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ABSTRACT: In the state of Paraná, Brazil, there are no major changes in areas cultivated with annual crops, 
mainly due to environmental laws that do not allow expansions to new areas. There is a great contribution of 
the annual crops to the domestic demand of food and economic demand in the exports. Thus, the area and 
distribution of annual crops are information of great importance. New methodologies, such as data mining, 
are being tested with the objective of analyzing and improving their potential use for classification of land use 
and land cover. This study used the classifiers decision tree and random forest with Normalized Difference 
Vegetation Index (NDVI) temporal metrics on images from Operational Land Imager (OLI)/Landsat-8. 
The results were compared with traditional methods spectral images and Maximum Likelihood Classifier 
(MLC). At first, seven classes were mapped (water bodies, sugarcane, urban area, annual crops, forest, pasture 
and reforestation areas); then, only two classes were considered (annual crops and other targets). When 
classifying the seven targets, both methods had corresponding results, showing global accuracy near 84%. 
NDVI temporal metrics showed producer’s and user’s accuracy for the annual crop class of 86 and 100%, 
respectively. However, if considering only two classes, the NDVI temporal metrics reached global accuracy 
of near 98% and producer’s and user’s accuracy above 94%.
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Mapeamento de áreas agrícolas anuais utilizando mineração
de dados e séries temporais do OLI/Landsat-8

RESUMO: No Estado do Paraná, Brasil, não há grandes mudanças nas áreas cultivadas com culturas anuais, 
principalmente devido a leis ambientais que não permitem expansões para novas áreas. Há grande contribuição 
das culturas anuais para a demanda doméstica de alimentos e econômica nas exportações. Assim, a área e 
distribuição das culturas anuais são informações de grande importância. Novas metodologias, como data 
mining, estão sendo testadas com o objetivo de analisar e melhorar seu potencial de uso para classificação 
do uso e cobertura da terra. Neste estudo, foram utilizados os classificadores decision tree e random forest 
com métricas temporais de Normalized Difference Vegetation Index (NDVI) em imagens do Operational 
Land Imager (OLI)/ Landsat-8. Os resultados foram comparados com os métodos tradicionais (imagens 
espectrais e classificador Maximum Likelihood Classifier - MLC). Inicialmente, foram mapeadas sete classes 
(corpos d’água, cana-de-açúcar, área urbana, culturas anuais, floresta, pastagem e áreas de reflorestamento) e 
posteriormente apenas duas classes foram consideradas (culturas anuais e outras classes). Ao classificar os sete 
alvos, ambos os métodos tiveram resultados correspondentes, mostrando exatidão global próxima a 84%. As 
métricas temporais de NDVI mostraram a acurácia do produtor e do usuário para a classe de cultura de 86 
e 100%, respectivamente. No entanto, considerando-se apenas duas classes, as métricas temporais do NDVI 
alcançaram exatidão global próxima a 98% e a acurácia do produtor e do usuário acima de 94%.
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Introduction

Remote sensing, given its synoptic character and data 
acquisition promptness, stands out as a technique able to 
monitor the crops throughout their lifecycle. Even though there 
are several orbital remote sensors with different configurations 
and resolutions (Toth & Jóźków, 2016), most of the current 
ones are unable to distinguish different agricultural crops in 
terms of spectral characteristics (Yao et al., 2015).

To overcome this issue, new approaches such as Data 
Mining (DM) have been tested to assess and improve spectral 
differentiation (Grande et al., 2016). DM approach has tools to 
analyze large amounts of data, allowing the development of a 
learning mechanism (Vintrou et al., 2013). Another procedure 
to assist in the multispectral classification of images is the 
multi-temporal analysis of Normalized Difference Vegetation 
Index (NDVI) (Rouse et al., 1974) since spectral-temporal 
profiles are strongly tied to agriculture dynamics (Cattani et 
al., 2017). This type of approach has been used to classify crop 
types (Chen et al., 2018) and land cover (Jia et al., 2014).

Among the orbital image classifiers, MLC (Maximum 
Likelihood Classifier) is one of the most used (Silva et al., 2013). 
Chen et al. (2018) used MLC to generate a crop/non-crop map 
on OLI/Landsat-8 images in the state of Mato Grosso, Brazil, 
with overall accuracy greater than 95% and producer’s and 
user’s accuracy over 90%. Jia et al. (2014) when classifying 
land cover in China obtained overall accuracy of up to 94.6% 
using the MLC; however, MLC may present limitations, such as 
incorrect identification of targets with similar spectral classes 
(Amaral et al., 2009). 

Algorithms based on Machine Learning (ML) have been an 
alternative which achieved extremely efficient results in terms 
of agricultural target classifications (Valero et al., 2016). The 
majorly used algorithms are Decision Trees (DT) and Random 
Forests (RF), or even combinations of them (Lary et al., 2016).

Against this background, this study aimed to compare two 
orbital image classification approaches. One of them consisted 
of using data mining techniques to classify a NDVI time series 
data from OLI/Landsat-8 images. The other was to classify 
using only spectral information from four image dates.

Material and Methods

The study was conducted according to the steps of 
Knowledge Discovery in Databases (KDD) process (Fayyad 
et al., 1996), which is divided into five steps: 1) data selection, 
2) preprocessing, 3) transformation, 4) data mining, and 5) 
interpretation. 

The imagery was acquired from the Operational Land 
Imager (OLI) sensor, onboard the Landsat 8 satellite (WRS-2 Path: 
223; WRS-2 Row: 077). This is a region of great agricultural 
output in the West of Paraná state (Brazil), mainly soybeans 
and corn crops (Souza et al., 2015).

The OLI sensor has nine spectral bands, 12-bit radiometric 
resolution, and 16-day revisit cycle (U.S. Geological Survey 
2019). Landsat 8 images of high-level surface reflectance 
(Level 2) made available on demand by the USGS (https://
earthexplorer.usgs.gov/) were downloaded. These images are 

processed by the Landsat Surface Reflectance Code (LaSRC) 
(Vermote et al., 2016). Eleven images with less than 3% of 
clouds at different days of year (DOY) were selected from 
2015 (294), 2016 (73, 89, 121, 185, 265, 281, 297 and 329) and 
2017 (27 and 59). Pixels with cloud and cloud shadow were 
eliminated in the selected images using the quality band (Zhu et 
al., 2015), which is distributed along with the Landsat 8 images 
of surface reflectance. Bands comprising the blue (0.452 - 0.512 
μm, Band 2), green (0.533 - 0.590 μm, Band 3), red (0.636-0.673 
μm, Band 4), NIR - Near Infrared (0.851 - 0.879 μm, Band 5), 
the Shortwave Infrared 1 - SWIR 1 (1.566-1.651 μm Band 6) 
and SWIR 2 (2.107-2.294 μm, Band 7) (USGS, 2019).

First, images were reprojected to the Universal Transverse 
Mercator (UTM) zone 22 South. Afterward, the NDVI was 
calculated as the ratio of the difference by the sum between the 
reflectance in the red and the NIR (Rouse et al., 1974). The NDVI 
is widely used in the agricultural monitoring and mapping since 
it exploits the vegetation contrast in relation to other targets.

The NDVI of annual agricultural crops range from values 
close to zero (beginning of lifecycle) to one - maximum 
vegetative development (flowering, fruiting and grain-filling); 
then, they decrease to values near zero again (senescence, 
remains and bare soil), being followed by a new annual 
crop cycle with the same trend (Cattani et al., 2017). There 
is little spectral-temporal variation in targets such as cities, 
reforestation areas and forests, which show mean NDVI values 
near 1.0 for reforestation and forest, and values close to 0.5 
for urban areas. Yet sugarcane fields and pastures have lower 
spectral-temporal variations compared to other annual crops. 
As for the water, for lowly reflecting in near infrared, it has 
NDVI values near or below zero.

The NDVI differences (NDVISD) of the Landsat-8 images 
were summed (Eq. 1) to quantify the spectral-temporal 
variation of NDVI for annual crops, creating a new variable 
able to differentiate these surfaces from the other targets. The 
expression for the NDVISD is

n

SD i i 1
i 1

NDVI NDVI NDVI +
=

= −∑

where:
NDVISD - NDVI differences;
n 	 - the number of images of the temporal-series;
NDVIi - the i image from the temporal series; and,
NDVIi+1 - the i+1 image from the temporal series. 

Then, the mean, minimum, maximum, standard deviation, 
coefficient of variation, amplitude, median and sum were 
calculated for the NDVI time series. These measurements were 
used as input data for classification along with NDVISD ones, 
which from here were called NDVI temporal metrics.

In preprocessing, a cube was created with the mentioned 
temporal metrics (NDVI cube -NC), and another with the 
spectral bands 2, 3, 4, 5, 6, 7 (Multispectral Cube - MC) from 
03/07/2016, 21/09/2016, 24/11/2016 and 11/01/2017. This was 
used in the classifications for comparison with the NC. The 
false-color composition (RGB-564) was generated for sample 
collection.

(1)
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Data mining was performed using the supervised classifiers 
Decision Tree (DT) and Random Forest (RF) in both image 
cubes (NC and MC). For comparison, a classification was 
performed using a Maximum Likelihood Classification 
algorithm (MLC) in MC.

The DT and RF classification algorithms used here derived 
from the python scikit-learn library (Pedregosa et al., 2011) 
for machine learning. This library uses an optimized version 
of the Classification and Regression Tree Algorithm (CART) 
(Breiman et al., 1984), which supports meta-variables, also 
allowing regression. RF is a method that combines k decision 
trees from the CART; it matches predictors from the trees in 
such a way that each of them depends on the values of a random 
vector sampled independently and with the same distribution 
for all the trees within a forest (Breiman, 2001).

A priori, the Overall Accuracy (OA), which is the percentage 
of correctly labeled pixels in a dataset, was assessed, in addition 
to the Kappa coefficient (K) (Cohen, 1960). Both were generated 
by the classification algorithms to verify the best used.

Accuracies of the produced maps were determined by error 
matrices. For that, a technique known as sample panel was 
used; it is characterized by a random distribution of sampling 
points within the area, with the purpose of surveying the land-
use and cover classes of each point (Luiz et al., 2002). Three 
hundred fifty randomly distributed sample points were used in 
the mappings, 50 of them per class. Evaluations were carried 
out visually by Google Earth high-resolution images, with the 
aid of MC, generating the error matrices for each mapping. 
From the error matrix, OA and K were calculated.

Other accuracy indices were also determined. One is based on 
the Producer’s Accuracy (PA), which stands for the probability of 
a given pixel value being a member of a particular class. Another 
is the User's Accuracy (UA), which is the probability of a pixel 
classified on the map actually representing that category on the 
field (Congalton, 1991). To check for significant differences in 
precision measurements among different classification results, 
the Z test (Foody, 2009) was used as follows: 

Figure 1. Classification of Landsat-8 images spectral metrics (MC), using as classifiers Decision Tree (A), Random Forest (B), 
and Maximum Likelihood Classifier - MLC (C), and by Normalized Difference Vegetation Index (NDVI) temporal metrics 
(NC), using as classifiers Decision Tree (D) and Random Forest (E) for urban areas, forests, sugarcane field, reforestation areas, 
annual crops, pasture, and water bodies
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where: 
p	 - (x1 + x2)/(x1 - x2)
P1 and P2 - Kappa indices of each method compared;
x1 	 - number of cases allocated correctly in data classifica-

tions with size n1; and,
x2 	 - number of cases allocated correctly in data classifica-

tions with size n2.

In this test, it is assumed that if | Z | > 1.96, both classifications 
are significantly different at p ≤ 0.05 (Foody, 2009).

Results and Discussion

The classifiers showed different performances regarding the 
mapping of the seven classes of land-use and cover (Figure 1) 

(2)
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with two databases (MC and NC). The DT and RF classifier 
in the MC confused the pasture class with the annual crops 
(Figure 1A and B). In turn, the classifiers using the NC (Figure 
1D and E), generated confusion between the sugarcane and the 
pasture classes. All classifiers were able to identify the Iguaçu 
National Park in the southeast region of the scene (Figure 1), 
which represents a large homogeneous and preserved area of 
Atlantic Forest (Ribeiro et al., 2009). 

In the classifications that used the NC, larger amounts of 
areas classified as the sugarcane class were observed, mainly 
in the northern region of the study area (Figures 1D and E). 
For Adami et al. (2012a,b), these sugarcane areas were only in 
the northern region, during the 2010/2011 agricultural year. 
Likewise, when mapping crops in the state of Paraná, Brazil, 
between 2010 and 2014, Cechim Junior et al. (2017) identified 
areas under sugarcane solely to the northern; these authors 
used MLC classifier on images from Landsat 5 TM, Landsat 8 
OLI, and IRS LISS-3, with OA above 93%.

Classifications using NC also identified the largest areas 
under annual crops, which were concentrated more from 
west to north of the study area, corroborating the results of 
other studies (Souza et al., 2015; Zhong et al., 2016). The best 
mapping accuracy was achieved when the algorithm RF was 
used, for both MC and NC images. Using a sample panel to 
classify the entire satellite scene, the mappings with NDVI 
DT (OA: 84% and K: 0.81) showed the best results, followed 
by the NDVI RF and MLC (OA: 82% and K: 0.79) (Table 1). 

The MC maps (DT, RF and MLC) obtained low user's 
accuracy when classifying other targets as city and mainly 
annual agricultural crops. This was because some agricultural 
areas were in fallow period, or with the soil turned over; 
therefore, they are spectrally like urban areas. The RGB MLC 
achieved the best results for the class Water, showing PA and 
UA of 100 and 96%, respectively.

Land use classifications using NDVI temporal data had 
low PA for the forest (DT: 72% and RF: 75%) and UA for 
reforestation area (DT: 66% and RF: 70%), classifying forest as 
reforestation areas. Pasture also showed a low value of PA (DT: 
73% and RF: 68%). This was mainly due to the misclassification 
errors between the classes pasture and sugarcane. This issue 

was also reported by other authors (Xavier et al., 2006; Adami 
et al., 2012a). For Xavier et al. (2006), this is due to a similarity 
in temporal behavior of NDVI for both classes.

Regarding the annual crops, the best results were seen when 
using NDVI temporal metrics both for DT (PA: 86%; UA: 100) 
and RF (PA: 77%; UA: 100). Likewise, Jia et al. (2014a) observed 
the best results using NDVI metrics (maximum, minimum 
and mean values and standard deviation) when compared to 
phenological metrics (start and end of the growing season, 
duration, seasonal amplitude and maximum adjusted NDVI) 
and to spectral data of a single date using images from OLI 
sensor. According to these authors, this outcome arises from 
a lack of sensitivity of the NDVI temporal metrics to planting 
and harvesting periods. For a single image (RGB), the date 
has relevant influence on results (Senf et al., 2015), as in some 
areas crops are under development, whereas in others, they 
have already been harvested. By using NDVI temporal metrics, 
fewer misclassification errors were found for annual crops, 
but with misleading interpretations in other classes (mainly 
between sugarcane with pasture). Therefore, rankings were also 
evaluated separating only the annual crops from a general class 
representing the other targets. 

The NDVI RF, NDVI DT and RGB MLC classifications 
showed no statistical difference by the Z test (|Z| < 1.96) with 
higher accuracy than the others. The same trend was seen for 
RGB RF and RGB DT, but with the lowest accuracy. Yet the 
classifiers using NDVI temporal metrics had statistically the 
same results (Table 2).

OA - Overall Accuracy; K - Kappa coefficient; PA - Producer’s Accuracy; UA - User’s Accuracy

Table 1. Accuracy indices generated from algorithms and random distribution of points in classifications using Normalized 
Difference Vegetation Index (NDVI) temporal metrics (NC) and spectral metrics (MC) and the classifiers Decision Tree (DT), 
Random Forest (RF), and Maximum Likelihood Classifier (MLC)

* - Significant at p ≤ 0.05 by z test; ns - Not significant

Table 2. Comparison of Kappa indices by Z test obtained by 
random distribution of sampling points for classification of 
urban areas, forest, sugarcane, reforestation, annual crops, 
pasture and water bodies using Decision Tree (DT), Random 
Forest (RF) and Maximum Likelihood Classifier (MLC) on 
Normalized Difference Vegetation Index (NDVI) and temporal 
metrics (NC) and spectral metrics (MC) 
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Classifications using spectral information (MC) had more 
classification noise and misleading between annual crops and 
other targets compared to those using NC metrics (Figure 2).

The classification accuracy estimated by algorithms showed 
good results (OA: 94.4 to 100%, K: 0.98 to 1.0). Nonetheless, 
the same is not true for accuracy evaluation by means of sample 
panel. Superior results were achieved by NC classifications 
both using DT (OA: 98%; K: 0.96) and RF (OA: 96%; K: 0.92) 
when compared to MC (the best result was with RGB RF; OA: 
88%; K: 0.76) (Table 3). 

In the literature there are other authors reporting equivalent 
results. Using NDVI spectral-temporal metrics, Müller et al. 
(2015) obtained an OA of 93% while identifying grazing areas 
on the Cerrado biome. Similarly, Jia et al. (2014b) came to close 
results with an OA of 93% and K of 0.87 for classification of 
forest cover by means of NDVI spectral-temporal metrics.

NDVI temporal metrics improved OA by nearly 11% and 
K by 16%. Thus, statistical values extracted from the NDVI 
profile showed to be able to improve land-use and cover 
characterization (Jia et al., 2014a; Valero et al., 2016).

The joining of urban area, forest, sugarcane, reforestation, 
pasture and water bodies into a single class improved 
classification results (OA: from 84 to 98%; K from 0.80 to 
0.96). This is because there is an increase in misclassifications 
while trying to differentiate such classes. Thus, by reducing 
the number of classes, a better classification accuracy can be 
achieved (Senf et al. 2015).

The NC classification with DT reached high PA and UA 
(above 96%) for both classes (Table 3). This classification 
reached a PA of 100% for other targets (i.e. all the points from 
other targets were correctly sorted) and UA of 100% for annual 
crops (all points classified as a crop are true). This classification 
obtained 3.8% error of omission for crops and 4% error of 
inclusion for other targets. 

MC classifications had no statistical differences between 
each other by Z test (| Z |<1.96) (Table 4). The same is true for 
the NC analysis method. Therefore, the differentiation between 
annual crops and other targets was more influenced by NDVI 
metrics than the use of classification algorithm.

Figure 2. Classification of Landsat-8 images spectral metrics (MC), using as classifiers Decision Tree (A), Random Forest (B) 
and Maximum Likelihood Classifier - MLC (C), and by Normalized Difference Vegetation Index (NDVI) temporal metrics 
(NC), using as classifiers Decision Tree (D) and Random Forest (E), for the classes annual crops and other targets

Table 3. Accuracy indices generated from algorithms and random distribution of points in Normalized Difference Vegetation 
Index (NDVI) temporal metrics (NC) and spectral metrics (MC) using as classifiers Decision Tree (DT), Random Forest (RF) 
and Maximum Likelihood Classifier (MLC) for annual crops and other targets
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Conclusions

1. The temporal metrics (NC) obtained good producer’s and 
user’s accuracies with the annual crop class, while for this class 
with the espectral metrics (MC) there were more confusions 
for all the classification algorithms used.

2. Considering only two classes (annual crops/other 
targets), the classifications using the temporal metrics (NC) 
obtained higher accuracy than classifications that used the 
spectral attributes.

3. The classification result depends more on the attribute 
used than on the classification algorithms. 

4. The use of Normalized Difference Vegetation Index 
(NDVI) metrics information, which shows the phenological 
variations of the crops, together with data mining techniques, 
proved to be effective in the differentiation of annual crops 
from the other targets, generating a precise mapping.
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