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Abstract: Accurate crop type identification and crop area estimation from remote sensing data
in tropical regions are still considered challenging tasks. The more favorable weather conditions,
in comparison to the characteristic conditions of temperate regions, permit higher flexibility in land
use, planning, and management, which implies complex crop dynamics. Moreover, the frequent
cloud cover prevents the use of optical data during large periods of the year, making SAR data an
attractive alternative for crop mapping in tropical regions. This paper evaluates the effectiveness
of Deep Learning (DL) techniques for crop recognition from multi-date SAR images from tropical
regions. Three DL strategies are investigated: autoencoders, convolutional neural networks, and
fully-convolutional networks. The paper further proposes a post-classification technique to enforce
prior knowledge about crop dynamics in the target area. Experiments conducted on a Sentinel-1
multitemporal sequence of a tropical region in Brazil reveal the pros and cons of the tested methods.
In our experiments, the proposed crop dynamics model was able to correct up to 16.5% of classification
errors and managed to improve the performance up to 3.2% and 8.7% in terms of overall accuracy
and average F1-score, respectively.

Keywords: crop mapping; tropical agriculture; SAR; deep learning; Sentinel-1; multitemporal
image analysis

1. Introduction

1.1. Crop Mapping from Remote Sensing Data

Recent reports on food security estimate that over 800 million people in the world can be
considered malnourished and that approximately two billion suffer from deficiencies in micronutrients
such as iron, iodine, vitamin A, folate, and zinc [1,2]. Furthermore, with the expected increase in
the human population to more than 9.8 billion by 2050 [3], coupled with the predicted worldwide
growth of per capita income, the demand for food is expected to escalate in the near future [4].
The consequent intensification of agricultural production to meet such high projected demands
may, however, have strong environmental impacts, such as: (i) important increase in greenhouse
gas emissions; (ii) biodiversity loss; (iii) soil degradation; and (iv) catastrophic effects on freshwater
resources [4]. There is, therefore, an urgent need for conceiving of efficient and sustainable strategies for
the agricultural sector in order to enhance food security for the current and future human population.
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In this context, in order to support the successful production, processing, marketing, and
distribution of the major crop types, timely and accurate information about agricultural activities
is essential. Accurate estimation of crop area extents, for instance, is indispensable for irrigation
management and for the calculation of yield estimates. To meet the challenge of sustaining agricultural
productivity growth, scientists and decision-makers require data produced by efficient agricultural
monitoring processes.

Climate and weather unsurprisingly affect cropping area and, hence, agricultural practices.
In temperate regions, agriculture is strongly characterized by seasonality, leading to more standardized
agricultural practices and regular growing periods. The analysis of crop dynamics is simplified by the
fact that there is usually a single crop per parcel during the whole productive season. Crop dynamics
in tropical regions is considerately more complex, as multiple harvests per year are possible and due
to particular practices such as crop rotation, non-tillage, and irrigation [5]. Considering also the large
agricultural extents and the diversity of possible crop types, the production of detailed and reliable
crop maps in tropical regions is a very challenging task.

Remote Sensing (RS) data have been used in natural resource mapping for many decades, being
currently the main data source for various environmental modeling techniques, which include crop
recognition and crop area estimation [6–10]. This notwithstanding, automatic crop mapping is still a
hard problem. An important issue is related to the fact that the spectral appearance of crops changes
over time. Additionally, different crop types may present similar spectral characteristics at a given
point in time. Consequently, the analysis of the temporal context, i.e., multitemporal analysis, is very
important for crop discrimination, especially in regions characterized by complex and diverse crop
dynamics, such as tropical areas. Indeed, multitemporal RS data have proven to be very useful for
improving classification accuracy in crop and vegetation mapping [11,12].

Recently-launched optical and Synthetic Aperture Radar (SAR) orbital systems with high temporal
(low revisit time) and spatial resolutions are a valuable asset for crop mapping applications. However,
although optical data have been widely used for crop recognition [13,14], missing data due to
cloud cover and shadows are an important problem, especially in tropical regions [15]. In this
case, the (almost) all-weather, all-time acquisition capability of radar-based imaging systems makes
multitemporal SAR image sequences very interesting options for crop mapping applications.

As an active RS system, SAR systems transmit radio waves and register the echoes (backscatter)
reflected by Earth surface objects. Moreover, the characteristic wavelength ranges of SAR imaging
systems enable the transmitted signals to penetrate clouds, making such systems almost insensitive to
adverse atmospheric conditions [16] and thus highly reliable in terms of data provisioning [17].

The backscatter intensities recorded by SAR systems are mostly a function of the size, shape,
orientation, and dielectric constant of the scatters [18]. In crop analysis studies, backscatter intensities
would therefore differ depending on the particular characteristics of the crop components (leaves,
stalks, seeds, etc.) and of soil moisture content. Crops with different intrinsic structures can therefore
be distinguished up to some point, based on their backscatter intensities [19]. The development of
multi-polarized acquisition modes in many available systems further increases the discriminative
capacity of SAR data [20]. SAR images are, however, granular in appearance due to the effect of speckle,
which causes inter-class confusion, thus hindering classification. Texture features, such as statistics
derived from the Grey-Level Co-occurrence Matrix (GLCM), are known to be robust to speckle noise
and have been widely used in the analysis of SAR data.

In this work, however, no prior knowledge about the particular characteristics of the SAR image
data or about the particular interactions of radar waves with different crop types were used in the
definition of the investigated Deep Learning (DL) classification methods, as they are supposed to
autonomously learn features or representations to be used in the crop classification task.
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1.2. Related Works

Traditional classification techniques for Remote Sensing (RS) images generally make use of
unsupervised (e.g., k-means) or supervised (e.g., maximum likelihood, neural network, support vector
machine, random forests) methods to perform pixel-wise classification [14,21–24]. These approaches
rely on the spectral variables associated with image pixels and their transformations (e.g., principal
components, vegetation indices, etc.) as input to per-pixel classifiers, ignoring, however, the spatial and
temporal context. Spatio-contextual techniques such as texture extraction have also been used [25,26].
Features derived from the GLCM have been probably the most widely-used texture features in SAR
data classification [27]. Nevertheless, the discriminative ability of these low-level features is limited.
Object-based classification, by extracting quantitative attributes from segments (spectral statistics, area,
shape) has been also employed [28,29], but this approach relies on segments, the delineation of which
ignores semantics, and its performance strongly depends on the choice of features to be used in the
classification procedure. To cope with the inherent problems of pixel-wise and object-based approaches,
probabilistic graphical models, such as Markov random fields [30] and Conditional Random Fields
(CRFs) [31], have successfully exploited both spatial and temporal contexts in the classification of RS
imagery, including in the crop identification task. Hidden Markov Models (HMM) have been also used
in crop classification, associating hidden variables with phenological stages [32,33]. These approaches
deliver high accuracies, but at the cost of a high computational effort, and they also require expert
knowledge about the problem. All the above-mentioned methods rely on feature engineering, and
we argue that there are no universal hand-crafted features (i.e., that are manually designed based on
domain-specific knowledge), equally discriminative for different applications and datasets.

Deep Learning (DL) techniques encompass specific supervised and unsupervised
representation-learning algorithms, which learn features from labeled and non-labeled data. In fact,
state-of-the-art performance in RS image classification has been achieved with DL-based techniques,
such as Autoencoders (AEs), Convolutional Neural Networks (CNNs), and Fully-Convolutional
Networks (FCNs); which can integrate the spatial, spectral, and temporal contexts in unsupervised
and/or supervised ways [34–39].

An AE [40] is a neural network designed to reproduce at its output the pattern presented at its
input. The basic architecture of an AE involves an encoder function, whose outcome is a compact
representation of the input data, and a decoder function, that maps back the learned representation to
the input space. After training, the encoder function is used to compute a feature representation of any
input sample. As AEs rely on unsupervised learning, they do not require labeled data for training,
which is an interesting characteristic considering the difficulties involved in data labeling. Conversely,
as no labeled data are used in training, AEs are not able to determine which information is relevant
for a specific application. As examples of the use of AEs in RS applications, Firat et al. [34] trained
a sparse convolutional autoencoder for object detection in RS images; Romero et al. [35] proposed a
deep convolutional sparse autoencoder for learning spectral-spatial features.

A Convolutional Neural Network (CNN) [41,42] is a neural network capable of dealing with
some spatial context. In image analysis, CNNs are typically employed for assigning a single class
label to an entire image/scene. The CNN forward pass involves the sequential processing of many
layers, thus learning a hierarchy of feature representations. Its typical building blocks are linear
convolution operations followed by nonlinear activation, spatial pooling, fully-connected layers,
and a classification layer. A convolutional layer consists of a set of trainable filters applied to local
receptive fields (i.e., the regions of the input space that are path-connected to the filter) in order to
extract (interesting) features. The basic characteristic of the convolution layer is that all input spatial
locations are subjected to the same filters, and as each filter is applied by sliding it over the input,
the number of parameters to be learned is relatively small when compared with traditional neural
networks. The pooling layer is a downsampling layer. Its objective is two-fold: to provide some
shift invariance and to summarize spatial information while preserving discrimination, both at a
low computational cost. A fully-connected layer is commonly used at the end of a CNN model
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and implies that every neuron in the previous layer is connected to every neuron of the next layer.
In sequence comes the classification layer, which delivers scores (class membership probabilities) that
are usually determined by the softmax activation function. Recently, in the context of RS applications,
Kussul et al. [36] proposed 1D and 2D CNN architectures to exploit spectral and spatial features,
respectively. They integrated spatial and temporal contexts in a supervised way and concluded that an
ensemble of 1D and 2D CNNs outperformed the Random Forest (RF) classifier in a crop recognition
task. In a previous work [43], we also used AEs and CNNs for crop recognition in multitemporal SAR
images sequences, obtaining results that outperformed the RF classifier.

In the aforementioned CNN-based approaches, the trained network computes a descriptor for
a given image patch and predicts a single label for the entire patch; this label is then assumed to
be the label of the patch’s central pixel. During the test phase, the map is constructed by making
a prediction for each patch associated with each image position. Obviously, that approach can be
extremely inefficient for large images. Additionally, such an approach is not appropriate for pixel-wise
semantic labeling tasks, as it assigns a label to a patch independently of the surrounding labels. This
often leads to a salt-and-pepper-like result and limits the power of the network to learn intra- and
inter-class spatial relations. To deal with this problem, a post-processing stage is often employed to
perform a structured prediction on the probabilities given by the CNN, using, for instance, conditional
random fields [44].

More recent approaches predict jointly all labels in an image patch, instead of a single label for
the central pixel. In this scenario, the so-called Fully-Convolutional Network (FCNs) came into play.
FCNs [45] were specifically proposed for semantic labeling; those networks employ an upsampling
strategy at the second half set of layers of a CNN in order to recover the original input image size
and perform dense predictions. In this approach, the fully-connected layer of a CNN is viewed as a
convolution layer with large receptive fields, and the segmentation is achieved using coarse class score
maps obtained by feed-forwarding the input image. The network performs an end-to-end learning,
downsampling the input space (typically by successive convolution, activation, and pooling layers)
and then upsampling (deconvolution) it again, in order to predict dense output labels for an arbitrary
size input. In practice, deconvolution is commonly implemented as the transposed convolution
operator and can be understood as the backward-pass implementation of the standard convolution.
FCNs also use the so-called skip connections, which transfer local information by concatenating feature
maps from the downsampling path with feature maps from the upsampling path.

These connections aim to combine context/semantic information with spatial/appearance
information. In FCNs, both learning and inference are performed for the whole image at once in order
to get a probability map of semantic labels, without loss in terms of spatial resolution. The model
is trained by minimizing the pixel-wise cross-entropy loss. The loss is not computed over a single
prediction, as for a CNN, but over the grid of spatial predictions. Since every label is learned in
association with its neighbors, the method can be seen as a structured one. Such an approach has
delivered impressive performances in RS applications, as reported in [46,47]. In [48], an FCN-based
approach was compared with a CNN-based approach for crop classification in SAR images. The study
reports similar results in terms of thematic and spatial accuracy for both approaches, in terms of
computational cost; however, the inference time of the FCN-based approach was more than one
hundred times shorter than that of the CNN approach.

1.3. Goals and Contributions

Despite the success of the above-mentioned methods, most crop recognition studies on
multitemporal RS images rely on datasets obtained in temperate regions [13,49–53]. Those works aim
at determining for a particular geographic extent a single crop type, for the whole productive season.
We argue, however, that such techniques are inappropriate to model the complex crop dynamics
observed in tropical areas.
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Deep Learning (DL) techniques have been recently the focus of much attention in the RS field,
mostly due to their capacity to learn features automatically from data, which in many cases are
associated with a better discriminative power, as compared to handcrafted features. Moreover,
DL in agriculture has gained popularity. The work in [54] reviewed recent efforts that employ DL
techniques in agricultural-related problems, pointing out that such methods deliver higher accuracies,
outperforming traditional image processing techniques.

Inspired by the above works, this study explores the use of Deep Learning (DL) techniques for
crop mapping using multitemporal SAR image sequences. The study further proposes the use of a
priori knowledge to model inter-class and intra-class relationships within the SAR images sequence.
In short, the major contributions in this article are:

• We propose a prior knowledge-based method to model complex crop dynamics in tropical regions,
which enforces crop type classification to be consistent in both the spatial and temporal domains.

• We evaluate and compare three different approaches for crop type classification, namely:
Autoencoders (AEs), Convolutional Neural Networks (CNNs), and Fully Convolutional
Networks (FCNs), upon a SAR multitemporal image sequence.

The rest of this paper is organized as follows. In Section 2, we describe the investigated
frameworks for performing crop type mapping and provide a detailed explanation of the prior
knowledge-based method. In Section 3, we evaluate the devised methods on a public dataset from a
tropical region, present the experimental results, and discuss the strengths/weaknesses of the proposed
method. Finally, in Section ??, we conclude the paper by summarizing its contributions and give
directions for further research.

2. Materials and Methods

2.1. Crop Classification Approaches Considered in This Study

Three different DL-based classification approaches were considered in the present analysis:
unsupervised feature learning using autoencoders for patch-based classification (AEpatch); patch-wise
classification with CNNs, with spatially-independent predictions (CNNpatch); and pixel labeling with
FCNs, with structured predictions (FCNpixel). A Random Forest (RF) classifier was also included in
the analysis for pixel-based classification (RFpixel), to serve as the baseline.

In all aforementioned classification schemes, temporal context was exploited by the feature
stacking technique. Spatially-correspondent pixels or features at all dates were concatenated along the
third dimension, and the resulting tensor was the input of the classification procedure. This has been
probably the most widely-used strategy to capture temporal context in multitemporal applications [55–
57]. In the following, we provide a detailed explanation of each classification approach tested in
this work.

2.1.1. Random Forest/pixel-wise (RFpixel)

The RFpixel approach basically employs an RF classifier trained separately for each date.
The RF classifier takes as input the concatenated texture features measured at common spatial
coordinates on all dates. In this approach, pixels at the same spatial coordinates share a unique
representation over the whole image sequence. The procedure comprises three main steps: (1) texture
feature extraction: this is carried out for each image in the sequence separately; (2) feature stacking:
textural features of all images related to the same pixel coordinates are stacked one upon the other,
forming the feature vector for that location; and (3) classification: a date-specific RF classifier maps
feature vectors to posterior class probability vectors. The class with the highest posterior is selected as
the final classification of the corresponding pixel. Notice that the texture features are calculated from
the neighborhood of each pixel and thus capture the spatial context.
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2.1.2. Autoencoder/patch-wise (AEpatch)

In the AEpatch approach, a date-specific AE network computes pixel’s features based on the
image patch centered at that pixel. The features generated this way form the input to a classifier that
assigns a class label to each pixel on the corresponding date. The procedure comprises four main
steps: (1) patch extraction: three-dimensional patches centered at each pixel are cropped from each
image and subsequently flattened into one-dimensional vectors; (2) unsupervised feature extraction: each
one-dimensional vector produced in the previous step is submitted to a date-specific AE to produce
the pixel-wise feature vector for each date; (3) feature stacking: the feature vectors corresponding
to the same spatial coordinate, on all dates, are concatenated, forming the final pixel descriptor; (4)
classification: an RF classifier trained for each date separately delivers a posterior class probability vector
for each input feature vector on each date. The classifier assigns the pixel to the class corresponding to
the highest posterior. Furthermore, in this approach, spatial context is taken into account because the
pixel features derive from its surrounding patch.

2.1.3. Convolutional Neural Network/patch-wise (CNNpatch)

As in [46], the CNNpatch approach relies on CNNs trained on 3D image patches. The CNNs
predict a single label per patch, which is then assigned to the patch central pixel on the correspondent
date. This approach comprises three main steps. (1) image stacking: the coregistered images are stacked,
forming a tensor that contains the bands/polarization of all images of the multitemporal sequence;
(2) patch extraction: 3D patches centered at each pixel location are extracted from the stacked image,
for all spatial coordinates; (3) supervised feature extraction and classification: in this step, date-specific
CNNs extract features and compute a posterior probability vector for each 3D patch on each date.
The label of the class with the highest probability is then assigned to the patch’s central pixel. It should
be noted that the training data are the same for all dates. However, the training labels are generally
different from date to date. As a consequence, there will be a different CNN for each date. Similar to
the previous scheme, the CNNpatch approach captures the pixels’ contexts from the patches centered
at them.

2.1.4. Fully Convolutional Network/pixel-wise (FCNpixel)

The FCNpixel approach has in common with the previous scheme that it processes 3D patches of
the stacked multitemporal images. However, instead of assigning a single class label to the patch’s
central pixel, the FCNpixel approach classifies all pixels in the patch by using a fully-convolutional
network. The FCNpixel approach comprises three main stages: (1) image stacking: as in the previous
scheme, all images in the sequence are stacked to create a single tensor, which represents the entire
sequence. (2) patch extraction: the image stack is decomposed into non-overlapping 3D patches,
which together cover the entire multitemporal image tensor; (3) classification: in the classification step,
the 3D image patches are submitted to an FCN to obtain a class score map with the same resolution
as the input patches. Each pixel in a patch is assigned to the class corresponding to the highest score.
As in the previous approaches, FCNpixel also captures the spatial context, but in a different way.
It not only explores the data in the neighborhood around each pixel, but also considers the spatial
arrangement of the class labels in the output map.

2.2. Modelling Crop Dynamics

All approaches described in the prior section employ feature/image stacking to capture temporal
context. In this work, we propose a post-classification stage to enforce prior knowledge about the
temporal dynamics of crop types in the imaged region. The method, called Most Likely Class Sequence
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(MLCS), was inspired by an earlier work, in which the crop dynamics in a given image site was
represented by a hidden Markov model [32].

Crops over time can be represented by a directed graphical model like the one shown in Figure 1,
where yi stands for the crop class, and xi denotes the observation vector at date i, for i = {1, ..., T}.

𝑦1 𝑦2 𝑦𝑇

𝒙1 𝒙2 𝒙𝑇

...

Figure 1. Most Likely Class Sequence (MLCS) Model.

According to this graphical model, the posterior probability that a particular sequence of crop
classes (y1, y2, ..., yT) occurs in a given image site over T dates, is given by:

p(y1, y2, ..., yT |x) ∝p(y1)p(x1|y1)p(y2|y1)p(x2|y2)... (1)

p(xT−1|yT−1)p(yT |yT−1)p(xT |yT)

where p(xi|yi) is the likelihood of xi given the crop class yi at date i, p(yi+1|yi) is the crop transition
probability from date i to i + 1, x = {x1, ..., xT} is the set of observations over the sequence, and p(yi)

denotes the prior class probability at date i, for all i. Making use of the Bayes rule, i.e.,

p(xi|yi) = p(yi|xi)p(xi)/p(yi) (2)

and introducing in the relation (1) the simplifying assumption that the classes are equiprobable at any
date, we obtain:

p(y1, y2, ..., yT |x) ∝p(y1|x1)p(y2|y1)p(y2|x2)... (3)

p(yT−1|xT−1)p(yT |yT−1)p(yT |xT)

The final classification result will be the sequence (ŷ1, ŷ2, ..., ŷT) that corresponds to the highest
posterior, formally:

(ŷ1, ŷ2, ..., ŷT) = arg max
{yi}

[p(y1|x1)p(y2|y1)...p(yT−1|yT)p(yT |xT)] (4)

The posterior probabilities p(yi|xi) can be calculated by any discriminative classifier, in particular
the ones described in the previous section.

As for the transition probabilities p(yi|yi−1), we propose to exploit prior knowledge.
Human experts on crop dynamics in the target site may inform the crop transitions that might
or never occur for each pair of consecutive dates. For instance, under a proper temporal resolution,
a change from maize to soybean must necessarily go through the class soil. Hence, the transition
maize→ soybean cannot occur on two consecutive dates.

Estimating the probabilities of possible transitions is not an easy task. Even experienced experts
may find it difficult to choose a value between zero and one that accurately represents the probability of
each possible transition. Considering this difficulty, we propose to replace the transition probabilities
p(yi|yi−1) by one, if the transition yi−1 → yi is possible, and by zero otherwise. If the image stacking
technique is used, we further replace p(yi|xi) by p(yi|x). Introducing these modifications in Equation (5)
yields:

(ŷ1, ŷ2, ..., ŷT) = arg max
possible{yi}

[p(y1|x)...p(yT |x)] (5)
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whereby only sequences with no forbidden class transition are considered. In relation to the methods
discussed in the preceding section, Equation (5) merely discards as a potential solution every sequence
containing at least one impossible transition.

The crop dynamics model can be pictorially represented by a Markov chain as in Figure 2,
for four classes (A, B, C, D) and four dates. Columns correspond to dates and rows to crop classes.
Therefore, the nodes represent a crop class on a particular date. The edges identify possible class
transitions on adjacent dates. From this graph, we can infer the set of admissible sequences to be
evaluated in the computation of Equation (5). In this way, we reduce the number of sequences
to be evaluated. As an example, any sequence involving a transition A → B on Dates 2–3 will be
disregarded, because there is no edge connecting these classes on Dates 2 and 3.

Date 1 Date 2 Date 3 Date 4

B

A

B

D

C

D

A

B

C

D

A

C

D

C

B

A

Figure 2. MLCS: example of possible transitions.

Beyond eliminating sequences inconsistent with the prior knowledge, the method can potentially
improve the classification accuracy. However, this simple form of the method still admits wrong
solutions since it only enforces consistency over two consecutive dates. Figure 3a shows a simplified
example where a wrong solution is not prevented by the aforesaid dynamics model. Let us assume
that the only two possible class sequences in the target site are the ones shown in the upper part of the
figure (reference sequences). Both sequences consist of class A occurring in three consecutive dates,
but shifted in time. Notice that in this example, transition B→ A between Dates 2 and 3 and transition
A→ A between Dates 3 and 4 are permitted. Such a model would allow solutions other than the ones
enrolled as admissible. Starting either from class A or class B on Date 1, the possible sequences can
contain a wrong temporal path after Date 3, allowing a sequence consisting of class A from Dates 1–5,
as well as a sequence with class A only om Date 3 preceded and followed by class B. In both cases,
the sequences would be inconsistent with the known crop dynamics.

In order to avoid these kinds of errors, we refined the MLCS model (see Figure 3b) by taking
into consideration the crops’ sequence lengths. After posterior probabilities are calculated, each crop
type is divided into a number of subclasses that correspond to the number of times a particular crop
type can occur consecutively within a sequence. Taking, for instance, the reference sequences in
Figure 3b, the new (sub)class labels would be: A1→ A2→ A3→ B1→ B2, for Reference Sequence 1;
and B1→ B2→ A1→ A2→ A3, for Reference Sequence 2. With this refinement, the transition matrix
between Dates 3 and 4 only accepts as possible transitions: A3→ B1 and A1→ A2, thus preventing
the aforementioned incorrect paths (see Figure 3b, middle).

Moreover, in the computation of Equation (3), the posterior probability of a subclass is set equal
to the posterior probability of the crop type with which it is associated. For example, the posterior
probabilities of subclasses A1, A2, A3 and B1, B2, on Date 3, are set equal to the posterior probabilities
calculated on that date for classes A and B, respectively. The same applies to all dates.
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After following the algorithm described above, all subclasses are grouped back into their original
crop types. In the example, subclasses A1, A2, A3 and B1, B2 are relabeled as classes A and B,
respectively (see Figure 3b, bottom).

A A

B

A

B

A

A

Reference Sequence 1 A A A B B

Reference Sequence 2 B B A A A

Crop transitions 

B B

Output for Sequence 1 A A A A A

Output for Sequence 2 B B A B B

Date 1 Date 2 Date 3 Date 4 Date 5

(a)

A1 A2

B1

A2

B2

A3

A3

Reference Sequence 1 A A A B B

Reference Sequence 2 B B A A A

Crop transitions 

B1 B2

Output for Sequence 1 A A A B B

Output for Sequence 2 B B A A A

A1

Date 1 Date 2 Date 3 Date 4 Date 5

(b)
Figure 3. (a) Possible wrong solution of MLCS and (b) MLCS refinement with the correct solution after
incorporating the crop’s sequence lengths information.

2.3. Dataset and Study Site

In order to evaluate the proposed classification schemes for tropical regions we carried
out experiments on a public dataset called Campo Verde dataset, available in IEEE DataPort at
https://ieee-dataport.org/documents/campo-verde-database.

The experimental site was situated in Campo Verde, a municipality in the state of Mato Grosso
in the central west region of Brazil (15°32′48′′S, 55°10′08′′W) (see Figure 4). The average annual
precipitation is 1726 mm, and the average annual temperature is 22.3 °C. The major crops found in
this area are soybean, maize and cotton. Some minor crops, such as beans and sorghum, are also present.
The class Non-Commercial Crops (NCC) includes millet, Brachiaria, and Crotalaria. Other classes present
in the dataset are pasture, eucalyptus, uncultivated soil (e.g., bare soil, soil with weeds, soil with crop
residues), turfgrass, and Cerrado (Brazilian savanna). The site covers an extension of 4782 km2.

Figure 4. Campo Verde, Brazil(taken with permission from [43]).

This study relies on a dataset that contains a series of 14 pre-processed SAR Sentinel-1A images
and the reference data (ground truth) for a total of 513 fields (∼6 million pixels). The SAR images were
dual polarized (VV and VH) and were captured from October 2015–July 2016 (see Table 1).

Sentinel-1A is a polar-orbiting satellite that carries a 12 m-long advanced SAR working in the
C-band. To cover the Campo Verde municipality along the crop year 2015/2016, 27 Sentinel-1 images

https://ieee-dataport.org/documents/campo-verde-database
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were originally acquired in the Interferometric Wide Swath Level-1 Mode, with a swath of 250 km and a
geometric resolution of 20 m. Two images per date were necessary to cover the whole municipality area,
except for the image of 21 January, which covered the entire area of interest, resulting in a sequence of
14 images. The images were acquired from the Sentinels Scientific Data Hub, in Level-1 Ground Range
Detected (GRD), and preprocessed using the Sentinel-1 Toolbox. First, a radiometric correction was
performed, using the calibration coefficients provided with the Sentinel Level-1 products. Then, a range
Doppler terrain correction was applied using a Shuttle Radar Topography Mission (SRTM) Digital
Elevation Model (DEM). Next, the VV and VH bands in linear scale were converted to dB. The bands
were stacked to form single images, which were then georeferenced to the UTM projection (Zone 21S)
and WGS84 Datum and resampled to 10-m spatial resolution.

Further details on the dataset, and particularly on the process used to produce the reference data,
can be found in [5].

Table 1. Sentinel-1 Acquisition dates over Campo Verde.

Year Month Date

October 29
2015 November 10, 22

December 04, 16

January 21
February 14

2016 March 09, 21
May 08, 20
June 13
July 07, 21

The crop year spans from late August to July with two seeding periods. The phenological
cycles of the main crops can span 3–4 months (soybeans and maize) and 4–6 months (cotton). Figure 5
shows the crop calendar for the major crops and illustrates how complex the crop dynamics is in this
region. Some crop rotations present in the dataset are soybeans-maize, soybeans-cotton, soybeans-sorghum,
soybeans-pasture, soybeans-beans, beans-cotton, and maize-cotton. Figure 6 shows how the area is
distributed among different crops along the months. The graph shows that the cycle of the same crop,
e.g., soybean, does not start in the same month in all fields, and its duration can also vary from one
field to another. As mentioned before, such crop dynamics is characteristic of tropical regions.

Figure 5. Crop calendar for major crops in Campo Verde.
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Figure 6. Class occurrences per month in Campo Verde. NCC, Non-Commercial Crops.

2.4. Implementation of Classification Approaches

The hyperparameters of each DL method were defined empirically. The DL frameworks’ batch
sizes were selected experimentally and fixed to 128 for AEpatch and CNNpatch and 32 for the FCNpixel.
For optimization, we used the AdaGrad method with a learning rate of 0.01. The implementation
details of each approach are described in the following.

2.4.1. RFpixel

For the RFpixel approach, hand-crafted features were used. Following [51], we computed texture
features (correlation, homogeneity, mean, and variance) from Gray-Level Co-occurrence Matrices
(GLCM) in four directions (0, 45, 90, and 135 degrees) using 7× 7 windows per polarization (VV and
VH in this case). We tested three window sizes (3, 5, 7 pixels) and decided to use 7× 7 regions since a
better performance was observed with this dimension. This approach yielded 32-dimensional feature
vectors for each pixel on each date. After some initial tests, the RF classifier was fixed to 250 random
trees with a maximum depth of 25.

2.4.2. AEpatch

Patches from the original images were selected as input features. Based on preliminary tests,
we decided to take patches with 7× 7 pixels as the input to the AE; thus, the final vector comprised
7 × 7 × 2 elements, which amounted to 98 features for each image. The patches were flattened
into one-dimensional vectors, standardized to zero mean and unit variance. The hidden layer was
composed of 128 neurons, with the tanh activation function and an L1 regularization fixed to 0.001.
The feature maps obtained this way were the inputs to an RF classifier, as described before.

2.4.3. CNNpatch

The network took as input a patch and assigned class posterior probabilities to the central
pixel of the patch. Patches from the original images were selected as primary input features. After
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having tested square patches of a width/height equal to 5, 7, 9, and 16, we decided to work
with 7× 7 patches, because they delivered the best tradeoff, considering accuracy and memory
requirements. The downsampling stage was built with 3 × 3 convolution filers, using ReLU as
the activation function, followed by a 2 × 2 max pooling. Since the patch size was set to 7 × 7,
we implemented a shallow CNN architecture with only one downsampling stage. The convolution
stride was fixed to one pixel. Spatial padding was employed in order to preserve the spatial dimension
after convolution. At the end, a fully-connected layer with a dropout of 20% followed by a softmax
layer were added. The aforementioned architecture was the same for all dates in the dataset. However,
the number of parameters of each network (for each date) depended on the image sequence length
and the number of classes present on the target date. For example, Table 2 summarizes the model that
corresponds to July 2016, with inputs consisting of a stack of 14 images (i.e., 28 channels) and nine
classes, as soybean and beans crops were not present in the study area during that period. Hence, the
output of the network during that month was a posterior class probability vector of size nine.

Table 2. Architecture details of the CNNpatch model: d stands for the input channels, and c stands for
the number of classes.

Type Output Size Params

Input 7× 7× 28(inputschannels) -

Conv 7× 7× 100 70,100

Pool 3× 3× 100 -

FC 200 180,200

Drop 200 -

Softmax 9(classes) 1809

Total - 252,109

2.4.4. FCNpixel

As in [48], the FCNpixel consists of two downsampling and upsampling stages.
Each downsampling step is implemented as a Dense Block (DB), followed by a convolution and
a max-pooling layer. A DB corresponds to the concatenation of an earlier feature map with the last
convolution output forming a data cube, which is then submitted to a convolution operation [58].
The DB architecture used in the downsampling path was composed of two convolutional steps,
whereby the input of a DB was concatenated with its output. From then on, two upsampling layers
restored the original resolution, and a final convolution layer computed the class scores. Contrary
to [48], each upsampling stage was designed with a DB followed by a deconvolution (previous
experiments were performed, and this configuration achieved best results compared to the original).
Each of these DB comprised two convolutional steps, but unlike the downsampling ones, their input
was not concatenated with their output. By skipping this concatenation step, we reduced the number
of learnable parameters in an attempt to avoid overfitting, as proposed in [58]. Since FCNpixel is a
more complex model, we present a general description of the architecture in Figure 7.

Patches from the original images were selected as input features. Since our reference is not dense
(i.e., some pixels are unassigned) we labeled background pixels with a constant value. In order to
exploit the advantages of the FCN architecture, large patches were considered, specifically of size 16,
32, 64, and 128 pixels. Preliminary experiments showed that 32× 32 pixel patches delivered the best
results. As in CNNpatch approach, the basic network architecture was the same for all dates, but the
number of parameters depends on the image sequence length and the number of classes at the target
date. Table 3 summarizes the model that corresponds to July 2016, with inputs consisting of a stack
of 14 images (i.e., 28 channels) and 10 classes (the 9 classes present on that epoch, plus a background
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class). The basic network architecture is as follows. First, an initial convolution was applied with
zero padding (Conv-1), followed by the two dense block (DB-1 and DB-2) and two downsampling
stages (DS-1 and DS-2). Each downsampling stage was composed of Batch Normalization (BN), ReLU
activation, 1× 1 convolution, dropout of 20%, and 2× 2 average pooling. DB layers were composed of
BN, followed by ReLU, a 3× 3 convolution, and dropout with probability 20%. The growth rate of the
DB layers was set to k = 16 (for more information about the dense block, refer to [58]).

The final volume after these operations can be understood as the encoded representation of
the input patch in a coarse map of crop types present in the patch. This spatial map (after two
downsampling blocks, the original 32× 32 image patch was reduced to an 8× 8 map of activations) was
then upsampled back to the original input patch size through the two upsampling stages mentioned
above composed of two DB (DB-3 and DB-4) and two 3× 3 Transposed Convolutions with stride two
and skip connections (TConv-1 and TConv-2). At the end, a 1× 1 convolution with softmax activation
(Conv-2) delivered the class score for all pixels within the patch.
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Figure 7. FCNpixel architecture.
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Table 3. Architecture details of the FCNpixel model. k corresponds to the number of feature maps.
d stands for the input channels, and c stands for the number of classes. TConv, Transposed Convolution.

Type Output Size Params

Input 32× 32× 28 -

Conv-1 32× 32× 48 12,096

DB-1 32× 32× 80 16,576

DS-1 16× 16× 80 6720

DB-2 16× 16× 112 26,048

DS-2 8× 8× 112 12,992

DB-3 8× 8× 32 35,520

TConv-1 16× 16× 144 9248

DB-4 16× 16× 32 44,992

TConv-2 32× 32× 112 9248

Conv-2 32× 32× 10 1120

Total params - 174,560

Trainable params - 172,512

2.5. Training and Validation Sample Sets

As mentioned before, the original reference data consisted of 513 crop fields, but in order to
produce training and validation sets with at least one field for each class, some fields were split up, thus
generating a total of 608 fields. To avoid pixels from the same field falling in the training and validation
sets, the selection was performed at the crop field level: we selected the image from December 2015,
which included all classes, and used it as a reference for sample selection. Two disjoint sets of fields
were then selected, one for training and the other for validation, using stratified random sampling.

Approximately 50% of the polygons of each class were selected for training and the other 50% for
validation. In order to balance the number of training samples for all classes, we defined a maximum
number of training samples per class, NS. For classes with less than NS samples, we replicated
samples until the threshold was reached. For classes with larger numbers of samples, exactly NS
samples were randomly selected.

It is worth noting that for the RFpixel method, each sample corresponded to a pixel, and NS was
set to 130,000, whereas for the other methods, each sample was associated with an image patch. For
the AEpatch and CNNpatch methods, patch labels corresponded to the class of the central pixel, and
NS was also set to 130,000. For FCNpixel, since each pixel had a different label inside a patch, the
balancing procedure considered the group of different classes in each patch. In this case, NS was set to
300 patches per group of classes.

The input patches for all DL methods were standardized with zero mean and unit variance.
For the FCNpixel approach, image regions not labeled in the dataset (background) were set to a
constant value.

2.6. Accuracy Assessment

The performance of the evaluated methods was expressed in terms of Overall Accuracy (OA) and
F1 score (F1). A brief description of these metrics is given below (more details can be found in [59]).

The confusion matrix records correctly- and incorrectly-recognized examples for each class.
Table 4 presents the matrix in mathematical terms. The true classes are denoted as Ci (1 ≤ i ≤ h),
whereas the estimated classes defined by the classifier are denoted as Ĉj (1 ≤ j ≤ h).
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Table 4. Mathematical example of confusion matrix.

C1 C2 ... Ch

Ĉ1 cm11 cm12 ... cm1h
Ĉ2 cm21 cm22 ... cm2h
... ... ... ... ...
Ĉh cmh1 cmh2 ... cmhh

The terms cmij (1 ≤ i, j ≤ h) denote the number of samples recognized as class i in the
classification map, when they actually belong to class j in the reference data. Consequently, diagonal
terms (i = j) correspond to correctly-classified samples, and the off-diagonal (i 6= j) terms represent
incorrectly-classified ones. The sums of the confusion matrix elements over row i and column j are
denoted as cmi+ and cm+j, respectively.

The Overall Accuracy (OA) represents the proportion of correctly-classified samples with respect
to reference data. Thus, OA is a global measure of accuracy, so it depends on larger classes.
This measure ranges from 0 (perfect misclassification) to 1 (perfect classification) and can be stated as
the trace of the confusion matrix divided by the total number cm of classified instances:

OA =
∑h

i=1 cmii

cm
(6)

The Producer’s Accuracy (PA) value represents the probability that a certain class in the reference
is correctly classified. The PA for the class Cj can be computed by:

PACj =
cmjj

cm+ j
(7)

The User’s Accuracy (UA) represents the probability that a pixel classified into a given class
actually represents that class in the reference. The UA for the class Ci can be computed by:

UACi =
cmii

cmi+
(8)

Finally, the F1 score (F1) is the harmonic mean of UA and PA. F1 is usually more useful than
accuracy, especially if the class distribution is uneven. The F1 measure for the class Ci can be computed
by:

F1Ci = 2×
PACi ×UACi

PACi + UACi

(9)

3. Results and Discussion

In this section, we firstly report and discuss the results of a group of experiments that aimed
to compare the methods described in Section 2. Two different protocols were considered for all
four approaches (RFpixel, AEpatch, CNNpatch, and FCNpixel), as described next. Additionally,
an assessment of the improvements brought by the crop dynamics model, as proposed in Section 2.2,
was done using only the results from Protocol II.

Protocol I: The main objective of this protocol was to evaluate how the performance of the different
approaches, on each date, behaved as more information from the past was exploited. Thus, we classified
each image in the dataset taking into account different sequence lengths, which were produced by
adding earlier images successively to that target image. For conciseness, we only classified the latest
image from each month, instead of the 14 images.
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Protocol II: In this protocol, we classified all images within the whole sequence using the whole set of
images. The main objective of this protocol was to evaluate the performance of the different approaches
on each date, when the information from the past, present, and future was exploited. The images were
grouped into nine sets corresponding to the months the ground truth data were available.

3.1. Results for Protocol I

Figure 8 shows the results obtained for RFpixel, AEpatch, CNNpatch, and FCNpixel in experiments
conducted according to Protocol I in terms of average F1 (grayish bars) and OA (blueish bars) for
each image. Each bar group corresponds to the classification accuracy of the latest image in the
dataset at the acquisition month indicated on the horizontal axis (i.e., “Oct” corresponds to 29 October,
“Nov” corresponds to 22 November, and so on). The bars within a group represent different sequence
lengths. Thus, the leftmost bar of each group corresponds to a single image, the one being classified.
The bars to the right indicate the classification performance of the same target image when earlier
images were added to the input. Notice that the leftmost group has only the classification for October,
the earliest image in the dataset. The rightmost group has 14 bars, corresponding to the maximum
number of images in the database.

The plots show that accuracy increased as prior images were added to the sequence. This held
true for both metrics in almost all experiments on RFpixel, AEpatch, and CNNpatch. Few exceptions
came about in the three leftmost groups for longer sequences. In some cases, the inclusion of one
more image to the sequence brought no improvement or was slightly deleterious. This behavior
can be understood by considering Figure 6. Prior to March, soybean was the dominant crop, which
was replaced in March by maize and cotton. Thus, for some fields, pre-March data added no useful
information to discriminate prevailing crops much later in the sequence. For RFpixel, AEpatch, and
CNNpatch, the improvement was generally significant for sequences with 2–6 images, staying nearly
constant for longer sequences.



Remote Sens. 2019, 11, 2029 17 of 27

Oct Nov Dec Jan Feb Mar May Jun Jul

Image classified for different sequence lengths

0

10

20

30

40

50

60

70

80

90

A
c
c
u

r
a

c
y

 m
e
tr

ic

OA
AvgF1

(a)

Oct Nov Dec Jan Feb Mar May Jun Jul

Image classified for different sequence lengths

0

10

20

30

40

50

60

70

80

90

A
c
c
u

r
a

c
y

 m
e
tr

ic

OA
AvgF1

(b)

Oct Nov Dec Jan Feb Mar May Jun Jul

Image classified for different sequence lengths

0

10

20

30

40

50

60

70

80

90

A
c
c
u

r
a

c
y

 m
e
tr

ic

OA
AvgF1

(c)

Oct Nov Dec Jan Feb Mar May Jun Jul

Image classified for different sequence lengths

0

10

20

30

40

50

60

70

80

90

A
c
c
u

r
a

c
y

 m
e
tr

ic

OA
AvgF1

(d)
Figure 8. Performances for different sequence lengths on each date for each method: (a) RFpixel, (b)
AEpatch, (c) CNNpatch and (d) FCNpixel. OA (blueish bars) and average F1 (grayish bars).

FCNpixel showed a somewhat different behavior, being the most accurate approach for short
sequences (almost all images reached more than 60% in terms of OA for sequences containing one or
two images) and the less accurate one for longer sequences. In spite of comparatively higher values
for OA, the average F1 values were lower due to low accuracies for the minority classes. Recall that for
RFpixel, AEpatch, and CNNpatch sample replication helped mitigate the class imbalance in the training
set. However, FCNpixel classifies all pixels in a patch, and not only the center pixel, and some classes
may be a minority even in the patches where they come about. This is illustrated in Figure 9 for the
class beans, which was weakly represented in our dataset. In such cases, patch replication was less
effective to mitigate class imbalance for FCNpixel.

Figure 9. Example of training patches for the FCNpixel approach for classes beans and maize. The same
color legend as in Figure 6: beans (black); maize (yellow); background (white).

Figure 10 presents details of the prediction maps produced by the four approaches for the last
image of May (i.e., 20 May), when the accuracy of FCNpixel started declining. For conciseness, we
show the results for sequence lengths of 1, 3, 7, and 11 only. Clearly, temporal information improved
performance for all approaches, FCNpixel being the most accurate one for shorter sequences, as we
mentioned before. A comparison of the results for each sequence separately revealed that FCNpixel
tended to produce smoother results when compared with its counterparts. The salt-and-pepper pattern
was indeed less apparent in FCNpixel results than in the other methods. However, this effect was in
some cases deleterious because the misclassified spots were broadened, rather than eliminated.
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Figure 10. Maps of classification results for selected areas for different sequences length in 20 May. GT
stands for ground truth. Same color legend as in Figure 6.

Such behavior is due to the particularities of FCNpixel when applied to our problem. With the
exception of FCNpixel, all tested methods adopted the sliding window approach, whereby a class was
assigned to the central pixel. Thus, the classification of each pixel exploited a different neighborhood
or context, even considering that windows of close pixels has a large overlap. In contrast, for FCNpixel,
all pixels inside a patch shared exactly the same context. In addition, FCNpixel learns the class structure
within the patches. Since most patches selected for training comprised a single class, FCNpixel tended
to assign the same class to most pixels in the patch, producing a “patchy” outcome.

Most errors refer to three minority classes: beans, sorghum, and turfgrass. In fact, beans and turfgrass
were not recognized at all, rendering F1-scores equal to zero. Actually, beans was not recognized by
FCNpixel in any experiment. Other errors occurred among pasture-eucalyptus-Cerrado, which were
related to the similarity of the backscatter response among these crops.

3.2. Results for Protocol II

Figure 11 shows the results of experiments carried out following Protocol II. The conclusions
drawn from Protocol I were confirmed by the data in Figure 11. Furthermore, we confirmed the
expectation that the exploitation of data on later dates, in addition to the previous dates, improved
the precision of the generated crop maps. Figure 11 provides a clearer view about the relative
performance of the tested methods. First, the results revealed that RFpatch consistently outperformed
AEpatch both in terms of OA and average F1-score, however by a low margin. Second, FCNpixel
delivered the lowest average F1-scores on all dates, essentially because of the same reasons raised
in the previous section. Third, RFpatch and CNNpatch alternated as the best performing methods
in almost all months. Recall that CNNpatch learns features in an end-to-end way, whereas RFpatch
relies on engineered features. Therefore, training the random forest classifier was computationally
remarkably less demanding than for a CNN. Additionally, random forests typically require much less
labeled samples for training than CNN.
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Figure 11. OA and average F1-score at each date—Protocol II. From left to right in each bar-group
RFpixel, AEpatch, CNNpatch and FCNpixel repectively.

Figure 12 presents examples of the results predicted by the four approaches. For conciseness, we
show the results for November, December, May, and June only. Notice that the prediction maps were
more accurate for more abundant classes: soil for November, soybeans for December, maize and cotton
for May and June. The first and second rows of Figure 12, referring to November 2015 and December
2015, show a kind of classification error that occurred quite often in our experiments. Notice that all
methods assigned most pixels of a parcel erroneously to the class soybean in November 2015, whereas
the ground truth (left most column) was soil. On the next date (December 2015), most parcels moved to
class soybean. Between November and December 2015, it was the soybean seeding time, which did not
happen on exactly the same date for all parcels. In this period of time, soybean was in some parcels in
its early growing stages and could easily be confused with soil. A similar problem came about around
the harvest time. This is shown for example in the third and forth rows of Figure 12 referring to May
2016 and June 2016. According to the reference data, the parcel on the upper right part of the imaged
region moved from maize to soil. However, most methods misclassified parts of this parcel in June 2016
as if they still were maize.

3.3. Assessment of the crop dynamics model

The MLCS method essentially rejects solutions that imply sequences that conflict with previous
knowledge about class dynamics. We first checked the number of different class sequences prior to
and after the application of MLCS. Table 5 shows the results. In fact, the number of sequences after
MLCS fell by up to 145 times.

Table 5. Total of output sequences before and after MLCS algorithm.

RFpixel AEpatch CNNpatch FCNpixel

Before MLCS 15,609 17,532 34,591 16,478
After MLCS 183 173 238 252

Reference Total of 71 sequences

The important thing is to assess how this affects the accuracy. Figure 13 shows the percentage of
errors corrected by the MLCS post-processing algorithm in relation to the aforementioned methods for
each month. Clearly, the MLCS post-processing brought benefits for all methods. Between 0.5% and
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16.5% of the errors produced by each method on different dates were corrected by MLCS. RFpixel and
AEpatch were the methods that least benefited from MLCS, whereas FCNpixel consistently presented
the highest improvements, followed by CNNpatch.

GT RFpixel AEpatch CNNpatch FCNpixel

N
ov

D
ec

M
ay

Ju
n

Figure 12. Maps of classification results of Protocol II for selected areas. GT stands for ground truth.
Same color legend as in Figure 6.

Figure 13. Percentage of error corrected by MLCS. From left to right in each bar-group RFpixel, AEpatch,
CNNpatch, and FCNpixel, respectively.

Figure 14 presents the gains brought by MLCS in terms of average F1 score for classes covering at
least 2% of the target area, specifically soybean, maize, cotton, pasture, eucalyptus, and Cerrado. Soil was
not considered, as it represents a transition between crop classes. Similarly, we disregarded NCC
because it encompasses a number of different crop classes. In terms of F1 score, FCNpixel presented
the highest improvements, followed by CNNpatch, RFpixel, and AEpatch. Nonetheless, the F1 score
decreased slightly in March for RFpixel and more sharply for AEpatch. Looking at the results for
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each class individually, we realized that MLCS increased the F1-score AEpatch of all classes with the
exception of Cerrado, which was responsible for the observed drop in the average F1-score.

Figure 14. Average F1 score improvement for crops with more than 2% of the total samples of the
dataset. From left to right in each bar-group RFpixel, AEpatch, CNNpatch and FCNpixel, respectively.

Figure 15 summarizes the results of Figures 11 and 13. As stated before, the enforcement of prior
knowledge by MLCS was beneficial on all dates in terms of OA. Similarly, Figure 16 summarizes
Figures 14 and 16, whereby in this case, the average F1 score considered all classes. As explained
before, the MLCS algorithm tended to smooth the results produced by the classifiers. This effect was
detrimental on some dates for some minority classes, whose individual F1 score fell, pushing down
the F1 average score. This occurred often with beans, turfgrass, and sorghum.

Figure 15 shows that MLCS consistently improved the accuracy in terms of OA. However,
Figure 16 reveals that on some dates, the average F1-score decreased for RFpixel and AEpatch. In fact,
in our experiments, MLCS improved the classification for most pixels, but in a few cases, it produced
the opposite effect. Figure 17a shows one simple example of a misclassification induced by MLCS.

Consider the task of assigning the samples x1, x2, and x3 related to the same image site over the
dates t1, t2, and t3 into one out of three classes (A, B, and C). Let us assume that the sequence AAA is
the ground truth (circles with a thick contour), and the posterior probabilities estimated by a generic
classifier are shown above each circle in Figure 17. Consider a first approach without MLCS. It consists
of choosing the class with the highest posterior on each date. The final result in this case will be ABA
(shadowed circles), which corresponds to 67% correctly-classified samples. In a second approach, the
posteriors are submitted to MLCS, which discards sequences involving class transitions that conflict
with the prior knowledge about class dynamics in the target area. Let’ us assume that AAA, BBB, and
CCC are the only admissible sequences, as indicated by the arrows in Figure 17a. The probabilities of
each of those sequences is given by the product of the posteriors in each sequence, as shown on the
right side of Figure 17a. In this example, MLCS selected CCC (enclosed by a box) as the final solution,
classifying erroneously the samples on all dates. Thus, in relation to the first approach, MLCS reduced
the accuracy from 67% to 0%. Figure 17b shows a similar example where the posteriors are more
concentrated in one class. The first approach predicted classes ABA, as in the prior example. MLCS
improved this result and predicted the sequence AAA, which perfectly matched the ground truth.
These examples showed that MLCS was generally more effective when the classifiers that estimated
the posterior probabilities were more confident in their predictions.
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Figure 15. OA before and after MLCS algorithm. From left to right in each bar-group RFpixel, AEpatch,
CNNpatch and FCNpixel repectively.

Figure 16. Average F1 score before and after MLCS algorithm. From left to right in each bar-group
RFpixel, AEpatch, CNNpatch and FCNpixel repectively.

(a) (b)
Figure 17. Examples of how MLCS performs: (a) missclassification and (b) correct output. Ground
truth (circles with thick borders); maximum probability classes on each date (shadowed circles); final
MLCS outcome (box).



Remote Sens. 2019, 11, 2029 23 of 27

Figure 18 sheds more light on this issue. It presents the classification maps prior to and after MLCS
for each tested method for a selected area in February 2016. Figure 18 also presents the probability
heat maps for each approach (red: maximum value; yellow: intermediate value; blue: minimum
value). The plot shows how MLCS deteriorated the result produced by RFpixel and AEpatch. This was
manifested in the increment of class pasture (greenish) within a parcel corresponding to class cotton
(greyish). The heat maps in the figure show that these classifiers were not confident about the true class.
Contrarily, MLCS improved the results delivered by CNNpath and FCNpixel, which were comparatively
more confident about their predictions in the same regions.
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Figure 18. Maps of the class output before and after MLCS for each method for selected area
on December 2016. GT stands for ground truth and Heatmap Prob for a heat map of the output
probabilities. Same color legend as in Figure 6.

4. Conclusions

In this work, three Deep Learning (DL)-based methods for crop recognition from multitemporal
SAR image sequences were investigated: Autoencoders (AE), Convolutional Neural Networks (CNN),
and Fully-Convolutional Networks (FCN). The AE method combined unsupervised feature learning
with a Random Forest (RF) classifier in a pixel-wise analysis. The CNN method used a shallow network
for supervised patch-based classification with spatially-independent predictions. Finally, the FCN
method implemented a full patch semantic segmentation with structured predictions. As the baseline,
we took an RF classifier running on hand-crafted textural features.

The CNN patch-based approach alternated with RF and FCN as the best-performing method in
most experiments. Moreover, the CNN approach presented a more stable behavior when compared
with FCN. Although the FCN approaches performed close to the other methods, their full potential
was not fully exploited in our experiments, mainly due to the difficulty in balancing the number of
training samples from minority classes.
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For all methods, the accuracy tended to improve as more multitemporal data were added to the
input data sequence, until it stabilized. This trend reflected that the method required some amount of
temporal data to achieve its full potential. Additionally, the inclusion of data from outside the crop
cycle brought no improvement.

This work further introduced a post-classification strategy that enforced prior knowledge about
the crop dynamics in the imaged area. It should be emphasized that the strategy consisted of a method
for modeling crop dynamics in a geographical region and incorporating the model into an automatic
classification process. Therefore, each model created according to the proposed method would always
be restricted to a limited geographical area. The extent of the area in which a given model will be valid
is an interesting question that exceeds the scope of this paper. However, the modeling strategy was
not restricted to any specific area, though its benefits were most evident in areas with complex crop
dynamics, such as in tropical regions.

Tests conducted on SAR data of a public dataset from a tropical region with complex crop
dynamics demonstrated the effectiveness of the proposed strategy. Indeed, the post classification
improved the accuracy by correcting between 0.5% and 16.5% of the errors produced by each method,
which implied gains up to 3.2% for OA and 8.7 for the average F1 score.

It should be emphasized that these methods were not restricted to SAR data and can be
straightforwardly applied to any multitemporal remote sensing data.
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