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ABSTRACT
We investigate the general stability of 1D spherically symmetric ionized Bondi accretion on
to a massive object in the specific context of accretion on to a young stellar object. We first
derive a new analytic expression for a steady-state two-temperature solution that predicts the
existence of compact and hypercompact H II regions. We then show that this solution is only
marginally stable if ionization is treated self-consistently. This leads to a recurring collapse
of the H II region over time. We derive a semi-analytic model to explain this instability, and
test it using spatially converged 1D radiation hydrodynamical simulations. We discuss the
implications of the 1D instability on 3D radiation hydrodynamics simulations of supersonic
accreting flows.
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1 IN T RO D U C T I O N

The problem of a spherically symmetric accretion flow on to a
massive star including a rigorous treatment of the hydrodynamics
was first introduced by Bondi (1952), and is consequently referred to
as the Bondi problem. Mestel (1954) studied the effect of ionizing
radiation on the original Bondi problem, using an approximation
whereby both the ionized and the neutral region are assumed to
be isothermal, with different isothermal sound speeds and a sharp
transition from ionized to neutral regime at the ionization front.
Keto (2002, 2003) showed that this work explains the existence
of a steady-state solution in which an ionized region is trapped
inside the accreting flow. This explains the existence of trapped
compact and ultracompact H II regions around massive accreting
stars. These ultracompact H II regions are indeed observed around
massive protostars, with observed size estimates varying from
∼103 au (Churchwell 2002) to as small as ∼10 au (Ilee et al. 2016).
He also showed how accretion can continue while the protostar is
already emitting ultraviolet radiation, which has implications for
the final mass of a young stellar object.

Recently, this work was extended to 3D using a Monte Carlo
radiation hydrodynamics (RHD) code (Lund et al. 2019). They
were able to numerically simulate a trapped H II region, and also
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showed the change in regime from a trapped R-type ionization
front into an expanding D-type ionization front under a changing
source luminosity, with the subsequent shut down of accretion on
to the central star. However, their work also casted doubt about
the stability of the steady-state solution of Keto (2002), as their
trapped H II regions showed signs of periodic collapse, whereby
the ionization front periodically collapsed on to the central star and
moved outwards again.

In this work, we will analyse this instability in more detail, using a
high-resolution 1D spherically symmetric radiation hydrodynamics
code, and a semi-analytic stability analysis.

Note that massive stars are expected to form through an accretion
disc (Beltrán & de Wit 2016; Kuiper & Hosokawa 2018), which
leads to more extended ultracompact H II regions, and stabilizes
the ionization front (Sartorio et al. submitted). This renders the
assumption of spherical symmetry an unlikely scenario for accretion
on to a protostar. Nevertheless, this work is still relevant for
our understanding of trapped H II regions and can serve as a
useful benchmark test for models that combine hydrodynamics,
photoionization, and gravitational accretion.

2 A NA LY T IC S

In this section, we present the analytical solution to the original
Bondi problem, and the extended Bondi problem with ionizing
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radiation. This work is a summary of the original work of Bondi
(1952) on steady-state accretion, and extends the work of Mestel
(1954) and Keto (2002) with a full analytic expression for two-
temperature steady-state accretion. We will summarize the main
equations and present the full analytic steady-state solution, before
addressing the stability of this analytic solution under self-consistent
ionization.

2.1 Bondi accretion

We assume spherically symmetric flow on to a massive object of
constant mass M with a constant accretion rate (Bondi 1952)

Ṁa = 4πr2ρ(r)v(r), (1)

with ρ(r) and v(r) the mass density and fluid velocity as a function
of radius r.

If we furthermore neglect the gravitational force due to the mass
of the accreting fluid and assume the potential is dominated by M,
and assume an isothermal equation of state with a constant sound
speed cs(r) = √

dP (r)/dρ(r) = Cs , the constancy of the accretion
rate leads to a specific form of Bernoulli’s equation:

v2(r)

2C2
s

+ ln (ρ) − 2RB

r
= constant, (2)

where we introduced the (constant) Bondi radius

rB (r) = GM

2c2
s (r)

= RB (3)

≈ 110.9

(
M

M�

)(
Cs

2 km s−1

)−2

au, (4)

with G = 6.674 × 10−11 m3 kg−1 s−2 Newton’s constant.
Assuming that the velocity vanishes at infinity, we find the value

of the constant:

v2(r)

2C2
s

+ ln (ρ) − 2RB

r
= ln (ρ∞), (5)

with ρ∞ the rest density of the accreting material. By evaluating
this equation at r = RB, we can find the density ρB at the Bondi
radius: ρB = e3/2ρ∞ ≈ 4.48ρ∞.

Using (1), we find an expression for the density as a function of
radius:

ρ(r) = −ρBR2
BCs

r2v(r)
. (6)

Substituting this in (5), we find(
v(r)

Cs

)2

− ln

[(
v(r)

Cs

)2
]

− 4 ln

(
r

RB

)
+ 3 − 4

RB

r
= 0, (7)

which has general solution (Cranmer 2004)

v(r) = −Cs

√√√√−W

(
−
(

RB

r

)4

exp

(
3 − 4

RB

r

))
, (8)

where W(x) is the Lambert W function, and the negative root was
chosen since we want material to be accreting on to the central
object.

The Lambert W function is a complex valued function with an
infinite number of branches, but two of these branches, W0(x) and
W−1(x), are real valued in the range [ − 1/e, 0], with W0(− 1/e) =
W−1(− 1/e) = −1, W0(0) = 0, and W−1(x) → − ∞ for x → 0. Since

we want the velocity to be a strictly increasing function of radius,
we see that we start on the W0 branch for r > RB, and switch to the
W−1 branch at r = RB. For r → 0, the velocity diverges.

We end up with the following analytic expressions for the velocity
for steady-state accretion on to a massive object:

v(r) =
{−Cs

√−W−1 (−ω(r)) r ≤ RB,

−Cs

√−W0 (−ω(r)) r > RB,
(9)

with

ω(r) =
(

RB

r

)4

exp

(
3 − 4

RB

r

)
. (10)

2.2 Ionizing radiation

To include ionization from a central isotropic point source, we
follow Mestel (1954) and assume a sharp transition from ionized
to neutral at a well-defined radius RI. Both inside and outside the
ionized region the gas obeys an isothermal equation of state, with
the constant sound speed given by Cs,i and Cs,n, respectively. We will
characterize the change in equation of state in terms of the pressure
contrast Pc = C2

s,i/C
2
s,n. Since the temperature in the ionized region

will be higher than that in the neutral region, we always have Cs,i >

Cs,n, and hence Pc > 1.
Since (6) and (9) are completely determined by the boundary

condition at r → + ∞, this solution is still valid for r ≥ RI, with
Cs = Cs,n, and RB = RB,n = GM/(2C2

s,n). To find the solution
for r < RI, we impose conservation of mass and momentum
across the ionization front to find the following Rankine–Hugoniot
conditions:

ρi(RI )vi(RI ) = ρn(RI )vn(RI ) (11)

ρi(RI )
(
v2

i (RI ) + C2
s,i

) = ρn(RI )
(
v2

n(RI ) + C2
s,n

)
, (12)

where ρ i(r) and vi(r), and ρn(r) and vn(r) are the density and velocity
in the ionized and neutral regions, respectively.

If we introduce the jump factor

� = ρi(RI )

ρn(RI )
= vn(RI )

vi(RI )
, (13)

we find the following equation for the jump as a function of the
known neutral velocity vn(RI):

C2
s,i�

2 − (
v2

n(RI ) + C2
s,n

)
� + v2

n(RI ) = 0, (14)

with solutions

� = 1

2C2
s,i

(
v2

n(RI ) + C2
s,n ±

√(
v2

n(RI ) + C2
s,n

)2 −4C2
s,iv

2
n(RI )

)
.

(15)

� only has real solutions for |vn(RI)| ≥ vR or |vn(RI)| ≤ vD [note
that vn(r) is always negative because we are in an accretion regime],
with

vR = Cs,i

⎛
⎝1 +

√
1 −

(
Cs,n

Cs,i

)2
⎞
⎠ , (16)

vD = Cs,i

⎛
⎝1 −

√
1 −

(
Cs,n

Cs,i

)2
⎞
⎠ , (17)
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which are commonly referred to as the R-type and D-type solutions.
We will limit ourselves to R-type solutions. In the region between
the R-type and D-type solutions there is no solution with a single
shock at the position of the ionization front, but more complex
double front solutions could be possible; we do not study these in
this work.

It is obvious that |vn(RI)| > Cs,i, so that the R-type solution
implies supersonic neutral gas at the ionization front. Furthermore,
� > 1 for |vn(RI)| ≥ vR, which implies |vi(RI)| < |vn(RI)|.

� has two solutions in the R-type region, corresponding to a
large and a small jump (corresponding to the positive and negative
sign in 15). We call these the weak and strong R-type solution. If
we assume a density structure that initially evolved through Bondi
accretion without ionization, then the solution will naturally evolve
into the weak solution with the smallest jump, and this is the solution
we will assume below. In this case, the velocity in the ionized region
will also be supersonic (see Appendix A for a detailed analysis of
weak and strong R-type solutions and imposed velocity restrictions).

Inside the ionized region, equation (1) still gives us the density:

ρi(r) = ρi(RI )R2
I vi(RI )

r2vi(r)
. (18)

The Bernoulli equation (2) now becomes

v2
i (r)

2C2
s,i

+ ln (ρi(r)) − GM

C2
s,i r

= v2
i (RI )

2C2
s,i

+ ln (ρi(RI )) − GM

RIC
2
s,i

,

(19)

since we now need to apply boundary conditions at r = RI instead
of r → + ∞.

Similarly as before, we can combine this equation with (6) to get

(
vi(r)

Cs

)2

− ln

[(
vi(r)

Cs

)2
]

− 4 ln

(
r

RI

)
+ ln

(
v2

i (RI )

C2
s,i

)

− 4
RB,i

r
− v2

i (RI )

C2
s,i

+ 4
RB,i

RI

= 0, (20)

where we introduced the Bondi radius for the ionized region RB,i =
GM/(2C2

s,i). This equation has the general solution

vi(r) = −Cs,i

√
−W (−ωi(r)), (21)

with

ωi(r) =
(

RI

r

)4 (
vi(RI )

Cs,i

)2

exp

(
4
RB,i

RI

− 4
RB,i

r
− v2

i (RI )

C2
s,i

)
.

(22)

Note that as in the neutral case, this solution will switch from
the W0 to the W−1 branch at a critical radius Rc, for which vi(Rc) =
−Cs,i. However, we know that this cannot happen for a weak R
front, as vi(r) < −Cs,i. We hence only need to consider the W−1

branch.
The full solution for spherically symmetric accretion with ion-

ization (in the case |vn(RI)| ≥ vR) is

ρ(r) =
{

ρn(r) r > RI ,

ρi(r) r < RI ,
(23)

v(r) =
{

vn(r) r > RI ,

vi(r) r < RI ,
(24)

with

ρn(r) = −ρB,nR
2
B,nCs,n

r2vn(r)
, (25)

ρi(r) = ρi(RI )R2
I vi(RI )

r2vi(r)
, (26)

and

vn(r) =
{−Cs,n

√−W−1 (ωn(r)) r ≤ RB,n,

−Cs,n

√−W0 (ωn(r)) r > RB,n,
(27)

vi(r) = −Cs,i

√
−W−1 (ωi(r)) (28)

with

ωn(r) = −
(

RB,n

r

)4

exp

(
3 − 4

RB,n

r

)
, (29)

ωi(r) = −
(

RI

r

)4 (
vi(RI )

Cs,i

)2

(30)

exp

(
4
RB,i

RI

− 4
RB,i

r
− v2

i (RI )

C2
s,i

)
. (31)

The parameters ρ i(RI) and vi(RI) are given by the jump conditions:

ρi(RI ) = �ρn(RI ), (32)

vi(RI ) = vn(RI )

�
, (33)

with

� = 1

2

⎛
⎝v2

n(RI )

C2
s,i

+ 1

Pc

−
√(

v2
n(RI )

C2
s,i

+ 1

Pc

)2

− 4
v2

n(RI )

C2
s,i

⎞
⎠ ,

(34)

so that the entire solution is parametrized in terms of Pc, RI, ρB,n,
Cs,n, and M.

The density and velocity profile of the two-temperature solution
is plotted in Fig. 1 for three different values of the ionization radius
RI. It can be seen that higher values of RI lead to higher densities
and lower velocities inside the ionized region; the solution in the
neutral region is the same for all models.

2.3 Self-consistent ionization

The derivation above did not make any assumptions about how the
ionization happens, and just assumed ionization leads to a constant
ionization radius RI. However, in general, the ionization radius RI(t)
will vary with time, and the time evolution will be linked to the
hydrodynamical quantities, ρ(r, t) and v(r, t). To find out if the
steady-state solution obtained above is actually stable, we have to
include this effect.

For simplicity, we will assume that the dynamical time scale tdyn

over which the hydrodynamical quantities evolve is much larger
than the recombination time scale, trec = (nHαB(T))−1, where nH is
the number density of hydrogen atoms and αB(T) is the collisional
recombination rate of ionized hydrogen to all excited levels of
neutral hydrogen, but excluding ionizations to the ground state
(the so-called on-the-spot approximation), which depends on the
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Figure 1. Density (top) and velocity (bottom) as a function of radius for the
analytic two-temperature solution for three different values of the ionization
radius RI, as indicated in the legend. All models used a central mass M =
18 M�, a pressure contrast Pc = 32, a Bondi density ρB = 10−19 g cm−3,
and a neutral sound speed Cs,n = 2.031 km s−1. The dashed line on the
top panel shows a power-law approximation for the density profile in the
ionized region.

temperature T. Under this assumption, the ionization structure of
the system instantaneously adapts to any change in density, and
we can model ionization by simply changing the equation of
state.

To get the ionization radius RI, we use a Strömgren approxi-
mation, and assume that all material inside the ionization region
is completely ionized. At the ionization radius, we have a strong
discontinuity, and outside the ionization radius the material is
completely neutral. In this case, the ionization balance equation
is given by Osterbrock & Ferland (2006)

Q(t) = 4π

∫ RI (t)

Rc

n2
H (r, t)αB (T )r2dr, (35)

where Q(t) is the total ionizing luminosity of the star. Since the
steady-state density profile is very centrally peaked, and since we
do not realistically expect the profile to keep up until r = 0, we also
introduced an inner cut off radius Rc, below which we assume no
more ionizations to occur.

Under the two-temperature approximation, the recombination
rate αB(Ti) = αi is constant. If we further assume our gas to be
composed of hydrogen only, we can rewrite the ionization balance
equation as

Q(t) = 4παi

m2
H

∫ RI (t)

Rc

ρ2(r, t)r2dr, (36)

where mH = 1.674 × 10−27 kg is the hydrogen atomic mass. Taking
the time derivative of this equation, we find the following equation
for the time evolution of RI(t):

dRI (t)

dt
= 1

ρ2 (RI (t), t) R2
I (t)

×
[

m2
H

4παi

dQ(t)

dt
− 2

∫ RI (t)

Rc

ρ(r, t)
∂ρ(r, t)

∂t
r2dr

]
, (37)

where we assumed the ionization radius is a continuous function of
time, and used the general form of Leibniz’ rule:

d

dx

(∫ b(x)

A

f (x, y) dt

)

= f (x, b(x))
d

dx
b(x) +

∫ b(x)

A

∂

∂x
f (x, t) dt . (38)

2.4 Stability analysis

For what follows, we will assume a constant source luminosity Q(t),
and assume we already have a steady-state solution as derived in
Section 2.2. We will now perturb this solution by introducing a small
density perturbation outside the ionization radius. As shown by (37),
this will not affect the ionization radius, and the perturbation will
accrete until it reaches the ionization front radius. Once it reaches the
ionization front and crosses it by a small distance ε, the ionization
front radius will change according to

dRI (t)

dt
= − 2

ρ2(RI (t), t)R2
I (t)

∫ RI (t)

RI (t)−ε

ρ(r, t)
∂ρ(r, t)

∂t
r2dr,

(39)

since this is the only part of the integral that is non-trivial. This
expression does not lend itself to a rigorous linear perturbation
analysis because of the presence of an integral in a differential
equation, so that we will restrict ourselves to a semi-analytic
analysis below.

What happens next depends on the sign of ∂ρ(r, t)/∂t. If this sign
is positive (a positive perturbation), the value of the integral will be
positive and the ionization front will move inwards. For a negative
perturbation, the ionization front will move outwards.

In either case, the perturbation does not cause a restoring force
that balances out the perturbation and restores the initial ionization
front radius, as the perturbation will be further accreted inside the
ionized region, and will keep contributing to (39). Depending on
the size of the perturbation, the ionization radius will either settle
into a new dynamic equilibrium value, or will keep moving in the
same direction. In the limit of a very large positive perturbation,
the ionization front will move with the accreting bump and collapse
entirely. This qualitative behaviour of the ionization front radius
constitutes a first important result: the change in ionization front
caused by a perturbation cannot be undone while that perturbation
is still present inside the ionized region. The rate at which the
ionization radius changes depends on the size and the shape of the
perturbation.

Once the initial perturbation leaves the ionized region by crossing
the cut-off radius Rc, the situation is nominally reset to the original
two-temperature situation. However, since the profile behind the
perturbation adjusted to a new ionization radius while the perturba-
tion was still present, the amount of available material to ionize will
now no longer match the initial, stable two-temperature solution.
For a positive perturbation, the ionization front will have shrunk
and the density will now be too low; for a negative perturbation the
reverse will have happened. We now end up in the opposite scenario
of what we started out with: the initially positive perturbation now
results in a profile with a negative perturbation, while the initially
negative perturbation is now a positive perturbation. This is a second
important result: once a perturbation leaves the ionized region, a
new perturbation of opposite sign is created.

The new perturbation of opposite sign has to ensure the ionizing
luminosity Q(t) is exactly balanced by recombinations (see 36).

MNRAS 485, 3771–3782 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/3/3771/5307088 by Instituto N
acional de Pesquisas Espaciais user on 26 July 2019



Supersonic ionized accretion flow stability 3775

Since the new perturbation will be created at a larger radius than
the original perturbation, and since the Bondi accretion profile
for the density scales as ∼r−1.4, a larger density perturbation is
needed to achieve this. This leads to the final important result: the
newly created perturbation will always be larger than the original
perturbation.

In conclusion, any initially small perturbation will lead to an
oscillation of the ionization front radius on a time-scale of the free
fall time (the time a perturbation created at the ionization front needs
to reach the inner cut off radius) and with a growing amplitude, until
the amplitude is large enough to cause the ionization front to move
at the same speed as the perturbation. Physically, there are four
interesting scenarios, depending on the sign and the size of the
initial perturbation:

(i) A large positive perturbation will cause a collapse of the
ionization front whereby the ionization front gets trapped inside
the perturbation and collapses on to the central cut-off radius.

(ii) A small positive perturbation will initially cause a collapse
of the ionization front, but the ionization front will move at a
slower pace than the accretion velocity of the perturbation. When
the perturbation reaches the central cut off radius, the ionization
front will go through a phase of expansion, followed by one or
more subsequent oscillations with growing ionization front speed,
until the ionization front gets trapped inside a perturbation.

(iii) A large negative perturbation will initially cause an expan-
sion of the ionization front until the perturbation reaches the central
cut off radius. At this point the ionization front will collapse as in
the case of a large positive perturbation.

(iv) A small negative perturbation will initially cause an ex-
pansion of the ionization front, followed by multiple oscillations
with growing ionization front speed, until the ionization front gets
trapped inside a perturbation.

In the next section, we will test our semi-analytic stability analysis
by numerically seeding known perturbations of a given sign and size
that correspond to these four scenarios.

3 N U M E R I C A L S I M U L AT I O N S

3.1 1D code

3.1.1 Algorithm

We use a textbook (Toro 2009) implementation of a 1D spherically
symmetric second-order finite-volume method.1 We use a very
conservative version of the slope limiter of Hopkins (2015). Fluxes
are estimated using an HLLC Riemann solver (Toro 2009) with a
polytropic index γ = 1.001 (we tested our results against an exact
Riemann solver), and are limited using the per-face slope limiter of
Hopkins (2015). After every time-step the pressure is reset using
the isothermal equation of state, effectively mimicking the use of an
isothermal Riemann solver. The spherical source terms needed to
make the method spherically symmetric are added using a second-
order Runge–Kutta method, as suggested by Toro (2009).

Gravity is added as an extra source term in the momentum
equation, using an operator splitting method that uses a leapfrog
scheme (Springel 2010). We assume that the central mass is much
larger than the total mass of the fluid, such that we only consider
the mass of the central object, as an external force.

1Available from https://github.com/bwvdnbro/HydroCodeSpherical1D

We know from Section 2 that the central density is divergent,
which will cause our numerical method to break down for small
radii. We therefore set up an inner boundary radius with outflow
boundary conditions, inside which we do not follow the hydrody-
namics. At a much larger radius, we set up an inflow boundary
where we impose the constant accretion rate.

To include ionization, we assume the Strömgren approximation
introduced above, so that the ionization radius is determined by
finding the root of the following function:

fion(RI ) =
∑

j,rj <RI

ρ2
j

1

3

[(
rj + 1

2
�r

)
−

(
rj − 1

2
�r

)]3

− Q′,

(40)

where rj is the central radius of cell j; ρ j is its density. �r is the
radial size of a single cell, while

Q′ = m2
HQ

4παB (Ti)
− Qinner (41)

is the ionizing luminosity that makes it out of the inner mask (we
will treat Q

′
as a simulation parameter).

Once the ionization radius is found, we set the pressure of the
region based on the following adapted isothermal equation of state:

P (r) = ρ(r)

{
C2

s r ≥ RI ,

C2
s Pc r < RI ,

(42)

where Pc is the pressure contrast between the ionized and neutral
region that was introduced in Section 2.

3.1.2 Simulation parameters

We want to set up physically plausible initial conditions for which
our assumptions hold, i.e. we want the density to be high enough
to guarantee trec < <tdyn, while at the same time having a density
that is low enough to actually be ionized by a physically plausible
input luminosity Q

′
. For a central stellar mass of 18 M�, we

expect an ionizing luminosity Qi ∼ 1048 s−1 (Keto 2003; Sternberg,
Hoffmann & Pauldrach 2003). For the steady-state solution, the
ionization balance equation is given by

Qi = 4παiρ
2
i (RI )R4

I v
2
i (RI )

m2
H

∫ RI

Rc

1

r2v2
i (r)

dr. (43)

We have to numerically integrate this equation to find the ionizing
luminosity that corresponds to a given set of two-temperature Bondi
parameters.

Fig. 2 shows the ionizing luminosity Qi as a function of the
neutral Bondi density ρB,n, for a central mass M = 18 M�, neutral
sound speed Cs,n = 2.031 km s−1 (corresponding to a hydrogen only
gas with Tn = 500 K), pressure contrast Pc = 32 (corresponding to
an ionized temperature Ti = 8000 K), and assuming an ionization
front radius RI = 30 au (similar to Lund et al. 2019) and inner
cut-off radius Rc = 10 au (due to numerical precision issues, we
cannot compute the argument to the Lambert W function for radii
<∼10 au). Also shown is the corresponding recombination time-
scale at the ionization front, computed as Td = mH/(ρn(RI)αi),
with αi = 4 × 10−13 cm3 s−1. For realistic ionizing luminosities
∼1048 s−1, we find a neutral Bondi density ∼10−19 g cm−3, and a
corresponding recombination time-scale ∼10−2 yr. At the ionization
radius, the free fall time is Tff =

√
2R3

I /(GM) = 8.723 yr (the free
fall time taking into account the Bondi velocity as initial velocity
is of the same order of magnitude), so the recombination time is
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Figure 2. Ionizing luminosity as a function of neutral Bondi density (top),
and as a function of ionization front recombination time (bottom) for a fixed
central mass, pressure contrast, neutral sound speed, and ionization front
radius, assuming an inner cut-off radius Rc = 10 au and an ionization front
radius RI = 30 au. The dashed lines correspond to the specific choice of
ρB,n we will use for our simulations.

more than a factor 100 smaller than the typical dynamical time in
the entire ionized region.

We also tested this assumption using an expensive 1D time-
dependent Monte Carlo radiation transfer algorithm (Tootill, pri-
vate communication) and found an excellent agreement between
the time-dependent results and the results obtained by assuming
instantaneous ionization.

In what follows, we will hence use a neutral Bondi density
ρB,n = 10−19 g cm−3. We will use a simulation box that spans from
Rc = 10 au to Rm = 100 au, subdivided into 2700 equal sized radial
cells, such that our desired ionization radius is on a cell boundary.

3.1.3 Stable solution

As a first test of the 1D code, we will try to obtain the stable
two-temperature solution derived in Section 2, starting from a
constant density and velocity, and setting a constant ionization
front radius RI = 30 au. The analytic solution is entirely fixed
by specifying the neutral Bondi parameters, ionization front radius,
and pressure contrast; similarly the numerical solution should be
entirely determined by the inflow boundary conditions at Rm, the
mass of the external point mass, and the ionization front position and
pressure contrast if we do not restrict the solution at Rc (which we
can effectively do by using open boundaries). As initial conditions,
we hence set ρ(r) = ρn(Rm) and v(r) = vn(Rm) everywhere.

Fig. 3 shows the density and velocity at four different times during
the simulation. By t = 20 yr, the simulation has settled into a steady-
state solution. Fig. 4 shows the relative difference between this
steady-state solution and the analytic steady-state solution found
in Section 2, at time t = 40 yr. Both solutions are in excellent
agreement. We conclude that our 1D code is capable of resolving
the necessary physics to study this problem.

3.1.4 Stability test

As a second test, we test the stability of the steady-state solution
when the ionization front radius is computed self-consistently. To
this end, we use the steady-state output of the previous test, and
compute the ionization radius based on equation (40).

Fig. 5 shows the resulting density and velocity profiles at four
different times during the simulation. Initially, the steady-state
solution is stable. However, after ∼10 yr, the density around the
ionization front starts to breakup into small peaks that travel inwards
with the accretion flow. These small peaks cause tiny fluctuations
in the ionization front radius, which gradually grow. After ∼20 yr,

Figure 3. Density and velocity profile for the steady-state solution set up
run at four different times throughout the simulation, as indicated in the
legend. The dashed line shows the analytic two-temperature solution for the
same parameters.

Figure 4. Relative difference between the simulation and the analytic
solution for the two-temperature Bondi accretion with ionization and a
constant ionization front radius, at the final simulation time t = 40 yr.

the ionization front radius is no longer stable, and starts to oscillate,
as can been seen from Fig. 6.

It is important to note that we did not seed the small oscillations
that lead to the collapse of the steady-state solution; these oscilla-
tions are seeded numerically by accumulated round off error. We
conclude that the steady-state solution is only marginally stable, as
even very small-scale noise can cause it to become unstable.

3.1.5 Convergence

The result for the stability test discussed above depends on numer-
ically seeded noise, which depends on resolution. This makes it
impossible to perform a standard convergence test to check whether
the time evolution of the ionization front corresponds to a physical
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Figure 5. Density and velocity profile for the stability test run at four
different times throughout the simulation, as indicated in the legend. The
dashed line shows the analytic two-temperature solution for the same
parameters.

Figure 6. Ionization front radius as a function of time for the stability test
run with self-consistent ionization. The dashed horizontal line shows the
initial ionization front radius, while the full horizontal line shows the inner
outflow boundary radius.

effect or is simply caused by numerical issues. To show that our
results do converge, we have to modify our set up so that we
can obtain results that are independent of the spatial resolution
for a sufficiently high spatial resolution. We identify two issues
that need to be addressed: (a) we need to seed the initial collapse
of the ionization front with a known perturbation that is the same
for all resolutions, (b) we need to make sure that newly created
instabilities that cause the recurring collapse of the ionization front
are consistent between resolutions. Since these depend on the shape
of the ionization front, we need to make sure that we resolve the
ionization front consistently between resolutions.

To obtain a spatially resolved ionization front, we convert the
strong jump into a smooth linear transition. As before, we compute
the ionization front radius RI from equation (40). However, now
the neutral fraction xH(r) of the gas does not just jump from 0 to 1
across the ionization front, but is given by

xH(r) =

⎧⎪⎪⎨
⎪⎪⎩

0 r < RI − 3
4S

,

xH,t (r) RI − 3
4S

≤ r ≤ RI + 3
4S

,

1 r > RI + 3
4S

,

(44)

where S is the maximal slope of the transition, and the transition
width is W = 3/(2S). The transition itself is a third-order polyno-

Figure 7. Steady-state density and velocity as a function of radius for
simulations with a smooth transition from ionized to neutral. The full lines
show 2700 cell simulation results, with the width of the corresponding
smooth transition indicated in the legend. The dashed line is the analytic
two-temperature solution. The insets show a zoom of the region around
the ionization front radius, where the smooth simulations deviate from the
analytic solution.

mial:

xH,t (r) = −16

27
S3(r − RI )3 + S(r − RI ) + 1

2
. (45)

This particular transition shape was chosen because it allows us to
control the slope of the transition, while ensuring continuous first
derivatives in the transitions points r = RI − W/2 and r = RI + W/2.

The adapted equation of state now becomes

P (r) = ρ(r)C2
s [(1 − xH(r))Pc + xH(r)] . (46)

Fig. 7 shows the stable two-temperature solution for a range
of simulations with different values of the transition width W and
for different spatial resolutions. As expected, the transition region
smooths out the jump from the neutral to the ionized region, but
outside the transition region the density and velocity still follow the
analytic solution.

Fig. 8 shows the ionization front radius as a function of time for
the same simulations when we self-consistently update the ioniza-
tion state. All simulations still become unstable after some time,
with the instability still being seeded by numerical noise. Since the
noise depends on the resolution, the instability is seeded differently
for different resolutions, and we do not obtain a converged result.

To seed the instability, we use the output of the set up runs shown
in Fig. 7 and add a small Gaussian-like density perturbation filter
φ(r) to the density, such that ρ

′
(r) = φ(r)ρ(r):

φ(r) =

⎧⎪⎪⎨
⎪⎪⎩

1 + ρp

(
1 − 6 u2 + 6 u3

)
u < 1

2 ,

1 + 2ρp (1 − u)3 1
2 ≤ u < 1,

1 1 ≤ u,

(47)
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Figure 8. Ionization front radius as a function of time for simulations with a
smooth transition from ionized to neutral region, self-consistent ionization,
and a numerically seeded instability. The full lines show simulation results
for different spatial resolutions, as indicated in the legend. The dashed
horizontal line shows the initial ionization front radius, and the full horizontal
line shows the radius of the inner outflow boundary.

with u = |r − r0|/h, where r0 is the centre of the Gaussian-like
bump and h its width. ρp is the amplitude of the perturbation, and
the shape of the perturbation is based on the cubic spline kernel
commonly used in SPH codes (see e.g. Springel 2005). We will use
r0 = 65 au and h = 5 au. We will choose four different amplitudes
for the perturbation to test the various scenarios derived above:
ρp = 0.1, ρp = 2, ρp = −0.1, and ρp = −0.01. These correspond
respectively to a small positive seed that should cause an ionization
front movement slower than the accretion velocity, a large positive
seed that should cause the immediate collapse of the ionization
front, a negative seed that should initially cause an expansion of

Figure 9. Density and velocity profile for the stability test run with ρp =
0.1, at five significant times throughout the simulation, as indicated in the
legend. The dashed line shows the analytic two-temperature solution for the
same parameters.

the ionization front followed by a collapse, and a negative seed that
should cause a number of oscillations.

Fig. 9 shows the time evolution of a simulation with a small
positive seed perturbation. The perturbation initially moves inwards
with the accretion flow until it reaches the ionization front. Once
it arrives there, it causes an increase in the density inside the
ionization region, which causes the ionization front radius to shrink
according to equation (37). The density enhancement continues
to move inwards with the accretion flow, and for a while the
ionization front moves inwards as well. The region outside the
ionization front radius in the meantime adjusts to the lower pressure
and settles into a neutral Bondi accretion, with an overall lower
density.

When the initial perturbation reaches the inner outflow boundary,
the mass inside the perturbation is effectively lost from the system,
causing the density inside the ionized region to go down again, and
subsequently the ionization front radius to expand again. However,
since the density inside the original ionization front radius partially
settled into a neutral Bondi profile, the overall density inside the
ionized region will be lower than in the steady-state two-temperature
solution, and the new ionization front radius will expand beyond
the original ionization front radius. This is not a steady-state
solution anymore, so the ionization front radius will consequently
shrink again as the inner density adapts to the ionization again.
During that process, a large peak in density builds up around the
ionization front radius, which in combination with the ionization
front evolution (equation 37) leads to a runaway collapse of the
ionization front towards the mask. Once this peak reaches the inner
outflow boundary, the situation is reset again, and the whole process
repeats itself.

Fig. 10 shows the evolution of the ionization front radius as a
function of time for the simulations with a negative seed perturbation
with ρp = −0.1. We clearly see how the repeated runaway collapse
of the ionization front leads to a periodic oscillation of the ionization
front radius with a period of ∼10 yr, roughly consistent with the
free fall time of the system. It is clear that the combination of a
smooth transition that damps small-scale noise and the seeding of

MNRAS 485, 3771–3782 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/3/3771/5307088 by Instituto N
acional de Pesquisas Espaciais user on 26 July 2019



Supersonic ionized accretion flow stability 3779

Figure 10. Ionization front radius as a function of time for simulations
with and without a smooth transition from ionized to neutral region, self-
consistent ionization, and a seeded instability with ρp = −0.1. The full lines
show simulation results for different spatial resolutions, as indicated in the
legend. The dashed line shows the initial ionization front radius, and the full
line shows the radius of the inner outflow boundary.

Figure 11. Ionization radius as a function of time for simulations with
four different values for the perturbation amplitude ρp, as indicated above
each panel. All simulations are based on the same initial condition with a
smooth ionization transition of 5 au and use a resolution of 2700 cells. The
dashed black lines show the initial ionization radius, while the full black
lines correspond to the radius of the inner outflow boundary.

the instability with a well-defined perturbation allow us to achieve
numerical convergence for the high-resolution simulations. This in
principle should allow us to use this test as a benchmark for this
type of instability. Note that the convergence is better for initial
conditions with a larger transition region from fully ionized to
fully neutral. For what follows, we will hence limit ourselves to
simulations with an ionization transition of 5 au and a resolution of
2700 cells.

Note that the expanding ionization front at the end of each
oscillation moves relatively fast, so that we cannot guarantee that
the dynamical time for this expansion is significantly larger than
the recombination time; a main assumption for our ionization
treatment. However, the overall density inside the central region
is low enough to guarantee the build-up of a new ionization front at
the expected radius in a time that is short enough not to significantly
alter our dynamics, and we can hence still assume our results are
qualitatively correct, albeit with a slightly longer oscillation period.
We confirmed this using a time-dependent Monte Carlo radiative
transfer simulation. Similarly, moving the inner outflow boundary
to smaller radii will lead to a small increase in oscillation period,
but will not change the qualitative behaviour, as we still expect
accreted material at small enough radii to be lost from our system of
interest.

Fig. 11 shows the time evolution of the ionization radius for the
four different scenarios discussed in Section 2.4. In the case of a
positive density perturbation, the ionization front initially collapses.
If the bump is small, the ionization front does not move at the same
speed as the bump, and the collapse halts when the bump moves
across the inner outflow boundary. If the bump is large enough, the
ionization front moves along with the bump and both collapse on to
the inner outflow boundary.

For a negative density bump, the ionization front initially expands
until the density bump is accreted across the inner boundary. At this
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Figure 12. Ionization front as a function of time for a self-consistent RHD
simulation of a single ionizing source within an initially stable neutral Bondi
profile, simulated with TORUS. The black lines represent the initial ionization
front radius (dashed) and the mask radius (full).

point, the expanded ionization region will start to contract again.
For a large negative bump, this immediately leads to a collapse of
the ionization front. For smaller bumps, the collapse is only partial
and leads to an oscillation of the ionization front with an amplitude
that increases over time.

In all cases, the initial perturbation eventually evolves into
a periodic oscillation of the ionization front, i.e. all scenar-
ios naturally evolve into the case where the ionization front
movement becomes coupled to the movement of the density
perturbation.

These simulations hence confirm the semi-analytic model we
derived before.

3.1.6 TORUS comparison

To investigate the impact of our approximations on the result of the
1D models, we reran our 1D test with the radiation hydrodynamics
code TORUS (Harries 2000, 2014), using the ‘detailed’ model as
described in Haworth et al. (2015). This includes polychromatic
radiation transport, diffuse field radiation (i.e. not the on-the-
spot approximation) as well as helium, metals and the associ-
ated line cooling in the thermal balance. In these calculations
a hydrodynamics-only calculation is run until a steady-state is
reached. The medium is the fully ionized, which lowers the optical
depth and hence speeds up the convergence of the first photoion-
ization equilibrium calculation. Subsequently, photoionization and
hydrodynamics steps are performed iteratively to follow the RHD
evolution. The ionizing luminosity of the source was tuned to
approximately reproduce the same ionization front radius as in the
models above.

The resulting time evolution of the ionization front is shown in
Fig. 12. As in the models above, the ionization front periodically
shrinks and then reappears. This shows that even with a more
detailed treatment of the photoionization, perturbations of the two-
temperature solution are enhanced by the spherical symmetry of the
system and never dampen out. It is interesting to note that in this
case, the ionization front does not collapse all the way up to the
mask. The reason for this is that the ionization front in this case is
located upstream from the density peak that causes the collapse, so
that the density peak is absorbed by the mask before the ionization
front reaches the mask radius.

3.2 3D simulation

The presence of a 1D instability has important implications for
3D RHD simulations of spherically symmetric Bondi accretion.
If spherical symmetry is not explicitly imposed on the radiation
field or on the coupling between radiation field and hydrodynamics,
then the instability will be seeded differently in different directions.
Once initial asymmetries have been seeded, the problem is no
longer spherically symmetric and true 3D effects will govern the
hydrodynamical evolution.

We explore these effects by running the same Bondi set up
described above in a full 3D RHD simulation using the Monte Carlo
RHD code CMACIONIZE (Vandenbroucke & Wood 2018a) (Vanden-
broucke & Wood 2018b). Since we are not interested in the detailed
results, we limit ourselves to low-resolution simulations and do not
explicitly check for convergence. More realistic simulations will
be subject of future studies. We run two simulations with different
grids used to discretize the fluid. Both simulations follow a fluid in
a box of 100 au × 100 au × 100 au with inflow boundary conditions
and a point mass (and ionization source) at the centre. Just as for the
1D simulations, a central sphere with radius 10 au is masked out.
The mass, initial ionization radius, neutral Bondi density, neutral
gas temperature, and pressure contrast are set as before.

A first set-up uses a regular Cartesian grid of 128 × 128 × 128
cells. To compute the ionization front position, we use 107 Monte
Carlo photon packets and 10 iterations. Initial instabilities will be
seeded by two mechanisms: Poisson noise inherent to the Monte
Carlo method, and discretization error due to the low-resolution
grid used. The latter will have a strong dependence on specific grid
directions (e.g. the coordinate axis directions and diagonals), and
from the top panel of Fig. 13 it is clear that they constitute the
dominant seeding mechanism, resulting in a very symmetrical, yet
no longer spherically symmetric ionization region.

The higher pressure in the directions with a larger ionization
radius will cause a tangential force that evacuates these regions
and pushes material into directions that are still neutral, reinforcing
the differences between both regions. While some directions with
larger ionization radii still periodically collapse due to the radial
instability, the directions with a smaller ionization radius actually
remain stable. At later times, the ionization region has a chaotic,
asymmetric shape, while the density field shows clear signs of grid
symmetries.

To eliminate the effect of Cartesian grid symmetries, we run the
same simulation using an unstructured Voronoi grid consisting of
100 000 cells, using 106 photon packets for 10 iterations. This is the
same grid structure used to run CMACIONIZE as a moving-mesh code,
but without actually moving the mesh in between time-steps (since
this would be very complicated for a 3D problem with spherical
accretion). In this case, the results look less artificial (see bottom
panel of Fig. 13), but the qualitative interpretation is the same:
the combination of the 1D instability and 3D effects will cause
the ionization front to break up into a non-spherically symmetric
structure, and the ionization front will stabilize in some directions.

We conclude that unless ionization is treated in a perfectly
spherically symmetric manner, 3D simulations will never result in a
perfectly symmetric ionization region, irrespective of any additional
3D effects that could be included in these simulations. This is
valuable background knowledge for the interpretation of future 3D
studies of Bondi accretion that will include rotation, and a general
limitation for RHD codes in studying problems that involve both
accretion and photoionization.
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Figure 13. Density slice at z = 0 for a 3D Bondi accretion simulation
with self-consistent photoionization and using a regular Cartesian grid of
128 × 128 × 128 cells (top) and an unstructured Voronoi grid with 100 000
cells (bottom). Both simulations were started from the same initial density
profile and evolved self-consistently until t = 20 yr.

4 C O N C L U S I O N

In this work, we studied the stability of spherically symmetric
ionized Bondi accretion flows around young stellar objects. We
derived an analytic expression for a two-temperature steady-state
solution in which an R-type ionization front with a size of the
order of 10 au is trapped in the highly supersonic accreting flow,
consistent with the predictions of Keto (2002, 2003). We were able
to accurately reproduce this analytic profile in a constrained 1D
RHD simulation.

However, we also showed that this steady-state solution is
only marginally stable if ionization is treated self-consistently,
leading to a collapse of the ionization front under small per-
turbations in density or ionizing luminosity. We were able to
confirm our semi-analytic model of this instability using 1D RHD
simulations, and were able to obtain spatially converged results
by introducing a noise suppressing transition layer and a seeded
instability.

Both the constrained simulations that lead to the two-temperature
steady-state solution and the converged simulations of the instability
could serve as benchmark problems for 1D RHD codes.

Finally, we showed that the existence of a 1D instability
has profound implications for 3D simulations of ionized ac-
cretion flows when the radiation field is not treated in a per-
fectly spherically symmetric manner. The instability makes it

impossible to retain spherical symmetry, and will amplify grid
symmetries.
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APPENDI X A : A NA LY SI S O F STRONG AND
WEAK R-TYPE SOLUTI ONS

Here we perform a detailed analysis of equation (15) for the case
of an R-type front, with vn(RI) < −vR. We begin by rewriting the
equation in terms of the dimensionless variables x = −vn(RI)/Cs,i

and A = Cs,n/Cs,i:

�(x,A) = 1

2
(x2 + A2 ±

√
(x2 + A2)2 − 4x2). (A1)

Note that A = √
1/Pc < 1. To get a real solution, we require

x > 1 +
√

1 − A2, (A2)

and hence the neutral region is supersonic. For the critical value
xc = 1 + √

1 − A2,

�c(A) = 1 +
√

1 − A2 = xc > 1, (A3)

which implies vi(RI) = −Cs,i > vn(RI). We now explore how the
value of � changes for x > xc in the case of a strong and a weak
R-type front.
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The first derivatives of �(x, A) are

∂�(x,A)

∂x
= x ± (A2 + x2 − 2)x√

(x2 + A2)2 − 4x2
, (A4)

∂�(x,A)

∂A
= A ± (A2 + x2)A√

(x2 + A2)2 − 4x2
. (A5)

For x > xc and 0 < A < 1, these derivatives have no real roots,
which means �(x, A) is monotonous in these regions. Furthermore,
we have that ∂�(x, A)/∂x → ± ∞ for x → xc, which means that
� > �c for a strong R front, and � < �c for a weak front.

For the weak front, we find (note the signs):

� = vn(RI )

vi(RI )
< �c = xc = vR

Cs,i

<
−vn(RI )

Cs,i

, (A6)

or

vi(RI ) < −Cs,i , (A7)

which means that the ionized region is always supersonic. For a
strong R-type front the condition � > �c does not impose similar
restrictions, so that a strong front can be subsonic or supersonic.

Note that there is some confusion in literature about strong and
weak R-type fronts and whether or not they are supersonic or
subsonic. From our analysis, it follows that a weak R-type front,
defined as the front with the smaller jump in density and velocity
across the ionization front, is always supersonic, and is the only front
expected to exist in nature. The strong front, defined as the front
with a larger jump in density and velocity across the ionization
front, can be either supersonic or subsonic. For the critical case
vn(RI) = −vR, the strong and weak fronts are the same, and the
ionized velocity is the ionized sound speed.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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