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ABSTRACT

The physics of the early universe remains a mystery to cosmologists. The primordial
universe is within energy scales in which the quantum gravity effects may play a
significant role. A consistent quantum gravity theory would be composed with the
best elements from general relativity and quantum field theory. In our work, we
focus on Loop Quantum Gravity (LQG) or being more specific, we are interested
in its cosmological counterpart, called Loop Quantum Cosmology (LQC), at the
effective level. The results coming from Effective LQC are promising, mainly, the
replacement of the initial singularity by a bounce. On the other hand, there is a
very powerful approach known as Mimetic Gravity (MG) that can also produce a
bounce. The original theory was not built with this purpose, but it was generalized
and became capable of reproducing different cosmological evolutionary scenarios.
Above all, Langlois et al. (2017) constructed a MG description of LQC in which the
Effective LQC dynamics was reproduced. In particular, we explore the treatment
employed to obtain the cosmological evolution in a curved Friedmann-Robertson-
Walker space-time and the curvature potential presented in it. We build our own
formulation reinterpreting the curvature potential role, at the same time, we empha-
size its direct relation with matter. After, we apply the developed formalism to Higgs
inflationary scenario, taking advantage of the intrinsic relation between the Higgs
field and curvature. Moreover, we discuss the primordial gravitational waves and its
essential role as fundamental proofs to validate any cosmological model whose aim
is to describe the primordial universe dynamics.

Keywords: Mimetic Gravity. Loop Quantum Cosmology. Higgs Inflation. Curvature.
Primordial universe.
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DESCRIÇÃO DA COSMOLOGIA QUÂNTICA EM LAÇOS PELA
GRAVIDADE MIMÉTICA: REINTERPRETANDO O RICOCHETE E

A INFLAÇÃO PELA PERSPECTIVA DA CURVATURA

RESUMO

A física do universo primordial permanece um mistério para os cosmólogos. O uni-
verso primordial está dentro do intervalo de energia no qual os efeitos gravitacionais
quânticos desempenhariam um papel significativo. Uma teoria de gravitação quân-
tica consistente seria composta pelos melhores elementos da relatividade geral e teo-
ria quântica de campo. No nosso trabalho, nós focamos na Gravitação Quântica em
Laços (GQL), ou sendo mais específicos, estamos interessados na sua contrapartida
cosmológica, denominada Cosmologia Quântica em Laços (CQL), no nível efetivo.
Os resultados oriundos da CQL são promissores, principalmente, a substituição da
singularidade inicial por um ricochete. Por outro lado, existe uma poderosa abor-
dagem conhecida como Gravidade Mimética (GM) que também pode produzir um
ricochete. A teoria original não foi construída com esse propósito, mas foi general-
izada, tornando-se capaz de reproduzir diferentes cenários de evolução cosmológica.
Sobretudo, Langlois et al. (2017) construiu uma descrição da CQL através da GM, na
qual a dinâmica efetiva da CQL pode ser reproduzida. Em particular, exploramos
o tratamento empregado para obter a evolução cosmológica de um espaço-tempo
Friedmann-Robertson-Walker curvo, além do potencial de curvatura nele apresen-
tado. Construímos nossa formulação própria reinterpretando o papel do potencial de
curvatura, ao mesmo tempo em que enfatizamos sua relação direta com a matéria. A
seguir, aplicamos nossa formulação para o cenário da inflação de Higgs, usufruindo
da relação intrínseca entre o campo de Higgs e a curvatura. Além disso, discutimos
as ondas gravitacionais primordiais, bem como seu papel essencial como uma prova
fundamental utilizada para confirmar a validade de um modelo cosmológico cujo
objetivo é descrever a dinâmica do universo primordial.

Palavras-chave: Gravidade Mimética. Cosmologia Quântica em Laços. Inflação de
Higgs. Curvatura. Universo primordial.

xi





LIST OF FIGURES

Page

1.1 Standard universe evolution timeline . . . . . . . . . . . . . . . . . . . . 4
1.2 Horizon problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Solution to the horizon problem . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Particle horizon and Hubble radius . . . . . . . . . . . . . . . . . . . . . 14
1.5 Universe evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Space-time foliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Relation between the spacelike hypersurfaces in the universe foliation . . 27
2.3 Extrinsic curvature of the hypersurface . . . . . . . . . . . . . . . . . . . 30
2.4 Spin network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 Possible previous configuration of our universe . . . . . . . . . . . . . . . 49
2.6 Scheme evolution of the very early universe . . . . . . . . . . . . . . . . 51

4.1 Solutions of the tracking equation . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Evolution of the potential terms regarding MG and HI . . . . . . . . . . 79
4.3 Evolution of the modified Friedmann equation . . . . . . . . . . . . . . . 87

5.1 BICEP2 CMB power spectrum for B-mode . . . . . . . . . . . . . . . . . 92
5.2 CMB power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 CMB spectrum for a bounce universe . . . . . . . . . . . . . . . . . . . . 94
5.4 CMB spectrum from Loop Quantum Cosmology . . . . . . . . . . . . . . 95
5.5 CMB spectrum from Massive Gravity . . . . . . . . . . . . . . . . . . . . 96

6.1 MG as the bridge between LQC and HI . . . . . . . . . . . . . . . . . . 101

C.1 Cosmic Microwave Background . . . . . . . . . . . . . . . . . . . . . . . 125
C.2 CMB polarization patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xiii





LIST OF TABLES

Page

1.1 Epochs of the standard universe evolution . . . . . . . . . . . . . . . . . 5

2.1 Variables that plays similar roles . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Different pairs of variables from Loop Quantum Cosmology . . . . . . . . 44
2.3 Evolutionary stages of the primordial universe in Loop Quantum Cos-

mology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xv





LIST OF ABBREVIATIONS

ADM – Arnowitt-Deser-Misner
BEH – Brout-Englert-Higgs
CMB – Cosmic Microwave Background
DHOST – Degenerate Higher-Order Scalar-Tensor
DE – dark energy
DM – dark matter
EFE – Einstein Field Equations
EoM – Equations of motion
EoS – Equation of state
EW – Electroweak
FRW – Friedmann-Robertson-Walker
GR – General Relativity
GW – Gravitational Waves
HBB – Hot Big Bang
HI – Higgs Inflation
LQC – Loop Quantum Cosmology
LQG – Loop Quantum Gravity
MG – Mimetic Gravity
PGW – Primordial Gravitational Waves
SCM – Standard Cosmological Model
SMPP – Standard Model of Particle Physics
SLS – Surface of Last Scattering
ΛCDM – Lambda Cold Dark Matter

xvii





LIST OF SYMBOLS

c = ~ = 1 – Natural units
t – Proper time
η – Conformal time
Greek letters (µ, ν) – space-time coordinates
Latin letters (a, b) – spatial coordinates
· – Derivative with respect to the proper time
(3) – Three-dimensional space
∂µ – Partial derivative with respect to the coordinates
∇µ – Covariant derivative with respect to the coordinates
a – Scale Factor
γµν – Minkowski metric or background metric
gµν – Space-time metric
qab – Hypersurface metric
N – Lapse function or e-fold number
Na – Shift vector
δµν – Kronecker delta
Γρµν – Christoffel symbol
Rρ
µνσ – Riemann tensor

Rµν – Ricci tensor
R – Ricci scalar
Gµν – Einstein tensor
G – Newtonian constant
mPl – Planck mass
MPl – Reduced Planck mass
`Pl – Planck length
tPl – Planck time
Tµν – Energy-momentum tensor
ρ – Total energy density
ρc – Critical energy density
ρPl – Energy density at Planck scales
ρkin – Kinetic energy density
ρeff – Effective energy density
ε, ηSR – Slow-roll parameters
P – Pressure
w – State parameter
uµ – Four-velocity
Ω – Energy density parameter or conformal transformation
Ωk – Curvature parameter
` – Loop length or multipole momentum
S – Action

xix



H – Hubble parameter
H – Comoving Hubble parameter or Hamiltonian density
ϕ – Inflationary scalar field
V (ϕ) – Potential energy
Vk(ϕ) – Curvature mimetic potential
Veff = 3M2

Pl[Vk(ϕ)− ka−2] – MG effective curvature potential

xx



CONTENTS

Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Gravity and General Relativity . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Standard Cosmological Model . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Friedmann-Robertson-Walker cosmology . . . . . . . . . . . . . . . . . 5
1.2.2 Hot Big Bang model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2.1 Horizon problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2.2 Flatness problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 How inflation solves the Big Bang puzzles? . . . . . . . . . . . . . . . . 13
1.3.2 Conditions to Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Slow-roll approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.4 Cosmological Perturbations . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 ΛCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Motivation and Main Purpose . . . . . . . . . . . . . . . . . . . . . . . . 20

2 LOOP QUANTUM COSMOLOGY . . . . . . . . . . . . . . . . . 25
2.1 Rewriting General Relativity: the Hamiltonian Formulation of Gravity . 25
2.1.1 Space-time foliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.2 Intrinsic and extrinsic curvatures . . . . . . . . . . . . . . . . . . . . . 29
2.1.3 The Hamiltonian and canonical variables . . . . . . . . . . . . . . . . . 30
2.1.4 Constraints and Lagrange multipliers . . . . . . . . . . . . . . . . . . . 33
2.1.5 The electromagnetic Hamiltonian . . . . . . . . . . . . . . . . . . . . . 34
2.1.6 The constrained Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Loop Quantum Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Loop Quantum Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 MIMETIC GRAVITY . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1 Original proposal and developments . . . . . . . . . . . . . . . . . . . . . 53
3.1.1 Mimetic dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.2 Mimetic gravity extension . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Mimetic Gravity description of Loop Quantum Cosmology . . . . . . . . 61

xxi



4 APPLICATION OF THE MIMETIC DESCRIPTION OF LOOP
QUANTUM COSMOLOGY TO HIGGS INFLATION AND
FURTHER DEVELOPMENTS . . . . . . . . . . . . . . . . . . . . 67

4.1 Curvature Potential from Mimetic Gravity: a new interpretation . . . . . 67
4.2 Higgs Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Application of MG representation of LQC to Higgs Inflation . . . . . . . 75
4.4 Different perspective regarding the energy density components: Dynamic

equations with curvature terms . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 About the conservation of the energy density . . . . . . . . . . . . . . . . 83
4.6 A brief note on super-inflationary phase . . . . . . . . . . . . . . . . . . 85

5 A BRIEF DIGRESSION ON GRAVITATIONAL WAVES . . . 89
5.1 Primordial Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 CMB Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 FINAL REMARKS AND PERSPECTIVES . . . . . . . . . . . . 99

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

APPENDIX A - How to obtain the ADM Lagrangian? . . . . . . . . 119

APPENDIX B - Some details about the Hamiltonian constraint of
Loop Quantum Cosmology and the sine function . . . . . . . . . . . . 123

APPENDIX C - Cosmic Microwave Background: physics and statis-
tics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xxii



1 INTRODUCTION

In this work, we address the issues regarding the physics of the very early uni-
verse in the context of Loop Quantum Cosmology (LQC) from Mimetic Gravity
(MG). Therefore, in order to make this a self-consistent text, we start with a brief
review of the main elements related to the standard description of the cosmos evo-
lution, focusing on the primordial universe. First, we introduce some particularities
of the General Relativity (GR) theory in 1.1, since it is the one used to describe
the gravitational interaction. Second, we discuss the universe evolution according to
the Standard Cosmological Model (SCM) in 1.2. Next, in section 1.3, we highlight
the fundamental aspects of the slow-roll approximation that defines the standard
inflationary paradigm. Then, in 1.4, we present a concise explanation of the dark
components following the ΛCDM model. Finally, we clarify our main goal and mo-
tivation to develop this work in 1.5.

The next chapters contain more technical details. 2 is dedicated to Loop Quantum
Gravity (LQG)/Loop Quantum Cosmology, whose concepts are the main actors dur-
ing the construction of our model. Hence, we will present the fundamental aspects
of the Effective LQC that will be reproduced into MG context, the subject of the
following chapter. Despite being a relatively new theory, MG has progressed consis-
tently in just a few years, as we will show in 3. Moreover, we discuss our results in
4, explaining the essential features regarding the Higgs Inflation (HI) model. Chap-
ter 5 briefly discusses gravitational waves produced during the primordial universe
evolution and their role within the development of a cosmological model. In the
end, we emphasize the most important contributions of our formulation and future
perspectives related to it in 6.

Along with this Ph.D. thesis, we use the natural systems of units in which the velocity
of light c and reduced Planck constant ~ are equal to one (c = ~ = 1). Therefore,
unless we mention a different notation, the Newtonian gravitational constant G,
Planck length `Pl, Planck time tPl, Planck mass mPl and reduced Planck mass MPl

will be related to one another through expression mPl = `−1
Pl = t−1

Pl = (
√
G)−1 =

√
8πMPl.

1.1 Gravity and General Relativity

In Newtonian Gravitational theory, gravity was interpreted as an attractive force
between two massive bodies, however, it does not deal with any aspect regarding the
evolution of the universe. Indeed, at this stage, Cosmology was not related to Physics
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as it is nowadays, but faced from a philosophical point of view. Notwithstanding, the
proposition of Einstein’s General Relativity theory with its new perspective about
the concepts of space and time besides the observational contribution enables one to
study the universe and started a new era referred to as modern cosmology (GRON;

HERVIK, 2007; ELLIS, 2018).

GR can be defined as a gravitational theory whose physics remains invariant regard-
less of the reference frame considered (GAMBINI; PULLIN, 2011). It can be interpreted
as a geometric picture described in terms of the space-time and metric, where gravity
is neither interaction nor a force, but an effect of the matter’s presence in the space-
time. Or, from the Quantum Field Theory (QFT) perspective, as a theory dictated
by a massless spin-2 particle, the graviton (SEBASTIANI et al., 2017). In other words,
the metric tensor is the variable that determines the space-time curvature and it is
also the dynamical field of gravity (CARROLL, 2004).

In accordance with the current state of the art, nature is described by four funda-
mental interactions: weak, strong, electromagnetic and gravitational forces. Among
them, the knowledge about gravity still remains the most restrictive one (GAMBINI;

PULLIN, 2011). Naturally, GR differs from other theories due to the nature of its
basic entity, the metric, that performs two functions. It plays the role of background
for the evolution of the physical fields at the same time in which it is a dynamical
field itself (BOJOWALD, 2005).

Mathematically speaking, in GR framework, our universe corresponds to a space-
time Riemannian manifoldM, which means we live in a space characterized by the
pair (M, gµν) (MARTINS, 2009), where gµν is the metric tensor. In this framework,
regarding the dynamical evolution of the universe, the Einstein Field Equations
(EFE) are the most important aspect of GR written as

Gµν = 8πGTµν , (1.1)

where the Einstein tensor Gµν and the energy-momentum tensor Tµν represent the
geometric and matter sectors, respectively. Therefore, EFE establish an intrinsic
relation between curvature and matter. Since gµν is related to the universe curvature,
it is employed to construct the Riemann-Christoffel curvature tensor (WEINBERG,
1973),

2



Rλ
µνκ = ∂Γλµν

∂xκ
− ∂Γλµκ

∂xν
+ ΓαµνΓλκα − ΓαµκΓλνα, (1.2)

commonly referred only as Riemann tensor (or curvature tensor), with the Christoffel
symbol given by

Γαµν = 1
2g

αβ(∂νgµβ + ∂µgνβ − ∂βgµν). (1.3)

Hence, Rλ
µνκ is the quantity that describes the topology of the manifold we live in,

being used to build the Einstein tensor as

Gµν ≡ Rµν −
1
2gµνR, (1.4)

where Rµν = Rν
µνκ is the Ricci tensor and R = Rλ

λ is the Ricci scalar.

A particular and fundamental property of GR is the principle of diffeomorphism
invariance that ensures the invariance of the laws of physics under any change of the
coordinate system (BILSON-THOMPSON; VAID, 2014). In chapter 2, we will provide
more details about GR. However, for now, we just need to have in mind that the
standard cosmology is built under the weak field limit which means the space-time
metric differs from the flat Minkowski metric γµν (used in special relativity) for a
small perturbation (MARTINS, 2009).

1.2 Standard Cosmological Model

The physics related to the evolutionary history of the universe is currently described
by the so-called Standard Cosmological Model. In this scenario, the universe starts
from a condition usually referred to as Big Bang initial singularity. After that, it
should undergo an accelerated expansion phase known as inflation whose dynamical
field would decay into radiation. Therefore, inflation should end giving place to a
radiation dominated universe until the amounts of matter and radiation become
equal in the so-called equality matter-radiation epoch. Then, the matter overcomes
the radiation influence and starts to dictate the universe dynamics. Sometime later,
the dark energy is expected to be the one determining the current universe evolution,
being responsible by the present accelerated expansion.

In general, the Lambda Cold Dark Matter (ΛCDM) model is used to refer to the
standard cosmological model. However, from a dynamic perspective, the SCM can be
decomposed into three almost independent approaches: the inflationary paradigm,

3



Hot Big Bang (HBB) and ΛCDM models. This strategy enables us to analyze the
different periods of the universe evolution separately without losing consistency since
they have different energy sources.

Figure 1.1 corresponds to a classical representation of the evolutionary history of
the universe as mentioned in the previous paragraph. Note that most of the universe
evolution is covered by the Big Bang model, leaving the two expansion accelerated
phases out of its scope. This wide range is attributed to HBB because the behavior
of the decelerated expansion can be described by radiation and matter, which will
become clear along with this chapter. Indeed, only the HBB model is well established
in cosmology, meanwhile, the inflationary paradigm and ΛCDM model can be in-
terpreted as strategic solutions developed to overcome some discrepancies regarding
the cosmological observational results.

Figure 1.1 - Standard universe evolution timeline

SOURCE: NASA/WMAP SCIENCE TEAM (2012)

In Table 1.1, there is a summary of the main epochs of universe evolution according
to the SCM. The periods are listed in chronological order since the beginning of
the universe until the present. In each phase, the universe may be dominated by a
particular type of source, producing different results here referred to as events. Note
that the start corresponds to Big Bang singularity, however, the number 1 from
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Figure 1.1 would be associated to the inflationary period since it is not possible
to obtain any information about a singularity. It is important to mention that the
onset of inflation is still not a consensus, nevertheless, the other possible values are
not far from 10−35s. Undoubtedly, it must be greater than the Planck time. Relating
again Figure 1.1 with Table 1.1, we can identify the HBB with number 2, and the
visible universe with 3 and 4. We will not describe these periods because they are
outside the scope of this work. Finally, the number 5 represents the current status
of our universe, having the dark energy driving the universe in accelerated motion.

Table 1.1 - Epochs of the standard universe evolution

Epoch Start time Matter source Events
Start Undefined Unknown Creation or bounce
Inflation 10−35s Scalar field Seed perturbations
HBB 10−3s Radiation Nucleosynthesis
Visible universe 380000 years Dark matter Structure formation
Accelerating universe 109 years Dark energy Acceleration

SOURCE: Adapted from Ellis (2018, p. 1229)

The SCM is based on Friedmann–Lemaître–Robertson–Walker (FLRW) cosmology.
However, we would rather work with Friedmann-Robertson-Walker (FRW) universe
which is constructed from the assumptions of homogeneity and isotropy of the uni-
verse in large scales and the validity of general relativity to describe the gravitational
interaction (BEBRONNE; TINYAKOV, 2007; GRON; HERVIK, 2007) without consider-
ing extra terms from dark energy as it will be exposed in 1.4. Since it is the base
of the HBB and the other cosmological isotropic models, we will discuss its general
concepts first and only after we are going to highlight the particularities of the HBB
model. Despite the great agreement with the observations, the SCM has problems
with the two accelerated expansion phases, the primordial and the current ones.
Therefore, they will be discussed apart in the following sections. Nonetheless, as we
are interested only in the very early universe, our focus is the inflationary period.

1.2.1 Friedmann-Robertson-Walker cosmology

As it was mentioned above, the key aspect of this approach is the assumption of the
validity of the cosmological principle that ensures the homogeneity and isotropy of
the matter distribution in the universe at scales larger than 200 Mpc. This means the
universe should look the same regardless of the position of the observer. Indeed, this
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is a good approximation according to the cosmological observations since, statically,
the matter distribution in those scales is homogeneous and there is no observational
evidence of rotation for our universe. This ansatz is the simplest way to study the
universe evolution, enabling to slice the 4-dimensional spacetime of our universe into
spatial homogeneous sections Σ associated to each instant of time (BESSADA, 2010;
GRON; HERVIK, 2007; MARTINS, 2009; PAPAPETROU, 1974).

The FRW universe is characterized by a space-time whose line element in Cartesian
coordinates is given by

ds2 = gµνdx
µdxν = dt2 − a2(t)γijdxidxj = a2(η)(dη2 − γijdxidxj), (1.5)

where gµν is representing the FRW metric, xi are the spatial coordinates, t is the
proper time, η is the conformal time and a is named scale factor. Note that gµν differs
from γµν only by the presence of a multiplying the spatial components. Therefore,
gµν is diagonal and the universe dynamics is ruled by a and its evolution (DODELSON,
2003). In a spherical coordinate system, the FRW metric has the following form

ds2 = dt2 − a2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2 dφ2)
]
, (1.6)

with k being the real number used to parameterize the space-time curvature, r, θ
and φ are the spherical coordinates. In accordance with the general consensus, k = 0
corresponds to a flat universe, k = 1 is equivalent to a closed space-time and k = −1
describes a hyperbolic geometry.

A key aspect that we must emphasize is the essential role played by a. It is the
quantity that describes how the spacelike hypersurface Σ changes its relative size
with time (BAUMANN, 2009). Actually, in terms of dynamics, a is the only variable
that can be attributed to the universe itself instead of one of its components. To
clarify this, let us think about the universe in analogy with the earth globe. The
scale factor could be interpreted as the distance between two points used to define
the longitude (or latitude). Now, in order to be more precise, we can imagine the
earth globe as a balloon. As it is filling, the distance between two cardinal points d
would change, but not the number of meridians. In other words, d would continue
to be the distance between the two cardinal points, however, it would be described
by a greater value. For example, the Earth radius remains as the Earth radius
regardless whether it measures 6400km or 8000km. Accordingly, the time evolution
of a determines how the universe expands (or contract).
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To begin with, the variation of a is measured by the Hubble parameter,

H ≡ ȧ

a
, (1.7)

where the dot represents the derivative with respect to t. H is an essential variable
regarding the universe evolution because, as c is unitary, H−1 defines the length and
age of the universe (BAUMANN, 2009). The expression for H is obtained from the
time component of EFE, called the Friedmann equation,

H2 =
(
ȧ

a

)2
= 8πG

3 ρ− k

a2 , (1.8)

in which ρ is the energy density of the elements that fill the universe. In other
words, the universe curvature is directly associated with the energy density from
both matter and fields that fills the universe (BILSON-THOMPSON; VAID, 2014).

Since the universe is considered homogeneous and isotropic, the energy-momentum
tensor must also agree with this picture. Consequently, both pressure P and ρ will
not change from one point to another, describing a perfect fluid whose energy-
momentum tensor is written as

T µν = (ρ+ P )uµuν − Pgµν . (1.9)

In this context, the 4-velocity uµ has only the time component different from zero,

T µν = diag(ρ,−P,−P,−P ), (1.10)

otherwise, the non-null spatial components would imply in privileged directions in
the foliation hypersurface, breaking the isotropy of the system (GRON; HERVIK, 2007;
GUZZETTI et al., 2016). Furthermore, the fluid is assumed to be a barotropic one,
which means it obeys the following equation of state (EoS)

P = wρ, (1.11)

with w defined as the state parameter.

Therefore, it is possible to explore the energy content of the universe through mea-
surements of a (DODELSON, 2003) and also its geometry. To clarify this, let us con-
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sider the energy density for a flat universe (k = 0), named critical energy density,
whose definition is given by

ρc = 3
8πGH

2. (1.12)

Comparing the value of ρ with ρc enables to infer whether the universe is curved or
not, this is performed through the so-called density parameter,

Ω ≡ ρ

ρc
= 1 + k

(aH)2 = 1 + Ωk, (1.13)

where Ωk is the curvature density parameter. Hence, Ω 6= 1 means the universe would
have some curvature, however, recent observations pointed to |Ωk| < 0.005 (ADE et

al., 2016). In this sense, the universe is an Euclidean space section whose energy
density is equal to (1.12) (DODELSON, 2003). Consequently, ρ is the parameter that
describes how the scale factor evolves with time due to the relation

ρ ∝ a−3(w+1) ⇒ a(t) ∝ t
2
3 (w+1) (1.14)

obtained from (1.8).

The energy conservation law implies in the expression ∇νT
0ν = 0, thus, from (1.10),

we can obtain the continuity equation as

ρ̇+ 3
(
ȧ

a

)
(ρ+ P ) = 0. (1.15)

The acceleration equation of the universe (also called second Friedmann equation)
can be computed from either the spatial components of the EFE or from combining
(1.8) and (1.15), its form is given by

ä

a
= −4πG

3 (ρ+ 3P ). (1.16)

In summary, the equations (1.8), (1.16) and (1.15) determine the dynamical evolu-
tion of the physical system described by the FRW cosmology. The first Friedmann
equation (1.8) informs if the universe is expanding, contracting or it is in a stationary
state. The second Friedmann equation (1.16) enables to assess if the universe ex-
pansion is describing an accelerated, decelerated or constant motion. Finally, (1.15)
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is a requirement that must be obeyed by any cosmological model.

Another key thing to remember is that, once the universe is evolving, it just makes
sense to choose a coordinate system whose distances do not change with the expan-
sion. This system is called the comoving coordinate system and it is largely used in
cosmology. Moreover, the comoving or conformal time η (already mentioned) plays
an important role. In reality, it has two essential meanings: a time variable and a
comoving horizon. In other words, the fact that no information could travel faster
than light implies the existence of a horizon whose size is the total comoving dis-
tance light went through since t = 0 (DODELSON, 2003). This distance is expressed
as

η =
∫ t

0

dt′

a(t′) . (1.17)

Therefore, when you look at two regions whose distance between them is bigger than
η, they are not causally connected (DODELSON, 2003) which means these regions
have never been in contact at any previous time. It is also advantageous to rewrite
some variables in terms of η instead of t like the comoving Hubble parameter H
defined as

H = a′

a
= aH, (1.18)

where the apostrophe represents the derivative with respect to η.

1.2.2 Hot Big Bang model

The expanding universe, the light element abundance and the cosmic microwave
background (CMB) are the reasons why the Hot Big Bang model is such a successful
approach to describe the universe evolution (DODELSON, 2003). From (1.14), note
that as we regress in time a is getting smaller. Thus, for values of time close to
zero, a(t) → 0, leading the universe to a singularity. Note also that a(t) → 0
implies infinite values for both density and temperature T since the universe cools
as it expands (T ∝ a−1). Consequently, GR formulation breaks at this point as
the dynamical equations and even the relations between a and ρ have no physical
meaning.

Since HBB just allows ordinary matter (baryonic matter) and radiation as energy
content for the universe, it is not able to produce an accelerated expansion phase.

9



This can be directly observed from (1.16) and (1.11) that require w < 0 to obtain
ä > 0. Therefore, neither ordinary matter nor radiation (with w = 0 and w = 1

3 ,
respectively) are capable to drive the universe to an accelerated expansion phase.

Moreover, HBB model also presents problems commonly referred to as Big Bang
puzzles. Here, we will only briefly review the horizon and flatness problems, once
they are the more relevant ones regarding the properties of the universe evolution
we are going to explore. It is important to mention that neither problem comes
from an inconsistency regarding HBB, but they arise from the necessity of special
assumptions to solve them (BRAWER, 1995).

1.2.2.1 Horizon problem

As mentioned before, η corresponds to a boundary regarding the distance the fastest
particle (a photon or other particle with zero mass) could have traveled since t = 0.
Thus, it is referred to as the comoving particle horizon or causal horizon. Notwith-
standing, there is also the comoving Hubble horizon H−1 = (aH)−1, usually called
Hubble radius, described by the expression

(Ha)−1 = H−1
0 a

1
2 (1+3w), (1.19)

where H0 is the present value of H. From (1.17) and (1.19) it possible to obtain the
relation

η ∝ a
1
2 (1+3w), (1.20)

which results in η ∝ a for the radiation dominated era and η ∝ a
1
2 for the matter

one, respectively (BAUMANN, 2009).

Before clarifying what is the horizon problem, it is worth to introduce a few aspects
of the cosmic microwave background radiation. CMB is the oldest light information
available, its photons decoupled from matter when the universe was 380000 years
old. Basically, after the Big Bang singularity, the universe started to expand and
cool down (remember the inverse relation between T and a). As the universe plasma
was cooling, the light atoms (hydrogen and helium) were being formed through the
recombination process. Then, the interaction with the radiation was progressively
reduced until the photons became free to travel without collisions (KINNEY, 2003;
NASA/JAMES WEBB SPACE TELESCOPE, 2019). This process is called decoupling.
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Moreover, all photons decoupled approximately at the same time during their last
relevant interaction with the electrons, defining the surface of last scattering (SLS).
Thus, SLS works as a boundary of the visible universe. All things considered, there
would be many regions in the sky that had never established a causal contact when
the CMB was formed (BAUMANN, 2009).

As far as one can observe through the universe, the deeper inside its past we are able
to see. Figure 1.2 is a simple representation of how the universe can be interpreted
from our position, where the Big Bang epoch, decoupling and present time are shown
as flat slices. Using η enables us to draw past light cones since now until the Big
Bang plan. This means if two regions (A and B) were defined with past light cones
that do not touch each other, these regions had never established a causal contact.
For example, considering the temperature, A and B did not have time to achieve
thermal equilibrium, because they have never been close enough to interact.

Figure 1.2 - Horizon problem

SOURCE: Wang (2014)

Therefore, according to the Big Bang picture, there should exist regions with dif-
ferent values of temperature in the sky. However, the observations show that CMB
is homogeneous until one part in 105 and may have been even more homogeneous
in the past (BAUMANN, 2009). In summary, the horizon problem can be enunciated
as the absence of an explanation about how regions causally disconnected, without
any opportunity to interact during the time of existence of our universe, presents
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similar features.

1.2.2.2 Flatness problem

The flatness problem (also known as fine turning problem) is directly related to the
observational constraints imposed on the value of Ω (BRAWER, 1995). As previously
discussed, the density parameter may be close to unity since |Ωk| < 0.005 (ADE et

al., 2016). Therefore, Ω must have been even closer to one during the early times.
Otherwise, the monotonic behavior of the Hubble radius regarding matter and radi-
ation would have forced |Ωk| to become bigger as ȧ was decreasing. To clarify this,
equation (1.13) is rewritten like

|Ω− 1| = k

(ȧ)2 . (1.21)

From (1.16), note that matter and radiation decrease the acceleration rate of the
scale factor. Thus, |Ωk| should have increased its value, leading the universe to
assume a curved geometry.

1.3 Inflation

The inflationary paradigm was proposed to provide the initial conditions to the
Big Bang model (LIDDLE, 1999). However, it went further, inflation introduced an
elegant physical mechanism to explain how large scale structures (LSS) arose. In
fact, this paradigm not only solved the well-known Big Bang puzzles, providing an
explanation about how the initial seeds of the observable structures were generated
but also predicted the anisotropy of CMB temperature (GUZZETTI et al., 2016).

Inflation is based on the assumption that the universe expanded in an exponential
accelerated way during the initial instants of its evolutionary history. It is described
by a scalar field named inflaton and the metric tensor whose fluctuations and dy-
namics are the key ingredients that make inflation works in such an elegant way
(GUZZETTI et al., 2016). According to Mukhanov et al. (1992), inflation was devel-
oped under two main ideas: quantum fluctuations will disturb the classical energy
density in an expanding universe and scales within Hubble radius will exponentially
grow and extrapolate the visible horizon, returning later as large scale cosmological
perturbations.

We split the explanation about inflation to clarify each topic and also to present
the background evolution separately. First, we briefly present the strategies applied
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to solve the Big Bang puzzles. Second, we expose a few particularities regarding
the physics of the inflationary period at background level as well as the necessary
conditions to obtain it. Then we discuss inflation’s standard picture: the slow-roll
approximation. Finally, since in this work we do not deal with the physics at the
perturbed level, only the essential aspects of cosmological perturbations will be
highlighted.

1.3.1 How inflation solves the Big Bang puzzles?

Once the universe age is not enough to provide the right amount of time required
to all currently observed scales causally interact, the idea behind inflation was to
extend the causal zone. By construction, Big Bang singularity defines the universe
birth at t = 0 which is equivalent to a = 0 (see equation (1.14)). Notwithstanding,
from conformal time expression

dt = a(t)dη, (1.22)

note that there is no boundary to η, enabling it to assume any value, including
η = −∞ (BAUMANN, 2009). Consequently, inflation can expand the particle horizon
to cover all currently observed LSS, giving enough time for the observed regions
to interact. In other words, the two regions (A and B) from Figure 1.2 will have
their past light cones extended like presented in Figure 1.3, which allows them to
establish a causal connection.

Another way to explain how inflation solves the horizon problem is looking from
a quantum fluctuation perspective. In Figure 1.4, see that the red line refers to
η, meanwhile, (aH)−1 is represented by the grey area. At first, as (aH)−1 limits
the thermal equilibrium zone, η > (aH)−1 means there were scales outside (aH)−1.
Thus, they were not at equilibrium. However, inflation increases the size of (aH)−1,
making it bigger than η and expanding the thermal equilibrium zone to incorporate
all the visible regions in the sky. In this scenario, the cosmological perturbations
beyond η are frozen, only recovering their dynamical behavior when the universe
achieves the size equivalent to their wavelength.

Finally, regarding the flatness problem, inflation naturally solves it due to the ac-
celerated expansion. As we will see next, a evolves exponentially and H is almost
constant during the inflationary period. Therefore, regardless the value of k, |Ωk| will
go to zero due to the large variation of a. This means inflation forced the universe
to be flat.
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Figure 1.3 - Solution to the horizon problem

SOURCE: Wang (2014)

Figure 1.4 - Particle horizon and Hubble radius

SOURCE: Watson (2000)
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1.3.2 Conditions to Inflation

The inflationary paradigm is a proposition that the universe expanded exponentially
when it was around 10−35 seconds old. This is a fundamental and indispensable re-
quirement for the success of the inflationary mechanism. Nevertheless, from equation
(1.16), ä > 0 demands a fluid with P < −ρ

3 . Therefore, a matter content different
from ordinary radiation and matter may have driven the universe dynamic during
inflation (GUZZETTI et al., 2016).

A de Sitter type expansion is the simplest approach to obtain a suitable behavior
for the scale factor evolution (GUZZETTI et al., 2016). This happens because a de
Sitter expansion requires P = −ρ which agrees with the previous requirement.
Nevertheless, during inflation, the evolution must be almost de Sitter. Otherwise,
inflation would have lasted forever. Following in this direction, the Hubble parameter
is almost constant, P ' −ρ and a obeys the relation

a(t) ∝ eHI(t−tI), (1.23)

where the subscript I indicates the beginning of inflation. The usual procedure to
implement a perfect fluid with P ' −ρ is to introduce a scalar field ϕ = ϕ(t).
Therefore, the matter content evolution follows the standard Lagrangian

Lϕ = 1
2∂µϕ∂

µϕ− V (ϕ). (1.24)

In this case, the scalar field is assumed as minimally coupled to gravity and the
potential energy V (ϕ) form should be chosen carefully to achieve the value w < 0
(GUZZETTI et al., 2016).

Once the matter Lagrangian was established, the universe dynamics along inflation-
ary epoch could be described by the action

S = SEH + Sϕ =
∫
d4x
√
−g

( 1
16πGR + Lϕ

)
, (1.25)

in which SEH is the Einstein-Hilbert action and Sϕ is the matter action. Conse-
quently, the equation of motion for the scalar field is obtained from the variation of
(A.1) with respect to the inflaton field, resulting in a Klein-Gordon equation,
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ϕ̈+ 3Hϕ̇+ ∂ϕV (ϕ) = 0, (1.26)

where ∂ϕ represents the derivative related to ϕ. If the variation is performed with
respect to gµν instead, it will be possible to write the energy-momentum tensor as

Tµν = −2 1√
−g

δSϕ
δgµν

= ∂µϕ∂νϕ− gµνLϕ. (1.27)

Hence, the inflaton energy density and pressure could be determined by comparing
the equations (1.9) and (1.27),

ρ = ϕ̇2

2 + V (ϕ) and P = ϕ̇2

2 − V (ϕ), (1.28)

enabling to write the state parameter in the form

w = ϕ̇2 − 2V
ϕ̇2 + 2V . (1.29)

From equation (1.29), the requirement ä > 0 implies V (ϕ) > ϕ̇2

2 and a de Sitter
stage (P ' −1) needs V (ϕ) � ϕ̇2

2 . In other words, a framework with a scalar field
as dominant component, and the potential energy overcomes the kinetic energy of
the field, gives rise to an inflationary phase. Moreover, standard inflation reproduces
a de Sitter-type evolution through a scalar field rolling down slowly (GUZZETTI et

al., 2016) as we will explain next.

1.3.3 Slow-roll approximation

Aiming to obey V (ϕ) � ϕ̇2

2 , the simplest approach is to impose the existence of
a field-configuration space in which the potential is flat enough, ∂ϕV (ϕ) � V (ϕ).
Therefore, following these requirements, the equation (1.26) implies that the friction
term is the one responsible for driving the evolution of the scalar field, ϕ̈ � 3Hϕ̇.
These restrictions determine boundaries to inflaton’s potential and its derivatives
(GUZZETTI et al., 2016), being condensed in the so-called slow-roll conditions

V (ϕ)� ϕ̇2 and ϕ̈� 3Hϕ̇. (1.30)

Hence, (1.8) and (1.26) can be rewritten in the form
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H2 ≈ 1
3M2

Pl

V (ϕ) and 3Hϕ̇+ ∂ϕV (ϕ) ≈ 0. (1.31)

In summary, the slow-roll conditions are related to the flatness of the potential, so
that even having a small value for ∂ϕV (ϕ), ϕ̈ needs to be negligible comparing to it
in order to obtain a de Sitter stage (BEZERRA, 2015).

Another way to express those conditions is to introduce the slow-roll parameters ε
and ηSR like

ε ≡ 3
2

(
P

ρ
+ 1

)
= 4πG

(
ϕ̇

H

)2
= 1
H

dH

dN
and ηSR = − ϕ̈

Hϕ̇
. (1.32)

Where N is the time parameter named number of e-foldings commonly used to
measure time at inflationary epoch. The slow-roll parameters show directly if the
slow-roll conditions are being fulfilled. This could be seen from the acceleration
equation written in terms of ε,

ä

a
= H2(1− ε), (1.33)

in which it is possible to note that ε < 1 implies an accelerated expansion, while
ε� 1 gives rise to a slow-roll evolution. Moreover, the parameter |ηSR| � 1 ensures
the validity of the relation ϕ̈� 3Hϕ̇ (BAUMANN, 2009; KINNEY, 2009).

In order to solve the horizon and flatness problems, the inflationary phase must
have lasted long enough to enable a causal connection among all regions currently
observed. So, being N defined as dN = Hdt, a de Sitter-type evolution requires at
least N ∼ 60 to solve the horizon problem. Furthermore, inflation ends when the
slow-roll conditions are violated (GUZZETTI et al., 2016).

1.3.4 Cosmological Perturbations

Until now we only talked about the primordial universe physics at background level
which is a really good approximation to describe this period. However, we will briefly
describe the basic aspects regarding the linearized cosmological perturbation theory
in the inflationary context. First of all, inflation is based on the evolution of two
dynamical entities: the metric and the inflaton fields. It uses quantum aspects to
explain the structure formation and the generation of CMB anisotropy. Quantum
fluctuations are expected due to the physical nature of the fields which oscillate with
all possible wavelengths. Basically, the wavelengths were extended to scales bigger
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than Hubble horizon as a result of inflationary accelerated expansion (GUZZETTI et

al., 2016). This subsection is mostly based on the seminal paper of Mukhanov et al.
(1992).

The linearized cosmological perturbation theory is based on the assumption that our
universe is slightly different from the standard FRW universe. This requirement is
necessary due to the successful agreement of the standard cosmology with observa-
tions. Therefore, the space-time consists of a manifold whose metric gµν is described
like

gµν(x, η) = ḡµν(η) + δgµν(x, η), (1.34)

where ḡµν is the FRW metric commonly referred to as background part of the metric
tensor and δgµν is the metric perturbation whose value is restricted to δgµν � 1.
Since geometry and matter are related, the energy-momentum tensor could also be
described by

Tµν = T̄µν + δTµν . (1.35)

The bar will always be used to refer to the background variables and δ will be associ-
ated to the perturbed quantities. Consequently, EFE can be divided into background
and perturbed equations,

Ḡµν = 8πGT̄µν and δGµν = 8πGδTµν , (1.36)

enabling to study the physics regarding background and perturbation apart from
each other.

The metric perturbation δgµν could be separated into a scalar, vector and ten-
sor parts due to its behavior facing spatial coordinate transformations. Hence,
they evolve independently in a linear approximation. Scalar perturbations cause
the growth of the inhomogeneities which affects the matter dynamics. Vector per-
turbations are characterized by a fast decay mode making them irrelevant in the
cosmological context. Finally, tensor fluctuations or primordial gravitational waves
(PGW) dictate the degree of freedom of the gravitational field (MUKHANOV et al.,
1992; GUZZETTI et al., 2016).

From time component of the perturbed EFE (1.36), the curvature perturbation is
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obtained. They are the ones employed to explain the LSS formation and also the
CMB anisotropy. The vector ones come from the mixing terms δG0i = 8πGδT0i,
which means time-space components. Meanwhile, the spatial components of (1.36)
give rise to tensor perturbations or gravitational waves (GW) from the primordial
universe. Despite being irrelevant at the background level, the cosmological pertur-
bations are an essential part of modern cosmology and the main focus of the current
cosmological experiments.

1.4 ΛCDM

SCM is based on the assumption of the existence of dark matter (DM) and dark
energy (DE) besides the evolution of primordial perturbations according to inflation
(DODELSON, 2003). As we mentioned before, the ΛCDM model is considered as
the standard model of cosmology, including the entire evolutionary history of the
universe. However, here, we separate the evolution in three stages because we are
only interested in the very early universe.

In principle, the standard inflationary period is only described by the inflaton field
and ends with this field decaying into photons. Our work goes until the end of
inflation and does not deal with other types of matter beyond scalar fields. Moreover,
until the present, there is a gap between the Big Bang singularity and inflation. The
first one is related to a→ 0 and tPl → 0, meanwhile, inflation must begin only after
the Planck scale. Therefore, we do not need to consider dark components to study
the primordial universe physics which results in dynamical equations easier than if
we have assumed the FLRW metric instead.

Despite the fact that both metrics have the same structure, the FLRW universe dif-
fers from the one we have been working with since it considers extra terms due to the
presence of dark energy. Regarding the dark matter, it is incorporated into the mat-
ter energy density since it should behave like the ordinary matter. Indeed, according
to ΛCDM model, the dark components correspond to about 96% of our universe,
73% coming from dark energy and 23% from dark matter. Only, the remaining 4%
refers to ordinary matter (BOSE; MAJUMDAR, 2009).

As we repeatedly mentioned, neither radiation nor matter is capable of accelerating
the universe expansion. Therefore, the exit was to add new types of fluid to the
equation. In the case of inflation, the ordinary matter and radiation still did not exist,
living only the inflaton as energy content. Notwithstanding, there are more elements
to be considered at present, which means the total energy density is actually given
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by the energy density of each of the universe fluid elements, with the dark energy
dominating over the others.

In ΛCDM model, the dark energy is Einstein’s cosmological constant Λ that is also
considered as the vacuum energy density. Initially, Λ was introduced on the left side
of Einstein’s equations

Rµν −
1
2Rgµν − Λgµν = 8πG

3 Tµν (1.37)

as an artifice to obtain a static universe (RYDEN, 2003). However, later it was con-
sider as a new kind of fluid whose pressure must obey PΛ = −ρΛ to enable the
present accelerated expansion, this statement is in agreement with the constrained
value w = −1.006± 0.045 from Planck satellite data (ADE et al., 2016). Then being
moved to the right hand side,

Rµν −
1
2Rgµν = 8πG

3 Tµν + Λgµν . (1.38)

Therefore, instead of (1.8) and (1.16), the universe dynamics is dictated by

(
ȧ

a

)2
+ k

a2 = 8πG
3 ρ+ Λ

3 , (1.39)

(
ä

a

)
= −4πG

3 (ρ+ 3P ) + Λ
3 . (1.40)

Despite the fact that the dark energy is dominating the current universe evolution,
the matter had dominated the dynamics in recent past and its contribution is not
negligible. As we mentioned above, dark matter corresponds to the majority of the
matter fluid in the universe. Since it is nonbaryonic, dark matter can not absorb, emit
or scatter any kind of radiation (RYDEN, 2003) according to the standard prerogative.
Indeed, within this framework, it only interacts gravitationally, which does not allow
a direct observation. There are many attempts to describe its nature outside the
standard picture, however, this fundamental feature still remains unknown.

1.5 Motivation and Main Purpose

The classical cosmology is based on GR, thus, its prediction power is constrained to
its validity limit. Since GR is a nonrenormalizable theory and does not contain the
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usual concept of time, it cannot be quantized as it happens with QFT. Notwithstand-
ing GR and QFT are the pillars of modern physics, the results from experiments and
surveys have been showing that the universe description by the Standard Model of
Particle Physics (SMPP) and SCM is at least incomplete (SEBASTIANI et al., 2017).

The Big Bang initial singularity is a consequence of every classical solution related
to a universe filled with only a massless scalar field (ASHTEKAR et al., 2006b). Since
a singularity is usually related to the validity limit of theory and to nonclassical
situations, an approach containing the best elements of GR and QFT is expected to
shed some light or even eliminate the singularity problem (GAMBINI; PULLIN, 2011).

There is also the question about the inflaton nature that continues without expla-
nation. Indeed, the standard inflaton is supposed to be an extra field whose role
ended in a period before the beginning of the range covered by SMPP (HARO et al.,
2018a). Moreover, an inflationary period should have been preceded by a Planck
epoch in which the initial condition to start an accelerated stage must have been
set (MIELCZAREK et al., 2009).

Several challenges arise in the construction of a quantum gravity theory since gravity
exhibits proper features as the diffeomorphism invariance and the absent of a back-
ground structure. These features in addition to the almost insignificant role played
on the atomic scales could lead to questions about whether it is really necessary to
quantize gravity. However, there is a particular energy scale that neither general rel-
ativity nor quantum mechanics could explain properly, the Planck scale (GAMBINI;

PULLIN, 2011).

In other words, the absence of a satisfactory description of the very early universe
and a quantum gravity theory may be linked. This stage in the universe evolution
corresponds to the exact energy and length scales in which quantum gravity effects
must have played a significant role. Figure 1.5 provides a scheme that places when
quantum gravity effects should have dictated the universe evolution. Therefore, ap-
plications of quantum gravity theories to this epoch could answer questions that the
classical theories are not capable of doing.
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Figure 1.5 - Universe evolution

SOURCE: Commissariat (2014)

We choose to study loop quantum gravity that provides a discrete description of the
spacetime at the kinematic level. Nonetheless, incorporating cosmological dynamics
into quantum gravity sector enables one to produce a dynamical discrete scenario,
giving rise to loop quantum cosmology, one of the main object in our study. Fur-
thermore, the underlying quantum geometry of LQC results in a quantum bounce
instead of a singularity (ASHTEKAR et al., 2006b). Despite the absence of a com-
plete and closed formulation, in LQC framework, it is possible to implement the
two most appealing descriptions for the very early universe: inflationary paradigm
and bouncing cosmologies (HARO et al., 2018a). However, the LQC scalar field is
generally arbitrary, as well as the inflaton.

The natural and logical candidate to play the inflaton role is the Higgs field since
it is the only scalar field current observed. However, it is important to emphasize it
would be a previous configuration of this elementary particle. An approach called
Higgs Inflation provides a chaotic scenario that enables the SMPP Higgs field to be
the inflationary scalar field. This model is capable of generating the FRW universe
by producing quantum fluctuations as the seeds for the large scale structures and
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recovering the HBB evolution (SHAPOSHNIKOV, 2015), besides it reproduces the
dynamics expected from the standard slow-roll evolution.

In this work, we will discuss another possible description for the primordial uni-
verse coming from the so-called Mimetic Gravity. MG was initially proposed by
Chamseddine and Mukhanov (2013) to simulate the dark matter behavior. After,
MG was explored as a modification of GR capable of producing a bounce in addi-
tion to providing a realistic candidate for dark matter (CHAMSEDDINE et al., 2014;
CHAMSEDDINE; MUKHANOV, 2017b). Recently, in a seminal paper, Langlois et al.
(2017) demonstrated that MG could reproduce the effective dynamics of LQC. More
specifically, they obtained an interesting LQC solution with a curvature potential
for closed-universe models.

In summary, the aim is to present our scenario for the very early universe with MG
as the link between LQC and HI. Within this framework, we highlight the curvature
role during the primordial universe evolution and emphasize the versatility of the
MG representation of LQC. Further, we expose our results presented in (BEZERRA;

MIRANDA, 2019) and clarify our vision regarding the very early times.
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2 LOOP QUANTUM COSMOLOGY

Before we start to discuss Effective LQC, we need to present essential concepts
behind the construction of LQG, jumping the unnecessary steps that are beyond
the scope of this work. Along section 2.1, we will omit some constants in order
to present a simpler mathematical structure to describe the canonical formalism,
focusing on the concepts. Nonetheless, in sections 2.2 and 2.3, we continue to follow
the notation establish in the chapter 1.

2.1 Rewriting General Relativity: the Hamiltonian Formulation of
Gravity

As mentioned earlier, the weak, strong and electromagnetic interactions present a
successful description when it comes to the quantum world. Nonetheless, the same
statement can not be applied to gravitational force (GAMBINI; PULLIN, 2011). This
is reasonable because quantizing gravity will give a quantum meaning to spacetime
itself. That is to say, the standard procedure applied to other interactions does not
work for gravity once it requires a background in which the fields would evolve.
However, the evolution regarding gravity is determined by the space-time that is
the background itself (MARTINS, 2009).

Since GR is the theory employed to describe the gravitational interaction, quantiz-
ing gravity requires a different treatment. Note that an intrinsic feature of GR is the
equal treatment of space-time coordinates. From a GR perspective, there is no dif-
ference between time and space components (TAVAKOLY, 2014). The fact that they
have the same weight makes difficulty to study the space-time progression once the
evolution of a physical system is usually considered in terms of the time coordinate.
Therefore, GR has to be restructured in a suitable form in order to implement a
quantization process.

There are two main approaches employed to try to quantize general relativity: the co-
variant description in terms of the elementary variables functional and the canonical
path through the Hamiltonian formulation (DONÁ; SPEZIALE, 2010). We are going
to follow the second one. Notwithstanding the Lagrangian formalism being the one
usually applied to classical field theory, it is a mechanism that strongly depends on
the concept of spacetime. Meanwhile, the Hamiltonian formalism is built under the
evolution of purely spatial variables for a specific interval of time (ALCUBIERRE,
2008; PEREIRA, 2018).
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Therefore, the equality between time and space must be broken in order to obtain
the gravitational Hamiltonian (TAVAKOLY, 2014), providing a way to follow the evo-
lution of space variables related to our cosmos. This is the proposal of the Arnowitt-
Deser-Misner (ADM) formulation which is also referred to as 3 + 1 formalism. The
idea is to change the usual perspective regarding how an observer experiences the
laws of physics that, in GR framework, comes from the properties and symmetries
of the 4-dimensional manifoldM and its metric gµν (PEREIRA, 2018). Nonetheless,
instead of the spatially homogeneous and isotropic 4-dimensional space-time, the
ADM foliation technique splits M into a family of 3-dimensional space slices Σ
parameterized by a global time t. Σ will carry the information about the spatial
geometry and its time evolution is going to define the space-time (CARROLL, 2004;
MARTINS, 2009; PEREIRA, 2018; TAVAKOLY, 2014).

2.1.1 Space-time foliation

Figure 2.1 provides a clearer picture to understand what means to foliate the space-
time. Roughly speaking, we can think about the space-time foliation in analogy with
an ordinary ream paper. The envelope that protects the paper leaves is equivalent to
the manifoldM, meanwhile, each sheet corresponds to a 3-dimensional hypersurface
Σ. Note that each spacelike hypersurface is associated with an instant of time.
Moreover, an observer localized in an arbitrary Σt has his/her past and future light
cone established from the future-pointing (timelike) unit normal vector n = nµ =
(n0, 0) (QUINTIN, 2015) which fully determines the space-time foliation and must
obey the relation (BILSON-THOMPSON; VAID, 2014)

gµνn
µnν = −1. (2.1)
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Figure 2.1 - Space-time foliation

SOURCE: Dengiz (2011)

Mathematically speaking, the procedure is to adopt M as a Lorentzian manifold
that is diffeomorphic to R × Σ, where t ∈ R (TAVAKOLY, 2014). It is important to
emphasize the arbitrariness of the time choice, t can or cannot represent the time
variable as we are used to (MOKHTAR, 2014). Besides, although the time direction is
usually oriented upwards, this is not necessarily a request. Indeed, the time direction
is a fiducial time which means it works as a standard reference and does not affect
the dynamics (BILSON-THOMPSON; VAID, 2014).

Figure 2.2 - Relation between the spacelike hypersurfaces in the universe foliation

SOURCE: Bilson-Thompson and Vaid (2014)
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To clarify this, let us analyze how to map two points localized in successive hyper-
surfaces through Figure 2.2. Due to GR diffeomorphism invariance, there is not a
canonical choice for the time-like vector field tµ that should perform the mapping
between a point xµ in Σt and another point x′µ defined in the hypersurface Σt+dt

associated to the next instant of time. Actually, tµ can be any time-like vector field
(BILSON-THOMPSON; VAID, 2014). From Figure 2.2, note that tµ is generally pro-
jected in the hypersurface through the shift vector Nµ = (0, Na) and its normal
component dictated by the lapse function N . Thus, tµ could be written as

tµ = Nnµ +Nµ = Nn0 +Na. (2.2)

Regarding the hypersurface, the timelike vectors are normal, meanwhile, the space-
like vectors are tangent to Σ (TONG, 2006). To put it another way, N provides the
information about how far Σt+dt is from Σt, while Na enables the coordinate propa-
gation from Σ to Σt+dt (GOURGOULHON, 2007). Hence, N and Na can be interpreted
like a general base from which the variables are decomposed (MARTINS, 2009).

In order to write the space-time metric gµν considering the splitting R × Σ, the
components needs to be adapted. AsM is determined by gµν , its space components
should be related to the description of Σ. Hence, there is another key variable in the
ADM formalism, the spatial metric qab of the hypersurface whose relationship with
gµν is dictated by

gµν = qµν − nµnν . (2.3)

Nonetheless, qµν obviously does not have a time component, since it is only defined
in the hypersurface, and na = 0. Consequently, gµν acquires the final form

gµν =
 −N2 + qabN

aN b qabN
b

qabN
a qab

 (2.4)

or also

ds2 = gµνdx
µdxν = (−N2 + qabN

aN b)dt2 + 2Nadtdxa + qabdx
adxb, (2.5)

usually referred to as ADM decomposition of the metric (BLAU, 2011). In other
words, GR has the space-time metric as its main quantity, meanwhile, in the canon-
ical gravity, gµν is replaced by three quantities N , Na and qab of Σ1, also called ADM

1Since the choice regarding the hypersurface is arbitrary, from now on we will use just Σ to
refer to the hypersurface defined in an arbitrary constant time t instead of Σt.
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variables (BOJOWALD; HOSSAIN, 2008). Therefore, instead of the ten independent
components of gµν , there are six components of qab, three from Na and one related
to N (TAVAKOLY, 2014).

After foliating the space-time, the next step is to define the initial conditions. That
is to say, we need to specify the space metric qab, the direction of time and also
a variable related to the time derivative of qab (BLAU, 2011). However, before we
follow further, let us first introduce the two curvature concepts that come with this
description for a Riemannian manifold: the intrinsic and extrinsic curvatures.

2.1.2 Intrinsic and extrinsic curvatures

Note that now we have a 4-dimensional manifold M described by gµν in which
a 3-dimensional spacelike hypersurface with induced metric qab is embedded. In
GR, the Riemann tensor (or Ricci tensor) is the one associated with the universe
curvature. Notwithstanding, since the computations are performed for an arbitrary
hypersurface, it is its curvature we need to pay attention to. Hence, there is a 3-
dimensional Riemann tensor (3)Rabcd to describe the curvature in analogy with the
usual 4-dimensional Rµναβ, this is the concept referred to as intrinsic curvature. As
an intrinsic property, (3)R is coordinate independent because the measures will be the
same regardless if the observation is performed consideringM or Σ (BERTSCHINGER,
2005; CARROLL, 2004; PEREIRA, 2018). An easier way to understand the intrinsic
geometry is interpreting it only with respect to the pair (Σ, qab), neglecting the
embedding around Σ (TAVAKOLY, 2014).

From the embedding of Σ inM, there is the extrinsic curvature Kab concept to be
examined (BERTSCHINGER, 2005). In this case, the position of the observer affects
the measures. The simplest example is to consider a paper leaf again. If M has a
box shape or a cylindrical one, the leaf will bend in a different way regarding the
observer perspective. Note that the picture of folding a leaf comes from an outside
point of view, an observation from inside the leaf will not detect any change once
the leaf remains the same (PEREIRA, 2018).

In other words, Kab is directly related to the bending of Σ inM and defined as the
variation of n along the hypersurface (see Figure 2.3)

Kab = Danb. (2.6)

Where Da is a covariant derivative operator associated to Σ that obeys Daqbc = 0
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(PEREIRA, 2018) analogously to ∇µgνλ = 0. Hence, Kab provides the information
about how curved Σ is regarding M (TAVAKOLY, 2014). Despite we have already
assumed na = 0 as an initial value to obtain the standard case, we kept the general
definition once it helps to notice how Kab is directly related to the variation of qab
regarding the normal unit vector through a Lie derivative as it follows

Kab = 1
2Lnqab. (2.7)

After some calculation, (2.7) can be written in the form

Kab = 1
N

(q̇ab −DaNb −DbNa), (2.8)

that makes clear the relation between Kab and the time derivative of the metric
q̇ab. The reason why we emphasized the extrinsic curvature role is that it will be
necessary to rewrite the Einstein-Hilbert action in terms of (3)R andKab, an essential
part during the construction of the Hamiltonian.

Figure 2.3 - Extrinsic curvature of the hypersurface

SOURCE: Pereira (2018)

2.1.3 The Hamiltonian and canonical variables

First, the Einstein-Hilbert density Lagrangian LEH is written considering the ADM
variables, which means gµν will be replaced by N , Na and qab, while (3)R and Kab

are employed to rebuild the 4-dimensional Ricci scalar R (see Appendix A for more
details). The result is the ADM Lagrangian given by
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LADM = N
√
q[KabK

ab −K2 + (3)R], (2.9)

therefore, the ADM action can be expressed like

SADM[N,Na, qab] =
∫
d4xLADM(N,Na, qab). (2.10)

As the variation of the action is performed with respect to gµν within the Lagrange
formulation, in the ADM formalism, the variation is computed considering the vari-
ables equivalent to it: N , Na and qab. If this is also implemented to the matter
action, combining both results will enable to recover the Einstein Field Equations
(BERTSCHINGER, 2005).

Since now we have the density Lagrangian, it is possible to perform a Lagrange
transformation in order to have the action in the Hamiltonian form. N , Na and qab
would be equivalent to the generalized variables if we were working with an ordinary
mechanic system. Hence, the next step is computing their analog canonical momenta.
In this case, the limitation regarding time fixes the field values to a specific spatial
position, while the space derivatives enable to relate different field values. For now,
let us continue only discussing the gravitational part of the action since the matter
sector is assumed to be independent of Ṅ , Ṅa and q̇ab (BERTSCHINGER, 2005).

From (2.9), it is possible to obtain the momenta πN , πa and πab related to N , Na

and qab, respectively, as it follows

πN = ∂LADM

∂Ṅ
≈ 0, (2.11)

πa = ∂LADM

∂Ṅa

≈ 0, (2.12)

πab = ∂LADM

∂q̇ab
= √q(Kqab −Kab). (2.13)

From (2.11) and (2.12), it can be noticed that the ADM Lagrangian does not depend
on the time derivatives of N and Na. The symbol ≈ is the representation of a weak
equality, that is to say the equality is true if it is consider over a hypersurface. In
this case, N and Na are not dynamical variables, leaving only qab and its momentum
to define the dynamics of the gravitational sector. Hence, the phase space is com-
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posed by all pairs of qab and πab (GAMBINI; PULLIN, 2011; MARTINS, 2009). After
performing the Lagrange transformation, the gravitational Hamiltonian HG can be
written like

HG =
∫
d3x[ṄπN + Ṅaπ

a + q̇abπ
ab − LADM] =

∫
d3x[q̇abπab − LADM], (2.14)

meanwhile, the total Hamiltonian HT corresponds to

HT = HG +Hm =
∫
d3x[q̇abπab − LADM − Lm], (2.15)

where Hm and Lm are the matter Hamiltonian and density Lagrangian, respectively.
Therefore, we can interpret the variables in Σ analogously to the ones from M
(BOOT, 2008), working with them in a similar way as it is identified in Table 2.1.

Table 2.1 - Variables that plays similar roles

General Relativity (M) Canonical Formulation (Σ)
gµν qab
∇a Da

Rµναβ
(3)Rabcd

In the Hamiltonian formulation, the dynamics is dictated by the Hamilton equations
whose usual form from analytical mechanics is given by

q̇ab = ∂HT

∂πab
, (2.16)

π̇ab = −∂HT

∂qab
. (2.17)

Nevertheless, they could be also expressed in terms of the Poisson bracket between
the configuration variables qab and πab with HT . Since the Poisson bracket is defined
as

{f, g} ≡ ∂f

∂q

∂g

∂π
− ∂f

∂π

∂g

∂q
(2.18)
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for two function of the phase space f(q, π) and g(q, π), the Poisson bracket between
qab and πcb follows the next expression

{qab(x), πcd(y)} = 1
2(δac δbd + δadδ

b
c)δ3(x− y). (2.19)

Thus, the equations of motion (EoM) will be described by

q̇ab = {qab, HT} (2.20)

and
π̇ab = {πab, HT}. (2.21)

The solution from equations (2.20) and (2.21) can be interpreted as a flow or curve
defined in the phase space with q(t) and π(t), considering an initial value q(0) and
π(0) (GAMBINI; PULLIN, 2011). At this point, we need to briefly discuss systems
with constraints.

2.1.4 Constraints and Lagrange multipliers

Describing a physical system with more variables than what is actually necessary
is a common procedure, particularly, when the true degrees of freedom are un-
known. However, these variables are usually attached through restrictions involving
the phase-space variables named constraints. Further, the constraints are relations
that must hold during the entire evolution, enabling to identify conserved quanti-
ties. On the other hand, the presence of conserved quantities is related to physical
symmetries. Thus, the constraints indicate the existence of physical symmetries on
the system (GAMBINI; PULLIN, 2011).

The standard approach is to incorporate the constraint into the Hamiltonian through
the Lagrange multipliers method. Basically, the procedure consists in adding extra
terms composed by the constraint multiplied by a Lagrange multiplier to the original
Hamiltonian Horiginal, defining a total Hamiltonian like following

HT = Horiginal + constraints. (2.22)

In case of a generic system, it is possible to identify a constraint by verifying whether
the Lagrangian depends on the time derivative of the desired quantity. If a variable
y appears in the Lagrangian/Hamiltonian/action, but ∂L

∂ẏ
= 0, that means y is a

Lagrange multiplier and does not contribute to the system dynamics. Hence, the
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quantity multiplying it will be a constraint. Moreover, the presence of a Lagrange
multiplier means the evolution of the system is not unique due to the arbitrariness
they introduce. To put this another way, constraints impose limits to the free pa-
rameters of the system, being the generators of the gauge symmetries (GAMBINI;

PULLIN, 2011).

2.1.5 The electromagnetic Hamiltonian

An example of a constrained system is the Maxwell electromagnetic theory whose
Hamiltonian can be expressed as

Helectro ≡
∫

(Ea(x)Ȧa − Lelectro)d3x

=
∫ 1

2[Ea(x)Eb(x)δab +Ba(x)Bb(x)δab]− A0∂aE
a

 d3x.
(2.23)

Here, Lelectro refers to the electromagnetic density Lagrangian, Ba corresponds to
the magnetic field defined in terms of the vector potential Aa, which together with
the electric field Eb are the canonical variables related by

{Aa(x), Eb(y)} = δbaδ
(3)(x− y). (2.24)

Therefore, equation (2.24) implies that the variables must be considered at the same
spatial point and also for the same vector component. Otherwise, the result would be
a null Poisson bracket (GAMBINI; PULLIN, 2011). From (2.23), it possible to recognize
the term ∂aE

a that, according to Gauss’s law, obeys the relation ∂aEa = 0. Thus,
the Gauss law is a constraint, while A0 is a Lagrange multiplier as it can be observed
through computing the EoM of its momentum π0:

π̇0 = {A0, Helectro} = ∂aE
a = 0. (2.25)

Likewise, the remaining Maxwell equations can be recovered from the values of Ȧa
and Ėa (GAMBINI; PULLIN, 2011).

2.1.6 The constrained Hamiltonian

Unlike the electromagnetic theory, the gravitational Hamiltonian is a purely con-
strained quantity (ASHTEKAR et al., 2006b). The equations (2.11) and (2.12) imply
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that πN ≈ 0 and πa ≈ 0 are primary constraints since they are obtained straight
from Lagrangian. However, they also give rise to secondary constraints through their
time derivatives. Therefore, after rearranging the terms from (2.14), the standard
form of the ADM Hamiltonian is given by

HG =
∫
d3x[ṄπN + Ṅaπ

a +NH +NaHa], (2.26)

in which H and Ha correspond to secondary constraints defined as

H = 1
√
q

(
qacqbd −

1
2qabqcd

)
πabπcd −√q (3)R, (2.27)

Ha = −2√q∇b

(
πab
√
q

)
, (2.28)

with q representing the determinant of qab.

It is important to emphasize that (2.27) and (2.28) can also be written as functions
of Kab instead of πab. As secondary constraints, H ≈ 0 and Ha ≈ 0. Thus, in the
vacuum, HG ≈ 0, where the weak equality should be kept until the computation
of the Poisson bracket (MARTINS, 2009). Besides, Equation (2.26) is a direct con-
sequence of GR independence regarding time, because its arbitrariness gives rise to
symmetries that make the dynamics obtained arbitrarily as well (GAMBINI; PULLIN,
2011).

Since the Hamiltonian role is to provide the time evolution of the system, in GR
case, this means a direct dependence on N and Na. Despite the absence of proper
time, they are the variables to be specified in order to determine the flow evolution
at one point of spacetime (TAVAKOLY, 2014), which corresponds to the closest time
evolution we can get from GR. Note from (2.11) and (2.12) that N and Na are
Lagrange multipliers (GAMBINI; PULLIN, 2011), in agreement with the arbitrary
nature of time.

Incorporating matter to the equation, we can generalize H and Ha to contain it and
still respect the restrictions H ≈ 0 and Ha ≈ 0 that limits the physical phase space.
Furthermore, it is also useful to introduce the smeared constraints

CH [N ] =
∫
d3xNH =

∫
d3xN(Hgrav +Hmatter), (2.29)
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C[Na] =
∫
d3xNaHa =

∫
d3xNa(Ha

grav +Ha
matter). (2.30)

Both CH [N ] and H are referred to as Hamiltonian constraint (also known as scalar
constraint), while C[Na] and Ha are named diffeomorphism constraint (or vector
constraint).

The standard procedure is to define Na = 0 which means to evolve the slice Σ only
in the normal direction once now tµ = Nn0. Hence, the dynamics is dictated only
by H (TAVAKOLY, 2014). However, the problem regarding the standard canonical
formalism is the non-polynomial dependence of the constraint equations with respect
to the traditionally canonical conjugated variables (ASHTEKAR, 1986). Here, they
would be qab and πab (or Kab), but they can also be expressed in a tetrad base using
the Palatini formulation.

The canonical formulation presents GR as a gauge theory, enabling to perform a
canonical quantization (MARTINS, 2009). This process follows Dirac’s quantization
rule whose the roughly simplest description consists in promoting the canonical
variables (for example, A and B) to operators and to turn the Poisson brackets in
commutators (BERTSCHINGER, 2005; DONÁ; SPEZIALE, 2010) as it follows

{A,B} → −i[A,B]. (2.31)

Nonetheless, this requires that A and B have well-defined quantum analogs, which is
hard to obtain considering the non-trivial form of the Hamiltonian. Due to the fact
that the Poisson bracket for qab and πab is given by (2.19), their quantum analogs
should turn into a form similar to

qab → q̂ab, (2.32)

πab → −i~ δ

δqab
. (2.33)

The Hamiltonian is a natural bridge between the classical and quantum worlds
(MARTINS, 2009). Since the Hamiltonian constraint (operator) is the one responsible
to describe the dynamics in canonical quantum gravity framework, the equations of
motion will be derived from it (BOJOWALD; HOSSAIN, 2008). Thus, H must also have
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a quantum analog well defined. However, the constraint equation implies H ≈ 0
whose translation to a Schrodinger equation form would result in H|Ψ〉 = 0. Or
also, from (2.44), ∂HG

∂N
|Ψ〉 = 0, which corresponds to a singular functional differential

equation without physical solution for this phase space (BOOT, 2008).

We will not detail the aspects regarding the quantization process because they are
far more complex than we really need to describe in our work. Nevertheless, what
we must have in mind is the necessity of having elementary variables to promote
to a quantum operator. Moreover, the Hamiltonian constraint must have a suitable
form to enable the quantization process to happen.

2.2 Loop Quantum Gravity

Among the current attempts to quantize gravity, we are interested in the one known
as Loop Quantum Gravity. It was developed in the mid-1980s by Ashtekar (1986)
when he realized the possibility to rewrite the equations of gravity similar to the for-
mulation applied for theories of particle physics. Basically, these equations were writ-
ten in terms of proper variables from particle physics (GAMBINI; PULLIN, 2011) and
a Hamiltonian formulation was developed using these new variables in (ASHTEKAR,
1987).

Moreover, Barbero (1995) gave a fundamental contribution by ensuring that the
Ashtekar variables do not need to assume complex values to describe a space-time
with Lorentzian signature. This is the reason why sometimes the Ashtekar variables
are also named Ashtekar-Barbero variables in the literature. Here, we will use both
nomenclatures indistinctly.

Loop Quantum Gravity is a quantum description of gravity that mixes the Hamil-
tonian formulation of GR with elements from QFT. LQG formalism is constructed
analogously to the canonical formulation in which the space-time manifold is leafed
into space manifolds related to each instant of time (LANGLOIS et al., 2017; BO-

JOWALD; HOSSAIN, 2008). Looking from a pragmatic point of view, LQG can be
seen as a strategic approach developed to satisfy all the constraints related to the
gravitational Hamiltonian. To achieve this goal, GR was rewritten as a gauge theory
based on connections since they are the natural objects related to gauge symmetries.
The idea was to use the gauge connection and its conjugate momentum as the canon-
ical pair in analogy to the electromagnetic case and build them from qab and Kab

(BENITO, 2010).

37



The procedure starts by defining the triad eai and cotriad ejb,

eai e
j
a = δji and eai e

i
b = δab , (2.34)

directly related to the spatial metric by

qab = eiae
j
bδij, (2.35)

in which δij can be interpreted as the Euclidian metric (δij = diag(1, 1, 1)) or Kro-
necker delta. At this stage, we need to clarify the use of two set of spatial index: a,
b, c... and i, j, k.... Meanwhile the indices a, b, c,... refer to Σ, i, j, k,... are internal
indices associated to the fiducial cell (LANGLOIS et al., 2017), which will be discussed
in the sequence.

Since the space-time is intrinsically infinite, the Hamiltonian treatment in LQG is
performed by considering a finite elementary cell V , usually referred to as fiducial
cell, in order to avoid integrals over infinite region (BOJOWALD; HOSSAIN, 2008).
From (2.35), it can be noted that qab would be the metric to raise and lower the
indices a, b, c... and δij would do the same for i, j, k... (MARTINS, 2009). However,
δij is being employed as fiducial metric, enabling to identify i, j, k... with a, b, c....
That is to say, using either eia or ebj enables us to replace the spatial indexes by the
internal ones and vice versa (FLEISCHHACK, 2012).

The next step is to introduce the variable playing the role of electric field like

Ea
i = √qeai , (2.36)

that is named densitized triad. Once now there is a variable associated with the
spatial metric, it is necessary to construct another from its conjugated momentum,
or in this case, from the extrinsic curvature here written in the form

Ki
a = Kabe

b
i . (2.37)

However, Ki
a is a vector regarding the internal space V and does not define a connec-

tion. With the purpose to obtain a gauge connection, the strategy was to employ the
spin connection Γia that provides the information about how the gravitational field
affects the matter (parallel transport) (BLAS, 2013). Thus, the spin connection is the
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one describing the intrinsic curvature whose form is designed so that the expression

Dae
a
i ≡ ∂ae

b
i + Γbaceci + εij

kΓjaebk = 0 (2.38)

is satisfied, resembling the role played by the Christoffel symbol Γbac (LANGLOIS et

al., 2017) with εijk referring to the Levi-Civita symbol.

Note that Γia and Ki
a contain all the information about curvature which is encoded

into Ashtekar connection Aia through the definition

Aia = Γia + γKi
a, (2.39)

where γ represents the Barbero-Immirzi parameter. Notwithstanding γ was orig-
inally an unknown constant, Meissner (2004) obtained the value γ ' 0.2375 by
comparing the black role entropy with Hawking-Bekenstein formula (MIELCZAREK,
2010). All things considered, the symplectic structure between Aia and Ea

i is deter-
mined by

{Aia(x), Ajb(y)} = 0, (2.40)

{Ea
i (x), Eb

j (y)} = 0, (2.41)

{Aia(x), Eb
j (y)} = 8πGγδbaδijδ(3)(x− y), (2.42)

which is similar to (2.24).

In other words, LQG is based on the Ashtekar variables instead of the spatial met-
ric itself which makes its structure nearest to Yang-Mills theory (GAMBINI; PULLIN,
2011). Therefore, Aia and its conjugated momentum Ea

i , named Ashtekar variables,
correspond to the canonical variables of LQG description and encode the informa-
tion regarding curvature and spatial geometry, respectively (LANGLOIS et al., 2017;
MIELCZAREK, 2014; ZHANG; LING, 2007). However, now, instead of a metric space,
we are dealing with the connection space (DONÁ; SPEZIALE, 2010).

LQG, as well as the canonical formulation, presents a purely constrained Hamilto-
nian. Nevertheless, changing the calculations from metric space to the connection
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one expands the phase space due to the additional degree of freedom. This means a
new constraint

Gi ≡ ∂aE
a
i + εij

kAjaE
a
k ≈ 0 (2.43)

arises from Ashtekar gravity (FLEISCHHACK, 2012; BLAS, 2013). In analogy with the
electromagnetic case, (2.43) is named Gauss constraint, but can be also referred to
as rotation constraint once it defines the invariance of Ashtekar gravity under this
kind of transformation. Thus, using the Ashtekar-Barbero connection to describe
GR means to write it in a language of a gauge theory (CASARES, 2018).

In this sense, GR was translated to a SU(2) gauge theory with the symplectic struc-
ture given by (2.42) that results in a constrained system determined by the Gauss
law, space diffeomorphism invariance and Hamiltonian constraint (DONÁ; SPEZIALE,
2010). Consequently, the Hamiltonian can be written as the sum of Gauss, diffeo-
morphism and Hamiltonian constraints and their respective Lagrange multipliers
(BOJOWALD; HOSSAIN, 2007; MIELCZAREK, 2014) like

HLQG =
∫
d3x[NiGi +NaHa +NH]. (2.44)

Regarding the matter sector, its content is arbitrary. Indeed, LQG does not require a
specific type of matter (BOOT, 2008), so that any matter content could be the energy
source associated with the geometric sector. The simplest and largely employed
assumption is to define a scalar field ϕ and its conjugate momentum πϕ to satisfy

{ϕ, πϕ} = 1, (2.45)

and to incorporate them within (2.44). Consequently, its density Lagrangian follows
(1.24).

The scalar (or Hamiltonian) constraint continues to be the one determining the
time evolution of Σ, once Gi and Ha are satisfied by construction (BOJOWALD;

HOSSAIN, 2008). There are many ways to write this constraint, here, we will work
considering the same formalism implemented by Langlois et al. (2017) since it was
the fundamental reference for the development of our work (for more details about
how to derive the Hamiltonian constraint see Appendix B). Hence, the Hamiltonian

40



constraint will be written in the form 2

H = −
Ea
i E

b
j

16πGγ2√q
εijk(Fabk − (1 + γ2)Ωab

k) +
π2
ϕ

2√q +√qV (ϕ) (2.46)

where

Fab
k = 2∂[aA

k
b] + εij

kAiaA
j
b (2.47)

and

Ωab
k = 2∂[aΓkb] + εij

kΓiaΓ
j
b. (2.48)

Again, analogously to electromagnetism, Fabk illustrates the field strength of Aia and
describes the curvature of the connection. Meanwhile, Ωab

k provides the information
about the Σ spatial curvature.

At this point, it seems reasonable to think about starting the quantization process.
However, it is still not possible to obtain a well-defined operator for the Hamiltonian
and connection itself. Indeed, a polynomial Hamiltonian requires a complex γ which
will send GR’s phase space to the complex plane (BOOT, 2008). Even though the
Ashtekar variables could not play the role of elementary variables directly, they
are used to build them. In this sense, the LQG strategy to quantize gravity is to
describe it in terms of different variables instead of trying to change the theory itself
or the quantum paradigm. Thus, GR is rewritten in a suitable way that enables to
implement Dirac’s quantization procedure (DONÁ; SPEZIALE, 2010).

First of all, in LQG, the space-time geometry is discrete because of the independence
of the theory with respect to the background (BOJOWALD, 2005). According to
LQG proposal, the space-time is compound by cells named spin network from which
the elementary variables are determined. They are holonomies of edges related to
Ashtekar connection Aia and fluxes across surfaces associated with densitized triads
Ea
i . The holonomy is defined as the exponential of the Ashtekar-Barbero connection

hi(`) = exp
(∫ `

0
dxiAa

(
∂

∂xi

)a)
(2.49)

2For more details regarding how to derive (2.46) from equation (2.44), see the classical references
(THIEMANN, 2007), (ASHTEKAR, 1986) and (ASHTEKAR, 1987).
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evaluated considering the loop inside the elementary cell. Basically, the procedure
consists in to draw a curve parallel to the path

(
∂
∂xi

)a
that has a length ` regarding

the fiducial metric (LANGLOIS et al., 2017).

Although the flux Fflux is the conjugated variable related to the holonomy, it will
not be specified here since its reduced form is already a well-defined quantity in the
quantum world. Moreover, both holonomy and flux are implemented as elementary
variables due to their invariance under diffeomorphism transformation and metric
independence, corresponding to smooth versions of Aia and Ea

i (BENITO, 2010; BLAS,
2013).

Once the elementary variables have their quantum analogs well-defined, the con-
straint constructed from them can be written straightforward as a quantum oper-
ator (ASHTEKAR et al., 2006b). This requirement is fulfilled by the holonomy and
triads that have unambiguous operators analogs defined in the quantized theory
(ASHTEKAR et al., 2006a). In LQG quantization, the curvature operator (or Fabk) is
written in terms of holonomies which are defined around a loop with nonzero area
gap ∆ (ASHTEKAR et al., 2006b). In this scenario, the space-time is discrete because
the limit imposed to LQG fundamental cell, preventing it to assume a zero area
value (LANGLOIS et al., 2017).

In summary, Loop Quantum Gravity is usually defined as a Hamiltonian formulation
of general relativity based on holonomies and fluxes (MIELCZAREK, 2014). This
means the equations of motion of the phase space functions are computed via Poisson
brackets, ḟ = {f,H}, which defines the kinematic evolution through the canonical
variables (BOJOWALD et al., 2006). The kinematic character comes from the use of
the connection space that only allows the description of the interactions. The agents
responsible to determine the dynamics requires the metric concept absent in LQG
framework.

Moreover, this can be also related to the most discussed conceptual problem that
comes from the canonical approach, the problem of time. As we mentioned in the
previous section, the time evolution is arbitrary and corresponds to a particular case
of gauge transformation regarding GR construction as a theory. Coupled with this
is the fact that quantized field theory has gauge-invariant states which ensures the
quantum gravity states will be independent of time (WALLACE, 2000). However, it
is possible to introduce a dynamic character in the kinematic LQG context through
cosmological models. This is the content presented in the following section.
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2.3 Loop Quantum Cosmology

LQC can be interpreted as an application of LQG to cosmological space-times and
defined as a symmetric reduced model to study the quantization process à la loop
for highly symmetrical cosmological models (ASHTEKAR et al., 2006a; BLAS, 2013;
SADJADI, 2013). Therefore, LQC is built over the variables and techniques from LQG
plus the incorporation of the cosmological dynamics that comes from the symmetry
features of FRW space-times (LANGLOIS et al., 2017). Within this configuration, the
system dynamics is introduced by the cosmological sector, enabling to overcome
the LQG kinematic nature. Further, LQC provides a way to explore the effects of
the discrete space-time, in addition, to obtain a consistent quantum theory without
classical singularities (BENITO, 2010).

LQC can be described in two levels: purely quantum and semi-classical. Despite
being a more complete approach, the purely quantum treatment suffers from in-
terpretation issues. Moreover, the semi-classical approach, also called effective, is
capable of reproducing the main aspects related to LQG and provides a better fit
for cosmological framework (MIELCZAREK, 2010; BOJOWALD; MORALES-TÉCOLT,
2004).

Roughly speaking, the semi-classical approach treats the quantum gravity effects
through corrections in the classical equations of motion (MIELCZAREK, 2009) and
it is the one constructed from the canonical formalism. Furthermore, the effective
theory is a good approximation for a non-compact universe whose volume is greater
than `3

Pl. This includes the FRW space-time, once its spatial volume must be infinite
as long as a 6= 0 like happens in LQC (LANGLOIS et al., 2017).

The starting point to study the holonomy effects is to set the cosmological model we
will going to work with. The standard LQC is built considering a homogeneous and
isotropic universe filled with a massless free scalar field, the FRW universe with the
scalar field as the energy source. For a spatially flat FRW space-time, the intrinsic
curvature is null (Γia = 0), which, from (2.48), also applies to Ωab

k = 0. Remembering
the standard assumption Na = 0, the cross terms in (2.4) are going to be null. Thus,
the FRW metric can be written analogously to (2.4) like

ds2 = −N2dt2 + a(t)2d~x2. (2.50)

The Ashtekar variables acquire their simplest reduced form
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Ea
i = p

(
∂

∂xi

)a
with p = a2 (2.51)

and

Aia = c(dxi)a with c = γȧ

N
(2.52)

as a consequence of the underlying symmetries of FRW space-time. Therefore, c and
p correspond to the symmetry reduced gravitational phase space coordinates. They
are independent of the fiducial metric and characterize a two-dimensional phase
space (ASHTEKAR et al., 2006b), obeying the symplectic structure

{c, p} = 8πGγ
3 . (2.53)

Following LQG, the particular feature that makes LQC different from previous at-
tempts to quantize the space-time is the choice of the elementary variables (LAN-

GLOIS et al., 2017). In other words, the quantities elevated to the status of quantum
operators. The obvious choice would be Aia and Ea

i , nevertheless, neither Aia nor c
have a quantum counterpart. Hence, the strategy was to use a function defined as
an exponential of Aia, the holonomy. In this framework, the matter canonical vari-
ables are only the scalar field and its momentum, meanwhile, for the gravitational
sector we may recognize three pairs: c and p, Aia and Ea

i , hi and Fflux. The table
2.2 provides a clear picture by relating the pair with their respective function. Note
that each pair has its own role to play in the à la loop quantization scheme and can
actually be mixed during the process.

Table 2.2 - Different pairs of variables from Loop Quantum Cosmology

Configuration variable Conjugated momentum
Elementary variables hi Fflux
Canonical variables Aia Ea

i

Reduced variables c p

All things considered, the total Hamiltonian density acquires the reduced form (see
Appendix ??)

H = − 3
8πGγ2p

1/2c2 +
π2
ϕ

2p3/2 + p3/2V (ϕ), (2.54)
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that will be used to obtain the evolution of any observable O through the relation

dO
dt

= {O, CH}. (2.55)

However, before discussing the EoM from Effective LQC scenario, we will first briefly
describe how the quantization process occurs.

To begin with, Figure 2.4 exemplifies the difference between how the space-time is
interpreted in the full theory compared with LQC. In the left-hand side, there is
a spin network from LQG setup, in which it is possible to identify the space-time
cells without any organized structure. In the right-hand side, the spin network seems
similar to the picture used to illustrate the space-time concept. Roughly speaking,
LQC establishes an organization for the structure of the spin network due to the
symmetry properties from cosmological dynamics, usually characterized as homoge-
neous and isotropic. The loop square shape is a feature that comes with the FRW
space-times and makes easy to visualize the holonomy as a parallel transport oper-
ator (LANGLOIS et al., 2017). Besides, the holonomy is represented through the red
line defined inside the square loop that delimits the elementary cell (MIELCZAREK,
2014).

Figure 2.4 - Spin network

SOURCE: Mielczarek (2014).

The classical relation between holonomy and curvature is associated with a decreas-
ing area loop around which the holonomy is defined. In this case, the area can be
shrunk until zero (ASHTEKAR et al., 2006b). The physical length of the square loop
is determined from the product of the scale factor a and the square loop length `

regarding the fiducial metric. The physical area of the spin network is an expression
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of the reduced canonical variable p and a quantity µ̄. The later works as the loop
coordinate size and is directly related to quantization of the Ashtekar curvature
components F i

ab (BOJOWALD; HOSSAIN, 2008; LANGLOIS et al., 2017). Indeed, the
right choice of µ̄ is essential to reach the desired evolution.

In general, µ̄ is defined with respect to the triad component p in order to reflect the
space-time discreteness within the dynamics. In spite of being difficult to obtain a
precise behavior of the parameter µ̄, there is a favorite value for it, called µ̄-scheme,
that is given by

µ̄ =
√

∆
p
. (2.56)

∆ represents the smallest value that can be used to describe the discrete area of
space-time (ASHTEKAR et al., 2006b). It corresponds to the gap area coming from
LQG whose form is considered like (MIELCZAREK, 2014)

∆ = 2
√

3πγ`2
Pl. (2.57)

As we mentioned earlier, despite the holonomy operator being well-defined in full
LQG, there are not any local operators capable of representing neither the connec-
tion nor the curvature. Since the procedure to obtain a quantum constraint should
start with a suitable operator to describe the curvature of the gravitational connec-
tion, the treatment consists in expressing this curvature as a limit of the holonomy
regarding a loop whose minimum area is defined by ∆. Indeed, in quantum geome-
try, the presence of ∆ prevents a zero eigenvalue for the area operator (ASHTEKAR

et al., 2006b). Consequently, the area operator has a discrete spectrum defined by a
minimum non-zero eigenvalue and Fabk is written as a function of the holonomy of
the connection Aa (LANGLOIS et al., 2017).

The absence of an operator equivalent to c is overcome in the usual procedure by
returning to the Hamiltonian (2.46) from full LQG that does not explicitly present
Aia or c (ASHTEKAR et al., 2006b). It is not necessary to reproduce all this work
in order to obtain an operator regarding Ei

a (or the triad flux) once the variable p
already determines a well-defined area operator.

The effective dynamics is obtained analogously to the previous proceeding, Fabk is
also described in terms of the holonomy evaluated with respect to a square loop
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with minimal area gap ∆. However, as we are considering the semi-classical limit,
the Hamiltonian density will be treated at classical level. As a result, the effective
scalar constraint is going to be determined by

Heff = − 3p3/2

8πG∆γ2 sin2 µ̄c+
π2
ϕ

2p3/2 + p3/2V (ϕ). (2.58)

In the effective treatment, the Hamiltonian is built on a continuum spacetime, the
quantum fluctuations are neglected and the quantum corrections are implemented
into classical dynamics (LANGLOIS et al., 2017; ZHANG; LING, 2007).

The time evolution of the observable p is computed from (2.55), with the Hamilto-
nian density given by (2.58), resulting in

ṗ = 2N p

γ
√

∆
sin µ̄c cos µ̄c. (2.59)

Since Heff is weakly equal to zero, the square sine function obeys the expression

sin2 µ̄c = ρ

ρc
, (2.60)

which establishes a boundary between the values of ρ and ρc to the range 0 . ρ/ρc ≤
1 (Appendix C provides further information about the sine function role). The LQC
standard energy density is described by the expression for an arbitrary scalar field
ϕ,

ρ =
π2
ϕ

2p3 + V (ϕ), (2.61)

whose critical value corresponds to

ρc = 3
8πGγ2∆ =

√
3

32π2γ3ρPl, (2.62)

where ρPl represents the energy density at Planck scale. Therefore, just like in chap-
ter 1, ρ must also satisfy (1.11), (1.15) and (1.26).

All things considered, we can obtain the effective Friedmann equation for a flat FRW
space-time through (2.59) and (2.60) which will result in

H2 =
(

ṗ

2Np

)2

=
(
ȧ

Na

)2
= 8πG

3 ρ

(
1− ρ

ρc

)
, (2.63)

usually called Effective Friedmann equation, being also referred to as modified
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Friedmann equation in the literature. Note that (2.63) only differs from (1.8) by
a quadratic term of the energy density ρ2

ρc
. However, this small difference results in

strong implications regarding the primordial universe evolution in LQC framework.
First, while in GR, ȧ can be only positive or negative, (2.63) also admits ȧ = 0.
In this case, the Hubble parameter vanishes giving rise to a bounce in the universe
evolution instead of diverging in a point (ASHTEKAR; SLOAN, 2011).

In this context, a will never assume a null value because (2.60) ensures a finite limit
to ρ defined by ρc. Consequently, the initial singularity from classical cosmology
just does not exist in LQC, being replaced by a bounce when ρ achieves the value
of ρc (BOJOWALD; HOSSAIN, 2008). This feature may be the most successful aspect
regarding effective LQC and it is a purely quantum gravitational effect of LQG since
is directly related to the fact that ∆ is not able to assume a null value. Otherwise,
the universe will collapse in a singularity like in the classical case. Further, the
bounce is a straight consequence of the discrete geometry of LQG regardless of the
quantum fluctuations and happens apart from initial conditions or the value of the
field momentum (ASHTEKAR et al., 2006b; LANGLOIS et al., 2017).

Working with the LQC effective dynamics corresponds to introducing quantum cor-
rections to the classical equations of motion. Therefore, considering the effective
EoM, the classical cosmological dynamics receives nonperturbative corrections due
to its quantum gravitational nature, only significant in high energy regimes. Indeed,
for energy ranges close to the Planck scale, gravity is expected to present a repulsive
nature (MIELCZAREK et al., 2009). Likewise, the LQG/LQC scale of discreteness is
close to the Planck one, making its effects only significant at high curvature regimes
(BOJOWALD, 2005).

Above all, it is possible to notice how the relation between ρ and ρc dictates the
evolutionary dynamics. As we just mentioned, their relation is limited by the sine
function. In this sense, there are particular values associated with the different stages
regarding the Effective LQC universe evolution. From (2.63), note that ρ = ρc implies
H = 0, defining the bounce point. Moreover, H = 0 comes from ȧ = 0 that indicates
a turn in the universe motion, opening the possibility of a previous configuration of
our universe like can be seen in Figure 2.5.
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Figure 2.5 - Possible previous configuration of our universe

SOURCE: Bonoguore (2018).

Right after the bounce, the LQC universe is supposed to enter in a super-inflationary
phase that covers the interval 1

2 .
ρ
ρc
. 1, during which Ḣ > 0. Notwithstanding

the drastic change associated with H, this period should last for an interval of time
smaller than tPl. Otherwise, both a and ϕ would have varied more than expected
according to cosmological observations (ASHTEKAR; SLOAN, 2011).

The Hubble parameter goes from its minimum value in bounce point to its maximum
one at the end of super-inflationary phase which consists of the value

H2 = ρc
12M2

Pl

, (2.64)

since ρ
ρc

= 1
2 . Although the holonomy corrections will play a main role during the

bounce phase, they also need to be considered at inflationary epoch as small devia-
tions (LUC; MIELCZAREK, 2017). Actually, Ashtekar and Sloan (2011) showed that
the probability of LQC producing a slow-roll inflationary period is very close to one,
besides, the bounce phase should be able to provide the suitable initial conditions
for inflation to occur.

The inflationary period should take place after ρ reaches half of ρc ( ρ
ρc
≈ 1

2) and
ends up when ρ becomes negligible compared to it. Therefore, in Effective LQC,
the onset of inflation starts immediately after H achieves (2.64). Moreover, since a
correct quantum theory not only must admit a semiclassical regime at the smooth

49



geometric level but also may have GR as an approximation for low energy regimes
(DONÁ; SPEZIALE, 2010), much smaller than ρPl, at the end of inflation the quantum
effects should be negligible, recovering the standard form

H2 = ρ

3M2
Pl

. (2.65)

Note that since the beginning, the changes of ρ compared to ρc are dictating the pri-
mordial universe dynamics. Further, ρ varies as the field evolves, being dominated by
its kinetic and potential components in different stages of the early evolution. Con-
sequently, the ratio between the kinetic and potential energy may play an essential
role. Notwithstanding the absence of a consensus in the area, the most accepted de-
scription of the evolutionary stages with respect to the energy density (see equations
(2.58), (2.63) and (2.61)) occurs as it follows:

• at the bounce, the universe is supposed to be dominated by the kinetic
energy density;

• during the super-inflationary period, the kinetic energy must lose its
strength until the potential term be capable to assume at the end;

• inflation should be driven by the potential energy as well as in the classical
case;

• at the end of the inflationary period, the kinetic term is bigger than the
potential one, but both components should contribute to ρ.

In order to complete the usual set of dynamic equations to describe the universe
evolution, we compute the time derivative of equation (2.63), considering (1.15) and
obtaining

Ḣ = −4πG(ρ+ P )
(

1− 2ρ
ρc

)
. (2.66)

Now, we can write the acceleration equation by adding (2.63) to (2.66) which is
going to result in the following expression

Ḣ +H2 = 4πG
3 ρ

[
−3w − 1 + 2ρ

ρc
(2 + 3w)

]
. (2.67)
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Thus, (2.63) and (2.67) corresponds to the LQC analogs of the Friedmann equations
(1.8) and (1.16).

Figure 2.6 provides a simple picture to describe the evolutionary stages of the Ef-
fective LQC primordial universe. First, there would be a previous configuration of
our current universe which must end collapsing in a bounce. This happened due to
the gravitational effects that compressed the universe until ρ achieves ρc. Second, at
bounce stage, the universe evolution is dominated by the quantum gravitational ef-
fects and represents the turning point in the scale factor evolution, ȧ = 0→ H = 0.
Next, the so-called pre-inflationary phase corresponds to the super-inflation period,
being a brief overaccelerated stage (Ḣ + H2 > 0) between the minimum and max-
imum values of H. Moreover, it seems to be a common point along the different
strategies implemented to describe LQC. After, inflation should start right away
ρ = 1

2ρc with the potential in its higher value. The evolution follows the standard
premise, which means H is almost constant and ä > 0. Finally, the inflationary
epoch ends with insignificant contribution coming from the quantum gravitational
sector. However, their effects could be observed through possible signatures in the
cosmic microwave background (vide chapter 5). In Table 2.3, we summarize all this
information in a direct manner.

Figure 2.6 - Scheme evolution of the very early universe

SOURCE: Singh (2012).
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Table 2.3 - Evolutionary stages of the primordial universe in Loop Quantum Cosmology

Bounce ρ = ρc H = 0 Ḣ +H2 = 0
Super-inflation 1

2 .
ρ
ρc
. 1 H > 0 Ḣ +H2 > 0

Inflation ρ . 1
2ρc H ' const. Ḣ +H2 > 0

End of Inflation ρ� ρc H > 0 Ḣ +H2 < 0

Finally, we conclude this section by emphasizing that holonomy corrections allow
the study of the discreteness of the spacetime at the effective level. These corrections
are necessary due to the substitution of the Ashtekar connection by the holonomies.
Besides, implementing them changes the structure of the classical constraints which
becomes effective quantum constraints. Unfortunately, these new constraints do not
generate a closed algebra, therefore, there is a mathematical inconsistency within
the theory (MIELCZAREK, 2014). Notwithstanding, the LQC healthy properties are
too powerful to be ignored, being explored in great number of works throughout the
literature.
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3 MIMETIC GRAVITY

Mimetic Gravity can be interpreted as a Weyl-symmetry extension of GR capable of
providing a unified geometric description regarding the dark sector and inflationary
period without extra matter components (SEBASTIANI et al., 2017). Both DE and
inflation were already introduced in chapter 1, thus, for completeness, let us briefly
discuss the other dark element: dark matter. In order to satisfy the restrictions
related to the current observational results, DM should be a non-relativistic fluid
whose only source of interaction is via gravitational force (LIN, 2019). There are a
variety of models trying to build a suitable candidate to describe the underlying
particle physics aspect of DM (like WIMPs model) and also alternative models
exploring different viewpoints of gravity itself to explain the effects associated to
DM (for example, the MOND framework arose from a modification of Newtonian
gravity, see (MILGROM, 1983)).

All things considered, MG is an appealing theory for cosmologists due to its ver-
satility of reproducing different approaches through just adding a scalar degree of
freedom. In this section, we will first present the original proposition. Next, we are
going to provide a description of its extensions, highlighting the most relevant as-
pects. Finally, there is a detailed explanation about how MG was explored to be
able to represent the Effective LQC dynamics.

3.1 Original proposal and developments

3.1.1 Mimetic dark matter

The mimetic dark matter model is a minimal extension of GR proposed by Chamsed-
dine and Mukhanov (2013) whose original idea was to isolate the conformal degree of
freedom of the gravitational field and turning it into a dynamical component capable
of mimic the dark matter behavior. In principle, MG should satisfy the cosmological
results as well as ΛCDM (ARROJA et al., 2018). The terminology Mimetic Gravity is
used indiscriminately to refer to any model built from this proposal. Nevertheless,
it worth to mention that there had been previous works approaching scenarios with
mimetic properties, see (LIM et al., 2010; GAO et al., 2011; CAPOZZIELLO et al., 2010).

In order to build a modified theory from GR with different dynamic equations, the
usual process requires extra fields in addition or substitution of the metric field,
increasing the number of dimensions, considering higher derivatives of the metric
tensor or breaking the Lorentz invariance. In principle, MG can be categorized as
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a theory of modified gravity with an extra scalar degree of freedom. However, this
description is not entirely precise since the later is constrained and does not cor-
respond to a proper degree of freedom (SEBASTIANI et al., 2017). This will become
clear later.

First, despite the absence of an explicit identification in the original paper, it is
important to have in mind that MG was built having the disformal transformations
proposed by Bekenstein (1993) as a base. This is a type of transformation that
enables to establish a relationship between a physical and a gravitational metric,
generalizing the conformal transformation definition. To put this another way, a
disformal transformation is a parameterization of an ordinary metric in terms of
a fiducial matrix and a scalar field, working as a kind of frame transformation
(RABOCHAYA; ZERBINI, 2016; TAKAHASHI et al., 2017).

Following in this direction, constructing the MG formalism is a procedure that begins
by performing a Weyl (or conformal) transformation of the metric. Nevertheless,
a conformal transformation of a dynamical metric like the FRW one corresponds
to a diffeomorphism (TONG, 2012). Thus, the invariance under a diffeomorphism
transformation allows parameterizing the physical metric gµν as a function of an
auxiliary metric g̃µν and a scalar field ϕ, later called mimetic field, through the
relation

gµν = −(g̃αβ∂αϕ∂βϕ)g̃µν . (3.1)

According to GR, the gravitational field has two polarization modes: transverse
and longitudinal. Nevertheless, only the transverse has a dynamical role. In the
MG framework, the gravitational field keeps its transverse degrees of freedom to
describe the graviton, meanwhile, the longitudinal mode also referred to as conformal
mode, will be the one used to mimic dark matter (CHAMSEDDINE; MUKHANOV, 2013;
SEBASTIANI et al., 2017).

Throughout the MG literature, it is common to find three different names associated
with the transformation used to write gµν like gµν = gµν(g̃µν , ϕ): disformal, conformal
and Weyl transformations. We mentioned above that the conformal transformation
corresponds to a particular case of a disformal one. As a conformally invariant theory,
MG does not change under transformations performed with respect to an auxiliary
metric, which means MG is a Weyl-invariant theory with respect to g̃µν (SEBASTIANI

et al., 2017). Consequently, MG is a framework in which gµν(g̃µν , ϕ) remains invariant
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under any conformal transformation Ω2(t,x) performed in g̃µν , the same statement
is also true for ϕ. In other words, in case of g̃µν → Ω2(t,x)g̃µν , we have gµν → gµν

and ϕ→ ϕ (CHAMSEDDINE; MUKHANOV, 2013; LANGLOIS et al., 2017; SEBASTIANI

et al., 2017), regardless the way the transformation is called.

Concerning the gravitational action, the mimetic one can be written in the generic
structure like (LANGLOIS et al., 2017; CHAMSEDDINE; MUKHANOV, 2013)

S[g̃µν , ϕ] = SEH [gµν(g̃µν , ϕ)] ≡ 1
16πG

∫
d4x

√
−g(g̃µν , ϕ)R[gµν(g̃µν , ϕ)], (3.2)

where SEH [gµν(g̃µν , ϕ)] continues to represent the Einstein-Hilbert action. However,
now, we must pay attention to the dependence with respect to g̃µν and ϕ. Further-
more, from (3.1) (and also from the relation between gµν and g̃µν), a consistence
condition arises in the form

gµν∂µϕ∂νϕ = −1, (3.3)

playing a fundamental role ensuring the equivalence of the EoM whether they are
obtained through gµν or g̃µν (CHAMSEDDINE et al., 2014; FOFFANO, 2016).

Just like the procedure exposed in chapter 1, the MG Einstein equations can also
be obtained from the variation of the action regarding gµν . Thus, writing the full
action as

S[g̃µν , ϕ] =
∫
d4x

√
−g(g̃µν , ϕ)

{
M2

Pl

2 R[gµν(g̃µν , ϕ)] + Lm
}
, (3.4)

with Lm representing an arbitrary matter Lagrangian, and computing the variation
of it with respect to gµν , the result is going to be

δS = M2
Pl

2

∫
d4x
√
−g

(
Gµν − 1

M2
Pl

T µν
)
δgµν . (3.5)

However, this case requires a more delicate treatment though, since the variation of
gµν would be computed from the variation of both g̃µν and ϕ through (3.1). As a
result, the mimetic dark matter EFE are given by the expression
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Gµν = 1
M2

Pl

Tµν −
(
G− 1

M2
Pl

T

)
∂µϕ∂νϕ, (3.6)

here G and T represent the trace of Einstein and energy-momentum tensors, while
we are usingM2

Pl instead of 8πG in order to avoid any confusion between the Einstein
tensor and the Newtonian constant along this section.

Note that there is an extra term containing ϕ explicitly working as an additional
matter element (SEBASTIANI et al., 2017), so it will be identified as

T̃µν = −
(
G− 1

M2
Pl

T

)
(∂µϕ∂νϕ). (3.7)

This means, (3.6) can be rewritten in the form

Gµν = 1
M2

Pl

Tµν + T̃µν . (3.8)

Assuming the MG scalar field as a perfect fluid, we can compare (3.7) with (1.9)
and distinguish the following relations for its energy density, pressure and 4-velocity

ρ̃ ≡ −
(
G− 1

M2
Pl

T

)
, P̃ ≡ 0 and ũµ ≡ gµα∂αϕ. (3.9)

Consequently, in the mimetic dark matter framework, the scalar field corresponds
to pressureless dust. At this point, we can recognise that the scalar field describes a
collisionless system and only interacts gravitationally which are features associated
with dark matter (GRIBEL, 2018). In conclusion, the mimetic nomenclature comes
from the scalar mode ability to reproduce the dark matter behavior (GORJI et al.,
2018).

The conformal invariance ensures that the EoM continues to be traceless as long as
the conformal gauge is fixed like it happens in (3.3). This can be seen by computing
the trace of MG Einstein equations (3.6) in which it is possible to identify that a
traceless EFE requires

(
G− 1

M2
Pl

T

)
(1 + gµν∂µϕ∂νϕ) = 0. (3.10)

This condition is satisfied right away due to (3.3), even if G 6= M−2
Pl T , giving rise to a
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scalar mode regardless the presence of ordinary matter. Therefore, (3.3) defines the
conformal gauge condition for an action like (3.2) whose mimetic behavior associated
with ϕ comes from the local Weyl invariance (SEBASTIANI et al., 2017; GORJI et al.,
2018; CAROLI, 2018).

In addition to the Einstein equations, there are also the equations of motion related
to the mimetic field

1√
−g

∂α

[
√
−g

(
G− 1

M2
Pl

T

)
gαβ∂βϕ

]
= ∇α

[(
G− 1

M2
Pl

T

)
∂αϕ

]
= 0, (3.11)

whose expression can be obtained not only from the variation of the action with re-
spect to the field but also from T̃µν conservation law (CAROLI, 2018). Moreover, the
scalar field is the quantity containing the description of the gravitational conformal
mode (CHAMSEDDINE et al., 2014). The field alone is not a dynamical variable, the
induced longitudinal mode is the one presenting the dynamical behavior (CHAMSED-

DINE; MUKHANOV, 2017b). From (3.11), note that the term between brackets is
constant regarding the covariant derivative. It corresponds to a geometric effect and
does not define a propagation mode.

The reason why MG provides a complete different set of solutions compared to GR
ones can be attributed to the Weyl transformations since the mapping g → g̃, ϕ

relates a 10 degree of freedom theory with one other described by 11. Consequently,
the parameterization gµν = gµν(g̃µν , ϕ) only goes in one direction, which means we
are handling a noninvertible transformation (SEBASTIANI et al., 2017). In summary,
MG can be interpreted as a singular limit from a disformal transformation that
enables one to write gµν as a function of g̃µν and ϕ (CHAMSEDDINE; MUKHANOV,
2013; GORJI et al., 2018).

All things considered, (3.3) can be implemented directly in the action through a
Lagrange multiplier. Indeed, Golovnev (2014) showed how to obtain a equivalent
formulation to the one presented in (CHAMSEDDINE; MUKHANOV, 2013) using a
Lagrange multiplier λ to incorporate the consistence condition (3.3) into the full
action

S[gµν , ϕ;λ] ≡ SEH [gµν ] +
∫
d4x
√
−g[λ(gµν∂µϕ∂νϕ+ 1) + Lm], (3.12)

without considering the presence of the auxiliary metric. Remember from the pre-
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vious chapter that the variation of the Lagrangian regarding a Lagrange multiplier
will result in a constraint, here this constraint is (3.3).

The singular disformal transformation and Lagrange multiplier formulations are the
two main ways to explore the mimetic theory (RABOCHAYA; ZERBINI, 2016). Al-
though, MG can also be studied from a viewpoint of a Brans-Dicke theory (SEBAS-

TIANI et al., 2017). Throughout MG literature, the Lagrange multiplier formulation
seems to be present in the majority of the works, which is probably due to its sim-
pler notation. Moreover, it is easier to extend the Lagrange multiplier formalism
in comparison to trying to do the same for the singular disformal transformation
approach.

As we previously mentioned, despite the fact that Mimetic Gravity is classified as a
theory of modified gravity with an extra scalar degree of freedom, this description
is not totally accurate because the scalar degree is constrained by a Lagrange multi-
plier, a feature that differs from approaches with similar definitions (SEBASTIANI et

al., 2017). From (3.12), note that the mimetic dark matter model corresponds to GR
with a scalar field introduced via a constraint term. Nevertheless, MG provides richer
opportunities to explore the cosmological dynamics by just implementing smooth
modifications through the conformal sector (GOLOVNEV, 2014).

3.1.2 Mimetic gravity extension

Notwithstanding the initial aim to provide an alternative description to dark matter,
the original proposal was extended to be able to produce solutions for inflation, dark
energy, non-singular cosmologies, and even black holes. At first, Chamseddine et al.
(2014) proposed a minimal extension of MG through the introduction of a potential
term associated with the scalar field. Over time, MG was developed in many other
directions. Now, it has also been presented as a particular case of higher-order scalar-
tensor theories (LANGLOIS et al., 2017; LANGLOIS et al., 2019).

To put it another way, the extended version of the Mimetic Dark Matter can mimic
nearly any cosmological background evolution provided that the potential term has
a suitable form (CHAMSEDDINE et al., 2014; FOFFANO, 2016). Due to this large range
of possible applications, MG has been generalized for many different scenarios. To
give an illustration about the versatility of MG formulation we summarize the main
extensions following (SEBASTIANI et al., 2017) as:

• MG with a potential term:
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– MG Inflation;

– Bouncing cosmologies in MG;

• Mimetic F (R) Gravity - modified gravity approach containing two extra
degrees of freedom, one from mimetic field and another associated with
F (R):

– Late-Time Evolution in Mimetic Gravity;

– Mimetic F (R,ϕ) Gravity → the scalar field is coupled to gravity;

– Nonlocal Mimetic F (R) Gravity → nonlocal approach constructed
from two scalars fields and two Lagrange multipliers;

• Unimodular MG - geometric vacuum theory in which the relations
√
−g = 1 and (3.3) are considered as constraints:

– Unimodular Mimetic F (R) Gravity → minimal extension of the uni-
modular MG in which R is replaced by its function F (R);

• Mimetic Horndeski Gravity - general scalar-tensor theory with gravi-
tational Lagrangian written in terms of metric and the mimetic field and
it is invariant under invertible singular disformal transformations.

The list presented above is just a sample to emphasize the large range covered by
MG in its current state of development. However, we are interested in the extension
regarding the potential term only. Here, we intend to discuss the potential role in
MG description regarding the universe evolution. In this subsection, we change the
notation by assuming

gµν∂µϕ∂νϕ = 1 (3.13)

instead of using (3.3) in order to obtain simpler equations. In the next section, we
will return to the original form (3.1). For now, we focus on the case in which a
potential term is incorporated into a Lagrangian like it can be seen in the action

S =
∫
d4x
√
−g

[
M2

Pl

2 R(gµν) + λ(gµν∂µϕ∂νϕ− 1)− V (ϕ) + Lm
]
. (3.14)

Accordingly, the EoM are computed in analogy with the procedure implemented in
the previous subsection, but now considering the Lagrange multiplier formulation.
Thus, the Einstein equations obey
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Gµν − 2λ∂µϕ∂νϕ−
1
M2

Pl

gµνV (ϕ) = 1
M2

Pl

Tµν , (3.15)

meanwhile, the EoM for the mimetic field corresponds to the expression

∇α

[(
G− 1

M2
Pl

T − 4
M2

Pl

V (ϕ)
)
∂αϕ

]
= −∂V (ϕ)

∂ϕ
. (3.16)

since the trace of (3.15) allows us to write the Lagrange multiplier like

λ = 1
2

(
G− 1

M2
Pl

T − 4
M2

Pl

V (ϕ)
)
. (3.17)

Again, if we compare the mimetic energy-momentum tensor, now written in the
form

T̃µν = 2λ∂µϕ∂νϕ+ 1
M2

Pl

gµνV (ϕ), (3.18)

with (1.9), it is possible to identify the contribution in terms of its energy density
and pressure by the relations

ρ̃ ≡ G− 1
M2

Pl

T − 3
M2

Pl

V (ϕ) and P̃ ≡ − 1
M2

Pl

V (ϕ). (3.19)

Note from (3.19) that the potential term enables to reproduce the behavior of a
negative pressure fluid, a requirement to obtain an accelerated evolution for the
universe.

Introducing the scalar field potential does not increase the number of degree of
freedom compared to the original mimetic scenario. Instead, the kinetic term keeps
its dark matter behavior, while the non-vanishing potential works as a cosmological
constant. This means there are two components contributing to the extra energy-
momentum tensor, in principle, they can represent both elements expected from the
dark sector (FOFFANO, 2016).

In other words, the extra scalar degree of freedom enables to simulate a dark matter
behavior, at the same time, an additional potential term is capable of reproducing a
Lagrangian similar to the one associated with the cosmological constant (FOFFANO,
2016). Since the potential can have a cosmological constant behavior, it was the
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one used to build inflationary models in MG description. Indeed, the MG inflation
with potential term can end generating radiation and baryons through gravitational
particle production or coupling the mimetic field with other fields (BERTAZZO, 2015).

In summary, MG corresponds to an economic framework to reproduce promising
cosmological models associated with the early and later stages of the universe evo-
lution (DUTTA et al., 2018). Note that in mimetic dark matter scenario there is not a
matter fluid to describe the usual behavior associated with a dark-matter-type fluid,
instead, gravity is modified to emulate the dark matter properties. The additional
potential term enables to do the same for the dark energy. Therefore, MG transfers
to geometric sector the power to dictate the universe evolution.

In (CHAMSEDDINE; MUKHANOV, 2017b), the authors did not consider the potential
term once its general solution would not avoid space-like singularities as the ones
found in black holes. They rather opted to introduce a function f(�ϕ) in a Born-
Infeld action, where � represents the D’Alembertian, as it follows

S =
∫
d4x
√
−g

[
M2

Pl

2 R(gµν) + λ(gµν∂µϕ∂νϕ− 1) + f(�ϕ) + Lm
]
. (3.20)

Within this setup, they are able to obtain a similar equation to (2.63). Moreover, they
introduced the limiting curvature concept that, as its name suggests, means there
is a boundary related to the value of the space-time curvature. They also associated
corrections due to the presence of this extra term which would be significant near the
singularity. Note that this description has familiar concepts to the ones presented in
chapter 2.

For a specific configuration, MG is capable of solving the cosmological singulari-
ties associated with the Big Bang and black holes. Moreover, its bouncing solution
seems to be similar to the ones obtained in LQC scenario, which is a promising
achievement due to the covariant character of MG in contrast with the semiclassical
LQC approach. Therefore, from MG perspective, LQC action could be described
by a higher order expression (CHAMSEDDINE; MUKHANOV, 2017a; CHAMSEDDINE;

MUKHANOV, 2017b; LANGLOIS et al., 2017; BODENDORFER et al., 2018; GORJI et al.,
2018).

3.2 Mimetic Gravity description of Loop Quantum Cosmology

Among the many extensions of MG, our fundamental focus is the one proposed
by Langlois et al. (2017) in which the authors discussed how the mimetic gravity
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Lagrangian gave rise to identical equations of motion like the ones obtained in the
LQC scenario. On the other hand, it is important to have in mind that there are
other works relating MG with LQC, see (HARO et al., 2018c; HARO et al., 2018b; HARO;

AMORÓS, 2018; ACHOUR et al., 2018; GORJI et al., 2018). Our choice for this particular
formulation is the treatment employed to study curved space-time backgrounds.

Langlois et al. (2017) presented mimetic theories as a special family of Degenerate
Higher-Order Scalar-Tensor (DHOST) theories. In fact, they showed that MG for-
mulated in terms of second derivatives of the scalar field in quartic order or higher
can be interpreted as a subclass of DHOST theories that contains an extra symmetry.
On the other hand, this constraint is an additional restriction in the gravitational
Hamiltonian beyond the Hamiltonian and diffeomorphism constraints (LANGLOIS et

al., 2019). Moreover, the authors present the conditions under which the effective
dynamics of LQC can be recovered from mimetic action.

In order to obtain a class of theories capable of producing the LQC effective Fried-
mann equation for a spatially flat FRW space-time, Langlois et al. (2017) started by
building an action invariant under time reparametrization that has a, N and ϕ as
its dynamical variables. Within this framework, the modified gravity actions must
reduce to the following form

S[a,N, ϕ] =
∫
dt

[
− 3aȧ2

8πGN + a3 ϕ̇
2

2N +Na3L
(
a,
ȧ

N

)]
. (3.21)

Here, the function L
(
a, ȧ

N

)
will be developed in order to recover (2.63) from (3.21).

First of all, L
(
a, ȧ

N

)
is defined as a function of the Hubble parameter

L
(
a,
ȧ

N

)
= F(H), (3.22)

due to the shape of the effective Hamiltonian constraint straightly dependent of c/√p
(LANGLOIS et al., 2017). The second step is to ensure that N remains a Lagrange
multiplier, living a and ϕ as dynamical variables. Therefore, the non-trivial canonical
pairs are

{a, πa} = {ϕ, πϕ} = 1, (3.23)

with πa and πϕ representing the conjugated momenta of the scale factor and scalar

62



field, respectively, given by

πa = a2
[
− 3H

4πG + a2F ′(H)
]

(3.24)

and

πϕ = a3

N
ϕ̇. (3.25)

At this point an ansatz is established, enabling to write πa like

πa = αan arcsin
(
β
ȧ

Na

)
(3.26)

where n, α and β are defined as constants that must obey the relations n = 2 and
αβ = −3/4πG in order to recover the classical value πa = −3aȧ/4πGN (LANGLOIS

et al., 2017). Consequently, we can express (3.26) in the form

πa = αa2 arcsin
(
− 3H

4πGα

)
. (3.27)

From (3.26), the function F(H) acquires the shape

F(H) = αH arcsin(βH) + α

β

√
1− β2H2 + 3H2

8πG −
α

β
, (3.28)

which results in the Hamiltonian density

H = a3
[
π2
ϕ

2a6 −
8πG

3 α2 sin2
(
πa

2αa2

)]
. (3.29)

Then, since now the Hamiltonian is available, we repeat the LQC procedure to
obtain the MG version of LQC effective Friedmann equation. However, instead of
computing the equation of motion for p, the scale factor is directly used. With this
in mind, the result is

H2 = 8πG
3 ρ

(
1− ρ

ρc

)
, (3.30)

with
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ρ =
π2
ϕ

2a6 (3.31)

and

ρc = 8πG
3 α2. (3.32)

Thus, (2.63) and (3.30) will describe the same physics only if the relation

α = 3
8πGγ

√
∆

(3.33)

is true during the entire primordial universe evolution, or at least during the range in
which the quantum gravitational effects are not negligible. The equation (3.30) repre-
sents the Hamiltonian version of the result attained by Chamseddine and Mukhanov
(2017b).

All things considered, the modified gravity theories whose dynamics are expressed
by an action like

S[a,N, ϕ] =
∫
dtNa3

(
ϕ̇2

2N2 −
ρc
2

[
βH arcsin(βH) +

√
1− β2H2 − 1

])
, (3.34)

where β2 = 3
2πGρc , should be able to reproduce LQC effective dynamics for a flat

FRW space-time. The problem relies on the fact that any modified approach is
capable of producing exactly the form (3.34) in the cosmological sector, due to the
non-linearity of the Lagrangian regarding H (LANGLOIS et al., 2017).

We repeat the previous process to make it easy to follow its generalization for spa-
tially curved space-times whose particular treatment is our fundamental start point.
Initially, the process is the same applied to GR, with an extra term related to the
spatial curvature parameter k added to the action,

Sk[a,N, ϕ] =
∫
dt

[
− 3aȧ2

8πGN + a3 ϕ̇
2

N
+ 3Nka

8πG +Na3Lk
(
a,
ȧ

N

)]
. (3.35)

Notwithstanding, in MG description of LQC, a new term is introduced in the grav-
itational Hamiltonian through
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Lk
(
a,
ȧ

N

)
= F(H)− 3

8πGVk(a), (3.36)

where Vk(a) is a potential-like term independent from any scale factor derivatives.
Hence, the curvature is directly implemented in the action and also throughout the
function Lk which enables to obtain the Hamiltonian density as

H = a3
[
ρ− ρc sin2

(
πa

2αa2

)
− 3k

8πGa2 + 3Vk(a)
8πG

]
. (3.37)

Again, repeating the process of defining H ≈ 0, we have the sine function restricting
the evolution through the expression

sin2
(
πa

2αa2

)
= 1
ρc

[
ρ− 3k

8πGa2 + 3Vk(a)
8πG

]
, (3.38)

and the modified Friedmann equation for curved space-times of Langlois et al. (2017)
is obtained in the form

H2 =
[

8πG
3 ρ− k

a2 + Vk(a)
]{

1− 1
ρc

[
ρ− 3k

8πGa2 + 3Vk(a)
8πG

]}
. (3.39)

The potential-type term Vk(a) comes from considering a spatially curved FRW space-
time and could be obtained as an extra new term

−
∫
d4x

√
|g|V(gµν , φ) (3.40)

added to the action for scalar-tensor theories. Despite the fact that V(gµν , φ) does not
represent a unique solution, there are specific features it must contain. On a curved
FRW space-time, the components of the 3-dimensional Riemann tensor are functions
of the scale factor only (LANGLOIS et al., 2017). In particular, the 3-dimensional Ricci
scalar is (3)R = 6k/a2 which would allow Vk(a) to be expanded as

Vk(a) =
∑
n>0

vn

(
6k
a2

)n
≡ Ṽ (3R). (3.41)

Thus, a possible choice for V could be
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V(gµν , ϕ) = Ṽ (3R). (3.42)

From (3.42), it can be noticed that the MG representation of LQC dynamics enables
the spatial curvature R to be described in terms of a scalar field.

Notwithstanding all the advantages that come with mimetic theories, the ghost in-
stability is still open for discussion. There are many works arguing about the stabil-
ity/instability of mimetic theories, for example, (FIROUZJAHI et al., 2017; YOSHIDA

et al., 2017; ZHENG et al., 2017). Until now, there is not a consensus in the community.
Furthermore, there is also the limitation imposed by the high symmetry associated
with FRW space-times, restricting the coverage area in which MG is applicable.

All things considered, Mimetic Gravity is a powerful tool to reproduce a plethora of
cosmological evolutionary scenarios. In the next chapter, we will show that the same
prerogative also works for the mimetic description of LQC, emphasizing the versa-
tility of the curvature mimetic potential Vk in reproducing any desired inflationary
potential. Furthermore, we also intend to highlight the intermediate character of
MG as the remaining factor to link a cosmological quantum theory with another
based on the SMPP model.
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4 APPLICATION OF THE MIMETIC DESCRIPTION OF LOOP
QUANTUM COSMOLOGY TO HIGGS INFLATION AND FURTHER
DEVELOPMENTS

This chapter is dedicated to expose and reproduce a detailed explanation about
how we obtained the results presented in (BEZERRA; MIRANDA, 2019) and what
are the physical implications related to it. First, we reinterpret (3.39) according
to the different evolutionary stages during early times. Next, we briefly review the
Higgs Inflation model, only approaching the necessary features to understand our
work. After we follow by matching the two previous approaches and showing their
similar behavior. Then, we present two interpretations of the total energy density
that incorporate curvature components followed by our analyzes regarding the va-
lidity of the conservation law for the energy density in our formulation. Finally, we
end discussing the hints that can come with a super-inflationary phase within our
formulation.

4.1 Curvature Potential from Mimetic Gravity: a new interpretation

From (3.39), note that there is no potential term related to the matter field ϕ.
Consequently, Vk(a) is the only kind of energy potential in the mimetic description
of LQC. In (LANGLOIS et al., 2017), they neglected the potential V (ϕ) for simplicity
once its absence makes easy to implement the quantization process. Here, we propose
a different perspective. Paying attention to the curved case, see that a potential term
received a null value, meanwhile, one arose described in terms of the curvature. It
seems like the role played by V (ϕ) in matter sector was attributed to Vk(a) in the
gravitational part.

Following this direction, we reinterpret Vk(a) as the potential term describing the
space-time response to the presence of matter. To clarify this, let us consider the
case of a non-minimally coupling between a fundamental scalar field and the metric
field. Note from the previous paragraph that the potential term seems to contain
information about both sectors. Thus, we introduce the quantity Vk(ϕ) to represent
the mimetic curvature potential associated with the space-time deformation due to
ϕ. Or, Vk(ϕ) can also be interpreted as a result of the field response to the space-
time curvature. Both ways are equivalent. All things considered, Vk(ϕ) corresponds
to a signature of the matter-curvature fundamental coupling during the primordial
universe period.

Within this framework, we rewrote (3.39) as the expression
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H2 = 1
3M2

Pl

[
ρkin + 3M2

Pl

(
Vk(ϕ)− k

a2

)]{
1− 1

ρc

[
ρkin + 3M2

Pl

(
Vk(ϕ)− k

a2

)]}
,

(4.1)
where ρkin contains the information about the kinetic energy associated with the
scalar field,

ρkin =
π2
ϕ

2a6 . (4.2)

Therefore, the formalism is built with the kinetic and potential contribution in dif-
ferent sectors since the potential term is considered from the curvature perspective.
Nonetheless, comparing (2.60) and (3.38), note that the terms between brackets are
working as total energy density. We named this quantity as effective energy density
ρeff whose form is given by

ρeff = ρkin + 3M2
Pl

[
Vk(ϕ)− k

a2

]
. (4.3)

Thus, from (2.60), see that ρeff is the quantity regulated by the sine function,

sin2
(
πa

2αa2

)
= ρeff

ρc
, (4.4)

and now restricted to the range 0 . ρeff/ρc ≤ 1. Note that (4.4) is directly related
to the validity of the ansatz (3.26).

In spite of the well-known relation between matter and curvature, they are usually
studied individually. Here, we consider them as an intrinsically related pair. From
(4.3), notice that ρeff is composed by a kinetic term, plus the curvature potential
associated with the mimetic field and the classical parameter describing the general
space-time curvature. During early times, these components should evolve and bal-
ance each other in order to give rise to the necessary evolutionary stages expected
from recent results obtained by cosmological observations.

The idea is to transfer the duty to be the one providing the information about how
the space-time reacts to the matter presence from the matter sector to the geometric
one. This will enable us to explore fields without knowing their potential form or
even treat massive fields as massless from the matter Hamiltonian perspective. This
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is possible since the effective mass associated with the field would be an effect of the
coupling.

We proceed by substituting (4.3) in (3.39), recovering the original form of the LQC
Effective Friedmann equation given by (2.63) through the expression

H2 = ρeff

3M2
Pl

(
1− ρeff

ρc

)
. (4.5)

Consequently, any aspect related to the shape of Effective Friedmann equation also
applies to (4.5). Remember from chapter 2 that the bounce may be dominated by
the field kinetic energy, thus, the potential energy is negligible compared to the
kinetic one or it is defined as zero like commonly found in LQC literature. From
(4.3), this implies in ρeff = ρkin or ρeff ≈ ρkin. Therefore, (4.5) acquires the form

H2 = ρkin

3M2
Pl

(
1− ρkin

ρc

)
. (4.6)

Focusing again in the definition (4.3), note that (4.6) can be obtaining through
assuming Vk(ϕ) = k = 0 or just having the relation Vk(ϕ) = ka−2 as true. For a
curved space-time, it does not make sense to consider k = 0 when the curvature
should be an essential element during a period in which the universe is supposed to
be extremely tiny. On the other hand, the equality Vk(ϕ) = ka−2 suggests there was
an equilibrium between the two curvature sources, which would be compatible with
the bounce point concept as the instant in which the universe motion stopped.

The LQC bounce phase is followed by a super-inflationary stage after which the
universe should be in the right state for inflation to begin. First of all, we have
to make clear that the super-inflationary phase was not approached in (BEZERRA;

MIRANDA, 2019). We can not affirm if this period happens or not in our formulation
since it would require a deeper study. Thus, our focus is indeed the inflationary
period within MG description of LQC scenario.

Following LQC energy evolutionary range, inflation may start for ρeff ≈ 1
2ρc. So,

somehow, the universe must have lost half of its energy density. The other half
should be contained into 3M2

Pl(Vk(ϕ) − ka−2) and must be enough to drive the
universe along with inflation. To begin with, we follow the standard inflationary
paradigm by neglecting the kinetic term, living the Effective Friedmann equation
written like
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H2 =
[
Vk(ϕ)− k

a2

]{
1− 3M2

Pl

ρc

[
Vk(ϕ)− k

a2

]}
. (4.7)

We kept the term ka−2 in (4.7) since the universe curvature should have strongly
influenced the dynamics during inflation. Actually, for now, we leave explicit the pair
Vk(ϕ) and ka−2 to emphasize our interpretation about the balanced relationship
between them. Even without considering a specific form for Vk(ϕ), it is possible
to notice how the term ka−2 is becoming weaker as the universe evolves. In other
words, the growth of the scale factor is mitigating the curvature contribution until it
virtually disappears. Likewise, Vk(ϕ) must also lose its strength, however, it should
continue to contribute as a less dominant component.

As the universe evolves, Vk(ϕ) should be reduced enough to be comparable with
ρkin, ending the inflationary period. At this stage, the quantum corrections may be
insignificant with ρeff � ρc. Consequently, (4.5) reduces to the standard structure

H2 ≈ 1
3M2

Pl

[
ρkin + 3M2

PlVk(ϕ)
]
. (4.8)

With this, we fulfill the LQC requirement by enabling the universe to follow the
classical evolution after inflation. Moreover, we close the description of the mimetic
curvature potential 3M2

Pl(Vk(ϕ)− ka−2) evolution, starting with (4.7) and finishing
with (4.8), running through the entire range 0 < ρeff/ρc <

1
2 .

Just like it happens with the usual treatment of MG theories, in principle, our
formalism could also be used to mimic any inflationary scalar field evolution. We
opted to study how our model behaves in comparison with a scalar field coupled
with gravity. This model is called Higgs Inflation and it is the content discussed in
the following section.

4.2 Higgs Inflation

Majority of the current available inflationary models are built considering an extra
field outside the SMPP as the energy source. In general, its origin is model depen-
dent. To give an illustration, grand unified theories, supersymmetry, string theory,
extra dimensions and extensions of SMPP are all listed as possible ways to give rise
to the inflationary scalar field (BEZRUKOV; SHAPOSHNIKOV, 2008).

Recently, it was announced the observation of a process named ttH production in
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which a Higgs boson is presented as a consequence of Higgs-top coupling (CERN,
2018). This result was obtained and reported independently by two experiments
at CERN: CMS and ATLAS, see references (SIRUNYAN et al., 2018) and (ATLAS

COLLABORATION, 2018) for more details. Reinforcing the conclusion about the Higgs
field predicted by SMPP being the boson detected in 2012 according to Aad et al.
(2012) and Chatrchyan et al. (2012).

The discovery of a particle with a mass consistent with the Higgs boson offers a
self-consistent description of the universe at the effective level. This particle belongs
to the standard theoretical framework that unifies the electromagnetic and weak
interactions, named Electroweak (EW). Under the assumption of the validity of
SMPP until Planck scale, the Higgs field could have played a significant role during
the early evolutionary history of the universe (SHAPOSHNIKOV, 2015; SALTAS, 2016).
Indeed, in (BEZRUKOV et al., 2012), the value of the Higgs mass mh ' 126GeV is
pointed as an indication of the influence of the Planck physics into the EW scale,
suggesting that they are related in some level. As the first and only scalar field
observed until now, the Higgs field as a fundamental particle is the natural and
most suitable candidate to dictate inflation.

Since the first inflationary models were proposed, many attempts have been done
to implement the Higgs field as an energy source for inflation. The challenge is
matching the huge difference between the energy scale of the current observed Higgs
field and the inflationary field. Unfortunately, most models were unstable, plagued
with ghosts, or presented other serious problems, see (KOLB; TURNER, 1990) for
further information. However, Bezrukov and Shaposhnikov (2008) showed that it was
possible to have the SMPP Higgs boson as the field driving inflation by building a
model compatible with the observational results at cost of adding a coupling between
the Higgs field and gravity.

Indeed, the inflationary model characterized by a single scalar field with a slow-
roll type of evolution is the simplest one, besides being considered the standard
approach to describe the early times. Notwithstanding, models with non-minimal
coupling between gravity and matter field are favored according to the combined
observations of Planck and BICEP II data (LUC; MIELCZAREK, 2017).

Higgs inflation is a chaotic description of the inflationary period that reproduces
the successful flat potential of the slow-roll approach by changing the interaction
between gravity and matter (BEZRUKOV, 2013). It explains the accelerated expan-
sion of the primordial universe by incorporating SMPP into the cosmological context
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(BEZRUKOV et al., 2011). Moreover, as a chaotic inflationary model, HI does not re-
quire the universe to be in thermal equilibrium in order to give rise to inflation
(LINDE, 2007).

However, there are a few requirements to be satisfied. First all, we must have in
mind that the Higgs field from HI inflation corresponds to an older configuration of
the current one. This enables to get over the energy compatibility issue since the
primordial Higgs field hmust obey the relation h�MPl/ξ, where the non-minimally
coupling parameter ξ satisfies ξ � 1. Hence, h would carry a much greater amount
of energy, working as a suitable energy source for inflation. In order to accomplish
this goal, the values of the self-coupling parameter λ and its relation with ξ are only
determined via cosmological observation results (BEZRUKOV, 2013).

Within this framework, the physics from SMPP is mixed with gravity through the
term ξh2R (MOSS, 2014) which means the total action (A.1) acquires the form

SJ =
∫
d4x
√
−g

[
−1

2(M2
Pl + ξh2)R + gµν

∂µh∂νh

2 − V (h)
]
. (4.9)

with V (h) being the Higgs field potential constructed like

V (h) = λ

4 (h2 − v2)2 ≈ λ

4h
4. (4.10)

Here, the index J is used to refer to the Jordan frame from SCM and v is the vacuum
expectation value of h. Furthermore, ξ is restricted to range 1� ξ �M2

Pl/v
2 where

the value v is too small compared to h (BEZRUKOV et al., 2018).

The obvious advantage of HI is to avoid additional degrees of freedom beyond
SMPP in order to explain the primordial universe evolution (BEZRUKOV et al., 2018).
Nonetheless, (4.9) implies on embroiled equations of motion whose physical interpre-
tation is hard to perform comparing to slow-roll approximation (POSTMA; VOLPONI,
2014). The disadvantages related to non-minimal coupling are removed by changing
the cosmological frame to the Einstein one via a conformal transformation Ω2,

Ω2(h) = M2 + ξh2

M2
Pl

≈ 1 + ξh2

M2
Pl

. (4.11)

See that M was identified as MPl, this happened because the definition of M obeys
the relation M2 = M2

Pl− ξv2. Even with the large value attributed to ξ, the term ξv

is much smaller thanMPl during the entire Higgs inflationary period, enabling us to
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consider M 'MPl. It is worth to mention that Postma and Volponi (2014) showed
the physical equivalence between two frames related by a conformal transformation,
focusing on the Jordan and Einstein frames.

The transformation (4.11) allows us to move the dynamical analysis to the Einstein
frame whose metric g̃µν is given by

g̃µν = Ω2(h)gµν . (4.12)

Remember that, as the standard frame, all the usual quantities related to the metric
gµν we have been working until now belongs to the Jordan frame. Furthermore,
this transformation does not change the physics because it consists only in a field
redefinition due to the rescheduling of the length scales (POSTMA; VOLPONI, 2014).

Therefore, rather than working with the action in Jordan frame (4.9), we are going
to obtain the dynamics through

SE =
∫
d4x
√
−g̃

[
−M

2
Pl

2 R̃ +
(

Ω2 + 6ξh2/M2
Pl

Ω4

)
g̃µν

∂µh∂νh

2 − V (h)
Ω4

]
, (4.13)

where E represents the Einstein frame. See that h is invariant under (4.12). However,
instead of working with the complicated form of (4.13), the procedure implemented
is to normalize the field through the redefinition

dχ

dh
=

√
Ω2 + 3

2M
2
Pl(Ω2)′2

Ω4 =

√√√√1 + (ξ + 6ξ2)h2/M2
Pl

(1 + ξh2/M2
Pl)2 , (4.14)

in which the prime corresponds to the derivative regarding h. Thus, both h and χ
correspond to the primordial version of the Higgs field, one in Jordan’s frame while
the other is defined in the Einstein one.

Changing the frame is just a strategy to obtain a similar action to (A.1) and does
not change the field. Note that writing (4.13) in terms of χ, the action reduces to
the form

SE =
∫
d4x
√
−g̃

[
−M

2
Pl

2 R̃ + g̃µν
∂µχ∂νχ

2 − V (χ)
]
. (4.15)

Nevertheless, the scalar field is not the inflaton and the potential associated with
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the field χ is given by

V (χ) = V (h)
Ω4 = λh4(χ)

4Ω4[h(χ)] . (4.16)

In (4.16), the potential is determined in terms of h, but, thanks to (4.14), it can be
rewritten like

V (χ) = V0

(
1− e−

√
2
3

χ
MPl

)2
, (4.17)

with

V0 = λM4
Pl

4ξ2 . (4.18)

Note that (4.17) corresponds to a Starobinsky-type potential, see (KEHAGIAS et al.,
2014) for more details. Moreover, for sufficiently high values of χ, (4.17) implies in
V (χ) ≈ V0 which is approximately constant. This is the case of HI because, for large
ξ, the potential derivative regarding χ is small as well as it happens in the standard
slow-roll approximation (MOSS, 2014). Therefore, translating the Lagrangian of the
system from a frame to another enables the recovering a canonical-type evolution
(POSTMA; VOLPONI, 2014).

Following (BEZRUKOV, 2013), the inflation begins for h � MPl/
√
ξ and ends at

hend ' 1, 07MPl/
√
ξ that corresponds to

χ '
√

3
2MPl ln Ω2(h)χ�MPl/

√
ξ (4.19)

and

χend ' 0, 94MPl, (4.20)

respectively. Once the evolution must happen analogously to standard slow-roll in-
flation in the Einstein frame, the Friedmann equation is expressed as

H2 = 1
3M2

Pl

V (h)
(1 + ξh2/M2

Pl)2 = 1
3M2

Pl

V (χ) ' λM2
Pl

12ξ2 . (4.21)
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where it was assumed χ�
√

3
2MPl. Moreover, the slow-roll parameters 1 computed

from (4.17),

ε = 4M4
P

3ξ2h4 and ηSR '
4M4

P

3ξ2h4

(
1− ξh2

M2
P

)
, (4.22)

are in agreement with what is expected from current observations (BEZRUKOV,
2013).

To finish this section, it worth to mention that HI results are in agreement with
CMB current observations performed by WMAP and Planck satellites (BEZRUKOV;

SHAPOSHNIKOV, 2014; RUBIO, 2015; BEZRUKOV et al., 2018). Moreover, for a value
ξ ∼ 103, the HI should lead the universe to the standard model vacuum according
to Rubio (2015). Hence, this approach could be the first step towards constructing
a unified model with cosmology and particle physics working together.

4.3 Application of MG representation of LQC to Higgs Inflation

Before we start to discuss how we will apply the formalism presented in 4.1 to Higgs
inflation, let us first reinforce the statement that our formulation should work, in
principle, for any inflationary field. To give an illustration, we could have used the
inflaton instead of the Higgs field. However, the mimetic description of the Effective
LQC may provide more interesting results if the inflationary field is directly related
to gravity.

Note that, by definition, the Higgs field is intricate within the space-time which
is reflected in HI construction. Moreover, from the formulations presented in 3.2
and 4.2, it is possible to notice crucial similarities. As we mentioned earlier, the
mimetic dark matter is built under the concept of a conformal transformation, a
statement that also applies to HI. Both MG and HI have the relationship between
matter and gravity as the main part of their description. In MG case, this comes
from the extra scalar degree of freedom used to define the longitudinal mode. For HI,
it is directly observed in the coupling. Indeed, due to the great number of familiar
features, we assume the MG representation of Effective LQC from 3.2 as an Einstein
frame description of Effective LQC dynamics.

In this section, we will consider that these two approaches match properly, describing
the same physics. Since HI is restricted to the inflationary period, we compare the

1See subsection 1.3.3 to review their roles.
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Hubble parameters at the beginning of inflation respecting the LQC requirements
and also the conditions associated with the successful standard evolution. Remember
that H acquires its maximum value (2.64) right before the onset of inflation in LQC
context. Therefore, establishing the equality between (2.64) and the HI Friedmann
equation at the same period (4.21), we obtain the following expression

ρc '
λM4

Pl

ξ2 . (4.23)

Now, we move on to the end of inflation, where our Effective Friedmann equation
(4.8) must obey

H2 ' ρeff

3M2
Pl

. (4.24)

Within the HI framework, if we plug (4.20) into (4.17), it possible to observe that
the value obtained was almost seventy percent smaller than the initial one given
by (4.18). Consequently, at the end of inflation V (χ) ≈ 0.287V0 and HI Friedmann
equation (4.21) can be written as

H2 ≈ 0.287λM
2
Pl

12ξ2 . (4.25)

Making (4.24) equal to (4.25), we have

ρeff

3M2
Pl

≈ 0.024λM
2
Pl

ξ2 . (4.26)

Next, we isolate the effective energy density term and substitute (4.23) into it,
gaining the result

ρeff ≈ 0.072λM
4
Pl

ξ2 = 0.072ρc. (4.27)

Equation (4.27) shows that our formulation is in agreement with the energy range
expected from LQC since the value ρeff ≈ 0.072ρc satisfy the requirement ρeff � ρc

needed to recover the SCM evolution at the end of inflation.

Basically, the previous procedure consisted in comparing the evolutionary structure
of the standard Friedmann equation and its Effective LQC counterpart for the special
case dictated by the quantities ρeff and V (χ). Therefore, the assumption regarding
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the equivalence between the MG description of LQC and HI will be true only if
their dynamics match. This means that the equations (4.5) and (4.21) must be
equal during the inflationary period, which results in the tracking condition

ρ2
eff − ρeffρc + V (χ)ρc = 0. (4.28)

The equation (4.28) enables to verify whether the Higgs inflationary evolution can
be mimicked by the mimetic curvature potential that defines ρeff during this period.
To put it another way, Vk(ϕ) would be able to assume the shape needed to reproduce
V (χ) and, at the same time, control the energy variation to respect LQC boundaries.
Thus, Vk(ϕ) together with the curvature term ka−2 work like V (χ) and would be
the ones dictating the inflationary dynamics.

In order to see whether this is viable or not, let us see how (4.28) behave, which
means to evaluate how ρeff evolves with χ. As a second degree equation, there are
two solutions associated with ρeff , one physical and other not. Figure 4.1 shows
both solutions and enables to recognize the red line like the one we are looking for.
Note that the black line represents the solution in which ρeff grows as χ becomes
smaller, describing a non-physical evolution. The green line indicates the end of
the inflationary period defined at χ ' 0.94MPl. Above all, Figure 4.1 provides the
behavior that the term Vk(ϕ) − ka−2 must have to make the Hubble parameter
exactly the same as the one described by the Higgs potential V (χ).

Furthermore, at this point, our aim is to compare how Vk(ϕ)−ka−2 and V (χ) evolves
separately. Then, the mimetic potential Vk(ϕ)− ka−2 is considered with respect to
ρeff/ρc. Meanwhile, V (χ) is evolved within the interval of χ beyond the one covered
during inflation. Both potentials are described in Figure 4.2 from which it is possible
to observe the clear similarities between them. The mimetic evolution is presented
in blue along the x2y2 axes, while the HI one is in red, being related to x1y1 axes.
The green line continues to have the same meaning as before.

Figure 4.2 corresponds to one fundamental result of our work since provides a proof
that Vk(ϕ) − ka−2 can properly mimic the dynamics of a universe driven by V (χ).
Hence, our interpretation of the Langlois et al. (2017) work is able to reproduce
the HI scenario. Moreover, the increasing scale factor dilutes the influence of the
curvature term ka−2, so that Vk(ϕ) becomes closer and closer to V (χ) (as it can be
seen in Figure 4.2).
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Figure 4.1 - Solutions of the tracking equation
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The validity of (4.28) would enable to study the universe evolution during inflation
through a unified model LQC-HI with MG as the bridge. Langlois et al. (2017) al-
ready linked LQC with MG by rewriting the first one as a formulation of the second.
Moreover, Chamseddine and Mukhanov (2018a) inserted the mimetic field into the
Brout-Englert-Higgs (BEH) mechanism in order to obtain a massive graviton free of
the ghosts. Besides, the strong coupling between the mimetic field and graviton was
also associated with scales close to the Planck one. Immediately after, the same au-
thors extended their work to a perturbative level with (CHAMSEDDINE; MUKHANOV,
2018b). Notwithstanding the different application, it is essential to emphasize that
this may establish a direct relationship between the mimetic field and Higgs field
since the later will be always present when the BEH mechanism is evoked. Here,
our goal is to use MG as an intermediary approach, closing this triangle by relating
LQC with HI.

4.4 Different perspective regarding the energy density components: Dy-
namic equations with curvature terms

The relation between matter and curvature reached another level with GR proposal.
However, there is no reason why it could not be explored even deeper. Within the
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Figure 4.2 - Evolution of the potential terms regarding MG and HI
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LQC framework, as well as GR, matter and curvature are analyzed apart from each
other. This means the changes implemented in one sector do not directly affect struc-
turally the other. Note that the holonomy corrections as the result of the discrete
space-time nature just alter the structure of the gravitational sector. Meanwhile,
in case of a matter field self-interacting, in principle, only the matter sector should
change.

With our work, we intend to highlight that the matter-curvature relationship could
be further explored. Indeed, our focus is to emphasize the curvature as a fundamental
element in MG description of LQC. From the possibility of a previous configuration
of our universe that would have collapsed into a bounce in LQC framework, it is
reasonable to associate this scenario with a closed configuration. Therefore, if the
universe collapsed due to gravitational effects, it may have acquired a curved struc-
ture. In this case, the role played by the curvature could have been more essential
than what was expected from SCM.

During this section, we will show how to obtain the dynamic equations associated
with our formalism from subsection 4.1 in analogy with the process exposed in
chapter 2 for Effective LQC. First of all, in section 4.1, from a classical perspective,
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the only component in the matter side was ρkin. Following in analogy with the
Effective LQC construction, ρeff is the quantity playing the role of total energy
density once it is the one whose value is bounded due to the sine function (4.4).
However, what would happen if we change Vk(ϕ) to the matter side since it is
supposed to describe the potential energy of the field from a curvature point of
view? Here, we are going to analyze these scenarios for the inflationary stage.

In order to respect the dynamic evolution from LQC and standard slow roll ap-
proximation, the total energy density ρ cannot be described only as ρ = ρkin since
there would not have a potential term to lead the universe to accelerated expansion.
Therefore, let us start by considering 3M2

PlVk(ϕ) as a component of ρ like it follows

ρ = ρkin + 3M2
PlVk(ϕ), (4.29)

see that (4.29) is similar to the standard definition (2.61). In this case, the substi-
tution of (4.29) into (4.1) will obtain an Effective Friedmann equation similar to
(2.63),

H2 = 8πG
3

[
ρ− 3M2

Pl

k

a2

]{
1− 1

ρc

[
ρ− 3M2

Pl

k

a2

]}
, (4.30)

with an extra curvature component since we are working with curved space-time.

The next step is to compute the time derivative of equation (4.30), but we need to
assume that (4.29) describes a perfect fluid, obeying equations (1.11) and (1.15).
After that, the result will be the expression

Ḣ = −4πG
3

[
3ρ(1 + w)− 6M2

Pl

k

a2

] [
1− 2

ρc

(
ρ− 3M2

Pl

k

a2

)]
. (4.31)

Then, we sum (4.31) with (4.30) to obtain the acceleration equation

Ḣ +H2 = 4πG
3

{
ρ(−1− 3w)− 2

ρc

(
ρ− 3M2

Pl

k

a2

)[
ρ(−2− 3w) + 3M2

Pl

k

a2

]}
.

(4.32)
Finally, from (4.5) and (4.29), (4.32) can be written in the following form
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Ḣ +H2 = 4πG
3

{
ρ(−1− 3w)− 2ρeff

ρc

[
ρ(−2− 3w) + 3M2

Pl

k

a2

]}
. (4.33)

Within this configuration, equations (4.30) and (4.32)/(4.33) are the ones determin-
ing the universe evolution. From (4.29), it is possible to observe that the universe
curvature is treated apart from Vk(ϕ). This scenario has the closest structure to one
presented in chapter 2 if it had been applied to curved FRW space-time. Indeed, we
had noticed that these results are compatible with the ones from (MIELCZAREK et

al., 2009).

Mielczarek et al. (2009) performed a dynamic analysis for Effective LQC considering
a curved setup which led to

H2 :=
[
ṗ

2p

]2

= 8πG
3

1
ρc

[ρ− ρ1(p)] [ρ2(p)− ρ] , (4.34)

with

ρ1(p) ≈ 3
8πGa2 and ρ2(p) ≈ ρc + 3

8πGa2 . (4.35)

It is important to emphasize that (4.34) came from a more complex Hamiltonian
than (3.37). However, comparing (4.34) and (3.39), it is possible to identify analog
quantities to (4.36) as

ρ1 ≈
3M2

Plk

a2 and ρ2 ≈ ρc + 3M2
Plk

a2 , (4.36)

that enables to recover exactly (4.30) if they were plugged into (4.34). Even the
elements from acceleration equation (4.32) can be recognized in (MIELCZAREK et al.,
2009) whose analog form contains extra terms than the ones present in it.

Despite the fact that ka−2 has a different origin than Vk(ϕ), it can also compose the
total energy density. Indeed, the standard treatment covers the concept of curvature
energy density, as it can be seen from (1.13). So, now, 3M2

Pl[Vk(ϕ) − ka−2] is the
term playing the role of matter potential. For this case, the total energy density
corresponds to ρeff whose Effective Friedmann equation is given by (4.5).

First of all, before trying to compute the acceleration equation, we must assume the
validity of the continuity equation
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ρ̇eff + 3H(Peff + ρeff) = 0, (4.37)

where Peff is the effective pressure associated with ρeff by the EoS Peff = wρeff .
After, the previous process is repeated to compute the time derivative of (4.5) which,
considering (4.37), results in

Ḣ = −4πG
3 ρeff

[
3(1 + w)

(
1− 2ρeff

ρc

)]
. (4.38)

Next, we add (4.5) to (4.38), obtaining the acceleration equation

Ḣ +H2 = 4πG
3 ρeff

[
−3w − 1 + 2ρeff

ρc
(2 + 3w)

]
. (4.39)

Note that (4.38) and (4.39) have the exact form of the equations (2.66) and (1.16)
which should not be different since the Effective Friedmann equation for ρeff has the
same shape compared to LQC, which also applies to (4.37). This part is basically a
continuation of the development we started in section 4.1 with the addition of the
continuity equation (4.37).

Once we have obtained the acceleration equation, we can now analyze in which
condition our formulation can generate inflation through it. See that equation (4.39)
implies in the following condition in order to produce an accelerated expansion
(Ḣ +H2 > 0)

3w + 1 < 2ρeff

ρc
(2 + 3w). (4.40)

If we substitute ρeff
ρc

= 1
2 into (4.40), it is direct to conclude that any value of

w will satisfy (4.40) which is in agreement with a similar analysis performed by
Sadjadi (2013) for LQC. Therefore, both matter and radiation are able to fulfill
(4.40). However, condition (4.40) can also be used to test what values of w would
agree with LQC energy range for inflation without substituting it directly. This will
become clear in the next section.

Recall that the mimetic potential embedded within ρeff is the quantity ruling the
inflationary stage. In the particular case in which the mimetic potential follows the
evolution of the Higgs inflationary potential as presented in Figure 4.2, the value of
w may be adjusted in order to reproduce its specific dynamics. Furthermore, it is
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the term 3M2
Pl[Vk(ϕ)− ka−2] that must satisfy the LQC energy requirement during

inflation.

Within certain limits, our work reproduces results exposed by other authors in LQC
literature. For the total energy density given by (4.29), the equations obtained would
be almost equivalent to the ones from (MIELCZAREK et al., 2009) if they have used
the same Hamiltonian as we did. The dynamic equations computed from ρeff are
identical to the ones presented in (SADJADI, 2013) for the flat case. Thus, in principle,
we have a curved scenario emulating flat dynamics. Therefore, depending on how
we interpret what components should be into the total energy density definition,
we can reproduce flat and curved formulation with the mimetic description of LQC.
Moreover, note that the pairs (4.5) and (4.30), besides (4.33) and (4.39) are identical
for k = 0.

4.5 About the conservation of the energy density

The computations performed in the previous section were developed under the as-
sumption that the continuity equation holds for both descriptions of the total energy
density. Therefore, the mimetic curvature potential must fulfill this requirement.
Here, we will discuss the specific conditions in which this statement is true. In order
to do this, we will start from the general case, in which we defined the quantity

Veff = 3M2
Pl[Vk(ϕ)− ka−2], (4.41)

and name it as MG effective curvature potential. Now, the effective energy density
(4.3) could be written as

ρeff = ρkin + Veff . (4.42)

The next step is to perform a time derivative of equation (4.42), from which we
obtain the expression

ρ̇kin + 3H(1 + w)ρkin + [V̇eff + 3H(1 + w)Veff ] = 0. (4.43)

From (4.43), see that we can follow throughout two different paths. The first alter-
native it is to consider that ρeff obeys (4.37) due to the teamwork carried out by
ρkin and Veff . This means they evolve in a suitable way to preserve (4.43) as well as
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it happens for an ordinary scalar field. Remember from classical mechanics that the
energy flows between the kinetic and potential term forms a closed setup. Moreover,
Veff reproduces well the matter potential behavior of V (χ), as we showed in Figure
4.2. Therefore, there is no reason to suppose that it will deviate from this path along
with other stages of primordial evolution.

As a second possibility, note that if ρkin satisfies the continuity equation

ρ̇kin + 3H(1 + w)ρkin = 0, (4.44)

the same statement must also apply to Veff ,

V̇eff + 3H(1 + w)Veff = 0. (4.45)

Here, analyzing the continuity equation ρkin and Veff seems to be a distinct anal-
ysis of ρeff during the bounce and inflation separately. Since ρkin directly refers to
usual matter content, (4.44) must be satisfied. Otherwise, the LQC models whose
bounce is dominated by the kinetic energy of the field would face serious problems.
Consequently, equation (4.45) corresponds to a condition that the mimetic effective
potential must obey.

With this in mind, we substitute (4.41) in (4.45) and obtain the following expression

V̇k(ϕ) + 3H(1 + w)Vk(ϕ)− (1 + 3w)H k

a2 = 0. (4.46)

Now, the validity of equation (4.46) is the key to preserve (4.37). Note that for the
particular value k = 0, (4.46) reduces to

V̇k(ϕ) + 3H(1 + w)Vk(ϕ) = 0 (4.47)

and corresponds to the requirement for having (4.29) also obeying the continuity
equation.

A crucial point to highlight is the fact that considering (4.46) for w = −1
3 we can

obtain the same dynamic equations for (4.29) and (4.3) without considering k = 0.
Indeed, this value for the state parameter is able to fulfill the relations
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Ḣ = −4πG
3 ρeff

[
3(1 + w)

(
1− 2ρeff

ρc

)]
< 0, (4.48)

Ḣ +H2 = 4πG
3 ρeff

[
−3w − 1 + 2ρeff

ρc
(2 + 3w)

]
> 0 (4.49)

and

3w + 1 = 0 < 2ρeff

ρc
. (4.50)

This means that, in a first analysis, w = −1
3 is a viable option to describe the fluid

responsible to drive inflation.

It is important to note that for the inflationary phase to begin, it must be dominated
by a fluid with w < −1/3, see (YOKOYAMA, 2014). Coincidentally, our formalism
shows that w = -1/3 allows preserving the conservation equation for both k = 0
and k = +1, besides being the value that allows starting the inflationary phase as
discussed in Yokoyama (2014). Moreover, the condition w ' −1/3 seemed to be a
request to lead the inflationary accelerated expansion to an end. In the reheating
phase, w should change from −1/3 to a value inside the range [0, 1/3] after an
inflationary period dictated by a Higgs mechanism, see reference (COOK et al., 2015)
for extended information.

In case of a state parameter depending on the scale factor w = w(a), the equations
(4.46) and (4.47) would receive corrections or even completely change as the w
evolution goes. All things considered, this last statement is directly related to the
introduction of mimetic curvature potential and could be a new element outside the
Effective LQC formulation.

4.6 A brief note on super-inflationary phase

Despite the fact that we did not address the super-inflationary phase in (BEZERRA;

MIRANDA, 2019), there are hints that naturally arise from our formulation for this
specific period. Since the description based on ρeff as the total energy density pro-
duces quite similar results to ones obtained by Sadjadi (2013), there is no reason to
the super-inflation stage does not continue into this path.

Recall from chapter 2 that super-inflation happens for Ḣ > 0 because it corresponds
to a super-accelerated expansion (SADJADI, 2013). From (4.38), assuming w to be

85



constant, only ρeff is governing the behavior of the time derivative of the Hubble
parameter. On the other hand, since ρeff is following the evolution regarding the
LQC energy range, the super-inflation is placed within the interval ρc/2 < ρeff < ρc,
enabling any field with w > −1 to drive the universe along a super-accelerated
expansion. To give an illustration, this covers a range that goes from fluids similar
to cosmological constant (w & −1), radiation-type fields (w = 1), fluids with dust-
like behavior (w = 0) and even Galileon fields (w > 1) (BEZERRA; MIRANDA, 2019).

In order to have an idea about how this phase affects the dynamics ofH, let us briefly
discuss the strategy developed by Sadjadi (2013). The procedure implemented was
to introduce a normalized time variable t which is directly related to the ratio ρ/ρc,
as it follows

ρ

ρc
= 1

1 + 6πGρc(1 + w)2t2
. (4.51)

Since the dynamic equations are similar to (2.63), (2.67) and (1.15), with a perfect
fluid as matter content and w = constant, the Hubble parameter should follow the
evolution presented in Figure 4.3. The curves was obtained considering two values of
w. The line represents the evolution of the modified Friedmann equation (2.63) for
w = 1, while the points are related to the case w = 0. The vertical axis refers to H2

that evolves with the normalized time variable t, where t = 0 represents the bounce
point. Note that there is a huge peak defining the maximum value of H2. See also
that the super-accelerated period lasts longer for the small value of w (SADJADI,
2013).

86



Figure 4.3 - Evolution of the modified Friedmann equation

SOURCE: Sadjadi (2013)

Therefore, the function achieves its maximum extremely fast and drop to smaller
values also quickly, resembling a delta function. In principle, we could reproduce this
plot considering our approach and also assume a constant state parameter. How-
ever, there are other points that must be treated carefully, once we are introducing
curvature terms to the equation.

In summary, super-inflation remains for discussion in LQC scenario since the expla-
nation behind the loss of half of the kinetic energy after the bounce and how it was
transferred to the potential term is still missing. The logical hypothesis would be to
use this amount of energy to take the universe outside the bounce phase and lead
it to a really fast expansion stage. Moreover, it is worth to mention that models
with non-minimal coupling are also capable of producing a super-inflationary phase
(SADJADI, 2013). With this in mind, our formulation built under a total energy
density ρeff composed by the pair ρkin and Veff could provide particular results due
to the matter-curvature relationship.
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5 A BRIEF DIGRESSION ON GRAVITATIONAL WAVES

A cosmological model is built by steps. First of all, it must be established a founda-
tion, which can be developed from the start or shaped over another theory/model.
Next, the model must be checked in order to avoid the presence of undesired fea-
tures that can take it down like ghosts. This first stage is usually defined at the
background level. After, when the model seems to be self-consistent, it should be
extended to cover also the perturbative case. Otherwise, the model will lose predic-
tive power once it will not be able to produce essential observable quantities. They
are the ones to be compared with cosmological observational results from CMB or
future detection of gravitational waves produced during the early times.

Our work is still within its first stage of development. We have the formalism pro-
posed by Langlois et al. (2017) as our base, however, the stability analysis remains
an open question even in mimetic gravity itself. Until now, we do not identify any
sigh of instabilities in general. The treatment we performed is restricted to the back-
ground level and it is not completed covered. There are more possibilities associated
with bounce and super-inflation (or its absence) that could also be explored before
we move on to the level of perturbations. However, in principle, both studies can be
approached in parallel without loss of generality.

In this chapter, we review essential aspects regarding the standard picture of pri-
mordial gravitational waves. Here, we will use this term to refer to any gravitational
wave produced during the early times regardless of the model. Only after, we present
a survey containing the CMB power spectrum obtained from models with proper-
ties similar to ours. The aim is to illustrate the possibilities to be explored in future
works.

5.1 Primordial Gravitational Waves

Gravitational waves are a prediction of Einstein’s general relativity theory. They are
defined as ripples in the space-time fabric and, in analogy with the usual concept
of waves, they can be understood as waves of distorted space that are propagating
like radiation from their source (LIGO COLLABORATION, 2019). Indeed, there are
two sources associated with the production of detectable gravitational waves: astro-
physics and primordial. The GW from astrophysical objects are the ones detected by
LIGO/Virgo collaborations. Nonetheless, there are also GW produced by the phys-
ical processes that happened during the primordial universe evolution (BOJOWALD;

HOSSAIN, 2008), being referred to as primordial gravitational waves.
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Working with GW is a new way to explore the data available throughout the uni-
verse, once they basically do not interact with matter, providing a virtually perfect
picture about their source. They correspond to a different and complementary tool
which can be used together or apart from electromagnetic observations (LIGO COL-

LABORATION, 2019). Furthermore, PGW are the ideal lab to study the primordial
universe (BOJOWALD; HOSSAIN, 2008) since they are the ones identified as tensor
perturbations of the metric tensor.

As it was exposed in chapter 1, the physical metric can be split into the background
and perturbed parts. The standard background metric is the FRW one. Meanwhile,
the general form to express the metric perturbation is describing it as a sum of all
contributions. This means the total perturbation of the metric is given by δgµν =
δg(S)

µν + δg(V )
µν + δg(T )

µν , with S, V and T indicating the scalar, vector and tensor
components.

A fundamental aspect of the linearized cosmological perturbation theory is that
the evolution of the scalar, vector and tensor perturbations can be analyzed inde-
pendently at linear level (MUKHANOV et al., 1992). Since the tensor contribution is
the one carrying the information about the PGW, the tensor component is isolated
which enables to write the line element in the form

ds2 = a2(η)[dη2 − (γij + hij)dxidxj], (5.1)

where γij corresponds to the background metric and hij corresponds to a transverse
and traceless tensor perturbation. Then, in the absence of source Tµν = 0, the
perturbed Einstein equations (1.36) solved for (5.1) give rise to EoM for tensor
perturbations

h′′ij + 2Hh′ij −∇2hij = 0. (5.2)

The standard treatment of PGW is built under the assumption of a massless graviton
that propagates with two polarization modes (BESSADA; MIRANDA, 2009b). From
equation (5.2), it is possible to identify the similarity regarding a wave equation,
justifying the name gravitational waves. Consequently, its general solution should
be written as
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hij(x, η) = h(η)e(+,×)
ij (x) =

∑
λ=(+,×)

h(λ)(η)e(λ)
ij (x), (5.3)

where eλij corresponds to the polarization tensor and it obeys the relations eij = eji,
∂ieji = 0, eii = 0. The signals + and × represent the two GW polarization states
expressed in a summarized way by λ (GUZZETTI et al., 2016; BUONANNO, 2007;
D’IVERNNO, 1992; FERREIRA, 2014).

A particular feature regarding PGW is that each theory of gravity may provide
distinct patterns to describe their behavior. Indeed, the primordial gravitational
waves are basically frozen in the super-horizon scales. Thus, PGW’s amplitude is the
same for all tensor perturbations and it has the inflationary horizon size (GUZZETTI

et al., 2016). Therefore, direct observation will provide exclusive information about
the primordial universe like its energy range and size.

The aim is to obtain a power-spectrum expression for the quantum fluctuations,

PT (k) = k3

2π2

∑
λ

|h(λ)
k |2, (5.4)

which is the Fourier transform of the two-point correlation function. This quantity
is related to the expected value of the quantum field even when they become classic
outside the horizon and almost scale-invariant, in agreement with the observational
results. The shape of PGW power-spectrum depends on the tensor perturbation
equation.

In summary, inflationary models are characterized by the production of a stochastic
background of gravitational waves, the tensor perturbations. They are considered
the best tool to explore primordial physics since they do not evolve after leaving the
universe horizon as well as it happened with the curvature perturbations. Moreover,
each inflationary model will have its own power-spectrum. When the PGW return,
they bring together the information about how was the universe at the moment they
left. This is the reason why they could be seen as a window to observe the early
universe, the Planck scale included. Hence, in principle, they will enable us to verify
not only the validity of the inflationary models but also the quantum cosmological
ones (MIELCZAREK, 2008; GUZZETTI et al., 2016).
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5.2 CMB Power Spectrum

Despite the fact that PGW has not been directly detected yet, there is an alternative
tool to study them, the cosmic microwave background radiation. Part of the PGW is
frozen outside the visible horizon until it returns to the Hubble radius as the universe
expand. However, when they come back they should produce signatures in the CMB
spectrum due to the interaction with the photons (BESSADA; MIRANDA, 2009b), see
Appendix C for further details. The ideal situation would be to observe a B-mode
polarization of CMB from the primordial source since it only comes from tensor
perturbations. If the B-mode detection from BICEP2 experiment (ADE et al., 2014)
would have been as successful as it was first claimed, the PGW power-spectrum
would have the form presented in Figure 5.1.

Figure 5.1 - BICEP2 CMB power spectrum for B-mode

SOURCE: Ade et al. (2014)

However, the B-mode observation from PGW has not happened yet. In fact, the only
current possibility is to search for effects within the power spectrum of temperature
anisotropies of the CMB. Roughly speaking, the power spectrum can be understood
as the amount of anisotropy presented in a determined angular scale, in particular,
CMB anisotropies are usually considered with respect to the multipole momentum
` (CARROLL, 2006). This is performed by tracing the plot representing the variation
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of the correlation function CTT
` regarding `, the double T indicates temperature.

Figure 5.2 shows the Planck satellite results considering the ΛCDM model like in the
previous section. The dashed line bounds the region containing the low multipole
` < 30 that is exactly the part of the spectrum associated with possible tensor
perturbation signatures. See that this region presents higher error bars compared to
the other which is an effect related to the statistic strategy used to obtain CTT

` . This
means that any cosmological model must reproduce the spectrum above for ` > 30.
Nevertheless, the behavior for very low multipoles could (or should) change since
the blue points in Figure 5.2 suggests a possible decaying of the spectrum which
could favor other models different from ΛCDM.

Figure 5.2 - CMB power spectrum

SOURCE: Ade et al. (2016)

Within the same background as ΛCDM, MG models seem to produce indistinguish-
able power spectrum in comparison to it, at least in linear scales (ARROJA et al.,
2018). Therefore, in principle, as a minimal extension of GR, MG’s power spectrum
should be similar to Figure 5.2. Notwithstanding, there are many extended mimetic
approaches discussed throughout the literature whose additional components may
bring forth a different pattern.

Our results were built under the Langlois et al. (2017) proposal, and until the writing
of this work, there was no publication regarding the shape of its power spectrum.
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As the MG representation of LQC was built under high order Lagrangian terms,
we should consider the power spectrum for bounce models with high order terms as
a starting point to what possibilities we can expect. Figure 5.3 refers to a parame-
terized bounce inflation model treated in (NI et al., 2018) and modeled according to
Horndeski theory. See that power spectrum is suppressed inside the range covered
by low values of ` (` < 30), and for this particular case, there are oscillations within
the spectrum.

Figure 5.3 - CMB spectrum for a bounce universe

SOURCE: Ni et al. (2018)

Figure 5.4 provides a picture obtained by Mielczarek (2010) considering WMAP
data. The green line represents the standard inflationary evolution, meanwhile, the
other ones correspond to variants of his Effective LQC model. Note that there is a
suppression within the low multipoles region regarding the standard approach, which
seems to be a consequence of the replacement of the singularity by the cosmological
bounce.
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Figure 5.4 - CMB spectrum from Loop Quantum Cosmology

SOURCE: Mielczarek (2010)

Regarding the possible relationship between MG and HI, like in the previous state-
ment, there is no current work available describing the power spectrum for this
extension built under the concept of a massive graviton exposed in (CHAMSEDDINE;

MUKHANOV, 2018a). Nonetheless, let us briefly discuss the power spectrum from
the Massive Gravity approach presented in Figure 5.5 and obtained by Bessada and
Miranda (2009a). Here, the plot was also developed in comparison with SCM (ex-
pressed by the solid blue line) and included the description of the model for two
different values of the graviton mass. In this case, it is also clear the suppression
of the correlation function for low multipoles values which is associated with the
addition of mass to the standard massless graviton.
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Figure 5.5 - CMB spectrum from Massive Gravity

SOURCE: Bessada and Miranda (2009a)

In other words, both previous approaches have a particular behavior when it comes
to CMB signatures. Figure 5.5 corresponds to a graph of correlation function CTT

`

for massive gravity in comparison to GR. Meanwhile, Figure 5.4 also exposes the
difference regarding the correlation function CTT

` from Effective LQC. Although rep-
resented in different ways, both results correspond to the temperature anisotropies
of the CMB in terms of `. Furthermore, from Figures 5.4 and 5.5, it could be noticed
that both show suppression of low CMB multipoles. As our model is kind of in the
middle of these two approaches, this behavior is a possibility. However, for now, it
is just an initial guess and it requires rigorous tests before any further discussion.

It is worth to mention that the recent works of Casalino et al. (2018), Casalino
et al. (2019), Ganz et al. (2019) have shown the compatibility of mimetic gravity
with the last results in gravitational waves observations regarding the propagation
speed of the tensor perturbations. Further, the matter-curvature coupling has been
presented in many papers as a way to stabilize the scalar perturbations. To give an
illustration, Hirano et al. (2017) proposed to couple the kinetic term of the scalar
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field with curvature in order to make the scalar perturbations stable. Moreover,
Zheng et al. (2017) also used the coupling between the higher derivatives of the
scalar field with space-time curvature to avoid the instabilities issues, besides their
formulation was able to produce observable values compatible with the cosmological
observations provided that the potential presented a suitable form. The situation
repeats for the work (TAKAHASHI; KOBAYASHI, 2017), in which it was presented
degenerate scalar-tensor theories like an extended mimetic approach. In this case,
the scalar perturbation needed to be strongly coupled without allowing addition
matter content.

All things considered, we need to perform deeper analyzes of the mimetic curva-
ture potential before trying to address the model behavior regarding the primordial
background of gravitational waves. In section 4.4, we discussed how Vk(ϕ) was able
to give rise to suitable cosmological solutions from which both super-inflation and
inflation can occur. Within this framework, the inflationary phase was capable to
imitate the Higgs inflationary evolution. Further, the inflationary dynamic would
have been similar for k = 0 and k = +1 cases as long as the relation w ≈ −1/3 is
preserved by the mimetic curvature. Note that there are gaps related to the role of
Vk(ϕ) since the bounce until the end of inflation that must be fulfilled in order to
build a consistent cosmological background. This requires a mathematical function
to describe the proper behavior of Vk(ϕ) that would not only be consistent with the
primordial universe evolution and its energy condition but also free of instabilities
(ghosts). Indeed, this is our current challenge to move forward with our model.
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6 FINAL REMARKS AND PERSPECTIVES

Along with this text, we have highlighted the advantages of Effective LQC and
Mimetic Gravity. Loop quantum cosmology enables to consider the space-time quan-
tization at the effective level, giving rise to a cosmological bounce as a natural solu-
tion for the initial singularity. Mimetic gravity is a chameleon theory whose structure
can be adapted to emulate a great number of different evolutionary scenarios, besides
it enables to reproduce the behavior of the dark components.

Langlois et al. (2017) provided not only an MG formalism capable to mimic the
Effective LQC dynamics but also opened a window to further explore the curvature
role during primordial universe evolution. The healthy elements of Effective LQC
remain intact with the introduction of the mimetic curvature potential, which be-
came the main variable from our formulation. Despite the fact that the mimetic
potential was not originally associated explicitly with the matter field, the absence
of a matter potential term allowed us to interpret it as the curvature response due
to the presence of matter.

Within this framework, we realized that a field strongly coupled with gravity would
be a better fit for the scenario we were building in comparison to the standard
minimally coupled scalar field. Further, we took advantage of the particular nature
of the Higgs field and its inflationary extension proposed by Bezrukov and Sha-
poshnikov (2008). Our main point was to make clear the intrinsic relation between
Vk(ϕ)− ka−2 from MG and inflationary potential V (χ) due to HI. We achieved this
goal by showing that the MG curvature potential can reproduce the dynamics from
HI universe (see Figure 4.2). Notwithstanding the general form Vk(ϕ) − ka−2, we
were able to evaluate the behavior required to properly mimic the HI evolution.
Indeed, our analysis showed the compatibility between LQC and HI energy scales
along with inflation.

It is worth to mention that Cognola et al. (2016) added a potential term to the
mimetic covariant Horava-like model, building a scenario with a Starobinsky-like
inflationary epoch and a bounce solution. Moreover, Wan et al. (2015) presented a
bounce model constructed from the standard Higgs boson that would be followed by
a HI stage, in which the cosmological evolution was considered from the contraction
phase (pre-bounce) until inflation ended with the e-fold number close to 60. Our
point here is just to make clear that there are aspects of quantum gravity, Higgs
inflation, and mimetic gravity which has been related over the literature in different
ways.
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Through MG description of LQC, in principle, it is possible to obtain a simpler
and unified description covering from a natural bounce until an inflationary phase
whose dynamics mimics the model with the primordial version of the Higgs field
as energy content. The later, according to (RUBIO, 2015), can lead the primordial
universe to relax to the vacuum state expected from SMPP. Note that MG basically
does not change any structural feature of LQC, likewise, the physics regarding GR
is reproduced by the mimetic dark matter model with minimal alteration.

Moreover, our formulation seems to present the versatile behavior of the main the-
ory since we were able to reproduce results from other LQC works for flat and
curved space-times just changing the components from total energy density. This
is performed by changing the way the curvature is interpreted in both coupling
and intrinsic curvature terms. In accordance, the mimetic curvature potential seems
to keep the original mimetic potential role as a key element to emulate different
cosmological scenarios (see (CHAMSEDDINE et al., 2014; SEBASTIANI et al., 2017)).

As we previously mentioned, MG has been already related to LQC through the work
(LANGLOIS et al., 2017). This is also true regarding the Higgs field due to the intro-
duction of the BEH mechanism into MG scenario in (CHAMSEDDINE; MUKHANOV,
2018a; CHAMSEDDINE; MUKHANOV, 2018b). Figure 6.1 is a scheme exposing how we
used the MG representation of LQC characterized by its intrinsic matter-curvature
foundation to establish a relationship between LQC and HI in (BEZERRA; MIRANDA,
2019). Our aim was to highlight the intermediary character of the MG representa-
tion of LQC, focusing on how the curvature interpretation can affect the way the
physics during primordial evolution could be understood.
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Figure 6.1 - MG as the bridge between LQC and HI
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The link regarding LQC and HI suggests that the formulation could be extrapolated
in order to implement the Higgs field as an energy source of LQC. Remember that
the standard LQC evolution considers an arbitrary scalar field just like the standard
inflationary paradigm. Therefore, if we consider that the Effective LQC dynamics
can accept the Higgs field as its possible matter content, using MG as a mediator,
we could have a unified and consistent scenario for the very early universe through
the MG description of Effective LQC with Higgs field.

To put it another way, Effective LQC can be interpreted as a geometric description
of the physics related to scales close to the Planck one. Consequently, the universe
dynamics is implemented considering the geometric point of view, having the matter
field as a second actor. In HI, the dynamics is concentrated in the field evolution, be-
ing the curvature a fundamental part but not the main one. Obtaining the Effective
dynamics of LQC from MG highlights the link between matter and curvature and
enables the possibility of introducing the Higgs field in LQC framework. Therefore,
MG is configured in an interesting formalism to explore the possible connections
between LQC, HI and the role of curvature in the primordial universe.
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Another key aspect to emphasize is related to the rate δH = ρ/ρc which is so-called
holonomy corrected term (see (LUC; MIELCZAREK, 2017)). In our case, the correction
parameter would be given by δH = ρeff/ρc. Hence, paying attention to evolution dic-
tated by (4.1) over early times, we can think about holonomy as a balanced structure
that enables us to measure when quantum effects are significant by comparing the
desired energy range with ρc. This is a fundamental point since we built the entire
formalism giving priority to the evolution of the LQC energy range which is a direct
result from holonomy corrections. Recall that the bounce dynamics is dictated by
the field kinetic energy density that should lose its strength transferring half of it to
the potential term. As the universe expands, the curvature and potential terms are
decreasing its leverage. Thence, at end of inflation, the curvature influence virtually
disappears, but the potential still continues to contribute as a less dominant compo-
nent with respect to kinetic energy. However, at this point, the holonomy corrections
are already negligible.

Our formulation presented in (BEZERRA; MIRANDA, 2019) has many aspects to be
further explored. An explanation regarding the physical processes that gave rise
to bounce and super-inflation stages, besides the transition to inflation, is missing
throughout the literature in general. Consequently, it is worth to explore whether our
model can shed some light within this framework. Considering the MG description of
LQC as a versatile tool that allows performing different analysis of the cosmological
scenario under the particular LQG perspective. Indeed, in LQG scenario, the fields
live on each other, which means the space-time could be interpreted as an image of
one specific field, the gravitational one. Thus, MG representation of LQC enables
us to assess in a certain way this distinct nature of LQG if we consider it as a tool
to explore the primordial physics through the mimetic curvature potential.

In LQC models, there is the hypothesis of a previous arrangement of our universe,
see (LIDSEY et al., 2004; SINGH et al., 2006) for instance. Usually, there is an erst-
while version of our universe collapsing due to gravitational effects until a certain
point that it bounces back and initiates an expansion phase. As the universe was
becoming smaller, there must be a limit to define how small the space-time can be.
Otherwise, there would have been an instant in which the universe size confined the
field in such a way that both position and velocity could be defined. In other words,
without a boundary, the universe would have become as small as the field scale itself
and eventually collapsed in a singularity. Consequently, the Heisenberg uncertainty
principle would have been violated. In order to respect this fundamental principle
of quantum mechanics, there must have been a physical process capable of ceasing
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the contraction motion.

Following this direction, there is an idea of universe boundaries working like walls
in a kind of cosmological Casimir effect. This effect should occur when the vac-
uum energy density, also called zero-point fluctuations, is distorted by changes in
geometry (NAGATANI; SHIGETOMI, 2000). Regarding the primordial evolution, the
universe boundaries would correspond to geometry and the vacuum energy would
be represented by the energy content. Furthermore, Nagatani and Shigetomi (2000)
discussed a generalization of the Casimir effect treating a one-dimensional spherical
space with a scale factor similar to the one applied in FRW space-times. This ap-
proach was developed for models with a scalar field coupled with gravity. Thus, in
principle, the Casimir effect could naturally be integrated into our scenario as the
physical process responsible to generate the cosmological bounce.

The aspects related to super-inflationary phase and its transition to usual inflation
are still in the research stage. There are some clues to be checked, but they are not
our main objective for now. First, we should focus on obtaining an expression to
Vk(ϕ) in order to build a self-consistent inflationary evolution. Moreover, the physics
behind the bounce is a top priority. After all this, the model would be in a suitable
stage to be generalized to the perturbative level.

In its current state, our scenario provides several phenomenological implications
about how the physics of the very early universe could be interpreted. Among them,
we enumerate the main conclusions remarked during our study:

a) The curvature could have been a structural balance element that played
an essential role in controlling the primordial universe evolution.

b) The matter-curvature coupling may have worked as the field potential
term.

c) The state parameter w = −1/3 commonly related to curvature-type fields
seems to be the value in which the space-time evolution does not depend
on its own curvature.

d) The Higgs field could be the missing element to obtain a consistent formu-
lation for LQC.

e) The incorporation of Higgs inflation in mimic LQC inflationary description
provides a consistent picture that could enable to recover both SCM and
SMPP.
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In conclusion, we must highlight the particular behavior of the mimetic curvature
potential Vk(ϕ)−ka−2 whose interpretation influences the final result similar to what
happened with Einstein’s cosmological constant. Note that the mimetic formalism
could be the missing component capable to put together the best results obtained
by the zoo of cosmological models available in the literature. It can be the interface
among quantum gravity, cosmology and particle physics through Effective LQC
dynamics that could provide a different perspective forward the study of the universe
evolution. Recall that since gravity has its own particular nature beyond the current
knowledge compared to the other interactions, a better understanding regarding the
gravitational sector could be the key to solve the open problems in cosmology.
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APPENDIX A - How to obtain the ADM Lagrangian?

Basically, LADM is just a different way to write LEH in which the variables N , Na

and qab are used to reproduce the evolution of the space-time metric gµν . First, let
us start with SEH defined in the simplest form

SEH =
∫
d4x
√
−gR, (A.1)

and identify the ADM variables with the gµν components as

N =
√
−g00, Na = ga0 and qab = gab. (A.2)

The term √−g can be obtained from (2.4), however, the space-time Ricci scalar will
require more effort to be rewritten in a suitable way to derive (2.9).

In other words, to build LADM, it is necessary to relate the space-time curvature
with the Σ one. In order to achieve this goal we follow the development presented
in (MARTINS, 2009), starting with the Gauss-Codazzi equations:

(3)Rθ
ρση = qαρ q

β
σq

γ
ηq

θ
µR

µ
αβγ −KρηK

θ
σ +KσηK

θ
ρ (A.3)

and

DµK
µ
ν −DνK

µ
µ = Rαβn

βqαν . (A.4)

Note that (A.3) establishes a relation between the spatial projection of the spacetime
curvature with the hypersurface analog. Moreover, (A.4) describes the behavior of
the 4-dimensional Riemann tensor projected along the normal direction (KROON,
2013; MARTINS, 2009).

The next step is to rewrite the Einstein tensor in term of N and Nα. This can be
performed by writing it as Gµν = AµBν , where each vector is decomposed into the
orthogonal base like

Aµ = Nnµ + qαµNα. (A.5)

As a tensor, Gµν has time, space and mixed components:
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G⊥⊥ = Gµνn
µnν , G⊥β = −Gµνn

µqνβ, Gα⊥ = −Gµνn
νqµα and Gαβ = Gµνq

µ
αq

ν
β,

(A.6)
where ⊥ indicates the perpendicular component regarding the hypersurface. Thus,
Gµν can be expressed in the form

Gµν = G⊥⊥nµnν +G⊥βnµq
β
ν +Gα⊥nνq

α
µ +Gαβq

α
µq

β
ν . (A.7)

In GR, Gµν is diagonal as a result of the homogeneity and isotropy feature of the
FRW universe. Therefore, considering that the same applies to this case, the mixed
components will be null since nνqαµ = 0. Remember from chapter 2 that qαµ = qab and
nν = n0, consequently,

Gµνn
µqνβ = 0. (A.8)

Substituting (1.4) into (A.8), the result is the equality

qµαRµνnν = 0, (A.9)

which enables us to rewrite (A.4) as

DbK
b
a −DaK

b
b = 0. (A.10)

The time component of Einstein’s tensor can be obtained by working with the Rie-
mann tensor and equation (2.3) as it follows

Rµνρσq
µρqνσ = R + 2Rµρn

µnρ = 2Gµρn
µnρ. (A.11)

If we try to derive the term Rµνρσq
µρqνσ from (A.3), the result is determined by the

expression

Rµνρσq
µρqνσ = (3)R +K2 −KµνK

µν . (A.12)

Thus, comparing (A.11) and (A.12), the obtained relation must be
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Gµνn
µnν = 1

2
[

(3)R +K2 −KµνK
µν
]
. (A.13)

Just like in the previous procedure, Gµνn
µnν is rewritten considering the equation

(1.4) which results in

Gµνn
µnν = Rµνn

µnν + 1
2R. (A.14)

Once (A.13) and (A.14) must be equal, the 4-dimensional Ricci scalar can be de-
scribed by

R = (3)R +K2 −KµνK
µν − 2Rµνn

µnν . (A.15)

The idea is to write Rµνn
µnν in terms ofKµν which is performed through the relation

(Rρ
µρνn

µ)nν = ∇ρ(nν∇νn
ρ)−∇ρn

ν∇νn
ρ −∇ν(nν∇ρn

ρ) +∇νn
ν∇ρn

ρ. (A.16)

Since KµνK
µν does not have time component, from (2.6), (A.16) can be expressed

as

Rρ
µρνn

µnν = K2 −KµνK
µν . (A.17)

Finally, by plugging (A.17) into (A.16), the 4-dimension Ricci scalar can be written
in the form

R = (3)R−K2 +KabK
ab. (A.18)

Thus, the ADM Lagrangian corresponds to the equation

LADM =
√
−gR = N

√
q[KabK

ab −K2 + (3)R]. (A.19)
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APPENDIX B - Some details about the Hamiltonian constraint of Loop
Quantum Cosmology and the sine function

As mentioned before, Ωab
k = 0 since the space-time is a flat FRW one. Moreover,

qab = gab implies that qab = diag(a2, a2, a2) = diag(p, p, p). Therefore, (2.46) can be
written as

H = −
Ea
i E

b
j

16πGγ2p3/2 ε
ij
kFab

k +
π2
ϕ

2p3/2 + p3/2V (ϕ). (B.1)

Plugging (2.52) into (2.47) and working with the properties of the Levi-Civita sym-
bol and the symmetry associated with the Ashtekar connection, εijkFabk could be
described by the relation

εijkFab
k = 6c2(dxi)a(dxj)b. (B.2)

The final step is to substitute the LQC densitized triad definition (2.51) and (B.2)
in (B.1) which enables us to obtain the LQC Hamiltonian constraint

H = − 3
8πGγ2p

1/2c2 +
π2
ϕ

2p3/2 + p3/2V (ϕ). (B.3)

At this point, the Hamiltonian constraint cannot be promoted to operator level due
to the absence of an analog operator for c. In order to overcome this situation, the
strategy implemented was to replace c as it follows

c→ sin µ̄c
µ̄

. (B.4)

The sine function can be expanded in terms of holonomies (GAMBINI; PULLIN, 2011).
Remember that, as an exponential function, holonomy can be decomposed in sine
and cosine functions. Thus, considering (B.4) and (2.56), the Hamiltonian constraint
acquires the effective structure

Heff = − 3p3/2

8πG∆γ2 sin2 µ̄c+
π2
ϕ

2p3/2 + p3/2V (ϕ). (B.5)

In other words, introducing the sine function within the Hamiltonian can be inter-
preted as a direct consequence of the holonomy corrections since they are used to
regularize the classical constraints to incorporate the Ashtekar connection (MIEL-
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CZAREK et al., 2012).

In principle, the use of the sine function should be restricted to small values of its
argument which would exclude the bounce phase. Notwithstanding, for an isotropic
universe dominated by a massless-free scalar field, the Ashtekar connection can also
be replaced during the bounce stage too (BOJOWALD; HOSSAIN, 2008).

Another key aspect to be emphasized is the fact that the sine function contains
higher order terms of the extrinsic curvature which should be understood as a short
way to express the leading order corrections (BOJOWALD; HOSSAIN, 2008). Therefore,
the sine function from MG representation of LQC could also hide higher terms
related to the higher derivative scalar-tensor theory.
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APPENDIX C - Cosmic Microwave Background: physics and statistics

As an electromagnetic wave, CMB can be explored through the Stokes parameters.
Basically, an observer on Earth receives CMB photons from all directions at the same
time. From Figure C.1, see that SLS is considered from a geocentric perspective. The
strategy implemented was to use the properties of the photons (temperature and
polarization) to obtain information about how the universe was during its primordial
evolutionary stages. The intensity parameter I is related to CMB temperature, while
Q and U parameters can be used to determine the CMB linear polarization pattern
(CHANDRASEKHAR, 1960; BESSADA, 2010).

Figure C.1 - Cosmic Microwave Background

SOURCE: Kinney (2003)

CMB has a blackbody spectrum and its temperature T ' 2, 73K is almost uniform
at one part in ten hundred (DODELSON, 2003; KINNEY, 2003). According to the SCM,
this slightly anisotropies occur due to scalar perturbations produced during the
inflationary period and enables one to study the epochs before decoupling. Moreover,
any kind of polarization is also a signature that CMB photons are not an isotropic
radiation beam (CHANDRASEKHAR, 1960; BESSADA, 2010).

The standard procedure to measure CMB anisotropies is through the two-point
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correlation function of the temperature distribution. Since temperature corresponds
to a two-dimensional field, it can be expanded in a spherical harmonics base Y `

m.
So, we are dealing with a function of multipole momentum ` (DODELSON, 2003).
Therefore, the fractional temperature variation can be defined by

∆T (n)
T

=
∑
`m

a`mY
`
m(n), (C.1)

where n is the unitary vector associated to the direction in which the measurement
was taken.

For simplest inflationary models, ∆T (n)
T

corresponds to a Gaussian random field. In
this case, the statistical properties can be obtained from the mean and variance of
the field. The first is zero by definition and the second one is determined through
the two-point correlation function in the real space. This means that the variance is
computed from the angular power spectrum in harmonic space (GALLI, 2015). Both
definitions can be summarized by the relations

〈a`m〉 = 0 and 〈a`ma∗`′m′〉 = δ``′δmm′C`, (C.2)

in which C` is usually referred to as angular power spectrum. Moreover, C` can be
directly expressed in terms of the two point angular correlation function (PRASAD,
2013):

〈
∆T (n)
T

∆T (n′)
T

〉
= C(θ) =

∑
`

2`+ 1
4π C`P`(cos θ), (C.3)

where P` are Legendre polynomials and θ is the angle separation between the direc-
tions n and n′ that increases as ` becomes smaller (` ∝ θ−1).

Another way to obtain the term aT`m associated with temperature is straight from
the Stokes parameter I,

I(θ, ϕ) =
∞∑
`=0

∑̀
m=−`

aT`mY (θ, ϕ)`m, (C.4)

with θ and ϕ determining a given region in the sky (BESSADA, 2010). Both sides of
C.4 are multiplied by Y (θ, ϕ)`m and integrated with respect to the solid angle Ω,
resulting in the expression
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aT`m =
∫
I(θ, ϕ)Y ∗`m(θ, ϕ)dΩ. (C.5)

This procedure can also be performed to get information about the CMB polariza-
tion. Here, we restrict ourselves to linear case since until the moment there is no
evidence of circular polarization from CMB photons.

Before we start the discussion of the correlation function for polarization, first, it
must be clear that this process is slightly different from the temperature case. The
Stokes parameters Q and U are not directly related to the term a`m. In fact, they are
combined into the so-called E- and B-modes through the expressions (BASKARAN et

al., 2006)

E(θ, ϕ) = −2∇a∇bPab and B(θ, ϕ) = −2∇a∇cPabεac, (C.6)

where Pab corresponds to the symmetric-trace-free part of the polarization tensor
given by (KAMIONKOWSKI et al., 1997; CABELLA; KAMIONKOWSKI, 2004; BESSADA,
2010)

Pab(θ, ϕ) = 1
2

 Q −U sin θ
−U sin θ −Q sin2 θ

 . (C.7)

In terms of the harmonic spherical base, equation (C.6) can be written in the fol-
lowing form

E(θ, ϕ) =
∞∑
`=2

∑̀
m=−`

[
(`+ 2)!
(`− 2)!

] 1
2

aE`mY (θ, ϕ)`m, (C.8)

B(θ, ϕ) =
∞∑
`=2

∑̀
m=−`

[
(`+ 2)!
(`− 2)!

] 1
2

aB`mY (θ, ϕ)`m. (C.9)

Figure C.2 shows the specific pattern caused only by one mode or another. E-mode
describes a divergent pattern, while the B-mode would determine a curl of the ob-
served radiation beam. This is the reason why the modes are named with the letters
E and B, analogously to electromagnetic case.
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Figure C.2 - CMB polarization patterns

SOURCE: Saliwanchik (2015)

The equations (C.4), (C.8) and (C.9) can be worked until the invariant functions
I(θ, ϕ), E(θ, ϕ) and B(θ, ϕ) achieve a suitable structure to solve the Boltzmann
equations for the radiative transfer equation considering the weak gravitational field
case (BESSADA; MIRANDA, 2009a). This allows one to obtain an expression for aX`m,nr
(X = T,E,B) where n is the wavenumber and r = 1 and r = 2 represent the left
and right-hand polarization states, respectively. As a result the general correlation
function can be expressed as (BASKARAN et al., 2006)

CXX′

` = C2

4π2(2`+ 1)

∫
ndn

∑
r=1,2

∑̀
m=−`

[
aX`m,nra

X′∗
`m,nr + aX∗`m,nra

X′

`m,nr

]
, (C.10)

with C referring to a constant value. Therefore, at CMB area, the power spectrum
consists in the plot CXX′

` × ` like Figures 5.1, 5.2 and so on. The range associated
with the values of ` provides information from particular evolutionary stages. In
case of the very early times, the values ` < 30 are the most relevant part of the
spectrum.
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