a Dialogue Interface in
Natural Language for Expert Systems (in
portuguese: IDEAL, uma interface dialbgica em
linguagem natural para sistemas especialistas).
Ph.D. Thesis, Instituto ©Nacional de Pesquisas
Espaciais, S3o José dos Campos, SP, Brasil, INPE
5151/TDL 424, 1990.

22. Patel-Schneider, P.F., ‘A Decidable First-Order
Logic for Knowledge Representation.’ Proceedings
of IJCAI 9, pp. 455-458, 1985.

23. Pearl, J., Probabilistic Reasoning in Intelligent
Systems: Network of Plausible Inference. Morgan
Kaufmann Publishers, Inc., San Mateo, CA, 1988.

24. Quillian, M.R., ‘Semantic Memory.’ In "M.L.
Minsky (Editor), Semantic Information Processing",
pp. 216-270, M.I.T. Press, Cambridge, MA, 1968.

25. Rychener, M.D., ‘Control Requirements for the
Design of Production System Architectures.’ ACM
SIGPLAN/SIGART Newsletter, pp. 37-44, 1977.

26. Schor, M.I., ‘Declarative Knowledge Programming :
Better than Procedural ?’ IEEE Expert, pp. 36-43,
Spring 1986.

27. Silva, F. de A.T.F. da, ‘A Hybrid Formalism for
Representation and Interpretation of Image
Knowledge.’ Proceedings of the International
Society for Photogrammetry and Remote Sensing
Congress, Washington, DC, August 2-14, 1992.

28. Steele Jr., G.L., Common LISP, The Language.
Digital Press, Burlington, 1984.

29. Tarski, A., ‘The Concept of Truth in Formalized
Languages.’ In “A. Tarski (Editor), Logic
Semantics and Mathematics, Ooxford, Clarendon
Press, 1956. .

30. Van Melle, W., Shortliffe, E.H. and Buchanan,
B.G., ‘EMYCIN A Domain Independent System that
Aids in Constructing Knowledge-Based Consultation
Programs.’ In:"State of the Art Report on Machine
Intelligence", New York, Pergamon, Infotech, 1981.

31. Vilain, M., ‘The Restricted Language Architecture
of a Hybrid Representation System.’ Proceedings of
IJCAI 9, pp. 547-551, 1985.

