
AN EXTENSIBLE AND EASY-TO-USE TOOLBOX FOR DEEP LEARNING BASED ANALYSIS
OF REMOTE SENSING IMAGES

Raian Vargas Maretto, Thales Sehn Körting, Leila Maria Garcia Fonseca

National Institute for Space Research (INPE, Brazil)

ABSTRACT

Deep Learning (DL) methods are currently the state-of-the-
art in Machine Learning and Pattern Recognition. In recent
years, DL has been successfully applied to Remote Sensing
(RS) image processing for several tasks, from pre-processing
to classification. This paper presents DeepGeo, a toolbox that
provides state-of-the-art DL algorithms for RS image classi-
fication and analysis. DeepGeo focuses on providing easy-
to-use and extensible methods, making it easier to those RS
analysts without strong programming skills. It is distributed
as free and open source package and is available at https:
//github.com/rvmaretto/deepgeo.

Index Terms— Deep Learning, Convolutional Neural
Networks, Remote Sensing, Semantic Segmentation

1. INTRODUCTION

With the recent growing accessibility of new generation Re-
mote Sensing (RS) sensors, a large bulk of data has become
available. Having access to an incredible amount of data have
brought the opportunity to widen our ability to understand
the Earth. At the same time, it turned to be impracticable
the traditional non-automatic analysis, increasing the focus
on the ability to automatically extract valuable information
from those images.

In recent years, Deep Learning (DL) has become a hotspot
in the Machine Learning and Pattern Recognition communi-
ties. It is characterized by a set of Artificial Neural Networks
(ANN) composed of multiple feature extraction layers, also
called Deep Neural Networks (DNN). These layers are re-
sponsible for extracting features in different levels of abstrac-
tion, starting from the raw data [1]. In these feature extraction
layers, each level transforms the representation of the previ-
ous ones into a more abstract model, hierarchically combin-
ing them, and then being able to model and explore intrinsic
correlations in the data [2].

In RS Image Processing, DL methods have been suc-
cessfully applied for many different purposes, such as pan-
sharpening [3] and semantic segmentation (pixelwise clas-

Thanks to the World Bank and to the São Paulo Research Foundation
(FAPESP) for funding through the FIP (Forest Investment Program) program
and the project #2017/24086-2 respectively.

sification) [4, 5, 6]. Therefore, these methods has been
considered by [7] as crucial for the future of RS data analysis,
specially in the age of big data.

Several toolboxes are available for DL development, like
TensorFlow[8], Keras [9], Theano [10] and PyTorch [11]. Al-
though very powerful, the currently available toolboxes for
DL development are hard to use by analysts without strong
programming skills. Due to the complexity of the concepts
involved, they demand from the analyst a strong background
in Computer Science to be able to implement a DNN and per-
form tasks like classification and analysis.

Focusing on facilitating the access to DL techniques by
RS analysts with as few lines of source code as possible, this
paper presents DeepGeo toolbox. It provides configurable
building blocks to perform the entire cycle of DL based anal-
ysis of RS data.

2. DEEPGEO TOOLBOX

DeepGeo is a Python toolbox that provides, as configurable
building blocks, tools to perform spatial and multi-temporal
DL based analysis of RS images. It integrates tools to per-
form the following tasks: pre-process data; generate training,
evaluation and validation datasets; train predefined DNNs;
easily customize and implement new DNNs; apply DL classi-
fication based on a trained DNN; and analyse and visualize
results.

DeepGeo is distributed as a free and open source software
under the terms of the GNU General Public License version
3.0 or later, running on multiple platforms, e.g., Windows,
Mac OS X and Linux. The system works as a package for
Python programming language, which provides a high level
and easy-to-use API (Application Programming Interface).
DeepGeo API was developed with focus on making it easy to
perform the entire DL analysis cycle with few lines of source
code, taking advantages of TensorFlow parallelism to make
it easily scalable to process large amounts of data, remain-
ing flexible and easily extensible. After defined the input data
and the DNN model to be used, we consider that the cycle of
DL based classification and analysis of RS data, as shown in
Figure 1, have the following main steps:

1. defining the input data and DNN model;

9815978-1-5386-9154-0/19/$31.00 ©2019 IEEE IGARSS 2019

2. preprocessing input data;

3. generating training dataset;

4. training the Model;

5. evaluating training results, repeating the training step,
if necessary, until having satisfactory results;

6. perform the classification;

7. visualize and analyze classification results, repeating
the training step if necessary.

Fig. 1. Cycle for Remote Sensing image classification and
analysis using Deep Learning.

In the next sub-sections, we describe, based on this cycle,
the conceptual modules of DeepGeo and present some exam-
ples of how to use its functionalities.

2.1. Preprocessing Module

When dealing with RS images, having it properly prepared
to input to a DNN is often a great challenge. This module
provides easy ways to perform a wide range of preprocessing
operations, like performing mosaics, crop images, rasterize
vector layers of ground truth data and compute spectral in-
dices.

Normalize input images is an important step for ANN,
once it accelerates the training process, making the conver-
gence faster [12]. This module also provides functions to
automatically perform standardization or normalization of
the input images with several strategies. The code snippet
presented in Figure 2 shows the definition of a Preprocessor
structure.

In RS classification tasks, the ground truth data is fre-
quently provided as maps in vector format instead of raster.
The Rasterizer type allows the user to easily convert a vec-
tor ground truth data to raster to make it possible to input it
as labels to the DNN. Figure 3 presents a code snippet that
rasterizes an input vector file and save it in a new raster file.

1 import deepgeo.dataset.preprocessor as prep
2 raster_file = "my_raster.tif"
3 # Define a Preprocessor for file "my_raster.tif"
4 preproc = prep.Preprocessor(raster_file,no_data=0)
5 # Compute Vegetation indices (NDVI and EVI2)
6 preproc.compute_indices({
7 "ndvi": {"idx_b_red": 3, "idx_b_nir": 4},
8 "evi2": {"idx_b_red": 3, "idx_b_nir": 4}})
9 # Standardize the image. Subtracts from the mean

and then divides by the standard deviation
10 preproc.standardize_image("mean_std")
11 preproc.save_stacked_raster("output.tiff")

Fig. 2. Defining and using a Preprocessor.

1 import deepleeo.dataset.rasterizer as rast
2 # Defines input data
3 raster_file = "my_raster.tif"
4 labels_shp = "my_labels.shp"
5 # Defines the column in shape file containing the

classes
6 class_column = "class"
7 # Define the classes to be rasterized
8 classes_of_inter = ["deforestation", "forest"]
9 # Defines the Rasterize

10 rasterizer = rast.Rasterizer(shape_file,
11 labels_shp,
12 class_column=class_column,
13 classes_interest=classes_of_inter)
14 # Rasterizes the data and save at "my_labels.tif"
15 rasterizer.rasterize_layer()
16 rasterizer.save_labeled_raster_to_gtiff("my_labels

.tif")

Fig. 3. Rasterizing vector ground truth data.

2.2. Dataset Generation Module

Due to its depth and complexity, DL models are usually com-
putationally hard to process, making it impossible to process
an entire RS Image at once. Due to this limitation, it is com-
mon to split the images into smaller processing units, called
chips or patches, i.e., small windows in the original image.
The Dataset Generation Module provides a simple API to se-
quentially or randomly split the image and save it into a train-
ing dataset, to sequentially split images for the classification
process and to reconstitute a classified image from a sequen-
tial set of classified patches.

2.3. Deep Learning Module

The Deep Learning module provides several DNNs models
already implemented, like the U-Net [13] and the Fully Con-
volutional Networks (FCN) proposed by [14], and some adap-
tations of these networks for multi-temporal analysis. It also
provides an easy way to define new models, using the prede-
fined DeepGeo structure to train them and perform classifi-
cation, without the need of large experience with TensorFlow
API. The code snippet presented in Figure 4 defines a FCN

9816

and perform the training process based on a previously gen-
erated dataset.

Despite powerful, DL methods are highly prone to over-
fitting, being necessary a huge amount of samples and some
regularization techniques to avoid it. Some RS applications,
due to the difficulties to acquire huge amounts of labeled sam-
ples, are even more prone to this problem [1]. Attempting to
counteract overfitting, a common regularization technique is
called data augmentation, which artificially increase the size
of the training dataset synthetically modifying existing sam-
ples. It is also important to make the model more invariant
to the position of the target object in the image. This module
provides operations to perform data augmentation applying
on the samples different angles of rotation and flipping them,
substantially increasing the number of training samples. Tak-
ing advantages of the parallelism and the structure of Tensor-
Flow Data Input Pipeline, the data augmentation is applied
while loading the images for the training process.

1 import deepgeo.networks.model_builder as mb
2 import deepgeo.dataset.utils as dsutils
3 # Datasets are stored in TFRecords
4 train_ds = "train_dataset.tfrecord"
5 test_ds = "test_dataset.tfrecord"
6 valid_ds = "valid_dataset.tfrecord"
7 model_dir = "trained_model"
8 test_img = "img.tif"
9 output = "classif.tif"

10 # Defines some parameters of the DNN.
11 params = {"epochs": 600,
12 "batch_size": 20,
13 "learning_rate": 0.0001,
14 "data_aug_ops": ["rot90", "rot180",
15 "rot270", "flip_left_right",
16 "flip_up_down", "flip_transpose"]}
17 # Defines a FCN8s model and train it.
18 model = mb.ModelBuilder("fcn8s")
19 model.train(train_ds, test_ds, params, model_dir)
20 # Test in validation dataset
21 model.validate(valid_ds, params, model_dir)
22 # Perform classification
23 model.predict(test_img, params, model_dir, output)

Fig. 4. Defining and training a FCN8s model.

2.4. Visualization and Classification Analysis Module

The Visualization and Classification Analysis module focuses
on providing tools to visualize and analyze the quality of the
input dataset and the classification results. It provides several
metrics to measure the classification accuracy, like pixel-wise
accuracy, Receiver Operating Characteristics (ROC) curve,
F1-score and cross-entropy. In addition, to make it possible to
visually analyze the quality of the input dataset and the classi-
fied labels, this module provides tools to easily plot the image,
ground truth labels, classified labels, histograms, confusion
matrices, and patches distribution in the original image.

3. EXPERIMENTAL RESULTS: MAPPING
DEFORESTED AREAS IN BRAZILIAN AMAZON

In this section we present a case study to illustrate the effec-
tive use of DeepGeo toolbox. The focus here is not to obtain
a high accurate classification model, but to exemplify the use
of DeepGeo in a practical application. We used the system to
produce a classification of deforested areas in an small area of
the Brazilian Amazon for the year 2017, taking the PRODES
data [15] as ground truth to train the Fully Convolutional Net-
work FCN8s, proposed by [14]. PRODES is a program devel-
oped by INPE 1 that provides a large database of yearly maps
of deforested areas in the Brazilian Amazon since 2000.

The area to be classified corresponds to one scene of
Landsat 8 OLI 2 sensor. Figure 5 shows this image in (a),
the ground truth labels in (b) and the classification results in
(c). Preprocessing steps were made through the source code
presented in Figure 2. The ground truth data was rasterized
through the source code presented in Figure 3. Based on the
input raster, 2000 patches were randomly generated as the
input training dataset. Data augmentation was performed ro-
tating and flipping the generated patches, thus totaling 14000
input patches for the training process. The training process
was performed through the source code shown in Figure 4.

Some advantages of using this system can be pointed out,
as the facility to perform preprocessing steps in the input im-
age, standardizing it, computing spectral indices, generating
training and classification datasets, perform data augmenta-
tion and classification without much programming expertise.

4. CONCLUSIONS AND FUTURE WORKS

DeepGeo toolbox was presented in this paper. By provid-
ing DL methods, preprocessing, dataset generation and result
analysis functionalities as easy-to-use building boxes, it al-
lows to easily perform the entire cycle of DL based analysis
on RS data. In this way, DeepGeo can make DL methods
more accessible to those RS analysts without strong back-
ground in computer science. It also provides easy ways to ex-
tend the current functionalities by adding new strategies for
each step of the analysis cycle. Besides that, taking advan-
tages of the flexibility and expressiveness of Python program-
ming language, DeepGeo provides easy ways to be extended
and coupled to another tools.

The system can also deal with several types of geospa-
tial data formats for raster and vector data, that can be used
as ground truth. For now, it only provides tools based on
convolutional encoder-decoders for semantic segmentation.
Future works includes extending DeepGeo to provide more
DL approaches and applications, like Recurrent Neural Net-
works for Time Series Analysis or Autoencoders for pan-
sharpening.

1National Institute for Space Research, Brazil
2Operational Land Imager

9817

Fig. 5. Classification of deforested areas: a) Input Image; b) Ground truth; c) Classification output

5. REFERENCES

[1] X. X. Zhu, D. Tuia, L. Mou, et al., “Deep Learning
in Remote Sensing: A Comprehensive Review and List
of Resources,” IEEE Geoscience and Remote Sensing
Magazine, vol. 5, no. 4, pp. 8–36, 2017.

[2] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, pp. 436–444, 2015.

[3] W. Huang, L. Xiao, Z. Wei, H. Liu, and S. Tang, “A New
Pan-Sharpening Method With Deep Neural Networks,”
IEEE Geoscience and Remote Sensing Letters, vol. 12,
no. 5, pp. 1037–1041, 2015.

[4] G. Fu, C. Liu, R. Zhou, T. Sun, and Q. Zhang, “Classifi-
cation for high resolution remote sensing imagery using
a fully convolutional network,” Remote Sensing, vol. 9,
no. 5, pp. 1–21, 2017.

[5] R. Kemker, C. Salvaggio, and C. Kanan, “Algorithms
for semantic segmentation of multispectral remote sens-
ing imagery using deep learning,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 145, no.
March, pp. 60–77, 2018.

[6] M. Zhai, Z. Bessinger, S. Workman, and N. Jacobs,
“Predicting ground-level scene layout from aerial im-
agery,” Proceedings - 30th IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, vol.
2017-January, pp. 4132–4140, 2017.

[7] L. Zhang, L. Zhang, and V. Kumar, “Deep learning for
Remote Sensing Data: A technical tutorial on the state
of the art,” IEEE Geoscience and Remote Sensing Mag-
azine, vol. 4, no. 2, pp. 22–40, 2016.

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
et al., “TensorFlow: Large-Scale Machine Learning
on Heterogeneous Distributed Systems,” arXiv preprint
arXiv:1603.04467, 2016.

[9] F. Chollet et al., “Keras,” 2015.

[10] Theano Development Team, “Theano: A Python frame-
work for fast computation of mathematical expressions,”
arXiv e-prints, vol. abs/1605.02688, May 2016.

[11] A. Paszke, S. Chintala, R. Collobert, et al., “Pytorch:
Tensors and dynamic neural networks in python with
strong gpu acceleration, may 2017,” .

[12] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller, “Ef-
ficient backprop,” in Neural Networks: Tricks of the
Trade. Lecture Notes in Computer Science, vol. 7700,
pp. 9–48. Springer, Berlin, Heidelberg, 2012.

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Con-
volutional Networks for Biomedical Image Segmen-
tation,” Medical Image Computing and Computer-
Assisted Intervention MICCAI 2015, vol. 9351, pp.
234–241, 2015.

[14] J. Long, E. Shelhamer, and T. Darrell, “Fully Con-
volutional Networks for Semantic Segmentation,” in
The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 3431–3440. IEEE Xplore,
2015.

[15] INPE, PRODES Deforestation estimates in Brazilian
Amazon, National Institute for Space Research, 2019.

9818

